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ABSTRACT
Experimental model data are compared with numerical computations of dike-break induced flows, focusing on the final steady state. An idealized scale
model was designed reproducing the specific boundary conditions of dike breaks. Discharges, water level, and depth profiles of horizontal velocities
were recorded and validated by numerical modeling. The latter was performed by two different models solving the two-dimensional depth-averaged
shallow water equations, namely a total variation diminishing Runge-Kutta discontinuous Galerkin finite element method, and a finite volume scheme
involving a flux vector splitting approach. The results confirmed convergence and general applicability of both methods for dike-break problems. As
regards their accuracy, the basic flow pattern was satisfactorily reproduced yet with differences compared to the measurements. Hence, additional
simulations by the finite volume model were performed considering various turbulence closures, wall-roughnesses as well as nonuniform Boussinesq
coefficients.

RÉSUMÉ
Des données de modèles expérimentaux sont comparées aux calculs numériques des écoulements induits par les ruptures de digues, en se concentrant
sur l’état d’équilibre final. Un modèle réduit idéalisé a été conçu pour reproduire les conditions aux limites spécifiques des ruptures de digues. Les
débits, le niveau d’eau, et les profils verticaux des vitesses horizontales ont été enregistrés et validés par modélisation numérique. Le dernier a été
réalisé par deux modèles différents résolvant les équations bidimensionnelles en eau peu profonde moyennées sur la hauteur, à savoir une méthode
TVD (total variation diminishing) de Runge-Kutta Galerkin discontinue en éléments finis, et un schéma en volumes finis comportant un splitting du
vecteur flux. Les résultats ont confirmé la convergence et l’applicabilité générale des deux méthodes pour les problèmes de rupture de digues. En ce
qui concerne leur exactitude, la configuration de base de l’écoulement a été reproduite d’une manière satisfaisante avec cependant des différences
par rapport aux mesures. C’est pourquoi, des simulations additionnelles ont été effectuées avec un modèle en volumes finis en considérant diverses
fermetures de la turbulence, et rugosités de paroi, ainsi que des coefficients de Boussinesq non-uniformes.

Keywords: Boussinesq coefficients, discontinuous Galerkin, dike break, shallow water

1 Introduction

1.1 Motivation

Dikes or (mobile) walls are essential parts of flood protection
conceptions along river banks to protect densely populated areas
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from flooding. Massive flood events and recurring dike failures

indicate that inland flood protection systems may be vulnera-

ble. The assessment of this risk involves the identification of

inundated areas as well as flow depths and velocities of the ini-

tiated wave. In this context, the discharge through the breach of
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a collapsed dike section significantly affects the final water level
and its rising speed in the floodplain.

The static impact for a slow increase of the water level in a
floodplain basically depends on the total water volume entering
the floodplain over a long period, while during the first transient
phase of a dike break, flow velocities and water depths within the
flood wave induce dynamic damages nearby the breach. Com-
pared to the duration of the whole event this period is often short
but equally dangerous for people and property.

Beside the damage calculation in a risk assessment proce-
dure, the results of flood wave computations are used to manage
the residual risk. The definition of evacuation zones, the coordi-
nation of civil protection and emergency measures as well as
the land use planning are important for risk mitigation. The
simulation of various scenarios may provide authorities with
valuable information in terms of flood arrival time and main
flow directions. Additional applications include the design and
risk analysis of mobile flood protection systems in combination
with the determination of safety areas. Insurance companies also
have an interest in modifying their computational approaches as
regards damage categories. Moreover, there are European legal
attempts to identify and to illustrate areas with a significant flood
risk.

1.2 Phenomenon and procedure

The wide knowledge concerning dam-break waves (CADAM
2000, IMPACT 2005) cannot directly be transferred to dike-break
induced flows. The latter are influenced by the momentum com-
ponent parallel to the protection structure causing asymmetric
flood wave propagation. Moreover, unlike reservoirs at rest, a
river bed will not be empty, but the persisting flood discharge
leads to a fixed water level in the breach as the final steady
state is approached resulting in a partition of the inflow into the
downstream and the breach discharges (Fig. 1). This state has to
be considered when focusing the long-term inundation and the
resulting static impact in the entire floodplain. There is a lack of
knowledge as regards these types of flood waves. The existing
measured data are not sufficient due to the unpredictability and
the danger of such events.

There exist only few investigations considering the propaga-
tion of a wave into an area, such as Fraccarollo and Toro (1995)
or Kulisch (2003), relating to dam-break flows, however. Aureli
and Mignosa (2002, 2004) only considered the presence of a
permanent river discharge.

Circumventing the expense of a full-sized prototype, a bench-
scale model was used to provide experimental data, which were
recorded with sophisticated measurement techniques to explore
flow effects and to validate numerical models. Physical and
numerical models were combined in a hybrid approach. On the
one hand, the accuracy of numerical forecasts was quantified
by measurements. On the other hand, numerical simulations
complement the model tests by calculating scenarios of differ-
ent configurations, geometries and boundary conditions. Hence,
this combination enables selective improvements in numerical
methods and more reliable forecasts for long-term and large-scale

Figure 1 (a) Dam-break versus (b) dike-break induced flow

applications. The experimental and numerical parts of this
research are detailed in Section 2. The mathematical model
is presented in Section 3, while its numerical implementation
in two distinct simulation models follows in Section 4. Sec-
tion 5 highlights the ability of both models to represent the main
characteristics of dike-break induced flows under four differ-
ent hydraulic conditions. Next, the measurements are compared
with additional results obtained with the finite volume model,
taking into consideration different turbulence closures, wall
roughness and Boussinesq coefficients. Finally, conclusions are
drawn.

2 Scale model tests

2.1 Apparatus and idealized experimental set-up

The model shown in Fig. 2 was designed taking into account the
special boundary conditions of a dike-break induced flow close
to the breach section (Briechle et al. 2004, Briechle 2006). It
consists of a 1 m wide horizontal channel with a pneumatically
driven gate at one bank and a 3.5 × 4.0 m2 adjacent propagation
area made of glass. A complete gate opening takes less than 0.3 s,
representing the worst case scenario of a sudden and total dike
failure. Moreover, the opening mechanism is a combination of
pull and rotation to minimize effects on the free water column as
the wave is initiated.

In contrast to flumes, the water propagates radially and falls off
the glass plate freely at three sides. The bottom of the propagation
area is made of glass to enable laser measurements from below
the plate. Initial channel water levels were 0.3 to 0.5 m, channel
discharges 0.1 to 0.3 m3/s, and breach widths between 0.3 and
0.7 m.
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Figure 2 Scale model set-up

2.2 Measuring techniques

As regards the boundary conditions, the inflow was controlled
via an ultrasonic flow-measuring device. A weir at the chan-
nel end was calibrated for different crest heights to control
the initial water depth. The steady-state breach discharge QB

was indirectly calculated as the difference between the model
inflow and the weir overflow Qw. Due to strong spatial vari-
ations of the initiated wave and air entrainment, an advanced
nonintrusive measuring techniques was necessary, providing
high frequency and stability toward highly unsteady water
levels.

Thus, water depths were recorded by ultrasonic sensors with
25 Hz frequency all over the propagation area with grid lengths
of �x = �y = 0.2 m, and a refined grid of 0.1 m close to the
breach zone. Within the channel, the detection was performed at
various cross-sections, again using a higher resolution up to 0.5 m
from the breach section. The sensors were mounted on movable
cross-beams enabling measurements at various locations. Despite
the steep wave front at some locations, errors were usually less
than ±2 mm because the adopted sensors have an operating
range of 0.35 m for the small detection zone considered with
0.18 mm resolution. Detections at each grid point consisted of
500 single values which were statistically evaluated, and the test
reproducibility was also checked. Up to eight sensors were used
simultaneously. Mean depth-averaged velocity profiles u(z), v(z)
were sampled using a conventional 1D Laser-DopplerAnemome-
ter (LDA), mounted on an automatic traversing unit beneath the
glass plate. At the three cross-sections y = 0.25, 0.30, 0.35 m
near the breach the depth-averaged velocity components were
measured using a denser grid of �x = 0.05 m, �z = 0.01 m
within the wave.

3 Mathematical model

3.1 Governing equations

Both models are based on the 2D depth-averaged equations of
mass and momentum conservation, referred to as the Shallow-
Water Equations (SWE). The basic assumption states that veloc-
ities normal to the main flow directions remain small. As a
consequence the pressure field is hydrostatic, which may limit
the applicability of the SWE. Their conservative form can be
written as follows, using vector notation

∂ts + ∂xf + ∂yg + ∂xfd + ∂ygd = So − Sf , (1)

s =
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where s is the vector of conservative unknowns, t is the time,
f, g are the advective and pressure fluxes in directions x and
y, fd , gd are the diffusive fluxes, So is the bottom slope, Sf

is the friction slope, h is the flow depth, u, v are the depth-
averaged velocity components in x- and y-directions, zb is the
bottom elevation, g is the gravitational acceleration, ρ is the water
density, τbx, τby are the bottom shear stresses, and σx, σy, τxy are
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the turbulent stresses. The Boussinesq coefficients ρxx, ρyy, ρxy

account for uneven distributed local flow velocities û, v̂ over
the flow depth with angle brackets representing depth-averaging,
namely

ρxx = 〈û2〉/u2 ≥ 1 and ρyy = 〈v̂2〉/v2 ≥ 1,

ρxy = 〈ûv̂〉/uv, ρ2
xy ≤ ρxxρyy.

(5)

3.2 Closure relations

The bottom friction is conventionally modeled using an empirical
law, such as the Manning formula. The models enable the defini-
tion of a spatially distributed roughness coefficient. Besides, the
finite volume model provides the additional possibility to repro-
duce friction along the side walls by means of a process-oriented
formulation (Dewals 2006, Dewals et al. 2008) as
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(6)

where the Manning coefficients nb and nw (s/m1/3) characterize
bottom and side-wall roughnesses, respectively. Nx and Ny des-
ignate the number of edges of the finite volume cell which are in
contact with the side-wall.

The turbulent stresses are expressed following the Boussinesq
approximation (ASCE 1988, Rodi 1984)

σx = 2ρ(ν + νT )∂xu, σy = 2ρ(ν + νT )∂yv,

τxy = τyx = (ν + νT )ρ(∂yu + ∂xv), (ν � νT ),
(7)

where νt is the depth-averaged turbulent eddy viscosity, and ν is
the molecular kinematic viscosity.

4 Computational models

The mathematical model described above was implemented
within two different computational models of which Table 1
details the main characteristics.

Table 1 Comparison of FE model versus FV model

FE model FV model

Model name DGFlow WOLF 2D
Model type Finite Element Finite Volume
Space discretization Discontinuous Flux Vector

Galerkin (DG) Splitting (FVS)
Time integration TVD Runge-Kutta Runge-Kutta
Grid Triangular Cartesian
Turbulence closure None Algebraic/k-ε
Wall roughness None Accounted for
Boussinesq coefficients Set to unity Distributed values

4.1 Finite element model (FE model): DGFlow

DGFlow is based on the Runge-Kutta discontinuous Galerkin
(RKDG) method for hyperbolic equation systems and the local
discontinuous Galerkin method for advection-dominated flows
(Cockburn 1999, Cockburn et al. 2000). The leadoff imple-
mentation of the RKDG method to the SWE was presented by
Schwanenberg and Köngeter (2000). Schwanenberg and Harms
(2002, 2004) gave first applications to dam-break flows and
developed the Total Variation Diminishing (TVD) RKDG finite
element method, which is frequently applied at IWW, RWTH
Aachen University. The scheme can be divided into three main
steps:

— DG space discretization with a polynomial degree k decou-
ples the partial differential equation into a set of ordinary
differential equations,

— Ordinary differential equations are integrated in time by a
(k + 1)-order TVD RK method, and

— Slope limiter is applied on every intermediate time step.

The scheme is well suited to handle complicated geometries and
requires only a simple treatment of boundary conditions and
source terms to obtain high-order accuracy and sharp representa-
tion of shocks. By using orthogonal shape functions the resulting
mass matrix becomes diagonal. Together with the explicit time
integration, RKDG is computationally as efficient for transcriti-
cal, convection-dominated shallow water flows on unstructured
2D grids as comparable state-of-the-art finite volume schemes
(Shu 2003). Furthermore, the computation of a numerical flux at
the intercell boundaries introduces up-winding into the scheme
while keeping the Galerkin test function inside the element.
A slope limiter guarantees stability at shock zones by intro-
ducing a selective amount of dissipation for pure hyperbolic
problems.

A detailed presentation as regards the space and time dis-
cretization, the approximation of the numerical flux for the DG
method and the description of the slope limiter were presented by
Schwanenberg (2003) and Schwanenberg and Harms (2004). As
yet, the current model version has mainly been applied to dam-
break flows. Therefore, viscous effects are neglected compared
to the convective transport in the main direction. Moreover, the
momentum correction coefficients are set to unity, i.e.

fd = gd = 0 and ρxx = ρyy = ρxy = 1. (8)

The effects of these simplifications as regards dike-break induced
flows are analyzed with the FV model described below.

4.2 Finite volume model (FV model): WOLF 2D

The depth-averaged flow model WOLF 2D was developed at the
University of Liege for about a decade. It includes a mesh gen-
erator and deals with multi-block Cartesian grids. This feature
increases the size of possible simulation domains and enables
local mesh refinements close to interesting areas, while preserv-
ing lower computational cost required by Cartesian compared
to unstructured grids. A grid adaptation technique restricts the
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simulation domain to the wet cells. The space discretization of
the divergence form of Eq. (1) is performed by means of a Finite
Volume scheme (FV). Variable reconstruction at cells interfaces
is either constant or linear, combined with a slope limiter, leading
in the latter case to second-order space accuracy.

Appropriate flux computation has always been a challenging
issue in finite volume schemes. Herein, the fluxes f and g were
computed by a Flux Vector Splitting (FVS) method developed
by HACH, University of Liege. Following this FVS, the up-
winding direction of each flux term f and g is simply dictated
by the sign of the flow velocity reconstructed at the cell inter-
faces. A “von Neumann” stability analysis has demonstrated that
FVS then leads to a stable spatial discretization of the gradients
f and g in Eq. (1) (Dewals 2006). Besides requiring low compu-
tational cost, this FVS offers the advantages of being completely
Froude-independent and of facilitating a satisfactory adequacy
with the discretization of the bottom slope term. This FVS has
already proven its validity and efficiency for numerous applica-
tions (Dewals 2006, Dewals et al. 2006a, 2006b, 2008, Erpicum
2006, Erpicum et al. 2007). Due to their diffusive nature, the
fluxes fd and gd are legitimately evaluated by means of a centered
scheme.

Since the model is applied to compute steady-state solutions,
the time integration is performed by means of a 3-step first-order
accurate Runge-Kutta algorithm, providing adequate dissipation
in time. For stability reasons, the time step was constrained by
the Courant-Friedrichs-Lewy (CFL) condition based on gravity
waves. A semi-implicit treatment of the bottom friction term in
Eq. (6) was used, without requiring additional computational
cost.

Besides, wetting and drying of cells is handled free of vol-
ume and momentum conservation error by means of an iterative
resolution of the continuity equation at each time step (Erpicum
2006). A four-step procedure was followed at each temporal step
integration:

(1) Continuity equation is evaluated,
(2) Algorithm detects cells with a negative flow depth to reduce

the outflow unit discharge such that the computed water depth
in these cells is strictly equal to zero,

(3) Since these flux corrections may induce the drying in cascade
of neighboring cells, steps 1 to 3 are repeated iteratively, and

(4) Momentum equations are computed based on the corrected
unit discharge values.

In most practical applications, no more than two iterations are
necessary, keeping thus the computation cost limited.

Several turbulence models are implemented in the FV model,
starting from simple algebraic expressions of turbulent viscosity,
to a depth-integrated model involving additional partial differen-
tial equations. Two different approaches were compared herein
(see Subsection 5.5). First, a simple algebraic turbulence clo-
sure was adopted, assuming that turbulence is bed-dominated,
for which the turbulent kinematic viscosity may be expressed
with α ≈ 0.5 (Fisher et al. 1979) as

νT = αhu∗, (9)

and friction velocity u∗ defined as (Ghamry and Steffler 2002)

u2
∗ =

√
τ2
bx + τ2

by

/
ρ. (10)

Second, a depth-averaged k-ε model with two different length-
scales accounting for vertical and horizontal turbulence mixing
was applied, as developed by Erpicum (2006).

4.3 Boundary conditions

In both computational models, the value of the specific discharge
can be prescribed as an inflow boundary condition. Besides, the
transverse specific inflow discharge is usually set to zero. The
outflow boundary condition may be a water surface elevation, a
Froude number or no specific condition if the outflow is super-
critical. At solid walls, the component of the specific discharge
normal to it was set to zero.

In the FV model, to evaluate the diffusive terms, the gradients
of the unknowns in the direction parallel to the boundary were
set to zero for simplicity, while the gradients of the variables
in the direction normal to the boundary were properly evaluated
by finite differences between the boundary value and the center
value of the adjacent cell (Erpicum 2006). Regarding turbulence
variables, the law of the wall was used to compute shear velocity
on solid walls to determine the corresponding depth-averaged tur-
bulent kinetic energy and its dissipation rate (Rodi 1984, Younus
and Chaudhry 1994). At inlets, the turbulent kinetic energy and
its dissipation rate were also prescribed (Choi and Garcia 2002,
Ferziger and Peric 2002).

5 Numerical tests and results

5.1 Computational procedure and grid

Although the present analysis explicitly focused on steady-state
conditions, both computational models were run starting from an
initial condition corresponding to steady channel flow. The whole
transient propagation and development of the dike break wave has
been simulated until the final steady solution was achieved.

The Cartesian grid used in the FV model involved almost
60,000 cells 0.02 m by 0.02 m. In contrast, the FE model sim-
ulations based upon about 23,000 triangular cells and 12,000
discrete nodes, with an average element edge length of 0.05 m.
Nearby the breach, local grid refinement was used resulting in
0.03 m edges. After describing the various tested configurations
as well as the corresponding boundary conditions (5.2), the fol-
lowing subsections successively include base simulations, effects
of second order space discretization, turbulence modeling, bed
and wall friction as well as Boussinesq coefficients.

5.2 Test configurations

Four different initial hydraulic configurations were considered,
depending on the inflow discharge and the initial channel flow
depth. Before each model run, a steady flow was established in
the channel with the corresponding initial flow depth. Preferably
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Table 2 Definition of test configurations in numerical simulations for
breach width of 0.70 m

Test ID Inflow discharge Initial depth Crest height
[m3/s] [m] [m]

Q300-h50 0.300 0.50 0.241
Q300-h40 0.300 0.40 0.152
Q200-h50 0.200 0.50 0.297
Q200-h40 0.200 0.40 0.202

high values of the flow depth were adopted to result in high values
of downstream and breach discharges after the flow split, to obtain
moderate velocities in the channel. Table 2 defines each of these
configurations. At the channel inlet (Fig. 2), the unit discharge
was prescribed as an upstream boundary condition. At the edges
of the propagation area (glass plate) no boundary condition was
needed for supercritical outflow.

Calibrated weir formulas for various crest heights (Table 2)
were implemented in both codes as possible downstream bound-
ary conditions. Thus, the dynamics of the weir discharge
depending on the actual channel water level could be modeled.
The resulting backwater effects and flow resistances interact with
the flow split into breach discharge and downstream channel dis-
charge. The rating curve of each of those weirs was determined
experimentally using a variable discharge coefficient as

Qw = 2

3
µb

√
2g(h − hw)3/2 = 2

3
µ

√
2gh

3/2
0 , (11)

where Qw is the weir discharge, µ is the discharge coefficient,
b is the crest width of 1.0 m, h is the upstream water depth, hw

is the crest height, and h0 = h − hw as overflow depth. The
discharge coefficient measured experimentally was expressed as
a cubic polynomial of h0 (Table 3)

µ = a3h
3
0 + a2h

2
0 + a1h0 + a0. (12)

5.3 Base simulations: Second order accurate space
discretization with FE model and FV model

Figures 3 and 4 show the global flow pattern of the deviated
flood wave, respectively in terms of flow depths, unit discharge
and wave deflection computed for test Q300-h50. The Froude
numbers (Fig. 5), defined as F = (u2 +v2)1/2/(gh)1/2, indicate a
distinctive S-shaped critical section across the breach. The con-
tour lines of wave heights confirm the influence of momentum of
the channel main flow direction.

Flow depths predicted by the two computational models are
compared with the values observed experimentally along the

Table 3 Coefficients of cubic approximations

Test ID a3 a2 a1 a0 Range of validity

Q300-h50 –7.291 4.561 –0.554 0.752 0.05 < Q < 0.3
Q300-h40 –10.84 6.009 –0.359 0.738 0.05 < Q < 0.3
Q200-h50 –62.63 26.61 –3.508 0.887 0.03 < Q < 0.2
Q200-h40 –65.62 29.01 –3.665 0.877 0.03 < Q < 0.2

Figure 3 Deflection of wave (dash-dotted contours), stream traces and
flow depth [m] computed with FE model

Figure 4 Unit discharge [m2/s] computed with FV model

Figure 5 Froude number [dimensionless] computed with FV model

main y-axis at x = 0 in Fig. 6. As shown by the error bars, the range
of uncertainty of the experimental measures is strongly influenced
by the free surface inclination. The simulation results of both
computational models are globally in satisfactory agreement with
the observations. Figure 6 shows however some discrepancies in
zones where the free surface curvature is significant. Besides, the
results of both numerical models agree remarkably well, despite
of their differences in terms of computational implementation
(Table 1).

Simulated and measured discharges across the breach are com-
pared in Table 4 and Fig. 7. For all four tests the numerical
predictions underestimate the discharge released into the flood-
plain by 6% to 11% of the test breach discharge. The next sections
aim at investigating whether this issue can be enhanced in the
framework of depth-averaged flow modeling.
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Figure 6 Surface profiles along y-axis at x = 0 (Fig. 2): Comparison of experimental and numerical results of base simulations (FE and FV models)

Table 4 Comparison between breach discharges observed and com-
puted with second order accuracy by both models

Test ID Measured FE model FV model
[m3/s] [m3/s] [m3/s]

Q300-h50 0.218 0.200 0.198
Q300-h40 0.159 0.141 0.141
Q200-h50 0.194 0.183 0.182
Q200-h40 0.154 0.143 0.141

0.0
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Q300-h50 Q300-h40 Q200-h50 Q200-h40

Q
B

(m
³/

s)

Experimental

FV model

FE model

Figure 7 Comparison between breach discharges QB observed and
computed by second order accurate simulations

5.4 Influence of space discretization

Simulations of first order accuracy in space were conducted with
the FV model. Figure 8 and Table 5 show that the predicted
breach discharge is increased in the first order space accurate
simulations compared to second order. The numerical diffusive
effects act thus favorably on the simulation results, but may not
be considered as reliable since this diffusion strongly depends
on purely numerical parameters, such as grid size. Therefore,
the following simulations were run with second order space dis-
cretization and a turbulence closure was added to represent the
effect of real physical diffusion.

Q
B

(m
³/

s)
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100.0

150.0

200.0

250.0

Q300-h50 Q300-h40 Q200-h50 Q200-h40

Experimental

FV model - 1st order

FV model - 2nd order

Figure 8 Comparison of experimental and numerically predicted (first
and second order space discretization) breach discharges QB

Table 5 Comparison of experimental and numerical (FV model with first
and second order space accuracy) breach discharges

Test ID Measured First order Second order
[m3/s] [m3/s] [m3/s]

Q300-h50 0.218 0.204 0.198
Q300-h40 0.159 0.145 0.141
Q200-h50 0.194 0.186 0.182
Q200-h40 0.154 0.145 0.141

A preliminary study with the FE model yielded the required
fineness of the numerical grid to obtain an almost mesh-
independent solution and to minimize the discretization error
(Fig. 9). Following Ferziger and Peric (1996) for unstructured
grids, coarse grid results were interpolated on a fine grid to form
the error estimate. In comparison to a very fine mesh, the aver-
aged water level difference for each 0.02 m cell decreases for each
uniform refinement. The selected locally refined grid consists of
only 23,000 triangular elements and in parallel achieves a high
accuracy.
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Figure 9 Grid refinement study computed with FE model for test
configuration Q300-h50

5.5 Influence of turbulence modeling

The simulations were repeated with two types of turbulence
closures (4.2), the first being a purely algebraic expression
for eddy viscosity, involving parameter α from Eq. (9). Two
different values were used to appreciate the sensitivity of the com-
puted discharge with respect to α. The second is a two-equation
depth-averaged k-ε model.

As summarized in Table 6 and in Fig. 10, the turbulence clo-
sure has basically a minor effect on the computational results,
most probably as a result of the highly advective nature of dike-
break induced flow. In such conditions, the pressure gradients and
the purely advective terms in the momentum equations dominate
diffusion, which only plays a minor role. In particular the effect
of the k-ε turbulence closure on breach discharge is negligible,
while the algebraic closure was run with slightly overestimated
values of α to appreciate the relative sensitivity of the four test
configurations with respect to the turbulence closure.

As regards the algebraic turbulence closure, Table 6 also shows
that the discharge in test Q300-h40 is the most sensitive to the
turbulence closure. Indeed, the velocity is maximum with a high
inflow and a comparatively low initial flow depth, and hence
so are the bottom shear stress and the friction velocity, directly
controlling the magnitude of the eddy viscosity. In contrast, the
sensitivity of the result is found minimal in test Q200-h50, for

Table 6 Simulations performed with different turbulence closures
(FV model). Relative change in breach discharge (%) compared to
simulations without turbulence closure

Test ID k-ε Eq. (9) Eq. (9)
α = 0.5 α = 1.0

Q300-h50 0.0 1.1 1.7
Q300-h40 0.0 2.7 4.7
Q200-h50 −0.1 0.7 0.8
Q200-h40 −0.1 0.7 1.3
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Figure 10 Comparison between breach discharges QB observed exper-
imentally and predicted by second order accurate simulations of FV
model with various turbulence closures

Figure 11 Unit discharge [m2/s] computed with FV model for test
Q300-h50 with an elongated inflow channel

which the flow velocity is also small with a low inflow discharge
and a high initial water depth.

Since the equations of motion, in particular the k-ε turbulence
closure, are transport equations, proper boundary conditions
need to be prescribed notably at the inlet and possibly influence
the computational result further downstream in the simulation
domain. Therefore, the sensitivity of the simulation output with
respect to the length of the inlet channel was investigated.
Two simulations (with and without k-ε turbulence closure) were
repeated for test Q300-h50 with a length of the inlet channel
increased by 10 m (Fig. 11). The flow remains essentially insen-
sitive to the inlet channel length, since the variation in breach
discharge does not exceed 0.2%.

5.6 Influence of bed and wall roughness

It has been verified with both computational models that modify-
ing the Manning coefficient for a channel bed roughness within
0.005 < nb < 0.020 s/m1/3 has no significant effect on the
breach discharge (0.3%). Increasing the Manning coefficient
above 0.02 s/m1/3 would be unrealistic considering the flume
material of smooth paintwork. Even a value of 0.05 s/m1/3 in
the framework of a channel roughness sensitivity analysis in the
FE model leads to minor changes in the discharge split.

Similarly, the influence of wall roughness (Eq. (6)) was
investigated with the FV model. For test Q300-h50, Table 7
compares values of computed breach discharges with two dif-
ferent wall roughness coefficients (nw = 0.015 s/m1/3 and nw =
0.030 s/m1/3) and without wall roughness. Again, the flow sen-
sitivity was found to be weak, since the relative change in the
breach discharge does not exceed 1%. This slight increase in the
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Table 7 Influence of wall roughness in test Q300-h50 simulated by
FV model (algebraic turbulence closure α = 1)

Wall roughness None Moderate High

Coefficient nw [s/m1/3] 0.00 0.015 0.030
Breach discharge [m3/s] 0.2014 0.2022 0.2035
Relative change [%] 0.4 1.0

Figure 12 Unit discharges [m2/s] close to breach location, computed
by FV model for test Q300-h50, (a) without wall roughness, (b) with
wall roughness (nw = 0.030 s/m1/3)

breach discharge is associated with a change in the velocity profile
and unit discharge in the channel immediately downstream of the
breach. Figure 12 compares the field of unit discharges obtained
without and with wall roughness. The latter is characterized by
a wider area of lower velocity close to the right wall, leading to
a flow constriction downstream of the breach and, therefore, an
increase in the breach discharge.

5.7 Influence of Boussinesq coefficients

Preliminary simulations were run with the FV model consider-
ing spatially distributed Boussinesq coefficients (Eq. (5)). The
upwind scheme described in Section 4.2 was demonstrated to
remain stable regardless of the value of the Boussinesq coeffi-
cients (Dewals 2006). The CFL condition, however, needs to be
updated to account for its effect on wave celerity.

Results of these preliminary simulations demonstrate that the
Boussinesq coefficients can indeed have a substantial influence
on the flow behavior. These simulations are based mainly on
guesses regarding the distribution of the Boussinesq coefficients
and must be essentially considered as contributions to a sensitivity
analysis of the flow with respect to the Boussinesq coefficients.
More realistic simulations can only be executed based on dis-
tributions of Boussinesq coefficients inferred from experimental
measurements or 3D simulations. In such a framework, the 2D
modeling relies on complementary experimental or 3D numerical
modeling, which is a weak point of such an approach. How-
ever, a detailed analysis of 3D simulation results may lead to a
parameterization of the Boussinesq coefficient as a function of
depth-averaged flow characteristics (e.g. free surface curvature),
which in turn makes the 2D model self-sufficient by adding a clo-
sure relationship linking the local Boussinesq coefficient to the
primitive unknowns (or their derivative) of the depth averaged
model.

Currently, velocity profiles over depth are available from mea-
surements performed at IWW-RWTH for a restricted floodplain
area nearby the breach within the body of the wave (2.2). Due
to the distribution of horizontal velocity components u and v,
the depth averaging yields high values of Boussinesq coeffi-
cients, which actually cannot be applied in one-to-one for such
heterogeneous profiles.

A simulation with the FV model based simply on this distribu-
tion of Boussinesq coefficients indicates a slight increase in the
released discharge. Moreover, the real Boussinesq coefficients
are expected to differ from unity in a much wider area, including
the channel in the breach vicinity. If this overall distribution is
taken into account in depth-averaged modeling, the breach dis-
charge might be much more affected. Therefore, 3D simulations
are presently undertaken at IWW-RWTH to provide 2D models
with a reliable spatial distribution of Boussinesq coefficients in
the entire computational domain.

6 Conclusions

Both investigated 2D depth-averaged shallow-water models
reproduce satisfactorily the basic flow pattern and the qualitative
flow split for different configurations of experimental dike-break
induced flows. The flooding event is modeled from an initial state
for a closed flap gate in a single stable run, without oscillations
including the channel and the wave propagation area. This con-
firms the convergence and general applicability of the methods
used for dike-break problems.

The resulting deviations from the performed measurements
including underestimation of breach discharges by 4% to 11%
were analyzed focusing on the simplifications of the mathemati-
cal model and the numerical approach. The applied CFD-methods
should at least be of second order accuracy in space to minimize
numerical diffusion which otherwise affects the solution. The
tested simulations involve a low solution sensitivity as regards
turbulence modeling, bed and wall roughness. Accordingly,
progress has to be made in the use of Boussinesq coefficients,
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coupled with experimental and 3D numerical results. Addition-
ally, a nonhydrostatic pressure distribution depending on the
free surface curvature should be adopted. Depth-averaging and
above all the hydrostatic pressure assumption are reasons for the
observed differences between the experimental and numerical
investigations of dike-break induced flows.
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Notation

ai = Coefficients for weir discharge coefficient
(i = 0, . . . , 3)

b = Crest width
f, g =Advective and pressure fluxes

fd , gd = Diffusive fluxes
F = Froude number
g = Gravitational acceleration
h = Flow depth

ho = Overflow depth
hw = Height of weir crest
k = Degree of polynomial in DG discretization

nb, nw = Bottom and side-wall roughness coefficients
Nx, Ny = Number of contact edges of finite volume cell

QB = Breach discharge
Qw =Weir discharge

s =Vector of conservative unknowns
So = Bottom slope
Sf = Friction slope

t = Time
u = Depth-averaged velocity component along x-axis

u∗ = Friction velocity
v = Depth-averaged velocity component along y-axis

û, v̂ = Components of local velocity
x, y = Coordinates in horizontal plane

zb = Bottom elevation
z =Vertical coordinate

�x = Grid resolution in horizontal plane
�z = Grid resolution in vertical plane

α = Coefficient of turbulent model
µ = Discharge coefficient
νt = Depth-averaged turbulent eddy viscosity
ν = Molecular kinematic viscosity
ρ = Density of water

ρxx, ρyy, ρxy = Boussinesq coefficients
σx, σy = Turbulent normal stresses

τxy = Turbulent shear stress
τbx, τby = Components of bottom shear stress

〈·〉 = Depth-averaged

References

ASCE Task Committee on Turbulence Models in Hydraulic Com-
putations (1988). Turbulence modeling of surface water flow
and transport 1. J. Hydr. Engng. 114(9), 970–991.

Aureli, F., Mignosa, P. (2002). Rapidly varying flows due to
levee-breaking. Proc. Intl. Conf. Fluvial Hydraulics (River
Flow), Louvain-la-Neuve, Belgium, 1, 459–466.

Aureli, F., Mignosa, P. (2004). Flooding scenarios due to levee
breaking in the Po river. Water Manage. 157, 3–12.

Briechle, S., Joeppen, A., Köngeter, J. (2004). Physical model
tests for dike-break induced, two-dimensional flood wave
propagation. Proc. 2nd Intl. Conf. Fluvial Hydraulics (River
Flow), Naples, Italy 2, 959–966. Balkema, Rotterdam.

Briechle, S. (2006). Die flächenhafte Ausbreitung der
Flutwelle nach Versagen von Hochwasserschutzeinrichtungen
an Fließgewässern. Shaker, Aachen [in German].

CADAM (2000). Concerted action on dambreak modelling,
Final Report SR 571, HR, Wallingford UK.

Choi, S.-U., Garcia, M.H. (2002). k-ε turbulence modelling of
density currents developing two dimensionally on a slope.
J. Hydr. Engng. 128(1), 55–63.

Cockburn, B. (1999). Discontinuous Galerkin methods for
convection-dominated problems. Lecture Notes in Compu-
tational Science and Engineering, 9, 69–224. Springer,
Berlin.

Cockburn, B., Karniadakis, G.E., Shu, C.-W. (2000). Discon-
tinuous Galerkin methods. Lecture Notes in Computational
Science and Engineering, 11. Springer, Berlin.

Dewals, B. (2006). Une approche unifiée pour la modélisation
d’écoulements à surface libre, de leur effet érosif sur une struc-
ture et de leur interaction avec divers constituants. PhD thesis.
University, Liege [in French].

Dewals, B.J., Erpicum, S., Archambeau, P., Detrembleur, S.,
Pirotton, M. (2006a). Depth-integrated flow modelling taking
into account bottom curvature. J. Hydr. Res. 44(6), 787–795.

Dewals, B.J., Erpicum, S., Archambeau, P., Detrembleur, S.,
Pirotton, M. (2006b). Numerical tools for dam break risk
assessment: Validation and application to a large complex
of dams. Improvements in Reservoir Construction, Opera-
tion and Maintenance, 272–282, H. Hewlett, ed. Telford,
London.

Dewals, B.J., Kantoush, S.A., Erpicum, S., Pirotton, M.,
Schleiss, A.J. (2008). Experimental and numerical analysis of
flow instabilities in rectangular shallow basins. Environ. Fluid
Mech. 8, 31–54.

Erpicum, S. (2006). Optimisation objective de paramètres en
écoulements turbulents à surface libre sur maillage multibloc.
PhD Thesis. University, Liege [in French].

Erpicum, S., Archambeau, P., Detrembleur, S., Dewals, B.,
Pirotton, M. (2007). A 2D finite volume multiblock flow



Journal of Hydraulic Research Vol. 47, No. 3 (2009) Experimental and numerical investigations of dike-break induced flows 359

solver applied to flood extension forecasting. Numerical
Modelling of Hydrodynamics for Water Resources, 321–325,
P. García-Navarro, E. Playán, eds. Taylor & Francis, London.

Ferziger, J.H., Peric, M. (1996). Further discussion of numerical
errors in CFD. Intl. J. Num. Meth. in Fluids 23, 1263–1274.

Ferziger, J.H., Peric, M. (2002). Computational methods for fluid
dynamics. Springer, Berlin.

Fischer, H., List, E., Koh, R., Imberger, J., Brooks, N. (1979).
Mixing in inland and coastal waters. Academic Press, New
York.

Fraccarollo, L., Toro, E. (1995). Experimental and numerical
assessment of the shallow water model for two-dimensional
dam-break type problems. J. Hydr. Res. 33(6), 843–863.

Ghamry, H.K., Steffler, P.M. (2002). Two dimensional verti-
cally averaged and moment equations for rapidly varied flows.
J. Hydr. Res. 40(5), 579–587.

IMPACT (2005). Investigation of extreme flood processes and
uncertainty. Final Technical Report EVG1-CT-2001-00037,
HR Wallingford UK.

Kulisch, H. (2003). Ausbreitung von Dammbruchwellen im
physikalischen Modell. Oldenbourg, München [in German].

Rodi, W. (1984). Turbulence models and their application in
hydraulics: A state-of-the-art, 2nd edn. Balkema, Rotterdam.

Schwanenberg, D., Köngeter, J. (2000). A discontinuous
Galerkin method for the shallow water equations with source
terms. Lecture Notes in Computational Science and Engineer-
ing, 11, 419–424. Springer, Berlin.

Schwanenberg, D., Harms, M. (2002). Discontinuous Galerkin
method for dam-break flows. Proc. Intl. Conf. Fluvial
Hydraulics (River Flow), Louvain-la-Neuve, Belgium, 1,
443–448.

Schwanenberg, D. (2003). Die Runge-Kutta-Discontinuous-
Galerkin-Methode zur Lösung konvektions-dominierter tie-
fengemittelter Flachwasserprobleme. Shaker, Aachen [in
German].

Schwanenberg, D., Harms, M. (2004). Discontinuous Galerkin
Finite-Element Method for transcritical two-dimensional shal-
low water flows. J. Hydr. Engng. 130(5), 412–421.

Shu, C.-W. (2003). High order finite difference and finite vol-
ume WENO schemes and discontinuous Galerkin methods for
CFD. Int. J. Comput. Fluid Dyn. 17, 107–118.

Younus, M., Chaudhry, M.H. (1994). A depth-averaged k-ε turbu-
lence model for the computation of free-surface flow. J. Hydr.
Res. 32(3), 415–439.


