
1. Introduction 

1.1 Motivation 
Dikes or (mobile) walls are essential parts of flood 
protection conceptions along river banks to protect 
densely populated areas from flooding. Massive 
flood events and recurring dike failures indicate that 
inland flood protection systems may be vulnerable. 
The assessment of this risk involves the identifica-
tion of inundated areas as well as flow depths and 
velocities of the initiated wave. In this context, the 
discharge through the breach of a collapsed dike sec-
tion significantly affects the final water level and its 
rising speed in the floodplain. 

The static impact for a slow increase of the water 
level in a floodplain basically depends on the total 
water volume entering the floodplain over a long pe-
riod, while during the first transient phase of a dike 
break, flow velocities and water depths within the 
flood wave induce dynamic damages nearby the 
breach. Compared to the duration of the whole event 
this period is often short but equally dangerous for 
people and property. 

Beside the damage calculation in a risk assess-
ment procedure, the results of flood wave computa-
tions are used to manage the residual risk. The defi-
nition of evacuation zones, the coordination of civil 
protection and emergency measures as well as the 
land use planning are important for risk mitigation. 
The simulation of various scenarios may provide au-

thorities with valuable information in terms of flood 
arrival time and main flow directions. Additional 
applications include the design and risk analysis of 
mobile flood protection systems in combination with 
the determination of safety areas. Insurance compa-
nies also have an interest in modifying their compu-
tational approaches as regards damage categories. 
Moreover, there are European legal attempts to iden-
tify and to illustrate areas with a significant flood 
risk. 

1.2 Phenomenon and procedure 
The wide knowledge concerning dam-break waves 
(CADAM 2000, IMPACT 2005) cannot directly be 
transferred to dike-break induced flows. The latter 
are influenced by the momentum component parallel 
to the protection structure causing asymmetric flood 
wave propagation. Moreover, unlike reservoirs at 
rest, a river bed will not be empty, but the persisting 
flood discharge leads to a fixed water level in the 
breach as the final steady state is approached result-
ing in a partition of the inflow into the downstream 
and the breach discharges (Fig. 1). This state has to 
be considered when focusing the long-term inunda-
tion and the resulting static impact in the entire 
floodplain. There is a lack of knowledge as regards 
these types of flood waves. The existing measured 
data are not sufficient due to the unpredictability and 
the danger of such events. 
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Figure 1 (a) Dam-break versus (b) dike-break induced flow 

 
There exist only few investigations considering the 
propagation of a wave into an area, such as Fraccar-
ollo and Toro (1995) or Kulisch (2003), relating to 
dam-break flows, however. Aureli and Mignosa 
(2002, 2004) only considered the presence of a per-
manent river discharge. 

Circumventing the expense of a full-sized proto-
type, a bench-scale model was used to provide ex-
perimental data, which were recorded with sophisti-
cated measurement techniques to explore flow 
effects and to validate numerical models. Physical 
and numerical models were combined in a hybrid 
approach. On the one hand, the accuracy of numeri-
cal forecasts was quantified by measurements. On 
the other hand, numerical simulations complement 
the model tests by calculating scenarios of different 
configurations, geometries and boundary conditions. 
Hence, this combination enables selective improve-
ments in numerical methods and more reliable fore-
casts for long-term and large-scale applications. The 
experimental and numerical parts of this research are 
detailed in section 2. The mathematical model is 
presented in section 3, while its numerical imple-
mentation in two distinct simulation models follows 
in section 4. Section 5 highlights the ability of both 
models to represent the main characteristics of dike-
break induced flows under four different hydraulic 
conditions. Next, the measurements are compared 
with additional results obtained with the finite vol-
ume model, taking into consideration different tur-
bulence closures, wall roughness and Boussinesq 
coefficients. Finally, conclusions are drawn. 

2. Scale model tests 

2.1 Apparatus and idealised experimental set-up 
The model shown in Fig. 2 was designed taking into 
account the special boundary conditions of a dike-

break induced flow close to the breach section 
(Briechle et al. 2004, Briechle 2006). It consists of a 
1 m wide horizontal channel with a pneumatically 
driven gate at one bank and a 3.5×4.0 m2 adjacent 
propagation area made of glass. A complete gate 
opening takes less than 0.3 s, representing the worst 
case scenario of a sudden and total dike failure. 
Moreover, the opening mechanism is a combination 
of pull and rotation to minimize effects on the free 
water column as the wave is initiated. 

In contrast to flumes, the water propagates ra-
dially and falls off the glass plate freely at three 
sides. The bottom of the propagation area is made of 
glass to enable laser measurements from below the 
plate. Initial channel water levels were 0.3 to 0.5 m, 
channel discharges 0.1 to 0.3 m3/s, and breach 
widths between 0.3 and 0.7 m.  

2.2 Measuring techniques 
As regards the boundary conditions, the inflow was 
controlled via an ultrasonic flow-measuring device. 
A weir at the channel end was calibrated for differ-
ent crest heights to control the initial water depth. 
The steady-state breach discharge QB was indirectly 
calculated as the difference between the model in-
flow and the weir overflow Qw. Due to strong spatial 
variations of the initiated wave and air entrainment, 
an advanced non-intrusive measuring techniques 
was necessary, providing high frequency and stabil-
ity towards highly unsteady water levels. 

Thus, water depths were recorded by ultrasonic 
sensors with 25 Hz frequency all over the propaga-
tion area with grid lengths of Δx = Δy = 0.2 m, and a 
refined grid of 0.1 m close to the breach zone. 
Within the channel, the detection was performed at 
various cross-sections, again using a higher resolu-
tion up to 0.5 m from the breach section. The sen-
sors were mounted on movable cross-beams ena-
bling measurements at various locations. Despite the 
steep wave front at some locations, errors were usu-
ally less than ±2 mm because the adopted sensors 
have an operating range of 0.35 m for the small de-
tection zone considered with 0.18 mm resolution. 
Detections at each grid point consisted of 500 single 
values which were statistically evaluated, and the 
test reproducibility was also checked. Up to eight 
sensors were used simultaneously. Mean depth-
averaged velocity profiles u(z), v(z) were sampled 
using a conventional 1D Laser-Doppler Anemome-
ter (LDA), mounted on an automatic traversing unit 
beneath the glass plate. At the three cross-sections 
y = 0.25, 0.30, 0.35 m near the breach the depth-
averaged velocity components were measured in us-
ing a denser grid of Δx = 0.05 m, Δz = 0.01 m within 
the wave.



 
Figure 2 Scale model set-up

3. Mathematical model 

3.1 Governing equations 
Both models are based on the 2D depth-averaged 
equations of mass and momentum conservation, re-
ferred to as the Shallow-Water Equations (SWE). 
The basic assumption states that velocities normal to 
the main flow directions remain small. As a conse-
quence the pressure field is hydrostatic, which may 
limit the applicability of the SWE. Their conserva-
tive form can be written as follows, using vector no-
tation 
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where s = vector of conservative unknowns, t = time, 
f, g = advective and pressure fluxes in directions x 
and y, fd, gd = diffusive fluxes, So = bottom slope, 
Sf = friction slope, h = flow depth, u, v = depth-

averaged velocity components in x- and y-directions, 
zb = bottom elevation, g = gravitational acceleration, 
ρ = water density, τbx , τby = bottom shear stresses, 
and σx, σy, τxy = turbulent stresses. The Boussinesq 
coefficients ρxx, ρyy, ρxy account for uneven distrib-
uted local flow velocities û , v̂  over the flow depth 
with angle brackets representing depth-averaging, 
namely 
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3.2 Closure relations 
The bottom friction is conventionally modeled using 
an empirical law, such as the Manning formula. The 
models enable the definition of a spatially distrib-
uted roughness coefficient. Besides, the finite vol-
ume model provides the additional possibility to re-
produce friction along the side walls by means of a 
process-oriented formulation (Dewals 2006, Dewals 
et al. 2008) as 
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where the Manning coefficients nb and nw (s/m1/3) 
characterize bottom and side-wall roughnesses, re-
spectively. Nx and Ny designate the number of edges 
of the finite volume cell which are in contact with 
the side-wall. 



The turbulent stresses are expressed following the 
Boussinesq approximation (ASCE 1988, Rodi 1984) 
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where νt = depth-averaged turbulent eddy viscosity, 
and ν = molecular kinematic viscosity. 

4. Computational models 

The mathematical model described above was im-
plemented within two different computational mod-
els of which Table 1 details the main characteristics. 
 
Table 1 Comparison of FE model versus FV model ___________________________________________________ 
 FE model FV model  ___________________________________________________ 
Model name DGFlow WOLF 2D 
Model type Finite Element Finite Volume 
Space discretization Discontinuous  Flux Vector  
 Galerkin (DG) Splitting (FVS) 
Time integration TVD Runge-Kutta Runge-Kutta 
Grid Triangular Cartesian 
Turbulence closure None Algebraic/k-ε 
Wall roughness None Accounted for 
Boussinesq coefficients Set to unity Distributed values 

4.1 Finite element model (FE model): DGFlow 
DGFlow is based on the Runge-Kutta discontinuous 
Galerkin (RKDG) method for hyperbolic equation 
systems and the local discontinuous Galerkin 
method for advection-dominated flows (Cockburn 
1999, Cockburn et al. 2000). The leadoff implemen-
tation of the RKDG method to the SWE was pre-
sented by Schwanenberg and Köngeter (2000). 
Schwanenberg and Harms (2002, 2004) gave first 
applications to dam-break flows and developed the 
Total Variation Diminishing (TVD) RKDG finite 
element method, which is frequently applied at 
IWW, RWTH Aachen University. The scheme can 
be divided into three main steps: 
− DG space discretization with a polynomial degree 

k decouples the partial differential equation into a 
set of ordinary differential equations, 

− Ordinary differential equations are integrated in 
time by a (k+1)-order TVD RK method, and 

− Slope limiter is applied on every intermediate 
time step. 

The scheme is well suited to handle complicated ge-
ometries and requires only a simple treatment of 
boundary conditions and source terms to obtain 
high-order accuracy and sharp representation of 
shocks. By using orthogonal shape functions the re-
sulting mass matrix becomes diagonal. Together 
with the explicit time integration, RKDG is compu-
tationally as efficient for transcritical, convection-
dominated shallow water flows on unstructured 2D 

grids as comparable state-of-the-art finite volume 
schemes (Shu 2003). Furthermore, the computation 
of a numerical flux at the intercell boundaries intro-
duces up-winding into the scheme while keeping the 
Galerkin test function inside the element. A slope 
limiter guarantees stability at shock zones by intro-
ducing a selective amount of dissipation for pure 
hyperbolic problems. 

A detailed presentation as regards the space and 
time discretization, the approximation of the nu-
merical flux for the DG method and the description 
of the slope limiter were presented by Schwanenberg 
(2003) and Schwanenberg and Harms (2004). As 
yet, the current model version has mainly been ap-
plied to dam-break flows. Therefore, viscous effects 
are neglected compared to the convective transport 
in the main direction. Moreover, the momentum cor-
rection coefficients are set to unity, i.e. 

0 and  1d d xx xy xyρ ρ ρ= = = = =f g  (8) 
The effects of these simplifications as regards dike-
break induced flows are analyzed with the FV model 
described below. 

4.2 Finite volume model (FV model): WOLF 2D 
The depth-averaged flow model WOLF 2D was de-
veloped at the University of Liege for about a dec-
ade. It includes a mesh generator and deals with 
multi-block Cartesian grids. This feature increases 
the size of possible simulation domains and enables 
local mesh refinements close to interesting areas, 
while preserving lower computational cost required 
by Cartesian compared to unstructured grids. A grid 
adaptation technique restricts the simulation domain 
to the wet cells. The space discretization of the di-
vergence form of Eq. (1) is performed by means of a 
Finite Volume scheme (FV). Variable reconstruction 
at cells interfaces is either constant or linear, com-
bined with a slope limiter, leading in the latter case 
to 2nd-order space accuracy. 

Appropriate flux computation has always been a 
challenging issue in finite volume schemes. Herein, 
the fluxes f and g were computed by a Flux Vector 
Splitting (FVS) method developed by HACH, Uni-
versity of Liege. Following this FVS, the up-
winding direction of each flux term f and g is simply 
dictated by the sign of the flow velocity recon-
structed at the cell interfaces. A “von Neumann” 
stability analysis has demonstrated that FVS then 
leads to a stable spatial discretization of the gradi-
ents f and g in Eq. (1) (Dewals 2006). Besides re-
quiring low computational cost, this FVS offers the 
advantages of being completely Froude-independent 
and of facilitating a satisfactory adequacy with the 
discretization of the bottom slope term. This FVS 
has already proven its validity and efficiency for 
numerous applications (Dewals 2006, Dewals et al. 
2006a, b, 2008, Erpicum 2006, Erpicum et al. 2007). 



Due to their diffusive nature, the fluxes fd and gd are 
legitimately evaluated by means of a centred 
scheme. 

Since the model is applied to compute steady-
state solutions, the time integration is performed by 
means of a 3-step first-order accurate Runge-Kutta 
algorithm, providing adequate dissipation in time. 
For stability reasons, the time step was constrained 
by the Courant-Friedrichs-Levy (CFL) condition 
based on gravity waves. A semi-implicit treatment 
of the bottom friction term in Eq. (6) was used, 
without requiring additional computational cost. 

Besides, wetting and drying of cells is handled 
free of volume and momentum conservation error by 
means of an iterative resolution of the continuity 
equation at each time step (Erpicum 2006). A four-
step procedure was followed at each temporal step 
integration: 

1. Continuity equation is evaluated, 
2. Algorithm detects cells with a negative flow 

depth to reduce the outflow unit discharge such 
that the computed water depth in these cells is 
strictly equal to zero, 

3. Since these flux corrections may induce the dry-
ing in cascade of neighbouring cells, steps 1 to 3 
are repeated iteratively, and 

4. Momentum equations are computed based on 
the corrected unit discharge values. 

In most practical applications, no more than two it-
erations are necessary, keeping thus the computation 
cost limited. 

Several turbulence models are implemented in the 
FV model, starting from simple algebraic expres-
sions of turbulent viscosity, to a depth-integrated 
model involving additional partial differential equa-
tions. Two different approaches were compared 
herein (see 5.5). First, a simple algebraic turbulence 
closure was adopted, assuming that turbulence is 
bed-dominated, for which turbulent kinematic vis-
cosity may be expressed with 0.5≈α  (Fisher et al. 
1979) as 

*,T huν α=  (9) 

and friction velocity *u  defined as (Ghamry and 
Steffler 2002) 

2 2 2
* bx byu τ τ ρ= +   (10) 

Second, a depth-averaged k-ε model with two dif-
ferent length-scales accounting for vertical and hori-
zontal turbulence mixing was applied, as developed 
by Erpicum (2006). 

4.3 Boundary conditions 
In both computational models, the value of the spe-
cific discharge can be prescribed as an inflow 
boundary condition. Besides, the transverse specific 
inflow discharge is usually set to zero. The outflow 
boundary condition may be a water surface eleva-

tion, a Froude number or no specific condition if the 
outflow is supercritical. At solid walls, the compo-
nent of the specific discharge normal to it was set to 
zero. 

In the FV model, to evaluate the diffusive terms, 
the gradients of the unknowns in the direction paral-
lel to the boundary were set to zero for simplicity, 
while the gradients of the variables in the direction 
normal to the boundary were properly evaluated by 
finite differences between the boundary value and 
the centre value of the adjacent cell (Erpicum 2006). 
Regarding turbulence variables, the law of the wall 
was used to compute shear velocity on solid walls to 
determine the corresponding depth-averaged turbu-
lent kinetic energy and its dissipation rate (Rodi 
1984, Younus and Chaudhry 1994). At inlets, the 
turbulent kinetic energy and its dissipation rate were 
also prescribed (Choi and Garcia 2002, Ferziger and 
Peric 2002). 

5. Numerical tests and results 

5.1 Computational procedure and grid 
Although the present analysis explicitly focused on 
steady state conditions, both computational models 
were run starting from an initial condition corre-
sponding to steady channel flow. The whole tran-
sient propagation and development of the dike break 
wave has been simulated until the final steady solu-
tion was achieved. 

The Cartesian grid used in the FV model involved 
almost 60,000 cells 0.02 m by 0.02 m. In contrast, 
the FE model simulations based upon about 23,000 
triangular cells and 12,000 discrete nodes, with an 
average element edge length of 0.05 m. Nearby the 
breach, local grid refinement was used resulting in 
0.03 m edges. After describing below the various 
tested configurations as well as the corresponding 
boundary conditions, the following subsections suc-
cessively include base simulations, effects of 2nd or-
der space discretization, turbulence modelling, bed 
and wall friction as well as Boussinesq coefficients. 

5.2 Test configurations 
Four different initial hydraulic configurations were 
considered, depending on the inflow discharge and 
the initial channel flow depth. Before each model 
run, a steady flow was established in the channel 
with the corresponding initial flow depth. Preferably 
high values of the flow depth were adopted to result 
in high values of downstream and breach discharges 
after the flow split, to obtain moderate velocities in 
the channel. Table 2 defines each of these configura-
tions. At the channel inlet (Fig. 2), the unit discharge 
was prescribed as an upstream boundary condition. 
At the edges of the propagation area (glass plate) no 



boundary condition was needed for supercritical out-
flow.  

Calibrated weir formulas for various crest heights 
(Table 2) were implemented in both codes as possi-
ble downstream boundary conditions. Thus, the dy-
namics of the weir discharge depending on the ac-
tual channel water level could be modelled. The 
resulting backwater effects and flow resistances in-
teract with the flow split into breach discharge and 
downstream channel discharge. The rating curve of 
each of those weirs was determined experimentally 
using a variable discharge coefficient as 

3 2 3 2
0

2 22 ( ) 2
3 3w wQ b g h h ghμ μ= − =  (11) 

where Qw = weir discharge, μ = discharge coeffi-
cient, b = crest width = 1.0 m, h = upstream water 
depth, hw = crest height and h0 = h – hw as overflow 
depth. The discharge coefficient measured experi-
mentally was expressed as a cubic polynomial of h0 
(Table 3) 
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Table 2 Definition of test configurations in numerical simula-
tions for breach width = 0.70 m ___________________________________________________ 
Test ID Inflow discharge Initial depth Crest height 
 [m3/s] [m] [m] ___________________________________________________ 
Q300-h50 0.300 0.50 0.241 
Q300-h40 0.300 0.40 0.152 
Q200-h50 0.200 0.50 0.297 
Q200-h40 0.200 0.40 0.202 
 
Table 3 Coefficients of cubic approximations ___________________________________________________ 
Test ID a3 a2 a1 a0 Range of validity ___________________________________________________ 
Q300-h50 –7.291 4.561 –0.554 0.752 0.05 < Q < 0.3 
Q300-h40 –10.84 6.009 –0.359 0.738 0.05 < Q < 0.3 
Q200-h50 –62.63 26.61 –3.508 0.887 0.03 < Q < 0.2 
Q200-h40 –65.62 29.01 –3.665 0.877 0.03 < Q < 0.2 

5.3 Base simulations: 2nd order accurate space 
discretization with FE model and FV model 

Figures 3 and 4 show the global flow pattern of the 
deviated flood wave, respectively in terms of flow 
depths, unit discharge and wave deflection computed 
for test Q300-h50. The Froude numbers (Fig. 5), de-
fined as F = (u2+v2)1/2 / (gh)1/2, indicate a distinctive 
S-shaped critical section across the breach. The con-
tour lines of wave heights confirm the influence of 
momentum of the channel main flow direction. 

 
Figure 3 Deflection of wave (dash-dotted contours), stream 
traces and flow depth [m] computed with FE model  

 
Figure 4. Unit discharge [m2/s] computed with FV model 

 
Figure 5 Froude number [-] computed with FV model 

 
Flow depths predicted by the two computational 

models are compared with the values observed ex-
perimentally along the main y-axis at x = 0 in Fig. 6. 
As shown by the error bars, the range of uncertainty 
of the experimental measures is strongly influenced 
by the free surface inclination. The simulation re-
sults of both computational models are globally in 
satisfactory agreement with the observations. Figure 
6 shows however some discrepancies in zones where 
the free surface curvature is significant. Besides, the 
results of both numerical models agree remarkably 
well, despite of their differences in terms of compu-
tational implementation (Table 1). 

Simulated and measured discharges across the 
breach are compared in Table 3 and Fig. 7. For all 
four tests the numerical predictions underestimate 
the discharge released into the floodplain by 6 to 
11% of the test breach discharge. The next sections 
aim at investigating whether this issue can be en-
hanced in the framework of depth-averaged flow 
modelling. 
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Figure 6 Surface profiles along y-axis at x = 0 (Fig. 2): Comparison of experimental and numerical results of base simulations (FE 
and FV models) 
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Figure 7 Comparison between breach discharges QB observed 
and computed by 2nd order accurate simulations 
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Figure 8 Comparison of experimental and numerically pre-
dicted (1st and 2nd order space discretization) breach discharges 
QB 

 
  

Table 3 Comparison between breach discharges observed and 
computed with 2nd order accuracy by both models ___________________________________________________ 
Test ID Measured FE model FV model 
 [m³/s] [m³/s] [m³/s] ___________________________________________________ 
Q300-h50 0.218 0.200 0.198 
Q300-h40 0.159 0.141 0.141 
Q200-h50 0.194 0.183 0.182 
Q200-h40 0.154 0.143 0.141 
 

5.4 Influence of space discretization 
Simulations of 1st order accuracy in space were con-
ducted with the FV model. Figure 8 and Table 4 
show that the predicted breach discharge is increased 
in the 1st order space accurate simulations compared 
to 2nd order. The numerical diffusive effects act thus 
favourably on the simulation results, but may not be 
considered as reliable since this diffusion strongly 
depends on purely numerical parameters, such as 
grid size. Therefore, the following simulations were 
run with 2nd order space discretization and a turbu-
lence closure was added to represent the effect of 
real physical diffusion. 

A preliminary study with the FE model yielded 
the required fineness of the numerical grid to obtain 
an almost mesh-independent solution and to mini-
mize the discretization error (Fig. 9). Following 
Ferziger and Peric (1996) for unstructured grids, 
coarse grid results were interpolated on a fine grid to 
form the error estimate. In comparison to a very fine 
mesh, the averaged water level difference for each 
0.02 m cell decreases for each uniform refinement. 
The selected locally refined grid consists of only 
23,000 triangular elements and in parallel achieves a 
high accuracy. 



Table 4 Comparison of experimental and numerical (FV model 
with 1st and 2nd order space accuracy) breach discharges ___________________________________________________ 
Test ID Measured 1st order 2nd order 
 [m³/s] [m³/s] [m³/s] ___________________________________________________ 
Q300-h50 0.218 0.204 0.198 
Q300-h40 0.159 0.145 0.141 
Q200-h50 0.194 0.186 0.182 
Q200-h40 0.154 0.145 0.141 

 
Figure 9 Grid refinement study computed with FE model for 
test configuration Q300-h50 

5.5 Influence of turbulence modelling 
The simulations were repeated with two types of 
turbulence closures (4.2), the first being a purely al-
gebraic expression for eddy viscosity, involving pa-
rameter α  from Eq. 9. Two different values were 
used to appreciate the sensitivity of the computed 
discharge with respect to α. The second is a two-
equation depth-averaged k-ε model. 

 
Table 5 Simulations performed with different turbulence clo-
sures (FV model). Relative change in breach discharge (%) 
compared to simulations without turbulence closure ___________________________________________________ 
Test ID k-ε Eq. (9) Eq. (9) 
  α = 0.5 α = 1.0 ___________________________________________________ 
Q300-h50 0.0 1.1 1.7 
Q300-h40 0.0 2.7 4.7 
Q200-h50 −0.1 0.7 0.8 
Q200-h40 −0.1 0.7 1.3 
 

As summarized in Table 5 and in Fig. 10, the tur-
bulence closure has basically a minor effect on the 
computational results, most probably as a result of 
the highly advective nature of dike break induced 
flow. In such conditions, the pressure gradients and 
the purely advective terms in the momentum equa-
tions dominate diffusion, which only plays a minor 
role. In particular the effect of the k-ε turbulence 
closure on breach discharge is negligible, while the 
algebraic closure was run with slightly overesti-
mated values of α  to appreciate the relative sensi-
tivity of the four test configurations with respect to 
the turbulence closure. 

As regards the algebraic turbulence closure, Table 
5 also shows that the discharge in test Q300-h40 is 
the most sensitive to the turbulence closure. Indeed, 
the velocity is maximum with a high inflow and a 
comparatively low initial flow depth, and hence so 
are the bottom shear stress and the friction velocity, 
directly controlling the magnitude of the eddy vis-
cosity. In contrast, the sensitivity of the result is 
found minimal in test Q200-h50, for which the flow 
velocity is also small with a low inflow discharge 
and a high initial water depth. 
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Figure 10 Comparison between breach discharges observed 
experimentally and predicted by 2nd order accurate simulations 
of FV model with various turbulence closures QB 

 
Since the equations of motion, in particular the k-ε 

turbulence closure, are transport equations, proper 
boundary conditions need to be prescribed notably at 
the inlet and possibly influence the computational 
result further downstream in the simulation domain. 
Therefore, the sensitivity of the simulation output 
with respect to the length of the inlet channel was 
investigated. Therefore, two simulations (with and 
without k-ε turbulence closure) were repeated for 
test Q300-h50 with a length of the inlet channel in-
creased by 10 m (Fig. 11). The flow remains essen-
tially insensitive to the inlet channel length, since the 
variation in breach discharge does not exceed 0.2%. 

 
Figure 11 Unit discharge [m2/s] computed with FV model for 
test Q300-h50 with an elongated inflow channel 

5.6 Influence of bed and wall roughness 
It has been verified with both computational models 
that modifying the Manning coefficient for a channel 
bed roughness within 0.005 < nb < 0.020 s/m1/3 has 
no significant effect on the breach discharge (0.3%). 
Increasing the Manning coefficient above 0.02 s/m1/3 
would be unrealistic considering the flume material 
of smooth paintwork. Even a value of 0.05 s/m1/3 in 
the framework of a channel roughness sensitivity 



analysis in the FE model leads to minor changes in 
the discharge split. 

Similarly, the influence of wall roughness (Eq. 6) 
was investigated with the FV model. For test Q300-
h50, Table 6 compares values of computed breach 
discharges with two different wall roughness coeffi-
cients (nw = 0.015 s/m1/3 and nw = 0.030 s/m1/3) and 
without wall roughness. Again, the flow sensitivity 
was found to be weak, since the relative change in 
the breach discharge does not exceed 1%. This slight 
increase in the breach discharge is associated with a 
change in the velocity profile and unit discharge in 
the channel immediately downstream of the breach. 
Figure 12 compares the field of unit discharges ob-
tained without and with wall roughness. The latter is 
characterized by a wider area of lower velocity close 
to the right wall, leading to a flow constriction 
downstream of the breach and, therefore, an increase 
in the breach discharge. 

 
Table 6 Influence of wall roughness in test Q300-h50 simu-
lated by FV model (algebraic turbulence closure α = 1) ___________________________________________________ 
Wall roughness None Moderate High 
Coefficient nw [s/m1/3] 0.00 0.015 0.030 ___________________________________________________ 
Breach discharge [m3/s] 0.2014 0.2022 0.2035 
Relative change [%]  0.4 1.0 

 

 
Figure 12 Unit discharges [m2/s] close to breach location, com-
puted by FV model for test Q300-h50, (a) without wall rough-
ness, (b) with wall roughness (nw = 0.030 s/m1/3) 

5.7 Influence of Boussinesq coefficients 
Preliminary simulations were run with the FV model 
considering spatially distributed Boussinesq coeffi-
cients (Eq. 5). The upwind scheme described in 4.2 
was demonstrated to remain stable regardless of the 
value of the Boussinesq coefficients (Dewals 2006). 
The CFL condition however needs to be updated to 
account for its effect on wave celerity. 

Results of these preliminary simulations demon-
strate that the Boussinesq coefficients can indeed 
have a substantial influence on the flow behaviour. 
These simulations are based mainly on guesses re-
garding the distribution of the Boussinesq coeffi-
cients and must be essentially considered as contri-
butions to a sensitivity analysis of the flow with 
respect to the Boussinesq coefficients. More realistic 
simulations can only be executed based on distribu-
tions of Boussinesq coefficients inferred from ex-
perimental measurements or 3D simulations. In such 
a framework, the 2D modelling relies on comple-
mentary experimental or 3D numerical modelling, 
which is a weak point of such an approach. How-
ever, a detailed analysis of 3D simulation results 
may lead to a parameterization of the Boussinesq 
coefficient as a function of depth-averaged flow 
characteristics (e.g. free surface curvature), which in 
turn makes the 2D model self-sufficient by adding a 
closure relationship linking the local Boussinesq co-
efficient to the primitive unknowns (or their deriva-
tive) of the depth averaged model. 

Currently, velocity profiles over depth are avail-
able from measurements performed at IWW-RWTH 
for a restricted floodplain area nearby the breach 
within the body of the wave (2.2). Due to the distri-
bution of horizontal velocity components u and v, 
the depth averaging yields high values of Boussinesq 
coefficients, which actually cannot be applied in 
one-to-one for such heterogeneous profiles. 

A simulation with the FV model based simply on 
this distribution of Boussinesq coefficients indicates 
a slight increase in the released discharge. Moreover, 
the real Boussinesq coefficients are expected to dif-
fer from unity in a much wider area, including the 
channel in the breach vicinity. If this overall distri-
bution is taken into account in depth-averaged mod-
elling, the breach discharge might be much more af-
fected. Therefore, 3D simulations are presently 
undertaken at IWW-RWTH to provide 2D models 
with a reliable spatial distribution of Boussinesq co-
efficients in the entire computational domain. 

6. Conclusions 

Both investigated 2D depth-averaged shallow water 
models reproduce satisfactorily the basic flow pat-
tern and the qualitative flow split for different con-
figurations of experimental dike-break induced 



flows. The flooding event is modelled from an initial 
state for a closed flap gate in a single stable run, 
without oscillations including the channel and the 
wave propagation area. This confirms the conver-
gence and general applicability of the methods used 
for dike-break problems. 

The resulting deviations from the performed 
measurements including underestimation of breach 
discharges by 4 to 11% were analysed focusing on 
the simplifications of the mathematical model and 
the numerical approach. The applied CFD-methods 
should at least be of 2nd order accuracy in space to 
minimize numerical diffusion which otherwise af-
fects the solution. The tested simulations involve a 
low solution sensitivity as regards turbulence model-
ling, bed and wall roughness. Accordingly, progress 
has to be made in the use of Boussinesq coefficients, 
coupled with experimental and 3D numerical results. 
Additionally, a non-hydrostatic pressure distribution 
depending on the free surface curvature should be 
adopted. Depth-averaging and above all the hydro-
static pressure assumption are reasons for the ob-
served differences between the experimental and 
numerical investigations of dike-break induced flow. 
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Notation 

ai  coefficients for weir discharge coefficient (i = 0, ... 3) 
b  crest width 
f, g  advective and pressure fluxes 
fd, gd diffusive fluxes  
F  Froude number 
g  gravitational acceleration 
h  flow depth 
ho  overflow depth 
hw  height of weir crest 
k  degree of polynomial in DG discretization 
nb, nw bottom and side-wall roughness coefficients 
Nx, Ny number of contact edges of finite volume cell 
QB  breach discharge 
Qw  weir discharge 
s  vector of conservative unknowns 

So  bottom slope 
Sf  friction slope 
t  time 
u  depth-averaged velocity component along x-axis 
u *   friction velocity 
v  depth-averaged velocity component along y-axis 
û, v̂  components of local velocity 
x, y  coordinates in horizontal plane 
zb  bottom elevation 
z   vertical coordinate 
Δx  grid resolution in horizontal plane 
Δz  grid resolution in vertical plane 
α  coefficient of turbulent model 
μ  discharge coefficient 
νt  depth-averaged turbulent eddy viscosity 
ν  molecular kinematic viscosity 
ρ  density of water 
ρxx, ρyy, ρxy Boussinesq coefficients 
σx, σy turbulent normal stresses 
τxy  turbulent shear stress 
τbx, τby components of bottom shear stress 
<•> depth-averaged 
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