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Autocorrelation and probability functions are calculated by semiclassical wave packet dynamics for the nuclear evolution of
C,Hj inits A state, connected with the X state via conical intersection. Three distinct choices of potential energy surfaces
were made: the canonic diabatic surface H,,, as defined by Koppel, the adiabatic surface E, and the Nikitin diabatic one
H,,. The wave packet is expanded in a Gaussian basis set restricted to 40 functions. The influence of the initial Gaussian
width as well as the influence of freezing this width or not is studied. Taking into account the fact that the basis set is very
small, one can conclude that the results are in acceptable qualitative agreement with those obtained by Képpel. The apparent
discrepancy between the canonic diabatic autocorrelation function and the exact one could be explained by the existence of a
dynamical condition for the choice of the diabatic potential energy surface. In the case of C,H (A), the behavior during the
relaxation cannot be considered as essentially diabatic or adiabatic: it is intermediate.

1. Introduction

Semiclassical wave packet dynamics (WPD) is
nowadays a widely used technique to investigate
the chemical reactivity and has already proven its
usefulness in the study of scattering or photodis-
sociation problems [1-3] or nonadiabatic processes
[4], in the calculation of spectra [5] or the de-
termination of the vibrational states of molecules
[6,7]. Furthermore, nonadiabatic processes are im-
portant relaxation phenomena in polyatomic
molecules and their study is enjoying growing
popularity [4,8,9].

The purpose of this work is to study by WPD
the short-time dynamical behavior of the non-
adiabatic process resulting from the conical inter-
section between the A and X states of C,H} . The
spectrum and the autocorrelation function have
already been determined for model potentials
[9,10] and it seemed interesting to try to explain,
on a dynamical point of view, the apparent adia-
batic/ diabatic disparity that the authors obtained
between their exact autocorrelation function and
the diabatic one. Section 2 briefly describes the
general framework of this study. In section 3, we
present the potential energy surfaces used to run

the classical trajectories and section 4 is devoted
to the choice of their initial conditions. Section 5
deals with the two Gaussian basis sets used which
differ in the fact that one is frozen and the other is
not. The equations of motion constitute the little
section 6. Section 7 and section 8 present respec-
tively the 3D analytical formula used to calculate
the transition probability and the general expres-
sions for the autocorrelation function C(¢) and for
the global probability IT(¢) of remaining on the
investigated potential energy surface. Section 9
deals with the results that were obtained and
section 10 is devoted to their discussion and inter-
pretation.

2. General framework

Why does not the diabatic correlation function
obtained by Koppel match at least one part of the
exact correlation function? In order to answer this
question, one will study the dynamical behavior of
the C,H} ion in a time range where the following
approximation is more or less valid: the correla-
tion function has mainly two components, one
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purely adiabatic, the other purely diabatic, and
the interference terms are negligible. By inter-
ference terms one refers to those trajectories which
follow the adiabatic surface for one moment, then
jump to the diabatic surface for a certain time,
thus moving back and forth on both surfaces. The
approximation

C(t) = C*(t) + CU1) (2.1)

is more or less valid till after the first adiabatic
and diabatic recurrences, i.e. t=1000 au (see
later). In the equation (2.1) there is a problem of
normalization, i.e. C*4(z) and CY(¢) are calculated
and normalized separately and C(¢) must then be
renormalized. The problem arises from the fact
that for =0 and the very initial motion, the
adiabatic and diabatic wave packets are quite
similar because they move on the same surfaces.
As a consequence, the correlation function from
t =0 to the coupling region should be the average
of C*(¢) and C%(¢). However, as soon as the
interaction region is reached, one can consider
that the two wave packets are really complemen-
tary because the probability of remaining on the
investigated surface (see section 5) is taken into
account and then (2.1) holds without normaliza-
tion.

3. Potential energy surfaces

The potential energy surfaces used in this study
are derived from the analytical diabatic model
surfaces of Koppel [10]:

2
Hjj=E1‘0+ )y [%h“’ig( izg_l) +‘/§Ki(j)Qig]

i=1
+3he,(Q3-1), j=1,2, (3.1)
H,;=V2)Q,. (3.2)

Q,, are two totally symmetric dimensionless coor-
dinates (corresponding to the C-H and C-C
stretching modes v; and v,) and Q, is an anti-
symmetric one (corresponding to the torsional
mode v,), EjO are the vertical ionisation energies

of the two states [1) and |2) and w;,, wy,, @, are
the frequencies of the three modes and are taken
equal in the two states. k;(j) are called the intra-
state coupling constants and A the interstate cou-
pling one. Their values are given in ref. [10].

Three distinct pairs of potential energy surfaces
were considered. The first one is the pair of di-
abatic surfaces H;; as defined above and which we
shall name the “canonic” diabatic surfaces in the
following. The second pair are the two adiabatic
surfaces E; obtained by diagonalizing the matrix
H. The third pair H;; is obtained by rotating the
matrix H. The angle of rotation is determined for
each of the N trajectories (Q,(¢), P.(¢)) (see sec-
tion 5) so that the initial potential energy
H,,(Q,(0)) is equal to the adiabatic energy
E,(Q,(0)). These N conditions ensure that the
initial wave packet begins to move in a region
where the coupling is negligible so that the di-
abatic surfaces coincide with the adiabatic ones.
In the text, these diabatic surfaces 171-1- will be
called the “Nikitin” diabatic surfaces [8].

4. Initial conditions

The initial absolute values of the coordinates
(Qig> Ou) and their conjugate momenta (P, P,)
are chosen according to the values of the Wigner
function [11]. Two thousand values of W(Q,,,

Q. Py, P,) are randomly generated and the N
sets (Qyqs Qys Py, P,) used as initial conditions
correspond to the N highest values of W. The
signs of the coordinates and momenta are not
chosen at random as was already done in another
study [4] but rather in the following way. In the
first step, they are generated randomly and a
control is done as whether the algebraic values of
(Qig> Qus Piy» P,) really describe a Gaussian dis-
tribution for the initial wave packet since it repre-
sents the fundamental vibrational wave packet of
the molecule. This was not the case because only
10, 20 or 40 initial conditions were retained. The
signs were then changed to simulate as well as
possible a Gaussian wave packet more or less
symmetrically dispersed around Q,, = Q,=0.
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5. The Gaussian basic sets

A variety of approaches exists for solving the
time-dependent Schrodinger equation: among
these, the complete numerical integration of the
initial wave packet [12] or the expansion of this
wave packet on a complete basis set. For example,
one can expand it on orthogonal basis functions
(like harmonic oscillator eigenfunctions [13]) or on
a set of Gaussian basis functions [4,14,15]. This
work is constructed on the latter scheme: the
(a)diabatic wavefunction is written:

¥v(Q,t)= ;Cka(Q, O, P, 1)y2 (1) . (5.)

P, is the probability of remaining on the (a)di-
abatic surface considered,

Gk(Q’ Qk? Pk’ I)
=exp{—%[Q_Qk(t)]T'Bk[Q—Qk(t)]

+ih_1PkT(’) '[Q_ Qk(t)] +ih71‘yk(t)}v
(5.2)

where Q represents the vector (Q,,, Q,), [Qk, Pi]
is the center of G,, B, is a time-dependent com-
plex 3 X 3 matrix, and vy, is a phase term. As a
matter of fact, in the expression (5.1) of ¥(Q, 1),
the Gaussians should have been multiplied by
probability amplitudes. However, one has to be
careful about the way to calculate them. For in-
stance, if one wants to use the well-known “classi-
cal trajectory amplitudes” [8]

a;(1)=~ih"" L a,(1)(H},~ihQ"g;m)

m#j
Xexp(—ih—lf'(H:}m—H;?) dt’)
0

one has to reformulate them because a part of the
phase factor is already taken into account into the
v, phase term. Thus, one finally chose to work
with a simplified model where the probability
amplitudes are merely replaced by the square root
of the probability.

For the sake of readability , G,(Q, O, P, t)
will be written G,(Q, t) in the following. The
initial matrices B} are chosen diagonal (this can

be justified by the orthogonality of the coordi-

nates), real and independent on k:
b 0 0

Bi=|0 » 0, (5.3)
0 0 b

where two values of » have been used: b=1, 2.
In reality, the wavefunction represented by the
relations (5.1) and (5.2) does not obey the unitar-
ity criterion [16]:
(P(2) | ¥(1)) =¥ (54)
and this for two reasons. The first one is the
presence of \/#,(t), ie. the fact that one only
considers a partial wavefunction. The second rea-

son is the absence of the time-dependent prefactor
[16]:

B(Qy, Py, t)

_|1({3P(2)
_‘5(apk(o) "

00, (1)
30, (0)
90,() i aP(1)
"ap,(0) T 2R an(O))

The absence of Z(Q,, P, t)in (5.1) will be taken
into account in two steps: firstly, by renormalizing
Y¥(t) by a time-dependent factor A7(¢):

#(0=(LEeas0)

1/2
—2iy

(5.5)

(5.6)

and secondly, by evaluating the ¢, at each time
step (see below).

Furthermore, the Gaussian functions are not
orthogonal. In order to determine properly the
coefficients ¢, one has to diagonalize the basis to
control the degree of redundancy [4,6]. The de-
termination of the coefficients ¢, depends on the
potential energy surface on which the nuclear
motion takes place and on the choice of b (see eq.
(5.3)). If b is equal to 1 (this Gaussian width
matches the frequency associated with that of the
initial state), and if the motion takes place on the
canonic diabatic energy surface (which is
harmonic), the matrix B, (¢) remains constant (see
section 6). Thus, the N coefficients ¢, are de-
termined once for all from the P < N linearly
independent orthogonal basis functions F;(Q, 0)
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[4] obtained by diagonalization of S, (0):

P N
‘P(Q’ 0) = ZujI:j(Q’ 0) = Lvl:‘,cka(Q’ 0)’ (57)

N
F(0.0) = ¥£,Gn(Q. 0). (5.8)

This is also the case in the frozen Gaussian ap-
proximation [14] where the B, (#) are maintained
constant. However, this is no longer true if the
B,(¢) are allowed to vary according to the
Schrodinger equation (see section 6) and if either
b#1 or the potential energy surface is not the
canonic diabatic one. Thus, the coefficients u; and
¢, are evaluated at each time step (see appendix)
and will be written ¢ in the text.

6. Equations of motion

They are derived from the time-dependent
Schrodinger equation for each Gaussian function:

9G,(Q, t £
ihLalQ—)=HGk(Q, 1). (6.1)
Let us drop the index k and decompose the
complex matrix B and the phase term y into their
real and imaginary parts:

B=B"+iBY, (6.2)

Y=y +iy®. (6.3)

Thus,

B{) =Y.« (BB + B{)BSY), (6.4)
J

Jn mym

B,S:rz = ij(B’(i)B‘(i) = Bj(rf)Bj(r;))
J

+h! E)Qa;)VQm’ j,n,m=1,2,3, (6.5)
Q'jz“’jh_lpj’ (6.6)
B=- a%/j’ (6.7)
7 = %Z‘,P,Q', -3 o B" - v(Q(1)), (6.8)

J J
70 = —1nY «,BY, (6.9)
j=1,2,3, '

where V(Q(t)) is the value, at the center Q(¢) of
the Gaussian, of the potential (adiabatic or di-
abatic) on which the Gaussian wave packet moves.

These equations are numerically integrated by
the Adams—Moulton-Bashforth algorithm [17].
The numerical integration of the nonlinear equa-
tions (6.4) and (6.5) may be subject to some
difficulties if the initial values of the B,,, are too
big. For instance, in this case of C,HJ(A/X),
b =13 (see eq. (5.3)) seems to be a limit, i.e. some
problems arise for a few trajectories. Then, the
integration of Heller’s P, and Z matrices [2] seems
more appropriate when numerical difficulties are
encountered.

7. The transition probability

The formula used to determine the transition
probability is obtained in a way similar to that
used by Nikitin to derive its two-dimensional ex-
pression [8], extended to a linear trajectory char-
acterized by the three coordinates (Q1,, Qs Qy)-
One obtains the probability p of remaining on the
same diabatic state:

4a\?
p=exp| ——

% [QuKu - Qu(Knglg + KZgQZg)]z
[(KngIg + KZgQZg)2 + 8>\2Q.5]3/2

(7.1)
where
Kig = ﬁ["i(z) - "i(l)] > (7-2)
2
Ku = ; Kig(Qig - Qz‘og)’ (73)
0% = (1) 2= (7.9

g

Each Gaussian G, is propagated on the potential
surface considered and every time its center passes
through the seam H,, — H;; =0, one calculates
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pi(t) by (7.1). At that moment, K, is equal to
zero and Q,, plays the role of an impact parameter
to the apex of the conical intersection [4]. The
final probability of remaining on the diabatic
surface for G, at time ¢ is given by:

ny (1)

Pi(r)= l:[lpk(fj)a (7.5)

and the final probability of remaining on the
adiabatic surface is given by:

n(r)

P(1) = ,-131 [1=pi(1)], (7.6)

where n,(¢) represents the number of passages
through the seam at time ¢, and t; denotes the
value of 7 for the jth crossing.

8. The correlation function and the global
probability

As has been pointed out in section 5, the wave-
function is normalized at each time step:

©Q. )= s SR G, 1), (1)

where
172
M (1) = (z ch?"“)c,((’)S}k(t)) . (8.2)

The correlation function C(#) and the global prob-
ability II(z) of remaining on the investigated
potential surface are written:

€)= 575 L7 4 F )

J ok

x [dQ G(Q,0)G(Q, 1), (8.3)

(1) = | A (1) 72X YO
j k

X 20 P (1) (). (8.4)

9. Results

All the calculations were done with N =40
Gaussian functions. This number corresponds to a
minimum of basis functions below which the re-
sult is much too dependent on N, as tests with
N =10 and N =20 showed. This minimum num-
ber is a function of the initial value b (see eq.
(5.3)) [18].

Four series of calculations were performed
which differ by the initial value b (b =1 or 2) and
by the fact that B is or is not held frozen during
the evolution of the Gaussians.

9.1. Influence of b

9.1.1. B is allowed to vary
The recurrences of C(¢) are higher for b=2
and the relative intensities are different (see fig. 1).
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Fig. 1. Autocorrelation functions calculated with the B,

matrices which vary as a function of time. Full line: »=1;
dashed lines: b = 2. (a) C*(1); (b) C4(1); (¢) CNY().
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Fig. 2. Probability functions of remaining on the potential

energy surface studied as a function of time, calculated with

the B, matrices which vary with time. Full line: b =1; dashed

line: b= 2. (a) IT*(t); (b) I19(¢) - dash-dotted line: Koppel's
Py(1); (¢) ITNY(z).

As far as the canonic diabatic state is concerned,
the second recurrence is split into two components
when b= 2 (fig. 1b). Furthermore, in the case of
the Nikitin diabatic state (fig. 1c), a recurrence
appears for b=2 at ¢t = 1000 au which is absent
for b=1.

The probabilities II(¢) are rather similar except
that, in the canonic diabatic case, the oscillatory
behavior is more pronounced for b = 2 (see fig. 2).

9.1.2. Bis frozen

The comparison is made only between the mo-
tions of the wave packet on the adiabatic and the
Nikitin diabatic surfaces. As it can be seen from

cadt)

(b)

=

S == - M
200 600 1000 1400 t(a.u)
Fig. 3. Autocorrelation functions calculated with frozen B,
matrices. Full line: b=1; dashed line: b= 2. (a) C*(¢); (b)

CcNa(y).

= T

200 800 1000 1400 tlau)

Fig. 4. Probability functions of remaining on the potential
energy surface studied, calculated with frozen B, matrices.
Full line: b =1; dashed line: b = 2. (a) IT*(¢); (b) IIN(¢).
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figs. 3 and 4, the results are very similar except a
slight difference in C(¢) for the diabatic case, in
the integral 1400 < ¢ < 1800 au.

9.2. Influence of the freezing of B

The comparison is not made in the canonic
diabatic case. As a matter of fact, if the Gaussians
move on this state (which is harmonic) and if
b =1, the Gaussians’ widths remain unchanged.
Thus, the comparison is useless for b = 1. Further-
more, the calculation was not done for b =2 with
B frozen.

921 b=1

The functions C(z) (figs. 1 and 3, full lines)
as well as IT*(r) (figs. 2 and 4, full lines) present
similar global features. However, the relative
heights of the recurrences in C(z) are different
and furthermore the second recurrence presents a
splitting in the case where B varies as a function
of time.

The decreasing laws of the functions IT(¢) are
very similar but the curve has a more oscillatory
behavior if B is not kept frozen.

As far as C(r) is concerned (see figs. 1 and 3,
dashed lines). the difference between the cases
where B is frozen or not is more important for
b =2 than for b= 1. The relative heights are simi-
lar but their absolute values are nearly twice or
three times greater when B varies. Furthermore, in
the diabatic case, the recurrence at ¢ = 1000 au is
split when B is not kept constant.

The functions I1(7) (figs. 2 and 4, dashed lines)
decrease with comparable rates but the detailed
features are rather different in the ‘diabatic case
since II(r) presents several peaks when B is free
to vary.

9.3. Comparison with Koppel’s results

9.3.1. C*(1)

The shapes of the peaks are different in the
sense that they are rather well separated from each
other in the calculated function of this work
whereas the function obtained by Koppel is

Cad/choct

o o o
w B~ w

cd/cdiab.(Kippel)

o
N

0.1

™ -~
I ! 7 L~
0 200 400 600 800 1000 1200 1400 t(a.u.)

Fig. 5. Comparison with Képpel’s correlation functions. Full

line: our results — dashed line: Koppel's functions. (a) Our

C*d/Koppel’s exact C(1); (b) our C%(r)/Képpel’s diabatic
C(1); (c) our CN(r)/Kdppel’s exact C(t).

smoother (fig. 5). Nevertheless, the positions of
the recurrences are similar to what Koppel ob-
tained in the full C(z) and their intensities are of
the same order. However, if the gross features are
reproduced, the details are different. This is prob-
ably due to the very small basis employed in this
work (see section 10).

9.3.2. C)

The shapes and the positions of the recurrences
are very similar to those obtained by Koppel for
his diabatic correlation function (fig. 5). However,
the heights are quite different. They do not oscil-
late but rather decrease regularly. This is due to
the fact that each Gaussian is weighted by the
square root of the probability of remaining on the
surface. This decaying factor is absent in the pro-
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cedure used by Koppel since he took the coupling
constant A equal to zero.

9.3.3. cMu)

The recurrences at t= 750, t=1450 and =
1670 au may contribute to those which appear in
the full exact correlation function obtained by
Koppel but after z=2000 au, the function be-
comes too small for any comparison to be made.

9.3.4. Total C(1)

In the construction of the total correlation
function, the diabatic component which has to be
considered must not be the canonic one C%(z) but
rather C™N4(¢), for which the initial conditions
start on a dynamically meaningful potential en-
ergy surface.

0.30

0.20

010

0.30

020

0.10

Fig. 6. Total autocorrelation function C(z) = C24(z)+ CN4(z).

Full line: b=1; dashed line: b=2. (a) B, frozen; (b) B,

variable; (c) dashed line: Koppel's exact C(z), full line: our
result with B, frozen =1.

! | I I I [ -
200 400 600 800 1000 1200 1400 tla.u.)

The total functions
C(t)=C*(t)+ CNi(2)

are presented in fig. 6. When B is kept constant
(figs. 6a, 6c), the gross features are qualitatively
reproduced but the recurrences are too high, ex-
cept the first one which is too small. In the case
where B is free to vary (fig. 6b), the heights of all
the recurrences are too big and their shapes are
rather different from those obtained by Koppel in
particular for b= 2. Though not very good, the
qualitative agreement is better with » = 1.

9.3.5. The probability I1¢1)

Since Koppel presented the probability P,(z) of
remaining on the upper canonic diabatic state,
only the function IT%(¢) of this work (fig. 2b) has
to be compared with P,(¢). The first minimum of
P,(t) occurs near ¢ =850 au and the first maxi-
mum near = 1250 au. Neither for b =1 nor for
b =2 does one obtain any maximum in IT4(¢) if
one excepts the damped oscillations. This is obvi-
ously due to the fact that the contribution back
from the X state is dropped. As a matter of fact,
the wave packet is considered as moving on a
single surface and the reversibility of the process is
not reproduced.

10. Discussion
10.1. The effect of the basis

As was briefly said in section 9, a parallel can
be made between C%(z) and Koppel’s diabatic
correlation function on one hand, and between
our total C(z) and Koppel’s exact correlation
function on the other hand. However, the agree-
ment stands only at a qualitative level. Since the
study covers only the short-time range (¢ = 1000
au) (for which that part of the wave packet con-
stituted by cross terms of the type p,(#)[1—
pi(t,)] can be considered as negligible), this is
probably due to the smallness of the basis set.
This argument is supported by the fact that the
results are better for b =1 than for b = 2. Further-
more, a calculation was done for =3 and for
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which B was allowed to vary, in the canonic
diabatic case. The result was dramatic: even
though the wavefunction was normalized at each
time step, the correlation function reached the
value of = 1.3 for ¢t =75 au. This is typically an
effect of the incompleteness of the basis [18].

10.2. The decreasing law of the functions II(t)

All the calculated functions I1(¢) decrease more
or less regularly without exhibiting those large
oscillations obtained by Koppel [10]. As pointed
out above (section 9.3.5), only one part of the
nondiabatic process is studied, that related to the
motion of that portion of the wave packet which
remains on the only investigated potential energy
surface. This portion becomes smaller and smaller
as the wave packet moves back and forth through
the coupling region. The recurrences coming from
the complementary portion of the wave packet are
not calculated in this work. This explains why the
functions II(¢) decay much too fast.

10.3. Criterion for the choice of the diabatic basis set

In principle, the study of the nonadiabatic pro-
cess can be made with the adiabatic or the di-
abatic basis set, as far as the latter can be derived
[19]. In the adiabatic/diabatic model of this paper,
defined by Koppel [10], it is obvious that the
canonic diabatic basis set is inadequate to de-
scribe the phenomenon (see fig. 5 and section 9.3).
The reason is that the canonic diabatic potential
energy surface has nothing to do with the only
physically acceptable adiabatic potential energy
surface in the Franck-Condon zone which lies
outside the coupling region. As a matter of fact, as
far as the nuclei’s motions are concerned, the
importance of the choice of adequate potential
energy surfaces is clear since the forces between
them are unequivocally defined [20]. This is the
justification for the choice of the Nikitin diabatic
potential energy surfaces used to calculated the
correlation function C™N4(¢). This basis set seems
to give qualitatively good results if one keeps in
mind the effect of the incompleteness of the Gaus-
sian basis set employed.

10.4. Adiabatic / diabatic behavior

When one looks at IT*I(z) and IT™(z) (or
I19(¢)), one could be very surprised that they all
decrease till very small values. The expected result
should be either great values of IT2d(¢) and small
ones for ITNY(¢) or vice versa, i.e. either the
system essentially behaves adiabatically or di-
abatically. This is undoubtedly not the case. The
explanation of this unexpected result can be found
in the nuclear motions taking place on each poten-
tial energy surface and in particular in the average
absolute value of the antisymmetric coordinate
when the transition takes place, i.e. |Q,],., since it
plays the role of an impact parameter to the apex
of the conical intersection [4] (section 7). The
analysis of the trajectories gives the values of
|0, |, reported in table 1. In the adiabatic motion,
the wave packet becomes rather thin near the
intersection whereas in the diabatic motion, it is
not true: either it remains unchanged (harmonic
case of the canonic diabatic surface) or it spreads.
This behavior can be understood via the coupling
element H,,, function of Q, only, and the distri-
bution of the initial conditions of the trajectories.
Since H;, is a function of Q, only, the upper
adiabatic potential energy surface is steeper along
Q, than the canonic diabatic one, which brings
about a sort of aspiration of the wave packet
towards the apex of the cone, some kind of a
“black hole” effect. The difference between the
adiabatic and canonic diabatic wave packet’s be-
havior depends of course on the parameter A (eq.
(3.2)): the larger A the larger the difference be-
tween the adiabatic and diabatic behavior. As far
as the difference between the two diabatic (canonic
and Nikitin) motions is concerned, this is a ques-
tion of distribution of the initial conditions onto
the potential energy surface. The initial wave
packet, i.e. the initial conditions of the trajecto-
ries, is the same for both cases. However, as the
Nikitin diabatic surface coincides with the adia-
batic one, it is steeper along Q, than the canonic.
diabatic surface. Thus, the mean potential energy
in Q, is greater for the motion on the Nikitin
diabatic surface when the wave packet arrives in
the coupling region, which leads to the spreading
observed in this zone, and thus to a smaller prob-
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Table 1
Averaged absolute value of the antisymmetric coordinate [Q |,
when the transition takes place

Adiabatic Canonic Nikitin
case diabatic case diabatic case
=(0.2 =0.8 =1.2

ability of remaining on that surface. The fact that
the recurrences in C(tz) essentially come from the
adiabatic component C*d(¢) can also be linked to
the difference between the motions on the two
types of potential energy surfaces. On the Nikitin
diabatic surface, it seems that the spreading of the
wave packet leads to a worse recurrence back in
the Franck—-Condon region and then to a smaller
overlap with the initial wave packet.

In the case of the conical intersection of C,H
studied in this work, it is obvious that one cannot
say that the behavior of the system is essentially
diabatic or adiabatic. The interaction between the
two states (either diabatic or adiabatic) cannot be
considered as a perturbation, as could be said for
H,O" [4] which behaves essentially diabatically.
Here, the process is both adiabatic and diabatic
and the two contributions are to be taken into
account if one wants to understand the complexity
of the spectrum [10]. Furthermore, in the case of
C,Hj, the crossed terms (i.e. those for which the
motion is sometimes adiabatic and sometimes di-
abatic) are undoubtedly very important at long
time range since both IT24(z) and ITNY(¢) become
very small when t increases.
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Appendix

The fact that, at time ¢, the Gaussians are not
characterized any longer by the same B, is equiv-
alent to saying that the basis vectors have rotated
independently in such a way that the new refer-
ence frame is not only the old one which would
have been translated and rotated. Thus, the ex-
pansion coefficients ¢, must be adapted to this
new basis. One way to do this is to determine the
¢, by a variational procedure. However, we pro-
ceeded in another manner. Each Gaussian func-
tion is considered with its initial center but with
its B, matrix at time ¢:

G{"(Q,0)
=exp{ — 1[0~ 0,(0)]" *BL[Q — 0.(0)]
+in'PT(0)-[@~ @,(0)] ) (A1)

This new basis set is diagonalized [4,6] and M(?)
< N linearly independent orthogonal functions
F(Q, 0) (for which the norm s, is greater than a
fixed value) are used to represent the wavefunc-
tion:

M(r)

¥(0.0)= ¥ u"F"(Q,0), (A2)
j

u? =s;1//fdQ ¥(Q,0)E“(Q, 0). (A.3)

The final step is then the same as that exposed in
ref. [4] to obtain the c,.
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