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Abstract. The model PROCULTURE has been developed by the Unive€ittholique de Louvain — UCL
(Belgium) to simulate the progress of the septoria leaf blotch disease on winter wheat during the cropping sea-
son. The model has been validated in Luxembourg for four years at four distinct representative sites. It is able
to identify infection periods due to the causal agéytosphaerella graminicolan the last five leaf layers by
combining meteorological data with phenological data from PROCULTURE's crop growth model component.
The meteorological forcing consists of hourly time-series of air temperature, relative humidity and cumulative
rainfall since the time of sowing, retrieved from automatic weather stations for hindcast and numerical weather
prediction model outputs for the forecast periods. In order to improve the model, leaf wetness — which is one
of the most important drivers for the spread of the disease — shall be added as an additional predictar. There-
fore leaf wetness sensors were set up at four test sites during the 2007 growing season. To get a continuous
spatial coverage of the country, it is planned to couple the PROCULTURE métieédo 12-hourly opera-

tional weather forecasts from an implementation of the Weather Research and Forecasting (WRF) model for
Luxembourg at 1 km resolution. Because the WRF model does not provide leaf wetness directly, an artificial
neural network (ANN) is used to model this parameter.

1 Introduction the PROCULTURE model an optimum time frame for site-

specific spraying in an operational setup for sites throughol
A large extend of land use in the Grand Duchy of Lux- Luxembourg and distribute these results to the farming com
embourg is agriculture and the fungal disease septoria leafunity.

blotch is one of the major diseases in winter wheat. Its spread pROCULTURE consists of a phenological wheat growth
on the individual plant is highly dependent on rainfall events model and a plant disease model. It is able to identify infec
in combination with the plant’s deVeIOpment. In order to ob- tion periods Caused by the Causa' agmtgramini(:o'aon

tain gOOd harvests it is desirable to minimize the infection bythe |ast five |eaf |ayers_ |nput to the mode| are pheno'ogica
spraying fungicides. However, fungicide application is costand disease progress observations as recalibration data g
intensive, should be kept to a minimum due to ecologicalmeteorological data. The latter forcing consists of hourly
reasons and is dependent on dry conditions to ensure a goafe-series of air temperature, relative humidity and cumu
eﬁicacy of the treatment. Moreover, the state of the infeCti0n|ative rainfall since the time of Sowing, retrieved from au-
as well as upcoming rainfall events that lead to further infec-tomatic weather stations and numerical weather predictio
tions are crucial elements that regulate the decision of spraymodel outputs for the forecast periods. A weekly PROCUL-
ing or not spraying. The objective is therefore to provide via TURE recalibration is routinely done using actual diseasg
levels observed on site. On average, no spray of fungicidg
or only one application is required to contrdtieiently the
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- DECAGON DEVICES (2006), we used a threshold of 460
// /////// raw counts to separate dry from wet conditions. As PRO-
CULTURE model inputs are at hourly intervals we resam-
ple the 10-min AWS (averages) as well as the leaf wetness
(number of time intervals with wet sensor) measurements
Figure 1. Set up of air temperature and leaf wetness sensors. to hourly temporal resolutions. Additionally, the saturation
vapour pressure (hPa), the absolute humiditynfy as well
as the dew point°C) were calculated from the AWS mea-

(Lemaire et al., 2003, El Jarroudi et al., 2002). As leaf wet-surements and used as predictors for the neural network.
ness is one of the most important factors for the disease de- Figure 2 gives an example of the leaf wetness conditions
velopment, it shall be implemented in the disease model as @uring the 2007 growing season for the test site at Reuler
further predictor. (Northern Luxembourg). In general the leaf wetness condi-

To get a continuous spatial coverage of PROCULTUREtions at all sites show a very similar temporal pattern. In
forecasts foM. graminicolafor Luxembourg, it is planned  April only a few days with daily sums of up to 40 h of wet
to provide the meteorological forcing (analysis fields and 12-conditions for all sensors occurred; in May and June overall
hourly operational forecasts) by the Weather Research angligher daily sums occurred. This study does not distinguish
Forecasting (WRF) model at 1 km resolution. yet whether leaf wetness is caused by dewfall or precipitation

As the WRF model (with Noah land surface model) doesevents.
not provide leaf wetness (Chen and Dudhia, 2001) as a first Neural networks have been applied successfully in vari-
preparatory step in this paper we develop an artificial neupus geo-science studies (e.g. Junk et al., 2007), including
ral network that establishes a link among observations ofhe estimation of leaf wetness duration (e.g. Francl and Pan-
leaf wetness and meteorological measurements at the five tegjrahi, 1997). ANNs can be used to derive a complex non-

sites during the 2007 growing season. linear relationship among (observed) input and output data
without one knowing the exact physical interrelationships in-
2 Data and methods volved (Lopez et al., 1998).

The input data of hourly measurements of leaf wetness,
According to results from other authors like air temperature, relative humidity and precipitation, as well
Chungu et al. (2001) or Henze et al. (2007) detailedas the calculated data of saturated vapour pressure, absolute
information about the leaf wetness during the growth seasomtumidity and the dew point temperature are randomly split
can help to improve the prediction of M. Graminicola into three data sets: for training (70% of the data) and testing
progress on wheat plants. Therefore four test plots withas well as validation, each accounting for 15%. The train-
winter wheat were equipped with automatic weather stationsng set determines the adjusted weights between the neurons.
(AWS) and dielectric leaf wetness sensors (LWS) from During the training period, the network is tested against the
DECAGON DEVICES during the 2007 season. The LWS test data to determine the accuracy of the derived statistical
were set up at 10cm, 30cm, 60cm and 120 cm above theelationship. The training procedure is stopped, as soon as
ground. To evaluate whether the sensor’s orientation has anthe mean average error remains unchanged. Finally, the abil-
influence on the measurements, two sensors were mounteaty of the derived ANN to reproduce the validation data is
120 cm above ground, orientated north and south (Fig. 1). verified.
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Table 1. Performance of the ANN models for theffdirent test sites, 2007.

Burmerange Christnach Everlange| Everlange Il Reuler
R-squared 0.89 0.93 0.92 0.92 0.87
Mean absolute error 63.40 70.03 95.56 114.98 108.23
Min. absolute error 0.00 0.00 0.00 0.00 0.00
Max. absolute error 2272.00 2106.00 2311.00 2156.00 3163.00
Percent within 5%: 94.41 94.22 91.79 89.24 90.56
Percent within>5% to 10%: 3.50 4.38 5.22 7.48 6.81
Percent within>10% to 20%: 1.83 1.25 2.44 2.99 2.38
Percent within>20% to 30%: 0.26 0.15 0.47 0.18 0.21
Percent-30%: 0.00 0.00 0.07 0.11 0.04
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Figure 3. Scatterplot of ANN-modeled and measured hourly cu- Figure 4. Scatterplot of ANN-modeled and measured hourly cu-
mulative raw counts of LWS 3 at Burmerange; data from 13.4.2007mulative raw counts of LWS 3 at Christnach; data from 2.4.2007 tg
to 19.7.2007. 24.7.2007.

3 Results and outlook Using the ANN model it is possible to reconstruct longer
leaf wetness time series for the past years using only the me-
Due to the fact that a multiple linear stepwise forward re- teorological data as input variables. This is necessary bé
gression shows no satisfactory results (R-squared less thagause for any improvements of the PROCULTURE model
0.6) we use artificial neural networks to model the non-linearusing leaf wetness data, longer time series must be available.
correlation among the leaf wetness (measured in raw counts)e will continue measuring leaf wetness in the upcoming
and the meteorological conditions. fizrent ANN models 2008 season at the same sites with an identical sensor set lip.
for each test site are calculated. Validation results are showfThis data will be used to evaluate the modifications of the
for the test sites at Burmerange and Christnach (Figs. 3 aneROCULTURE model. Furthermore it is now possible to
4). The most relevant predictors for these sites are air temmodel the duration of leaf wetness for the whole area of Lux
perature, relative humidity dew point temperature as well assmbourg using the meteorological output of the WRF modell
the hours of the day.
The same calculations were done for the remaining three
test sites and show very similar results (Table 1).
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