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Abstract Conceptual model uncertainty is one of the most difficult problems to deal with in
the practice of groundwater modelling. In recent years, several methodologies, based on the
construction and calibration of alternative models, have been proposed to face this problem. In
this article, a more general and flexible approach than those previously developed is described.
We achieve this combining the generalized likelihood uncertainty estimation (GLUE) and the
Bayesian model averaging (BMA) methodologies. Implementing the GLUE methodology
ensures that a large set of acceptable simulators, i.e., conceptual models and parameter sets, are
included in the analysis, therefore, avoiding compensation of the conceptual model errors and
biased parameter estimates. Implementing the BMA approach allows the inclusion of previous
knowledge about the system and the obtaining of consensus multji-model predictions.
Preliminary results show that the approach provides a general and flexible framework to

account for predictive uncertainty due to the specification of alternative conceptual models.
Keywords GLUE, BMA, multi-model] prediction, Monte Carlo methods

INTRODUCTION

With increasing human and climate pressures on groundwater resources, accurate and
reliable predictions of groundwater flow and pollutant transport are essential.
However, typically, the geological structure is partially known and data of subsurface
properties are sparse and prone to error. Consequently, incomplete process
representation, errors in the definition of initial and boundary conditions, and errors in
the model parameters render the groundwater model predictions uncertain.

Over the last decades, considerable efforts have been put in developing methods to
obtain optimal groundwater parameter values and in quantifying predictive uncertainty
associated with them. However, the major weakness of parameter-calibration
approaches is that all sources of uncertainty are attributed to parameter errors,
therefore, ignoring conceptual model uncertainty by confining the suite of plausible
conceptual models to a single hydrological concept. This often leads to uncertainty
analyses that are under-dispersive and prone to statistical bias (Neuman, 2003).

These concerns have motivated researchers to consider multi-model methods,
which seek to obtain consensus predictions from a set of plausible models. The
weights to aggregate multi-model outputs can be equal or can be determined through
regression-based approaches (e.g., Abrahart and See, 2002; Georgakakos, 2004).
However, the weights in such combinations are not connected to model performance
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and can take any arbitrary real value. Bayesian Model Averaging (BMA) {Draper,
1995; Hoeting et al,, 1999), on the other hand, weights the predictions of competing
models by their posterior model probability, which represents each model’s relative
skill in the training period. Hence, BMA weights are tied directly to individual model
performance. Neuman (2003) proposed a Maximum Likelihood Bayesian Model
Averaging (MLBMA) method to assess the joint predictive distribution of several
competing models. MLBMA is an approximation of BMA that relies on maximum
likelihood parameter estimation which expands around these estimates through non-
exhaustive Monte Carlo simulation. Nevertheless, the mayor weaknesses of the multi-
model parameter-calibration approaches are that compensation of conceptual model
errors may occur through calibration of biased parameters, and that many parameter
sets may perform equally well but provide different results (Refsgaard et al., 2006).

An alternative methodology that rejects the idea of a unique optimal simulator is
the Generalised Likelihood Uncertainty Estimation (GLUE) method (Beven and
Binley, 1992; Beven, 1993). GLUE is based on the concept of equifinality, which
acknowledges that there exist many combinations of model structures and parameter
sets that provide (equally) good reproductions of the observed system response. Even
though equifinality arises because of the combined effects of errors in the forcing data,
system conceptualization, measurements and parameter estimates, as yet, it has only
been applied considering a single deterministic conceptual model (Refsgaard et al.,
2006), thereby, neglecting model structural uncertainty.

In this work, we combine GLUE with BMA to explicitly account for uncertainty
that originates from errors in the model conceptualization, forcing data and parameter
values. Within the GLUE framework, we explore the global likelihood response
surface of a suite of possible combinations of plausible mode! structures, forcing data
and parameter values in order to select those simulators that perform well. For each
model structure, the posterior model likelihood is obtained by integrating the
likelihood measures over the retained simulators for that model structure. The posterior
model likelihoods are subsequently used in BMA to weight the predictions of the
competing models when assessing the joint predictive uncertainty.

METHODOLOGY FOR INTEGRATED UNCERTAINTY ASSESSMENT
Generalized Likelihood Uncertainty Estimation (GLUE) methodology

GLUE is a Monte Carlo simulation technique based on the concept of equifinality
(Beven and Binley, 1992; Beven and Freer, 2001, Beven, 2005). It rejects the idea of a
single correct representation of a system in favour of many acceptable or behavioural
simulators, i.e. conceptual model and parameter sets. For each simulator a likelihood
measure is defined based on the degree of correspondence between simulated and
observed records of system response. Simulators that perform better than a
subjectively chosen threshold criteria are retained and used to estimate likelihood
weighted predictions. Ensemble predictions are based on the predictions of the retained
set of simulators, weighted by their respective rescaled likelihood. Different likelihood
functions to estimate the likelihood measures can be implemented.

Expanding on the notation of Beven and Freer (2001), let us consider a set of
plausible model structures M=(M;,..,My,..,Mg), with parameter vector @=(0,,..,8,,..,0,),
input variable vector Y=(Y,..,Y ..., Y3), Observed variable vector yACTVA 1,..,Z*,;,..,Z*N)
and simulated variable vector L=(Z 1, .. 20, ZN). LH(M;((BAY,Z*)) represents the
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associated likelihood measure of the k-th model structure and the /-th parameter vector,
conditioned on both the input data vector Y and the observations vector A

Bayesian Model Averaging (BMA)

BMA is a statistical procedure that infers consensus predictions by weighting
predictions from competing models based on their relative skill, with predictions from
better performing models receiving higher weights than worse performing models.
Following the notation of Hoeting et al., (1999), if A is a quantity to be predicted, the
BMA predictive distribution of A, given a set of data D and a finite and discrete
ensemble of conceptual models M=(M;,M;,..,M,...Mg), is given by

K

p(A|D)=3" p(A|D,M,)p(M,|D) ()

k=l

where p(A|D,M,) is the posterior distributions of A and p(M/D) is the posterior model
probability, both for the &-th model structure. This latter term reflects how well model
k fits the observed data D and can be computed using Bayes’ rule (2)

p(M, D)= p(DIM,) p(M,) gp(n|Mk.)p(Mk.) @

where p(M,) is the prior probability and p(D{M,) is the integrated likelihood of model
My, respectively. Variance of the BMA prediction of A is given by (Draper, 1995)

Var[MD]:iVar[MD,M (M, | D) +i( [A|D,M,]-E[A|D]) p(M, D) (3)

From equation (3) it is seen that the variance of the BMA prediction consists of
two terms, the first representing the within-model variance and the second representing
the between-model variance.

Combining GLUE and BMA

Combining the GLUE and BMA methods involves the following steps:

1. Based on prior knowledge, a suite of alternative conceptual models 1s proposed
(e.g., see Neuman and Wierenga, 2003).

2. Realistic prior ranges are defined for the input and parameter vectors under
each plausible model structure.

3. Likelihood functions and rejection criteria are defined.

4. For the suite of alternative conceptual models, input and parameter values are
sampled from the prior ranges.

5. A likelihood measure is calculated for each simulator based on the agreement
between the simulated and observed values. Simulators that are not in
agreement with the selected rejection criterion are discarded by setting their
likelihood to zero.

6. For cach conceptual model M; a subset 4, of simulators with likelihood

p(DBM,) = Ly(MLOY, YA "} is retained. For that, steps 4-6 are repeated until
the hyperspace of possible simulators is adequately sampled, ie., when the
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conditional distributions of predicted state variables converge to a stable
distribution for each of the conceptual models M.

7. The integrated likelihood of each conceptual model M, (eq. 2) is approximated
by summing the likelihood weights of the retained simulators in subset 4, or
pOM) = Y L,(M,(8,]Y,2")).

!

=

8. The posterior model pfobabilities arc then obtained by normalizing the
integrated model likelihoods such that they sum up to one,

p(Mk ]D)“ZLM (Mk (9;|Y,Z*)) iZLﬂ (Mj (91 |Y,Z*)) ' 4

fed, J=l led,

9. After normalization of the likelihood weighted predictions under each
individual model, a multi-model prediction is obtained with equation (1) using
the weights obtained in (4).

Implementation of the methodology

For illustrative purposes, a hypothetical setup similar to the reference case described in
Poeter and Anderson (2005) was used (Fig. 1). The spatial distribution of the hydraulic
conductivity was generated using the sequential Gaussian simulation (sgsim) algorithm
{Deutsch and Journel, 1998) following an exponential model. Simulation of steady
state flow employed MODFLOW-2000 (Harbaugh et al., 2000) using a uniform
recharge of 4 x 10 m d, a specified head at the west and two river sections. A well
pumped 1000 m® d”! from the lowermost layer. An evapotranspiration zone was
defined with a surface elevation at 43 m, evapotranspiration rate of 1.37 x 10° m d!
and extinction depth of 5 m.
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Fig. 1 Synthetic model.

Eight alternative conceptualizations to describe the synthetic example were
defined: one-layer model; two-layer model; two-layer quasi 3D model; and three-layer
model. All four conceptualizations were defined for homogenecous and heterogeneous

622



conditions. Non-informative priors for the alternative models and for the unknown
inputs and parameters were adopted. Parameter and input vectors were sampled from
the prior distributions using a Latin Hypercube Sampling (LHS) scheme. A rejection
threshold of 2.5 m was defined corresponding to a maximum allowable deviation at
any of the 20 observation wells. Traditional Gaussian (GAUSS) likelihood function
(Jensen, 2003), model efficiency (MODEFF) likelihood function (Freer and Beven,
1996; Feyen et al., 2001), and a Fuzzy-type triangular (TRIANG) likelihood function
(Jensen, 2003) were used to estimate the likelihood measures.

PRELIMINARY RESULTS

Figures 2 and 3 present the results for the three likelihood functions. The total variance
(Eq. 3) has been estimated for six groundwater budget terms and 20 observation wells.
Both components of the total variance are expressed as a percentage of the total
variance. From Fig. 2, between-model variance ranges from 3% up to 45% of the total
variance, depending on the groundwater budget term and on the likelihood function.
For the groundwater heads (Fig. 3) between-model variance ranges from 0.5% up to
48%.
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Fig. 2 Total variance estimated using equation (3) for six groundwater budget terms.
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Fig. 3 Total variance estimated using equation (3) for 20 observation wells of Fig. 1.

Although some differences are observed between the variance estimations made
with different likelihood functions, the pattern is identical, i.e., all three likelihood
functions identify the same groundwater budget terms and observation wells with the
largest between-model variance. It is important to note that the largest predictive
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uncertainty due to conceptual model uncertainty is observed for the state variables
river discharges and recharge inflow, which were not used in the estimation of the
likelihood measures. From Fig. 3, a large influence of the pumping well is observed in
the estimation of the predictive uncertainty due to alternative conceptual models. In
this sense, estimation of likelihood measures could be easily conditioned on
quantitative and/or qualitative information about the pumping well through the
inclusion of, e.g., stepwise or open-close likelihood functions.

CONCLUSIONS

We presented an approach for global uncertainty assessment in groundwater
modelling. It combines the Generalised Likelihood Uncertainty Estimation and
Bayesian Model Averaging to account for uncertainty in the predictions that arise from
errors in model structure, forcing data and parameter estimates. The method is flexible
because (i) there is no restriction on the diversity of conceptual models or on the level
of uncertainty in the forcing data or parameters that can be included; (ii) it allows for
different ways of expressing the likelihood of a simulator (including a formal Bayesian
one) based on the distribution of the residuals, hence allowing different types of
knowledge to be incorporated (quantitative as well as qualitative); and (iii) it is
Bayesian in nature, which provides a formal framework to mmcorporate previous
knowledge about the model structures and parameters, or to update the estimates
should new information become available.
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