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1. Introduction. We consider a polyhedron in R™ of the form
P:= conv({vi}iev) +cone({rj}jeE), (1)

where V and E are finite index sets, {v'},.,, denotes the vertices of P and {r7} jer denotes the extreme
rays of P. We assume P is rational, i.c., we assume {1/}, p C Z" and {v'},.;, C Q™.

We are interested in points in P that have integer values on certain coordinates. For simplicity assume
the first p > 0 coordinates must have integer values, and let ¢ := n — p. The set Ny := {1,2,...,p} is
used to index the integer constrained variables and the set P; := {x € P : x; € Z for all j € Nt} denotes
the mixed integer points in P.

The following concepts from convex analysis are needed (see [?] for a presentation of the theory of
convex analysis). For a convex set C' C R"™, the interior of C' is denoted int(C), and the relative interior
of C is denoted ri(C) (where ri(C) = int(C) when C is full dimensional).

We consider the generalization of split sets (see [?]) to lattice point free rational polyhedra (see [?]).
A split set is of the form S(™m) .= {z € R? : w1y < n7a < mo + 1}, where (7, 7) € ZPT! and 7 # 0.
Clearly a split set does not have integer points in its interior. In general, a lattice point free convex set
is a convex set that does not contain integer points in its relative interior. Lattice point free convex sets
that are maximal wrt. inclusion are known to be polyhedra. We call lattice point free rational polyhedra
that are maximal wrt. inclusion for split polyhedra. A split polyhedron is full dimensional and can be
written as the sum of a polytope P and a linear space L.

A lattice point free convex set is an object that assumes integrality of all coordinates. For mized
integrality in RPTY, we use a lattice point free convex set C* C RP to form a mized integer lattice point
free convex set C' C R™ of the form C := {(x,y) € RP x R?: 2 € C*}. A mized integer split polyhedron
is then a polyhedron of the form L := {(x,y) € RP x R?: x € L*}, where L* is a split polyhedron in RP.

An important measure in this paper of the size of a mixed integer split polyhedron L is the facet width
of L. The facet width measures how wide a mixed integer split polyhedron is parallel to a given facet.
Specifically, given any facet 77x > 7o of a mixed integer split polyhedron L, the width of L along 7 is
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defined to be the number w(L, ) := max,cy, 77z —minger, 77 x. The mazx-facet-width of a mixed integer
split polyhedron L measures how wide L is along any facet of L, i.e., the max-facet-width wy(L) of L is
defined to be the largest of the numbers w(L, ) over all facet defining inequalities 772 > mq for L.

Any mixed integer lattice point free convex set C C R™ gives a relaxation of conv(Fr)
R(C, P) := conv(P \ ri(C))
that satisfies conv(Pr) € R(C, P) C P. The set R(C, P) might exclude fractional points in ri(C) N P and
give a tighter approximation of conv(Pr) than P.

Mixed integer split polyhedra L give as tight relaxations of P; of the form above as possible.
Specifically, if C,C’ C R™ are mixed integer lattice point free convex sets that satisfy C C C’, then
R(C’",P) C R(C, P). For a general mixed integer lattice point free convex set C, the set R(C, P) may
not be a polyhedron. However, it is sufficient to consider mixed integer split polyhedra, and we show
R(L, P) is a polyhedron when L is a mixed integer split polyhedron (Lemma 23)).

Observe that the set of mixed integer split polyhedra with max-facet-width equal to one are exactly
the split sets S(™7™) = {z € R" : 1y < 77x < 1y + 1}, where (7, 7m) € Z"*, 7; = 0 for j > p and 7 # 0.
In [?], Cook et. al. considered the set of split sets

L' :={L CR": L is a mixed integer split polyhedron satisfying w;(L) < 1}
and showed that the split closure
SC! := Npep1 R(L, P)
is a polyhedron. A natural generalization of the split closure is to allow for mixed integer split polyhedra
that have max-facet-width larger than one. For any w > 0, define the set of mixed integer split polyhedra

LY :={L CR": L is a mixed integer split polyhedron satisfying w;(L) < w}
with max-facet-width at most w. We define the w' split closure to be the set
SCY .= mLeﬂwR(L,P).

We prove that for any family £ C £* of mixed integer split polyhedra with bounded max-facet-width
w > 0, the set N czR(L, P) is a polyhedron (Theorem{3]). The proof is an application of a more general
result (Theorem [.2)) that gives a sufficient condition for the set N, czR(L, P) to be a polyhedron for any
set £ of mixed integer split polyhedra. Many of our arguments are obtained by generalizing results of
Andersen et. al. [?] from the first split closure to the w'" split closure.

Given a family {(6")Tz > 6}, of rational cutting planes, we also provide a sufficient condition for the
set {z € P: (6")Tz > 8} for all | € I} to be a polyhedron (Theorem[31]). This condition (Assumption [B.1])
concerns the number of intersection points between hyperplanes defined from the cuts {(6")7z > 64}, ;
and line segments either of the form {v’ + ard : @ > 0}, or of the form {Bv + (1 — B)v* : B € [0,1]},
where i,k € V denote two vertices of P and j € E denotes an extreme ray of P.

Finite cutting plane proofs of validity of an inequality for P; can be designed by using mixed integer
split polyhedra. Given a measure size(L) of the “size” or “complexity” of a mixed integer split polyhedron,
a measure of the size of a finite cutting plane proof is the largest size s* of a mixed integer split polyhedron
used in the proof. Possible measures could be the max-lattice-width or the lattice width of L [?]. In fact,
the function size(L) could also estimate the time complexity involved in using the mixed integer split
polyhedron L in an algorithm. A measure of the size of a valid inequality §”« > g for P; is then the
smallest number s 5,) for which there exists a finite cutting plane proof for the validity of 6Tz > &y for
Pr only using mixed integer split polyhedra of size at most 55, 5,). We give a formula for s 5,) (Theorem
B that explains geometrically why mixed integer split polyhedra of large size can be necessary.

The remainder of the paper is organized as follows. In Sect. 2] we present the main results on lattice
point free convex sets needed in the remainder of the paper. We also present the construction of polyhedral
relaxations of P; from mixed integer split polyhedra. Most results in Sect. 2] can also be found in a paper
of Lovdsz [?]. In Sect. Bl we discuss cutting planes from the viewpoint of an inner representation of P.
The main result in Sect. [3]is a sufficient condition for a set obtained by adding an infinite family of
cutting planes to be a polyhedron. The structure of the relaxation R(L, P) of P; obtained from a given
mixed integer split polyhedron L is characterized in Sect. @l The main outcome is a sufficient condition
for the set N czR(L, P) to be a polyhedron, where £ is a family of mixed integer split polyhedra. We
also apply this sufficient condition to show that the w' split closure is a polyhedron. Finally, in Sect. [l
we discuss the complexity of finite cutting plane proofs for the validity of an inequality for P;.
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(a) L and lines z1 = {0, 1,2} (b) L and lines z2 = {0,1,2} (¢) L and lines z1 + z2 = {0,1, 2}

Figure 1: The split polyhedron L = {x € R? : &1,z > 0 and x1 + 75 < 2}

2. Lattice point free convex sets and polyhedral relaxations We now discuss the main object
of this paper, namely lattice point free convex sets, which are defined as follows

DEFINITION 2.1 (Lattice point free convex sets)
Let L CRP be a convex set. If ri(L) NZP = (), then L is called lattice point free.

The discussion of lattice point free convex sets in this section is based on a paper of Lovész [?]. We
are mainly interested in lattice point free convex sets that are maximal wrt. inclusion. Our point of
departure is the following characterization of maximal lattice point free convex sets.

LEMMA 2.1 Every mazximal lattice point free convex set L C RP is a polyhedron.

As mentioned in the introduction, we call maximal lattice point free rational polyhedra for split poly-
hedra. Figure [ gives an example of a split polyhedron L. Maximal lattice point free polyhedra are not
necessarily rational polyhedra. The polyhedron @ := {(z1,22) : 2 = 21v/2,2; > 0} is an example of
a maximal lattice point free set which is not a rational polyhedron. However, we will only use maximal
lattice point free convex sets to describe (mixed) integer points in rational polyhedra, and for this purpose
split polyhedra suffice.

We next argue that the recession cone 07 (L) of a split polyhedron L must be a linear space. This
fact follows from the following operation to enlarge any lattice point free convex set C' C RP. Let
r € 07(C) N QP be a rational vector in the recession cone of C. We claim that also C’ = C + span({r})
is lattice point free. Indeed, if & — ur € ri(C”’) is integer with p > 0 and Z € ri(C), then there exists a
positive integer pu! > p such that & — ur + plr = z + (u! — p)r € 1i(C) N ZP, which contradicts that C' is
lattice point free. Since the recession cone of a split polyhedron is rational, we therefore have

LEMMA 2.2 Let L C RP be a split polyhedron. Then L can be written in the form L = P + L, where
P C RP is a rational polytope and L C RP is a linear space with an integer basis.

Observe that Lemma implies that every split polyhedron L C RP is full dimensional. Indeed, if
this was not the case, then we would have L C {z : RP : 772 = o} for some (7, ) € ZPT! which implies
L C{z:RP:7my <7lz <my+1}, and this contradicts that L is maximal lattice point free.

OBSERVATION 2.1 FEwery split polyhedron L in RP is full dimensional.

We are interested in using split polyhedra to characterize mized integer sets. Let L* C RP be a split
polyhedron. We can then use the set L := {(z,y) € R? x R? : & € L*} for mixed integer sets, since L
does not contain any mized integer points (z,y) € Pr. We call L a mized integer split polyhedron. Let
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I :={(m,m) € Z"' : m; = 0 for j ¢ N;}. Every mixed integer split polyhedron L C R™ can be written
in the form
L:={zeR": (7")Tx >z for k € F(L)},

where F(L) is a finite index set for the facets of L, (7%, 7&) € II and ged(w*, 7%) = 1. Note that, since L
is full dimensional, this representation of L is unique.

We now consider how to measure the size of a mixed integer split polyhedron. Given a vector = € Z"
satisfying m; = 0 for j ¢ Ny, the number of parallel hyperplanes 77z = 7 that intersect a mixed integer
split polyhedron L C R™ for varying my € R gives a measure of how wide L is along the vector m. The
width of L along a vector « is defined to be the number

w(L,7) := maxn! x — min7’ 2.
rcL z€L
By considering the width of L along all the facets of L, and choosing the largest of these numbers, we
obtain a measure of how wide L is.

DEFINITION 2.2 (The mam-facet—width of a mized integer split polyhedron).
Let L ={z € R" : (#")Tz > 7T0 for k € F(L)} be a mized integer split polyhedron, where F(L) is an
index set for the facets of L, (7%, 7§) € I and ged(m*, 7¥) = 1. The max-facet-width of L is the number:

wy (L) := max{w(L,7"*) : k € F(L)}.

EXAMPLE 2.1 Figure[dl gives an example that demonstrates how to compute the max-facet-width of the
split polyhedron L = {x € R? : 21,29 > 0 and x1 + w2 < 2}. The split polyhedron L has three facets
(7*)Tz > wk for k € F(L) = {1,2,3} given by (7, 7§) = (1,0,0), (72,72) = (0,1,0) and (73, 7) =
(-1,-1,-2).

The width of L along 7' is given by w(L,7') = max,er(m!)T2 — minger (7)) T2 = max,er 21 —
minger 21 = 2 —0 = 2. As can be seen from Figure [ll(a), the optimal solutions to the problem
maxxeL(ﬂ'l)Tx = maxyecr T1 are given by the intersection of L with the hyperplane x1 = 2, and the
optimal solutions to the problem minxeL(ﬂ'l)T:c = mingep x1 are given by the intersection of L with the
hyperplane x1 = 0. In general, the width w(L, ") of L along 7' is determined by the parallel hyperplanes
(7)Tx = k for varying values of k € R.

With similar computations, and by considering Figure[Dl(b) and Figure[l(c), we obtain that w(L,7?) =
w(L,73) = 2. Since the maz-facet-width wy(L) of L is the largest of the numbers w(L,w'), w(L,7?) and
w(L,7), we obtain ws(L) = 2.

2.1 Polyhedral relaxations from mixed integer split polyhedra As mentioned in the intro-
duction, any mixed integer lattice point free convex set C' C R™ gives a relaxation of conv(Pr)

R(C, P) := conv(P \ ri(C))
that satisfies conv(Pr) C R(C, P) C P. Since mixed integer split polyhedra L are maximal wrt. inclusion,
the sets R(L, P) for mixed integer split polyhedra L are as tight relaxations as possible wrt. this operation.

Figure2ldemonstrates the operation R(L, P) for a polytope P with five vertices and a split polyhedron
L. Observe that the set of points in P Nint(L) that are below the cut in Figure (b) are exactly those
points in P Nint(L) that can not be expressed as a convex combination of points in P\ int(L).

For the example in Figure 2] the set R(L, P) is a polyhedron. We now show that, in general, mixed
integer split polyhedra give polyhedral relaxations R(L, P) of P;.

LEMMA 2.3 Let L C R™ be a full dimensional rational polyhedron whose recession cone 07 (L) is a linear
space, and let P be a rational polyhedron. Then the following set R(L, P) is a polyhedron.

R(L, P) := conv(P \ int(L)).
PROOF. WeassumeL:{:ceR” (7T > wk forkEF} and P = {z € R" : Dz < d}, where F' is

an index set for the facets of L, (7%, 7§) € Z"*! and ged(n* 7r0) =lforke F,DeQm* ™ and de Q™.
Observe that L has the property that, if y € 07(L), then (7%)Ty = 0 for all k € F. This follows from
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v4

k/ New vertices

(a) The linear relaxation P of Py and (b) The only cut that can be derived (¢) The strengthened relaxation
a split polyhedron L from L and P R(L, P) of Pr

Figure 2: Strengthening the linear relaxation P of P; by using a split polyhedron L

the fact that the recession cone 0% (L) of L is a linear space. We claim R(L, P) is the projection of the
following polyhedron onto the space of xz-variables.

e= Yot )

keF
Daz* < X\fd,  fork e F, (3)
(T Tak < Xerlk for k € F, (4)
d oA =1, (5)
i€l
A >0, for k € F. (6)

The above construction was also used by Balas for disjunctive programming [?]. Let S(L, P) denote
the set of © € R™ that can be represented in the form ([2))-(@l) above. We need to prove R(L, P) = S(L, P).
A result in Cornuéjols [?] shows that cl(conv(Ue r P¥)) = cl(R(L, P)) = S(L, P), where P* is defined by
Pk ={ze P: (7*)Tz <k} for k € F. Tt follows that R(L, P) C S(L, P).

We now show S(L,P) C R(L,P). Let 2 € S(L,P). By definition this means there exists F C F,
{2"}ep and AN} cp st T, {2}, cp and {A¥}, o satisfy @)-(@). We can assume |F| > 2, and that |F|
is chosen as small as possible. Define F? := {k € F : \¥ = 0}. We prove # € R(L, P) in three steps.

(a) For all kg € F°, there exists k € F such that (7%)Tz% <0 :

Let ko € F° be arbitrary. Suppose, for a contradiction, that (7%)7z*e > 0 for all ¥ € F. This implies
zko € 0% (L), and therefore (7%)Tzk0 = 0 for all K € F. We now show this contradicts the assumption
that |F'| is chosen as small as possible. Indeed, choose k € F\ {ko} arbitrarily. Define y* := zko+ z*
and y* := z* for k € F\ {ko,k}. We have that Z, {yk}kep\{ko} and {j‘k}keﬁ‘\{ko} satisfy (2)-(@), which
contradicts the minimality of |F|. Therefore there exists k € F such that (7%)Tzk < 0.

(b) We have z*o € 0 (R(L, P)) for all ko € F°:

Let kg € F° and r € R(L,P) be arbitrary. Consider the points z(a) := r + az*® on the halfline
{x(a) : @ > 0} starting from r in the direction z*°. From (1) it follows that there exists k € F' such that
(mF)Tzko < 0. Since (7*)Tz*0 < 0, there exists @ > 0 such that (7%)Tx(a) < 7} for all & > a&. This
implies 7% (a) € P* C R(L, P) for all @ > @&, and therefore 7 € 0% (R(L, P)).

(c) z € R(L, P):

We can write T = 37, 54 X’“%\;—i— > pepo ¥, where F*:={k € F : \¥ > 0}. Since L ¢ pk C R(L,P)

° 3 - )
for k € F*, z* € 07 (R(L, P)) for k € F° (from (b)) and Y, + A¥ = 1, we have z € R(L, P). O

Lemma 23] implies that for every finite collection £ of mixed integer split polyhedra, the set
Cl(P,L) :=NrecR(L, P),
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is a polyhedron. A next natural question is under which conditions the same is true for an infinite
collection of mixed integer split polyhedra. As mentioned, in Sect. E we will show that a sufficient
condition for this to be the case is that it is possible to provide an upper bound w* on the max-facet-
width of the mixed integer split polyhedra in the infinite collection £ of mixed integer split polyhedra.
We therefore consider the family of all mixed integer split polyhedra whose max-facet-width is bounded
by a given constant w > 0

LY :={L CR": L is a mixed integer split polyhedron satisfying w;(L) < w}.

An extension of the (first) split closure can now be defined.

DEFINITION 2.3 (The w'™ split closure).
Given w > 0, the w'" split closure of P is defined to be the set

Clo(P, L") := NpeswR(L, P).

An important property of mixed integer split polyhedra, which will be used heavily in the remainder
of the paper, is that the extreme rays of R(L, P) are the same as the extreme rays of P.

LEMMA 2.4 Let L be a mized integer split polyhedron, and assume R(L,P) # 0. The extreme rays of
R(L, P) are the same as the extreme rays of P, i.e., we have 0T (R(L, P)) = cone({rj}jeE).

PROOF. Let j € E and z € P\ int(L) be arbitrary. If Z + ar/ ¢ int(L) for all @ > 0, we
are done. Therefore assume there exists o/ > 0 such that Z + o/77 € int(L). We cannot have that
{Z+ar’ :a>a'} Cint(L). Indeed, this would imply r/ € 07(L), and since 07 (L) is a linear space, this
implies {Z + ar? : @ € R} C int(L), which contradicts Z ¢ int(L). Hence there exists o’ > o/ such that
4+ ar? ¢ int(L) for all a > o”. Now, any point on the line segment {Z + ar/ : 0 < a < o’} is a convex
combination of Z ¢ int(L) and Z + o/r/ ¢ int(L), and therefore {Z + ar’ : a > 0} C R(L, P). O

Not all lattice point free rational polyhedra L have the property that R(L, P) has the same extreme
rays as P. Consider the example with P = {(2) + a(é) ca>0tand L={r €R?:2>0and 2o < 1}.
2

In this case 0T (R(L,P)) = {0} and 07(P) = cone({((é))}). The reason for the difference between

0T (R(L, P)) and 07 (P) in this example is that L is not maximal lattice point free.

Another question is which condition a mixed integer split polyhedron L must satisfy in order to have
R(L,P) # P. The following lemma shows that R(L, P) # P exactly when there is a vertex of P in the
interior of L. For the example in Figure 2 we have v!,v? € int(L), and therefore R(L, P) # P.

LEMMA 2.5 Let L C R™ be a mized integer split polyhedron. Then R(L,P) # P if and only if there is a
vertex of P in the interior of L.

PROOF. If v’ is a vertex of P in the interior of L, where i € V, then v* can not be expressed
as a convex combination of points in P that are not in the interior of L, and therefore v* ¢ R(L, P).
Conversely, when L does not contain a vertex of P in its interior, then §7v? > & for every valid inequality
§Tx > &y for R(L, P) and i € V. Since the extreme rays of R(L, P) are the same as the extreme rays of
P, we have 677 > 0 for every extreme ray j € E. ]

3. Cutting planes and inner representations of polyhedra The focus in this section is on
analyzing the effect of adding cutting planes (or cuts) to the linear relaxation P of P; from the viewpoint
of an inner representation of P. We define cuts to be inequalities that cut off some vertices of P. In other
words, we say an inequality 672 > & is a cut for P if §7v? < &g for some i € V.

A cut 67z > &y is called non-negative if 677 > 0 for all extreme rays j € E. Throughout this section
we only consider non-negative cuts. Observe that non-negativity is necessary for valid cuts for the mixed
integer set Pr. Indeed, if 672 > &y is valid for Py, and j € E is an extreme ray of P, then given a mixed
integer point 2! € Py, the halfline {z! + 77 : 4 > 0} contains an infinite number of mixed integer points
belonging to P;. Therefore, if we had 6777 < 0, this would contradict the validity of 67z > &y for Pr.

We will use the following notation. The set {(6')Tx > §3},.; denotes an arbitrary family of non-
negative cutting planes for P. Given a cut [ € I, the set V¢ := {i € V : (6")Tv! < §}} is used to index
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(a) The polytope P from Figure@and (b) The convex combination vye of v! (c) The line segments that determine

a cut with V,* = {1,2} and v? for A§ = \§ = % B (A°) for k=3,4,5

Figure 3: Determining the intersection points from a polytope P and a cut (6)Tz > (56

the vertices of P that are cut off by (6')T2 > &} (where the superscript ”c¢” is an abbreviation of the
word "cut”), and V* := {i € V : (§")Tv? > )} is used to index the vertices of P that satisfy the cut
(6Y)Tz > 64 (where the superscript ”s” is an abbreviation of the word ”satisfied”). For the example in
Figure Bl(a), we have V,° = {1,2} and V}* = {3,4,5}.

3.1 The new vertices created by the addition of a cut Adding a non-negative cut (6')%7z > 5}
to the linear relaxation P of Py creates a polyhedron with different vertices than P. We now describe these
new vertices that are created. We let A := {\ € RLY‘ (Y ey i =1 and A= {A e A Zievf A =1}
denote the multipliers that are used when forming convex combinations of the vertices of P, and the
multipliers that are used when forming convex combinations of vertices that are cut off by (6")Tx > &}

I_;EI, define 7y, := 37 p pujr7.
We first argue that the new vertices that are created by adding (6')7z > 56 to P are intersection points
[?]. Intersection points are crucial for the polyhedrality result we present in Sect. (Theorem ).
Intersection points are defined as follows. Given an extreme ray j € E that satisfies (/)77 > 0, and a
convex combination A° € A¢ of the vertices that are cut off by (6')7x > 4}, the halfline {vye +ar? : a > 0}
intersects the hyperplane {z € R" : (§')Tz = §}}. For j € E and A° € AY, define

respectively. Also, for any A € A, define vy =3,y A\iv?, and for any p € R

(8H)Trd
+00 otherwise.

. =) vxe 3 (sYTpi >
a;,lm:—{ 1) =0 (7

The number o ;(A°) is the value of a for which vye 4+ ar”/ is on the hyperplane (6YTz = ). When there
is no such point, we define o, ;(X\°) = +o0. If a/;(X°) < 400, the point vxe + o ;(A°)r/ is called the
intersection point associated with the convex combination A\° € Af and the extreme ray rJ of P.

Given a convex combination \° € Af, and a vertex k € V}* that satisfies the inequality (6')Tz > &},
the line segment between vye and v* intersects the hyperplane {z € R" : (6')Tz = 6}}. For k € V}* and
A¢ € Af, define

5l — (5l)TU)\c
i (X) = 8
6k,l( ) (6l)T(’Uk — ’U)\c) ( )

The number 8 ;(X°) denotes the value of 3 for which the point vye + B(vF — wvye) is on the hyperplane
(6")Tz = 6). Observe that (3 ;(A°) €]0,1]. The point vxe + 3} ;(A°)(v" — vxe) is called the intersection
point associated with the convex combination A® € Aj and the vertex v* of P. For the polytope P of

Figure @ and a cut (6)Tz > 6}, Figure Bl gives an example of how to compute the intersection points for

a given convex combination \¢ = (%, %, 0,0,0).

It is not all convex combinations A* € Af and vertices & € V,° that lead to interesting intersection
points. Specifically, some intersection points may be convex combinations of other intersection points.
The following lemma shows that, in this sense, the only vectors A® € A} for which intersection points of
the type vxe + ﬁ;ﬂ)l()\c)(vk — vye) are interesting are those for which A\° is a unit vector.
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LeEMMA 3.1 Let (6")Tz > &} be a cut, where l € I, and let k € V. For every X¢ € AY, the intersection
point vye + ﬁ,’cyl()\c)(vk —vxe) 1S a convex combination of the intersection points v* + ﬁ,’cﬁl(el)(vk — ") for
1 € V%, where e’ denotes the unit vector in RIV| corresponding to i.

ProOF. Define C := conv({vF} U {vi}ievlc). Trivially we have vye + 5;”(/\(:)(019 —uye) € C. We will
show the vertices of the polytope {z € C : (6')T2z = 61} are given by the points v’ + ﬁ,’c7l(ei)(vk — ') for
i € V)¢ from which the result follows. If (6')Tv* = 8}, the result is trivial, so we assume (§)Tv* > §}.

Therefore suppose 7 is a vertex of {x € C : (6')Tz = 6}}. We may write 7 = A\gv* + ZZ—GVZC vt
where \g + Eievf Ai=1land \; > 0forallie {0}UVF Using \g = 1— Eievf \i, we can write
T ="+ EiEVLC i (v — v*). Multiplying with 6’ on both sides gives Eievlc nA—k = 1, where 1, =

(G Wi ite 7 = oF A (f — k) = Ni ok (v — oF) =
@OTF oy We can now write Z = " + EiEVLC (vt —of) = Eievlc T Zievlc (v —oF) =
Zievf n’\lk (V% + ni k(0" — 0F)). Since v* + n; (vF — 0F) = v 4 B () (VF — vP) for i € Ve, the result
follows. O

We next give a representation of {x € P : (§')Tz > 6!} in a higher dimensional space. Note that any
point that is a convex combination of the vertices of P can be written as a convex combination of a point
that satisfies (6')7x > 4, and the a point that is cut off by (6')7z > ). We may write P in the form

P={zeR":z=uvy+ Z ex(v —v,\c + 7, where €, 1 >0, A° € A] and Z er < 1}
kev; kev;
Consider the set obtained from P by fixing the convex combination A° € A}
PX)={zeR":z=uy + Z ex(v" —vze) + 7, where e, u > 0 and Z e, < 1}.

kevy kev;

Observe that the set P(\°) obtained from P(X°) by deleting the inequality 3 keve €k <1 from the above

description of P(\°) is a translate of a polyhedral cone. Furthermore, if A° is a unit vector, then P()\C) is
a relaxation of P(\°). Now consider the set P ()\°) obtained from P(\°) by including in the description
the multipliers on the vertices of P indexed by V;°, and the multipliers on the extreme rays of P

PHEO) = {(x, e, ) € RMFIVIIFIEL 5 — y\0 + Z ex(v® —vye) + 7, where e, u > 0 and Z er < 1}.
kevye kevy

The letter "H” is used to emphasize that P (\¢) is an image of P()\°) in a higher dimensional space. The
scalars o, ;(A°) and 3y, ,(\°) for (j, k) € E'xV}® give an alternative description of {z € P(\°) : (HTx > 6)}
in this higher dimensional space.

LEMMA 3.2 ([?, Lemma 2]). Let | € I be a non-negative cut for P. For any A° € A{, we have

{(z, e, ) € PE(XS) : 6T > 6} = {(x,e, ) € PE(N) Z + )

JEE Jl keVy

00 2 W

PROOF. We have (¢ /i) € PE()\°) and (6)Tz > 6§} <= 7 = vye + Ekevls e (V" — vre) + 1y,
where €70 > 0, 3pcp € < 1and ()72 > 6 = 1 = +Zkevs e(vf —uxe) + 1, € > 0,
Zkevs €r < 1land Ekevs e (0T (vF —vae )+ deE i (YT ) (65— (YT vye) <= (z,6,1) € PH(X°)
and Zkevﬁ fk/ﬁk,z( )"' ZJGEHJ/%J(/\C) > 1L 0

Observe that the intersection points vye + a;-J()\c)rj for j € E, and the intersection points vye +

;-)l(/\c)(vk —vye) for k € Vj*, satisfy the inequality Zkevﬁ W—i— djer & (/\C) > 1 with equality.

Also observe that the inequality Zkevﬁ B,E—’(“/\c)—i— ZjeE O/“—(J/\C) > 1 may be viewed as an intersection
k.l gt

cut [?]. Specifically, suppose C is a full-dimensional convex set satisfying : (i) vae is in the interior

of C, (ii) the intersection points vye + ag-yl()\c)rj for j € E are on the boundary of C' and (iii) the

intersection points vy + B, ;(A°)(vF — v)c) for k € V¥ are on the boundary of C. Then ZkeVLS oot
) k,l

Y icE W > 1 is the intersection cut obtained from C and the translated cone P(\°) defined above.
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vi v2

(a) vye and line segments from vy to (b) The set P(\) constructed from A€
the vertices satisfying (6\)Tx > 66

Figure 4: Constructing the set P(A°) from the convex combination vye

Based on the above result, we can now characterize the vertices of {x € P : (6')Tz > 6}}. Specifically
we show that every vertex of {z € P : (6')T2z > )} is either a vertex of P that satisfies (6')Tz > &}, or
an intersection point obtained from a vertex of P that violates (6")Tx > 4}

LEMMA 3.3 Letl € I be a non-negative cut for P. The vertices of {x € P : (6\)Tx > 84} are:
(i) vertices v of P with k € V}*,
(ii) intersection points v + 5;)l(ei)(vk — '), where i € V¢ and k € V¥, and

(iii) intersection points v' + o (e')r?, where i € Vi and j € E satisfies (HTri > 0.

PROOF. Let Z be a vertex of {z € P: (6')Tz > §}}. Also let \° € A¢ and (¢, i) be such that (z,¢, /i) €
PH()\°). Since P(\°) C P, we must have that 7 is a vertex of {x € P(X°) : (6')Tx > §}}. We first show

must be either: (a) a vertex v* of P with k € V;*, (b) an intersection point vye + ﬁ,’w(}\c)(vk — Uxe) with
k € V%, or (c) an intersection point vy 4 o ,(A°)r? with j € E satisfying (HTrd > 0.

Clearly, if 7 is a vertex of {x € P(X°) : (6Y)Tz > 6}} which is not a vertex of P, then Z satisfies
()T > 6} with equality. From (6')7z = (5l it follows from Lemma B2 that (z,€, i) € PH(\¢) and

Z +Zﬂkl/\c

JEE J% kevy

We can now write
T = Z nj(v)\c —i—Oé )\c ’f‘] Z Vi (Ve —i—ﬁkl( )( —’U)\c))—i- Zﬂj?‘j,
JEE\EO° kevy JeEC
where E0 := {j € E : ()Tri = 0}, n; == L (AC for j € E\ E?, v = .00 (AC for k € V? and
> jep\po i T 2kevs Yk = 1. Hence Z must be of one of the forms (a)-(c) above.

We now show (i)-(iii). If Z is a vertex v* of P, where k € V;*, we are done, so we may assume that either

T = vxe + B, (A°) (V% —vxe), where k € V¥, or T = vye +a;;(X°)r7, where j € E satisfies a; ;(\°) < 4-oc.
If T is of the form Z = wvye + o/ ;(A)r7, we may write T = vxe + o ;(A)17 = vyt W I =
) L (51T oyt ) L (51T yi . .

Zievf Ai (vt + % 7). Since o (e') = % and Z is a vertex of {x € P: (6')Tx > 6}}, this

implies A; = 1 for some i € V;°. Finally, if Z is of the form Z = vy + 3}, ;(A°) (v — vxc), then Lemma B.T]

shows that Z is of the form v’ 4 B (€ (W* — o) for some 7 € V and k € V7. O

Lemma [3.3 motivates the following notation for those intersection points vye + o ;(A)r/ and vye +
B/ (A) (V¥ — vae), where A° is a unit vector. This notation will be used heavily in the followmg sections.

NoTATION 3.1 Gwen (i,5) € Vi X E, define o ;, := o (e"), and given (i, k) € Vi* x V}*, define (] | :=

By, ;(e"), where e’ denotes the unit vector in RIVEL corresponding to v'.
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3.2 Dominance and equivalence between cuts Given two non-negative cuts (6)%z > 561 and
(62)Tx > (552 for P, where [1,l5 € I, it is not clear how to compare them in the space of the x variables.
By including in the description the multipliers on the extreme rays, and on the vertices that are satisfied
by the inequalities, such a comparison is possible. We assume all non-negative cuts considered in this
section all cut off exactly the same set of vertices V¢ C V of P. Our notion of dominance is the following.

DEFINITION 3.1 Let (6')Tz > 6b and (52)Tx > 65 be two non-negative cuts for P that cut off the same
set of vertices V¢ CV of P.

(i) (6")Tx > 6 dominates (6'2)7z > 652 on P iff {x € P: (6")Tx > 65} C{z e P: (6")Tx > o2},
(ii) If (6Y)Tx > 6} dominates (§2)Tx > 62 on P, and (6*)Tx > 63 dominates (6*)Tx > 6§ on P, we

say () Tx > 6 and (6%)Tx > 62 are equivalent on P.

We now show that an equivalent definition of dominance between a pair of non-negative cuts is possible,
which is based on intersection points.

LEMMA 3.4 Let (6")Tz > 6% and (62)T2 > 6% be non-negative cuts for P satisfying V¢ = Ve =Vg.
Then (6")Tz > 6 dominates (62)Tax > 6% on P if and only if

(i) The inequality —— < —*— holds for all (i,j) € V¢ x E.
03,0 .02

(The halfline {v' + ar? : a > 0} is intersected later by (61)Tx > 561 than (6'2)Tx > 562)
(i1) The inequality ﬁ’; < 21— holds for all (i,k) € V¢ x (V\ V°).
ik, lq

ik,lg

(The halfline {v' 4+ B(v* —v') : > 0} is intersected later by (6")Ta > 85 than (6')Tx > 62)

PROOF. Define Q! := {z € P: (6")Tz > 6)'} and Q2 := {x € P : (6")Tz > §2}. First suppose
(6")Tz > 6! dominates (62)Tz > 622 on P, i.e., suppose Q' C Q. We will verify that (i) and (ii)
are satisfied. First let (i,5) € V¢ x E be arbitrary. If o = +o0, clearly 0 = ~— < —L—. If

0,7, - — ol .
W0t 5,01 i,5,l2

a;j)ll < 400, then the intersection point § := v® + a;)lerj satisfies 7 € Q' C Q2. Hence we have
(62)Tg = (82)Tvi+ oe;)le((Sl?)Trj > 642, which implies < L

iadr T Yigls
Now let (i,k) € V¢ x (V \ V¢) be arbitrary. The intersection point z := v* + 61{7,@7[1(1)’“ — v?) satisfies
z € Q' C @2 and therefore (62)7z = (8'2)Tvi + 3] ., (6'2)T (v* —v?) > 62, which implies 7 — < 50—
R, ik, ik,lg
Conversely suppose (i) and (ii) are satisfied. Since V¢ = V)¢ = V¢, every vertex v* of P with k € V'\V*
is a vertex of both Q' and Q. Furthermore, (i) ensures that every vertex of Q' of the form v* +«f ;; 7
belongs to Q?, where (i,j) € V¢ x E and «] ;; < +oo. Finally, (ii) ensures every vertex of Q" of the
form v* + 3, ) (v* —v?) belongs to Q2, where (i, k) € V¢ x (V \ V¢). We therefore have that every vertex

of Q" belongs to @*. Since Q" and Q* have the same extreme rays {r/},_, we have Q" C Q. O

Let V¢ C V be arbitrary, and let I/ C I index a finite set of non-negative cuts from the family
{(6")"x > 64} ,c;. We assume V¢ = V¢ for all | € I/. Consider the following polyhedron X (I7)

X1y :={zeP:("YTx>6 foralllcI'}.

Given a non-negative cut (6* )Tz > 64 with I* € I'\ I/ which is valid for X (I/), there might not exist
an inequality in the family {(6")"z > 6}},c;; which dominates (6")T2 > 65 on X(I7). However, even
though such an inequality does not exist, it may be possible to construct a non-negative combination of
the inequalities {(6')72 > 6%}, ;s which dominates (6' )Tz > 65" on X (I7). Indeed, the following lemma
shows that, if (6! )Tz > 6} is valid for X (I7), then there exists an inequality 67z > &y, which is a convex
combination of the inequalities {(6")"x > 84}, ;s, and which dominates (6T > 6 on X(I7).

LEMMA 3.5 (This lemma is a generalization of [?, Lemma 3])
Assume X (IF) # 0. Let I* € I\ I7 be a non-negative cut for P satisfying V;$ = V¢ =V for all 1 € I7.
Then (6" )Tx > 56* is valid for X (I') iff there exists a non-negative cut 67z > dq for P that satisfies
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(i) 6Tz > 6y is a convex combination of the inequalities {(6')Tx > 56}l61f, and
(i) 6Tx > 8y dominates (6" )T > 64 on P.
PrOOF. We only need to show one direction. Suppose (6" )72 > 6} is valid for X (I/). Consider the

linear program (LP) given by min{(6' )Tz : z € X(I/)}. The assumption X (I7) # @) and the validity of
(") > 6 for X (If) implies that (LP) is feasible and bounded. We can formulate (LP) as follows.

min (6')7x
r= ) N0+ > Y a @ =)+ Y > i, ()
icVe i€Ve keV\Ve icVe jeE
(5Z)Tx > 56 for alll € I, (wy)
Y e < Aforallie Ve, (2i)
keV\Ve
doa=1, (uo)
eVe

e, ut, A >0forall i € VC.

From the dual of (LP), we obtain a € R", @ € R'If‘, z e RVl and @p € R that satisfy

(i) a0+ Y wd > oY,
lelf

(i) - - ()

(i) a’o' + Y w (8" v+ z + g < 0, forallie Ve,  (\)
lelf

(iv) (v® —v?) + Z w (HT (W =) -z < 0, for all (i,k) € V¢ x (V\V°), (eh)

lelf

(v) ard 4+ w8 < 0, forallje E,  (u;)
lelf

(vi) @w>0andz>0.

Let 6 := Zlelf @6t and &y = Zlelf (561171. Since 672 > &y is a non-negative combination of the

inequalities {(0')Tx > 64},c;s, 6T@ > 6o is valid for X (I7). Furthermore, 67z > & is a non-negative
combination of non-negative cuts for P, and therefore §72 > 4 is also a non-negative cut for P. Observe
that the vertices of P that are cut of 6"z > &y are indexed by V. Given (i, ) € V° x E, let o ;(8, o)

denote the value of @ > 0 for which v’ + ar/ is on the hyperplane 6"z = 8§y (a} ;(6,80) = 400 if no such
point exists). Finally, given (i,k) € V¢ x (V \ V°), let 3 ;(d,d0) denote the value of 8 > 0 for which
v’ + B(v* —v?) is on the hyperplane §72 = d;.

We will show 67z > §; dominates (6" )72 > 65 on P. We show this by showing that the conditions
of Lemma [34] are satisfied. The system (i)-(vi) above implies the following inequalities.

@) 0+ 2 0f

(b) — (& )v+(5Tv +ZzZi+uo <0forallieVe.

(¢) —(")T(v* — ) + 6T (v — ') — 2 <0 for all (i, k) € V¢ x (V\ V°).
)

(d) —(& )TJ+5TTJ<OfOI‘aH]€E
We first show — (5 5y < —1— for all (i,j) € V¢ x E. Therefore let (i,j) € V¢ x E. If G 5 . = F09,
1,7 ’ i,7,0%

then (8 )Tr7 = 0, which by (d) implies that also 6777 = 0, and therefore 0 = ai,(é 5y = ars
i, 7 1,7,0%
We can therefore assume a” ;+ < +o0. Multiplying the inequality of (d) corresponding to j with

a%,j,lj and add{ng the result to the inequality of (b) corresponding to i gives — (0 )T (v* + 0453 l*rj)—l—
S (" + ok rT) < —tig — 7 < o - 8y . Since (8')7 (v' + a—;l*rj) = 64", we get 6T (v' + a’jz* rl) <
do. Now, of (5 do) is the smallest value of o such that 67 (v? + ar?) = d. Since 67 (v* + o l*rj) <
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do, this implies o 5(d,0) >
satisfied.

We now show ﬁ;yk(lé 5 S 7 i - for all (i,k) € Ve x (V\V®). Let (i,k) € V¢ x (V x \V¢). Multiplying
the inequality of (c) corresponding to (i, k) Wlth B - and adding the result to the inequality of (b)
corresponding to i gives — (8" )7 (vi+ B! R (W =)+ 6T (v B R L (VF =) < —ag — 7 < 6o — 6
Since (6')T (vi+ B ke (v —v?)) = 64", this implies 67 (v° + 6 ke (vk —v )) < do. We have that 3; ; (4, o)
is the smallest value of § s.t. 67 (v! + B(vF —v7)) = &y, and since 67 (v'+ : ; - (v* —v?) < 8o, this implies
B3 1(6,00) = B f, .- 1t follows that ﬁgY,—c(léﬁo) < 5%;,1*'

and therefore 67z > § dominates (6 )Tz > 64 on P.

53 ——— Hence condition (i) of Lemma [3.4] is

1
and therefore 050 < -

1
EE

Hence condition (ii) of Lemma [B:4] is also satisfied,

To finish the proof, we argue that we can choose 67z > dy to be a convex combination of the inequalities
{(0"Y'x > 64} ,c;s- Observe that if 3, ;@ # 0, then the inequality (6')7z > &) defined by (', 65) :=
m(é, do) is a convex combination of the inequalities {(6')7z > §4},c;s and (8')Tx > 6} is equivalent
to 07z > 0y on P. We therefore only have to show Y, ;s w; # 0. If 3, ,; w; = 0, then (i)-(iii) give
g > 6y and —(6') v + z; + 1p < 0 for all i € V¢, which implies (6! )Tv* > 6} for all i € V¢, and this
contradicts that (6" )Tz > 6} is a cut for P with V¢ = V. O

3.3 A sufficient condition for polyhedrality We now consider the addition of an infinite family
of non-negative cuts to the polyhedron P. Specifically, consider the convex set

X:={zxeP: ")z >6 forlel},

where I now can be an infinite index set. The goal in this section is to provide a sufficient condition for
X to be a polyhedron. For this purpose we can assume V,° = V¢ for all [ € I, i.e., we can assume all cuts
cut off the same vertices. Indeed, if the cuts {(6')"z > 64},.; do not cut off the same of vertices, then
define
I°S)={lel:V=S5}
for every S C V,and let §:={S CV : I¢(S) # 0}. We can then write
X =Nges{zr € P: (8")Tx > 8} for all | € S}

Since S is finite, we have that X is a polyhedron if and only if X is a polyhedron under the assumption
that V*=V<¢foralll € I.

We will show that X is a polyhedron under the following assumption.

ASSUMPTION 3.1

(i) For all (i,j) € V¢ x E and o* > 0, the set {c] ;, > «* : | € I} is finite
(There is only a finite number of intersection points between the cuts {(0YYT'x > 6b},c; and the
halfline {v* + ar? : a > a*}).

1) For all (i,k) € Ve x V\ V€ and B8* €]0,1], the set {3, , > B*: 1 € I} is finite

(i) ikl
(There is only a finite number of intersection points between the cuts {(0"Y'z = 6b},c; and the
line segment {v' + B(vF —v?) : B* < B < 1}).

The main theorem is the following.

THEOREM 3.1 Suppose {(6")'x > 64},c; is a family of non-negative cuts for P that satisfies Assumption
[31, and suppose V¢ =V for alll € I. Then X is a polyhedron.

The idea of the proof is based on counting the number of intersection points that are shared by all
cuts in a family I’ C T of cuts. This number is given by s(I’) := [SIP®(I")| 4 |SIP”(I")|, where the sets
SIP®(I') and SIPY(I") are defined by

SIPE(I') := {(i,7) € VE X E: o j;, = oy, forall Iy, 1y € I'}, and
SIPY(I') = {(i,k) € VE x (V\ V) : B, = Blpy, for all Iyl € I'}.
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v4

v4

| T
(8')x 235, (89)x 283

v2+B;(v3— v2) R v2+B5 (V3 —v2) VS

(5Y'x 257

; f Vit (v3-v1) V2B, (VA= v2) 7
Vv \% \%
) (8% 25 ~
v2+ B, (Vi- v2) IP() = {(1.3.8, 5 ). (LAB 4)). SIPY(N={@5)} for I'={12}
1= {a} B;:B’z,s,q BL:B’Z,A,q B;:BLs,q (2131SL3|):(274:BZ'4V|) }
a) Determining the values (33,3 an Determining the set IP or a cut (c) Two cuts sharing intersection point
h 1 B3,8; and (b h 1) f h
8% from a set I/ = {q} (YT > 6k on the line between v' and v°

Figure 5: The sets SIPY(I") and IP" (1)

Figure[Bl(c) gives an example of the set SIPY(I’) for a polytope P, where I’ consists of two cuts. Since
P is a polytope, we have SIP®(I') = () for any set I’. Both cuts (6')Tz > §.' and (6")Tx > 5. intersect
the line segment between v! and v® at the same point, and therefore (1,5) € SIPY(I’). No other line
segment in [Blc) is intersected by both (6')Tz > 65 and (64)Tx > 64 at the same point, and therefore
SIPY(I') = {(1,5)}.

Clearly 0 < s(I') < [V X E|+|Vex (V\V)]| for all I’ C I. Also, if s(I') = |V x E|+|Vex (V\V),
then all cuts indexed by I’ share all intersection points with the halflines {v® + ar/ : @ > 0} and
{vi + B* —v) : B >0} for alli € V¢, j € E and k € V \ V°. This implies that all cuts indexed
by I’ are equivalent on P (Lemma BA4l). Therefore, if s(I') = |V x E| 4+ |V x (V' \ V°)|, then the set
{x € P:(8")Tx >4 for all | € I'} is a polyhedron that can be described with exactly one cut from I’.

We will partition I into a number of subsets:
St 8% S C I US_ 8™ =T and S™ N S™ = () for all my # mo

such that for every m € {1,2,...,ns}, either X(S™) := {x € P : (0")Tz > & foralll € S™} is a
polyhedron, or s(S™) > s(I) (the letters “ns” are an abbreviation for “number of subsets”). Figure
illustrates the construction. The fact that {S™}°_, is a partitioning of I implies

X = NE_, X (S™).

Therefore X is a polyhedron if X (S™) is a polyhedron for all m € {1,2,...,ns}. Givenm € {1,2,...,ns},
if X(S™) is not a polyhedron, then s(S™) > s(I). Hence, recursively applying this construction to the
nodes in Figure Bl will create a tree of subcases. The fact that s(T") is bounded from above for all T' C I,
and the fact that s(T') increases strictly with the depth of the tree, will ensure that the tree is bounded in
size. Therefore, if we can construct a partitioning {S™},°_, of I such that for every m € {1,2,...,ns},
either X (S™) is a polyhedron, or s(S™) > s(I), then the proof of Theorem [B1]is complete.

We now construct the partitioning {S™},°_, of I. Choose an arbitrary finite and non-empty subset
I C I. The partitioning of I is based on the following positive numbers {aj} ;. and {Bz}ﬁeV\ch whilch
we use to create halflines of the form {v’ +ar’ : @ > a}}, and line segments of the form {v* + Bvk — o) :
Bp<B<lpforallie Ve keV\Veandj€ E. The numbers {a]}, p and {8}y e are defined as
follows.

o :=min{a; ;i€ Vandl € I’} for j € E, and

B =min{B,,:i€Vandl e I/} for ke V\ V"

Given j € E, a;f is determined from a vertex 7 € V¢ and a cut [ € I/ for which the intersection point
vz—i—a% ; l—rj is as close to v" as possible. Similarly, given k € VA\Ve, 5 is determined from a vertex i € V°
and a cut [ € I for which the intersection point Vit ﬁg'. % l—(vE — vz) is as close to v' as possible. Figure

Bl(a) illustrates the computation of the numbers {ﬁz}ke\/\vc for a polytope with 5 vertices, V¢ = {1, 2},
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For allS™ EitherX(S™) is a polyhedron, or
s@S") > s(l)

Figure 6: Partitioning the set I into the subsets {S™}°_,

and a chosen subset I/ C I with one inequality I7 = {g}. In this example, the numbers 33, 3; and 3:
are determined by the intersection points v? 4 35 3 ,(v3 —v?), v* + By 4 (v —v?) and v' + 3] 5 ,(v° —0")

respectively.

Assumption BTl implies that the cuts {(6')"z > 65}, only intersect the halflines {v’ + ar’ : @ > a3}
and the line segments {v' + B(v* — v®) : 87 < B < 1} at a finite number of points. We will use this fact
to define an equivalence relation on the cuts {(6')"z > 64 },;. Given a cut (6')Tz > 67, let

IP(l) == {(i, 7,0 ;) € VX EXRy 1 ;; > aj} and
IPY(1) := { (i, k, Bi ,) € VEX (VA\VE) xRy 2 B4, > i}

denote the intersection points between (6")"x > 6} and the halflines {v’+ar? : o > o} for (i, j) € VEX E,
and the line segments {v’ + B(v* —v?) : B < B < 1} for (i, k) € V¢ x (V' \ VC) respectively. Observe that
IP¢(1) = 0 whenever o] ;;, < aj for all (i,j) € V¢ x FE, and that IP(l) = 0 whenever j3; , , < gy for all
(1,k) e Ve x (V\ V).

Figure Bi(b) gives an example of the set IP”(l) for a cut (6')Tx > 6. Since P is a polytope in this
example, we necessarily have IP¢(l) = (). The numbers 35, 85 and 35 were computed in[B(a). The numbers
617511 and 651571 satisfy 617511 < (% and 651571 < (%, and therefore (1,5,511571), (2,5,551571) ¢ IP(1).

We can use the sets IP¢(1) and IP(1) for I € I to define the following equivalence relation on the cuts
{0z > 56}161'
For all l1,lo € I : Iy =1y < IP"(l1) =IP"(l2) and IP¢(l1) = IP®(l2).

Observe that Assumption B.Ilimplies that there is only a finite number of equivalence classes correspond-
ing to this equivalence relation. Let S',52,...,8™ C I denote the sets of inequalities corresponding to
each equivalence class, where ns denotes the number of equivalence classes. Clearly the sets {S™}°_,
partition I. We first make some observations on each equivalence class m € {1,2,...,ns}.

(a) For every (i,7) € V¢ x E, if there exists [ € S™ such that o] ;;, > «aj, then (i, j) € SIP*(S™):
Suppose | € S™ satisfies a;jl— > a for some (i,j) € V¢ x E. This implies (3, j, a;j ;) € IPE(D).
By definition of the equivalence class S™, this implies (i, 7, a;j ;) € IP€(1) for all I € S™, and

therefore o ;, = a;)ﬂ for all I € S™. Hence (i,5) € SIP®(S™).

(b) Forevery (i, k) € VCx(V\V¢), if there exists | € S™ such that 3], , > B, then (i, k) € SIP"(S™):
The argument is identical to the argument for (a).

() TE S™ N IF # 0, then STP?(S™) = V¢ x E and SIPY(§™) = Ve x (V' \ V°):
Suppose [ € S™ N If. This implies o = min{aj;; 1 i € VCandl € I} < a;jl— for all

(i,7) € V¢ x E. Since a;j)l— > o for all (i,j) € V¢ x E, (1) shows that STP°(S™) = Ve x E.

With a similar argument, (b) shows that SIPY(S™) =V x (V \ V°).

We now complete the proof of Theorem B.Il Observation (c) implies we can assume S™ N I7 = ().
To finish the proof, we show that either s(S™) > s(I), or all inequalities in S™ are dominated by an
inequality in I7. Clearly SIP¢(I) C SIP¢(S™) and SIP”(I) C SIP”(S™), which implies s(S™) > s(I).
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Suppose s(S™) = s(I), i.e., suppose SIP¢(I) = SIP¢(S™) and SIPY(I) = SIP”(S™). Also let [ € I/
be arbitrary. We will show o} ;; < o] ; for all (i,5,1) € V°x Ex 8™ and §,, < B, for all
(i,k,1) e Ve x (V\V€) x S™. This shows [ dominates all inequalities in S™ and completes the proof of
Theorem 3.1l The argument that shows 3; ; ; < B:.)k)l— for all (i, k,1) € VE x (V\ V) x 8™ is the same as
the argument that shows a; ;; < a;j)l— for all (4,7,1) € V¢ x Ex S™. We therefore only show a; ;, < a;)ﬂ
for all (4,7,1) € V¢ x E x S™. Let (/,j',1') € V¢ x E x §™ be arbitrary. There are two cases.

(i) (',5") ¢ SIP?(S™) : Then (a) implies o}, 5 ;, < o, =min{e] ;i€ Veand l € I} < a;,)j,J—.

(i) (¢',5") € SIP°(S™) : Since SIP°(S™) = SIP®(I), this implies aj, ;/ , = ]

i

Hence (69)Tz > (55 dominates (6")Tx > 6} for all [ € S™, and the proof is complete.

4. The structure of polyhedral relaxations obtained from mixed integer split polyhedra
We now describe the polyhedral structure of the polyhedron R(L, P) for a given mixed integer split
polyhedron L. Throughout this section, L denotes an arbitrary mixed integer split polyhedron. Also,
V(L) :={i € V :v" € int(L)} denotes the vertices of P in the interior of L and V°'(L) := V \ Vi8(L)
denotes the vertices of P that are not in the interior of L. We assume V®(L) # (), since otherwise
R(L,P) = P (Lemma [ZH). The set A := {A € RIVI: A > 0and }_, ., A\; = 1} is used to form convex
combinations of the vertices of P, and t.he set A(L) := {\ € A : 2icvin(ry Ai = 1} is used to form
convex combinations of the vertices in V'*(L).

4.1 Intersection points Now consider possible intersection points between a halfline of the form
{vyim + ar? 1 @ > 0} and the boundary of L, where A € A"®(L) and j € E. Given A" € A™®(L) and
j € E, define:

a; (L, \) := sup{a : vym + arf € L}. (9)

The number (L, \*) > 0 determines the closest point vyin+a; (L, A®)r? (if any) to vyim on the halfline
{vam +ard : a > 0} which is not in the interior of L. Observe that if {vym +ar? : @ > 0} C int(L), then
a;j(L, ") = +00. When o, (L, \I") < +o00, the point vym+ a; (L, X*)rd is called an intersection point.

The value a; (L, A\™) is a function of A". This function has the following important property. Given
any convex set C' C R™ ™1 it is well known (see Rockafellar [?]) that the function f:R"™ — R defined by

f(@) == sup{p: (z,p) € C}
is a concave function. Now, given any A* € A™(L) and j € E, we may write
a;(L, A") = sup{a : (A", a) € P(L)},

where P(L) is the convex polyhedron P(L) := {(A®,a) € RV . 4y 4+ ard € L}. We therefore
have that the function a; (L, A'™™) has the following property.

OBSERVATION 4.1 Let L be a mized integer split polyhedron satisfying V(L) # 0, and let j € E.
The function a;(L,\™) is concave in A, i.e., for every \',\? € A™(L) and p € [0,1], we have that
aj (L, pAt + (1 — p)A?) > poy (LAY + (1 — p)aj (L, A2).

Given a convex combination A\ € AM(L), and a vertex k € V°U(L), the line between vym and v¥
intersects the boundary of L. For k € V°Uu(L) and A" € A®(L), define

Br(L, ) := sup{f : vy + B(v* —vym) € L}. (10)

The number Gy (L, \™) denotes the value of 3 for which the point vyin +B3(v* —vyin) is on the boundary of
L. The point vyin + 3(vF — vy ) is also called an intersection point, and we observe that 8y (L, Ai") €]0, 1].

Some intersection points are less interesting than others in the sense that some intersection points can
be written as a convex combinations of other points in R(L, P). Such intersection points can therefore
not be vertices of R(L,P). The following lemma shows that the only intersection points of the form
Vyint Bi(L, A1) (0F — vyin) with k& € VOU(L) and A € A'™(L) which can not be written as a convex
combination of other points in R(L, P) must be such that A\ is a unit vector.
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(a) The polytope P and the split poly- (b) Intersection points from v
hedron L from Figure

(c) Intersection points from v

Figure 7: Determining the intersection points from a linear relaxation P and a split polyhedron L

LEMMA 4.1 Let L be a mized integer split polyhedron satisfying V"™(L) # 0, and let k € V°“(L). For
every \™ € A™(L), the intersection point vym-+ Br(L, \™)(vF — vym) is a convex combination of v* and
the intersection points v' + B (L, e")(vF —v?) fori € VI(L).

PROOF. Define C' := conv({v’ + By (L, ") (v* —v')};c (). We first show that the halfline given by
{vain +B(* —vyin) : B > 0} intersects C for some 3* > 0. We have that {vym +8(vF—vym) : 3> 0INC # ()
if and only if the following LP is feasible.

min 0
Z i (v + Br(L, e)(v* —v")) + B(vym — vF) = vyin, (11)
ieVin(L)
Soomi=1, (12)
ievin(L)
n,B = 0. (13)

The dual of this LP is given by
max 67 vyin — g

6T (vym —vF) <0, (14)

ST (v 4 Br(L, ") (vF — v')) — 6o < 0, for all i € VI"(L). (15)
Let (0,680) be a solution to (I4)-(I5). Suppose, for a contradiction, that 6T vz — 80 > 0. Adding (I4)
to the inequality of (I5) corresponding to i € V(L) gives 6" vym— do+ (1 — Bi(L,€'))0" (v* — v*) < 0.
Since by assumption §7vym — dp > 0, this implies 67 (v — v*) < 0. Hence we have 07 (v — v¥) < 0 for
all i € V"(L). Now, for all i € VI*(L), inequality (IB) gives 6o — 07 v" > (L, e')6T (v* — vf). Since
67 (v* — o) > 0 for all i € VI*(L), this implies 6o — 67v* > 0 for all i € V*(L). Multiplying each of
the inequalities 6 — 67v" > 0 for i € V(L) with A\I* and adding the resulting inequalities together then
gives 69 — T vy > 0. This contradicts our initial assumption that d7vym — dg > 0.

Therefore there exists 3* > 0 s.t. vy +3(vF—vyin) € C. Observe that, since v’ + 3y (L, e*) (vF —v?) € L
for all i € VI*(L), we have vy + 3*(vF —vyim) € L. If vyin+ B*(vF —vyin) € int(L), then By (L, ") > 5%,
and therefore vyin+ Bk (L, AXit)(vF — vyin) € conv(C U {v*}). If vyin+ B*(v* — vyin) is on the boundary of
L, then By (L, \i*) = 8*, which implies vyin + B (L, A*) (0% — vyin) € conv(C U {v*}). O

Figure [7 gives all the intersection points which can potentially be vertices of R(L, P) for the example
of Figure

4.2 The intersection cut In [?], Balas considered a mixed integer set defined from the translate of a
polyhedral cone, and a mixed integer split polyhedron was used to derive a valid inequality the intersection
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cut. We now consider a subset P(A\*) of P defined from a fixed convex combination A\ € A®®(L) of the
vertices in the interior of L, and we show that the intersection cut gives a complete description of the set
R(L, P(A™)) in a higher dimensional space. Specifically, given any fixed convex combination A" € A™(L),
we have the following subset P(AI") of P

POA™) = {z €R" : 2 = vy + Z (v —vym) + Zujrj,e,u >0 and Z er < 1}.
keVvout(L) JEE keVout

The corresponding image P (A*) of P(A") in (x, €, 1) space is given by

PHOD) = {(x, 6, 1) : & = vyin + Z er (V" —vym) + Zu] ,€ >0 and Z er < 1}
keveut(L) JEE keVout

As in Sect. Bl we use the superscript "H” to emphasize that PH(\") is an image of P(A") in a
higher dimensional space. The set P(A") and the mixed integer split polyhedron L gives a relaxation
R(L, P(A™)) of the set of mixed integer points in P(\?)

R(L, P(\™)) = conv(P(A™) \ int(L)).

The lifted version RY(L, P(A\™)) of R(L,P(A™)) in (x,¢,pu) space is then defined to be the set
RH(L, P(A)) := conv({(z,e,p) € PE(N") : 2 ¢ int(L)}). Given A™ € A™(L), and the correspond-
ing intersection points, Balas [?] derived the intersection cut

Hj €k
Yot 2 =1 (16)
jep AT T Br(L, ")
and showed that the intersection cut is valid for RH (L, P(A'")). We now show that, in fact, the intersection
cut gives a complete description of R (L, P(\I)).
THEOREM 4.1 Let L be a mized integer split polyhedron satisfying V™(L) # 0, and let A\ € A™(L).

inyy _ iny Hj
RY(L, P(\™)) = {(,¢,u) € PH(A™) - ZWJF > = (Lk/\m) >1}.

JEE &y keVout(L)
ProOF. Since the theorem concerns a fixed mixed integer split polyhedron L and a fixed convex
combination A" € Ai*(L), we abbreviate aj := (L, \I), 8, := 3;(L, \I*) and Vout := Vout(L).
Since (I8)) is valid for R (L, P(A")), we have

RH(L, PO™)) C {(2,¢, 1) € PH(ND) Zﬁ+ 3 6—’; >1).

JEE A pevou

Conversely suppose (7, ¢, i) € PH(A®) and dier Z—;—I— Y keyout % > 1. We will show that (z,€, 1) €
RH(L, P(A")). Define E* := {j € E : a; = +00}. We distinguish three cases.

(a) First suppose >, p Z—j—i— > kevout Z—’; = 1. We can write

T Vyin + B (VF — vain) i Vyin + ayr? rd
_ k j _
c Sk [a¥] 4
=% 3 Bre + > 0 )+ > w0
7 kevout 0 JEE\E> 7 aje’ JEE> e’

Since vyin+ a;jrd ¢ int(L) for j € E\ B>, vym+ Br(vF —vin) ¢ int(L) for k € VOUt and (7,0, e7)
is in the recession cone of R (L, P()\i“)) for j € E>, we have (z,¢€, i) € RE (L, P(\I")).

(b) Next suppose E]EE o + D kevou & &> Tand 0 < )4 cpou & < 1. We will construct two pomts
(zt, el ut), (22,62, 1 ) € RY(L,P(A™)) such that (z,€ f1) is on the line between (z',e', p')
and (22,€2, u?). Let 5 €]0,1[ be such that (z', €', u') := §(vyin,0,0)+ (1 — 8)(Z,€, i) satisfies

1 .
deE at Y kevout & 7 = 1. It follows from (a) that (zt, el ut) € RE(L, P(A")). Consider the
halfline {vyin + a(z! — vyn) : @ > 0}. For ay = 1, we have vyin + a1 (2! — vyn) = 2!, and for

oz = 115, we have vy 4+ az(2! — vym) = Z. Consider the point 22 1= vyin +ag2(zh — vym),
1
where a2 DS Since 0 < D, cyon e <1-— 5, we have a1 < az < ay2 < +oo.
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Hence Z is on the line between ' and x2. Defining €2 := a,2¢! and p? := a,op', we may
write 2% = Uyt D peyou € (V7 — vym)+ > jer iir’. Observe that 7, cyow € = 1. Hence
we can write 22 = 3, (v €20+ Y jeE 317, where Y7, cyou € = 1. Since (r7,0,¢’) is in the
recession cone of RH (L, P(A\")) for j € E, and since (v*,e*,0) € RE(L, P(AIY)) for k € VOU'| we
have (22, €2, u?) € RH(L, P(A'")). Finally, since (Z,¢, i) is on the line between (z!,€!, u!) and
(22, €2, u?), we have (z,€, 1) € RHE(L, P(\™)).

(c) Finally suppose > ) cyou € =0 and > p 5—j > 1. Asin (b), let 6 €]0,1[ be s.t. (2!, el, put) =
= = 1 .
6(vain, 0,0)+ (1-0)(2,0, 1) satisfies >, g—j = 1. From (a) we have (z!, ¢!, ut) € RE(L, P(\™)),
and (Z,0,) = (vyin,0,0)+ ﬁ(xl — vy, el ut). Since (2!,0,u') € RH(L, P(\)) satisfies

1
S5 =1, (a) shows

JEE oy
x! il Unin + a7/ Tl
_ J 1
0o |= 0 + > | 0
ut JEE\E> I ajel jEE> el
Using (z,0, 1) = (vxin, 0,0)4 155 (2" — v, €', '), we can now write
z 1 [ Uxin + 1! 15 77 1 r’
0 | = L 0 + —— | 0 |+ ——1 0
— . Z Q; i . Z 1-9 7 Z 1-9 j
i JEE\E® aje JEE\E> e jEE> e

. . . 1
Since (vyin + a;17,0,a5¢7) € RE(L, P(A")) for j € E\ E®, Yier Z—j = 1 and the vectors

(r7,0,€%) for j € E are the extreme rays of R¥ (L, P(A\™)), this completes the proof.

O

4.3 The vertices of R(L,P) The proof of Theorem [I1] allows us to characterize the vertices of
R(L, P). Observe that in the proof of Theorem [1l every point in R(L, P(A")) is expressed in terms of
intersection points, vertices of P that are not in the interior of L and the extreme rays r/ of R(L, P(AI"))
for j € E. Hence the proof of Theorem [L.T] provides a characterization of the vertices of R(L, P(\I)).

COROLLARY 4.1 Let L be a mized integer split polyhedron satisfying V(L) # 0, and let \'* € A™(L).
Define E*°(A") := {j € E : a;(L,\"") = +00}. A vertex of R(L, P(A\™)) is either

(i) A vertex v¥ of P, where k € V°U(L),
(i) An intersection point vym+ Br(L, \")(vF — vyim), where k € V°U(L), or
(iii) An intersection point vym + aj(L, \X™)rd, where j € E '\ E*°(A\™).
By using the properties of o (L, A*) and B (L, A") for A" € A""(L) given in Lemma L] and Lemma
1] we can use Corollary LTl to characterize the vertices of R(L, P). In the following, for simplicity let

ai;(L) = a;(L,e*) and B; (L) := Br(L,e?) for i € VI*(L), j € E and k € V°U"(L). Also let E><(L) :=
{j € E:a; (L) =+occ for some i € VI?(L)} denote those extreme rays of P that are also rays of L.

LEMMA 4.2 Let L be a mized integer split polyhedron satisfying V(L) # 0. Every vertex of R(L, P) is
of one of the following the forms.

(i) A vertex v¥ of P, where k € V°U(L),
(i) An intersection point v+ B; x(L)(v* — v?), where i € V(L) and k € V°(L), or
(i4i) An intersection point v' + a; j(L)r?, where i € V(L) and j € E'\ E*(L).
PROOF. Let T € R(L,P) be a vertex of R(L, P), and let (A™ € [i) € RIVIHIEI satisfy 7 = v+
D keveu(r) & (v — vsin )+ Yjepgr?, €20, i >0, At € Ain(L) and > keveu(r) & < 1. Now, we have

T € R(L, P(\")), and since R(L, P(A")) C R(L, P), we must have that Z is a vertex of R(L, P(\*)). Tt
follows that Z is of one of the forms Corollary 1 (i)-(iii). If Z is of the form & = v* for some k € V°U(L),
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we are done. Furthermore, if Z = v+ Br(L, A)(

(V% — Vi) for some k € VOU'(L), then Lemma A1l
shows that either Z = v*, or = v* + 35, (L)(v* — v") for some i € V°U(L).

Finally consider the case when Z is of the form Z = vy + a5(L, Amyrd for some j € E\ E® (L). Since
o;(L, ™) is concave in A, we have aj(L,A™) > ZiEV‘“(L) Aoy 5(L). Let & > 0 satisfy aj(L, A") =
Yievin(L) /_\iingoziJ(L) + ). We can now W}‘ite T in the form = = v+ o5(L, Ay i = D ievin(L) AP (v; +
(a; (L) 4 8)r?). Since v; + (e 5(L) + 6)r7 ¢ int(L) for all s € V™*(L), and Z is a vertex of R(L, P), we

must have § = 0 and A =1 for some i € V*(L). O

An important consequence of Lemma[4.2]is the following dominance result. For two mixed integer split
polyhedra L' and L2, if VI*(L') = V*(L?), and if all the halflines {v' +ar’ : a > 0} and {v'+ B(v* —v?)}
for i € VI"(LY) = VIn(L?), j € E and k € V(L) = V°u(L?) all intersect the boundary of L' later
than the boundary of L2, then R(L!, P) C R(L?, P). In other words, the relaxation of P; obtained from
L' is stronger than the relaxation of P; obtained from L2.

COROLLARY 4.2 Let L' and L? be mized integer split polyhedra satisfying V" := V(L) = V**(L?). If
(i) a;j(L') > a; ;(L?) for alli € V™ and j € E, and
(i1) Bix(L') > Bixk(L?) for alli € V™ and k € V\ V™,

then R(L', P) C R(L?, P), and we say L' dominates L? on P. Furthermore, if L' dominates L*> on P,
and L? dominates L' on P, then R(L', P) = R(L?, P), and we say L' and L? are equivalent on P.

Another consequence of Lemma is that it is possible to write R(L, P) as the convex hull of the
union of the polyhedra R(L, P(e%)) for i € VI*(L).

COROLLARY 4.3 Let L be a mized integer split polyhedron satisfying V(L) # 0. We have
R(L, P) = conv(U;evu(ryR(L, P(e")).

ProOF. Lemma shows that every vertex of R(L, P) is a vertex of a set R(L, P(e')) for some
i € VI8(L). Furthermore, the union of the vertices of the sets R(L, P(e?)) over all i € V(L) is exactly
the set of vertices of R(L, P). Since the extreme rays of R(L, P) and the sets R(L, P(e?)) for i € VIn(L)
are the same, namely the vectors {r’} jep» the result follows. O

Figure Blillustrates Corollary .3 on the example of Figure[2 The sets P(e') and P(e?) corresponding
to the two vertices v! and v? of P that are in the interior of L are shown in Figure Bl(b) and Figure
Bl(c). Observe that the sets R(L, P(e')) and R(L, P(e?)) are both described by adding exactly one cut
to P(e') and P(e?) respectively. Corollary L3 then shows that R(L, P) can be obtained by taking the
convex hull of the union of the sets R(L, P(e')) and R(L, P(e?)).

4.4 Polyhedrality of split closures We now derive a result for split closures of the polyhedron P.
Let £ denote an arbitrary family of mixed integer split polyhedra. We call the set CI(P, £) = N,z R(L, P)
a split closure of P. We will provide a sufficient condition for CI(P, £) to be a polyhedron. This result
is then used to show that a bound on the max-facet-width on the mixed integer split polyhedra in £
satisfies this sufficient condition. The main result in this section is the following.

THEOREM 4.2 Let L be an arbitrary family of mized integer split polyhedra that all have the same vertices
of P in their interior, i.e., we have V" := V™"(LY) = V(L?) for all L', L? € L. If
(i) For all (i,5) € V" x E and o* > 0, the set {a; ;(L) > o* : L € L} is finite
(There is only a finite number of intersection points between the the halfline {vi+ari :a>a*}
and the boundaries of the mized integer split polyhedra L € L),

(i) For all (i,k) € V" x (V\ V™) and 3* €]0,1], the set {B; (L) > 3* : L € L} is finite
(There is only a finite number of intersection points between the line segment {v* + B(v* — %) :
B* < B <1} and the boundaries of the mixed integer split polyhedra L € L),

then CI(P, L) is a polyhedron.
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v4

(a) The polytope P and the split poly- (b) The set P(e!) constructed from v!' (c¢) The set P(e?) constructed from v?
hedron L from Figure

Figure 8: Constructing R(L, P) as the convex hull of the union of polyhedra

Our proof of Theorem 4.2 is essentially the same as the proof of Theorem[3.Il We therefore only sketch
the proof. Similar to the proof of Theorem B.1] the proof is based on counting the number of intersection
points shared by all mixed integer split polyhedra in a family £ C £ of mixed integer split polyhedra.
Define s(L£’) := |SIP*(L")|+|SIPY(L')|, where SIP®(L’) and SIP"(L’) are given by

STP(L') == {(i,§) € V® x E : o j(L*) = v ;(L?) for all L', L* € £}, and
STPY(L') := {(i,k) € VI® x (V\ V™) : 8 x(L') = Bix(L?) for all L', L? € L'}.

We have 0 < s(L') < [V x E[+|Vitx (V\V")| for all families £’ C £ of mixed integer split polyhedra.
If s(£') = |VI" x E| 4+ |V"x (V\ V)], then Corollary .2 shows that all split polyhedra indexed by L’
are equivalent on P. Therefore, if s(£') = |VI" x E| + [Vinx (V \ VI*)|, then CI(P, £’) is a polyhedron
that can be described with exactly one mixed integer split polyhedron, i.e., CI(P, L") = R(L, P), where
L € L' is arbitrary.

We next partition £ into subsets:

St 8% ..., S C LU 8™ =L and S™ N S™2 = () for all my # my

such that for every m € {1,2,...,ns}, either CI(P, S™) is a polyhedron, or s(S™) > s(£). (Again, “ns”
is an abbreviation of “number of subsets”). Since {S™}]°_, is a partitioning of £, we have

CI(P, L) = N®_,Cl(P,S™),
and CI(P, £) is a polyhedron if CI(P,S™) is a polyhedron for all m € {1,2,...,ns}. To prove Theorem

ns

[42] it suffices to construct a partitioning {S™}, _, of L such that for every m € {1,2,...,ns}, either
Cl(P,S™) is a polyhedron, or s(S™) > s(L).

The partitioning {sm3>>_, of E: is now constructed. Let £/ C £ be an arbitrary non-empty and finite
subset of £. The partitioning of £ is based on the following positive numbers.

of = min{a; ;(L) ;i € Vit and L € £7} for j € E, and

B :=min{B; (L) :i € V™ and L € £} for k € V' \ V.

Properties (i) and (i) of Theorem 2 imply that the sets {a; (L) > o : L € L} for (i,j) € V™ x E,
and the sets {3; x(L) > fj : L € L} for (i,k) € VI* x (V' \ V), are finite. An equivalence relation on £
can now be defined based on the following sets. Given L € L, let

IPC(L) == {(i,, i (L) € VE X E xRy o j(L) > aj}, and
IPY(L) :={(i,k, Bin(L)) € V" x (V\ V™) xR, : B;.1(L) > B;}

denote the set of intersection points between L and the halflines {v’ + arf : o > o} for (4,7) € Vinx B,
and the set of intersection points between L and the line segments {v¢ + 3(v* —v?) : Bf < B < 1} for
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(i,k) € VI" x (V \ V") respectively. The equivalence relation on the mixed integer split polyhedra in £
is defined from the sets IP(L) and IP"(L) for L € L as follows.

Forall L', I? € £: L' = [? = IP"(L') = IPY(L?) and IP®(L') = IP®(L2).

Properties (i) and (ii) of Theorem imply that the number of equivalence classes corresponding to the
above equivalence relation is finite. Let S',S?,..., 8" C £ denote these equivalence classes. For every
equivalence class m € {1,2,...,ns} we have the following.

(a) For every (i,j) € V" x E, if there exists L € S™ s.t. o j(L) > o, then (i, j) € SIP¢(S™).
(b) For every (i, k) € V" x (V\ V™), if there exists L € S™ s.t. 3; (L) > B}, then (i, k) € SIPY(S™).
(c) If S™ N LS # 0, then SIP¢(S™) = Vi* x E and SIP”(S™) = V" x (V \ V).

As in the proof of Theorem [B.1} and with the same argument, one can use (a)-(c) to show that if
s(S8™) = s(L), then by choosing L € L7 arbitrarily, the mixed integer split polyhedron L dominates all
mixed integer split polyhedra L € £. This then completes the proof of Theorem

We next present one application of Theorem Specifically, we will show that if L is a family of
mixed integer split polyhedra, where each mixed integer split polyhedron L € £ has max-facet-width at
most a constant w > 0, then CI(P, £) is a polyhedron.

THEOREM 4.3 Let £ C LY be any family of mized integer split polyhedra that have maz-facet-width at
most w > 0. The set CP,L) = NczR(L, P) is a polyhedron.

We can assume Vit := VI%(L) for all L € £. To apply Theorem E.2] we need to argue that the sets
{a; j(L) > a*: L € L} and {B; k(L) > B*: L € L} are finite, where i € V", j € E, k€ V\ V", a* >0
and 8* > 0 are arbitrary. Our argument does not depend on the particular halfline or line segment, so
we only consider the set {a;1(L) > a* : L € L}. We prove Theorem in two steps. We first give a
representation of aq 1(L) for an arbitrary mixed integer split polyhedron L € L. This is then used to
show that the set {a11(L) > a* : L € L} is finite for any o* > 0. We will use that v! is rational, and
that r! is integer.

LEMMA 4.3 (A generalization of [?, Lemma 5]). Let L € LY satisfy v! € int(L) and oy 1(L) < +o0.
(i) 0 < ay1(L) <w, and

(i) a11(L) = ;t((LL)) , where g, s(L),t(L) > 0 are integers satisfying s(L) < gw.

(Note that the integer g is independent of L).

PrOOF. We may write L = {x € R" : (7*)Tz < 7§ for all k € N(L)}, where N(L) is an index set
for the facets of L, (7%, 7§) € Z"™ and ged(n*,7§) = 1 for all k € N(L). From v! € int(L), it follows

that (7%)Tv! < 7§ for all k € N(L), and therefore oy 1(L) = % for some k € N(L). Since L has
max-facet-width at most w and v! € int(L), we have 0 < 7§ — (7¥)Tv? < w. Furthermore, since (7%)7r!
is integer, we have (7%)Tr! > 1, and therefore oy 1(L) < w.

Recall that we assumed v! € Q™ and r! € Z". We can therefore write v' = (%, ’q’—j, R ’q’—"), where py €

Z and gy, EﬁN for k=1,2,. LT Define integers g:=17_,qx, dp, == l'I}gzll,w,ﬁmq;f form € {1,2,...,n},
s(L) := gmf — >0 _ dmpmmk, and t(L) := (7%)Trl. Observe that % =7k — (7%)To! < w. With these
choices, (ii) is satisfied. O

By using the above lemma, we can now bound the number of possible intersection points on the halfline
{v! + arl : a > a*} for a given a* > 0.

LEMMA 4.4 ([?, Lemma 6]). Let o* > 0, and let L C L™ be a family of mized integer split polyhedra
that have maz-facet-width at most w > 0. The set {a1,1(L) : L € L and a1 1(L) > a*} is finite.

PrROOF. Let L € L satisfying a* < ;3 1(L) < 400 be arbitrary. We may assume o is of the form
af = gst** for some integers s*,t* > 0 satisfying 0 < s* < gw.
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Let s(L) and t(L) be as in Lemma [£3] Hence we have oy 1(L) = %, where s(L) € {1,2,..., gw}.

Hence there is only a finite number of possible values for s(L). Finally, Lemma [3l(i) and a11(L) > o*

gives == < gt((L)) < w, and therefore = (L) <t(L) < S(i*)t Hence, for a fixed value s(L) € {1,2,..., gw},

there is only a finite number of posmble values for ¢(L). O

5. Finite split polyhedron proofs Mixed integer split polyhedra can be used to design finite
cutting plane proofs for the validity of an inequality for Py as follows. Let 6”@ > &y be a valid inequality
for Pr. Observe that, if 67z > & is valid for R(L, P) for some mixed integer split polyhedron L, then L
provides a finite cutting plane proof for the validity of 672 > §y for P;. More generally, a finite family S
of mixed integer split polyhedra gives an approximation of P; of the form

CKS, P):= ] R(L, P).
LeS
Improved approximations of P; can be obtained by iteratively computing closures P!(S, P), P?(S, P),...,
where P%(S,P) := P, PY(S,P) := CI(S,P°(S, P)), P?(S,P) := CI(S, P}(S, P)) etc. A finite split
polyhedron proof of validity of 6Tz > &y for P; is a finite family S of mixed integer split polyhedra such
that 67z > &y is valid for P*(S, P) for some k < 0o, and a finite cutting plane proof is given from a finite
split polyhedron proof by the valid inequalities for the polyhedron P*(S, P).

Given a measure of ”size” or ”complexity” of a mixed integer split polyhedron, and a finite family S
of mixed integer split polyhedra, a natural question is the following : How large a ”size” of the mixed
integer split polyhedra L € S is necessary to prove validity of an inequality d7z > &y for P; with a finite
split polyhedron proof? This is the main question in this section.

Possible measures for the size of a mixed integer split polyhedron L are the max-facet-width of L and
the lattice width of L [?]. In addition, given that every mixed integer split polyhedron L can be written
in the form L = P + L, where P is a polytope and L is a linear space, an alternative measure of the
size of L could be the dimension of the polytope P. However, in this section, we do not choose a specific
measure. We simply use a generic function size(L) on the mixed integer split polyhedra L, and we assume
that small values of size(L) are desirable in a finite split polyhedron proof.

The simplest mixed integer split polyhedra seem to be the split sets. A split set is a mixed integer
split polyhedron of the form {x € R" : myp < 7Tz < my + 1}, where (7, m) € Z"*! and 7; = 0 whenever
x; is not integer constrained. A split set has the smallest possible lattice width and the smallest possible
max-facet-width among all mixed integer split polyhedra. An example of an inequality for which split
sets are not sufficient for providing a finite split polyhedron proof was given in [?].

EXAMPLE 5.1 Consider the mized integer linear program (MILP)

maxy
s.t.
—x;+y <0, fori=1,2,....p, (17)
P
> ai+y<p, (18)
i=1
y >0, (19)
x; integer fori=1,2,...,p. (20)

The optimal solutions to (MILP) are of the form (z*,y*) = («*,0) with 2* € SP NZP, where S? is the
set SP:={x € R’ : 2 >0 and Y7, z; <p}. The set S? is the split polyhedron L shown in Figure[l(a).
The unique optimal solution to the LP relazation of (MILP) is given by a:zl-p = # fori=1,2,...,p and

Yy = #. Hence the only missing inequality to describe conv(Pr) is the inequality y < 0.

It is well-known that split sets do not suffice to give a finite split polyhedron proof for the validity of
y < 0 [2]. On the other hand, the polyhedron L := {(x,y) € RPt' : x € SP} is a mized integer split
polyhedron, and y < 0 s valid for R(f), P). Using L in a split polyhedron proof therefore proves validity
of y < 0. However, L has both lattice width and maz-lattice-width equal to p, and is therefore ”larger”
in the sense of lattice width and maz-lattice-width than split sets, since split sets have lattice width and
mazx-lattice-width equal to one.
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We will also use the function size(L) to measure the size of lattice point free polyhedra that are not
necessarily maximal wrt. inclusion. Specifically, if T is a lattice point free polyhedron, then size(T')
is defined to be the smallest size of a mixed integer split polyhedron that includes T'. In other words,
size(T) := inf{size(L) : T C L and L is a mixed integer split polyhedron}, and we assume the infimum
is achieved, i.e., we assume there exists a mixed integer split polyhedron L such that size(T) = size(L).

A measure of the complexity of a finite split polyhedron proof S is the size of the mixed integer split
polyhedron L € S of the largest size. We call this number the size of a split polyhedron proof. A measure
of the complexity of a valid inequality 67z > &y for P; is then the smallest number 5(s,5,) for which there
exists a finite split polyhedron proof of validity of 672 > &y for Py of size 5(6,60)- This number is called
the size of 67 > &, and it is denoted size(d, &y). Finally, since validity of every facet defining inequality
for conv(Pr) must be proved to generate conv(P;), the largest of the numbers size(d, §p) over all facet
defining inequalities 67z > &y for conv(Pr) gives a measure of the complexity of P;. We call this number
the size of Py, and it is denoted size(FPr).

We now characterize exactly which size is necessary to prove validity of an inequality 672 > &y for
P; with a finite split polyhedron proof, i.e., we characterize the number size(d, dp). We will partition
the inequality 67« > §y into its integer part and its continuous part. Throughout the remainder of
this section, (6%)Tz + (6¥)Ty > dp denotes an arbitrary valid inequality for Pr, where x € R? is integer
constrained, y € R? is continuous, §* € QP, 6% € Q¢ and Jy € Q. We assume (6%)Tx + (6")Ty > & is
tight at a mixed integer point of Pj.

It is possible to prove validity of (6%)Tx + (6¥)Ty > &y for conv(P;) by solving the mixed integer linear
problem (MIP)

min (6%)T 2 + (6¥)Ty
s.t.
(z,y) € Pr.

The following notation is used. The point (z*,y*) € Pr denotes an optimal solution to (MIP), and
(2'P,y'P) € P denotes an optimal solution to the linear relaxation of (MIP). We assume &y = (6%)Tz* +
(69)Ty* and (6%)T2'P + (§%)Ty'P < . From the inequality (6%)Tx + (6¥)Ty > &, we can create the
following subsets of P and P;

P(67 50) =
P] (67 50) =

(z,y) € P: (6°)T2+ (6¥)Ty < 5o} and
(x,y) € P(6,00) : x € ZP}.

o~

To prove validity of (6*)T 2+ (6¥)Ty > o for conv(Pr), we consider the following projections of P(d, dg)
and Py (d,dp) onto the space of the integer constrained x variables

P*(0,80) := {xz € RP : Jy € R? such that (z,y) € P(d,00)} and
Py (8,00) := P*(8,00) NZP.

The validity proofs we derive for (6%)7x + (§¥)Ty > o are based on the following important property.

LEMMA 5.1 The polyhedron P®(6,0¢) is lattice point free.

PROOF. The relative interior of P*(4,dg) is given by
ri(P(8,80)) = {x € R? : 3y € R? such that (z,y) € ri(P) and (6") 'z + (6¥)"y < do}.
Since g is the optimal objective value of (MIP), ri(P*(d,dp)) does not contain lattice points. O

We assume that split sets are those mixed integer split polyhedra that have the smallest size. This is
the case, for instance, when size is measured in terms of lattice width or max-facet-width. Furthermore,
it is well known that split sets are sufficient to generate the integer hull of a pure integer set. It follows
from this that there exists a finite number of split polyhedra of the smallest possible size such that a
polyhedron P can be obtained in a finite number of iterations that satisfies P* (8, 80) = conv(P; (8, d)).
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Hence, since the purpose in this section is to provide finite split polyhedron proofs, we can assume
P*(6,80) = conv(Pf(0,0d0)) in the remainder of this section.

The split polyhedra that are needed to prove validity of (6%)Tx + (6¥)Ty > &y for P; depend on the
facial structure of P®(d,d0). To obtain a description of the faces of P*(d,dp), we need the following
reformulation of P (4, dg).

LEMMA 5.2 Assume P*(0,060) = conv(Pf(9,00)). For every x € P*(4,00), there exists y € R? such that
(,y) € P and (6°)Tx + (6Y)Ty = 6. Hence

P®(8,60) = {x € RP : there exists y € R? s.t. (z,y) € P and (6°) x + (6¥)Ty = 6o}

PROOF. First suppose T € P*(4,0¢) is integer. By definition of P*(4,dp), there exists § € R? such
that (z,9) € P and (6%)77 + (6¥)Ty < . We can not have (6%)7z + (6¥)T5 < &y, since &y is the optimal
objective of MIP. Hence (z,y) € P and (6%)Tz + (6¥)Ty = &.

Now suppose 2" € QP is aray of P”(4,dp). We claim that for every p > 0 and & € P (9, do), there exists
y € RY such that (Z + pa",y) € P and (6°)T (% + pa")+ (0¥)Ty = do. Indeed, let u > 0 and T € PF(6,5o)
be arbitrary. We can choose a non-negative integer ! > p such that 4+ p/z” is integer. We therefore
have that there exists y* € R such that (Z + pl2",y') € P and (6°)T(z + pf2™) + (6¥)Ty! = &. Since
T € P¥(0,00), we also have that there exists y? € R? such that (z,y?) € P and (6%)Tz + (6¥)Ty? = &.
By choosing A := - and g := Ay’ + (1 — A)y?, we have (z + pa",y) = Az + pla yH+ (1 - N)(z,y?),
and therefore (z + px",9) € P. In addition we have that (6°)7(z + uz") + (6¥)Ty = do.

Finally let Z € P*(d,d0) be arbitrary. We may write 7 = Zle Nt +d = Zle Ai(x® + d), where

{xi}le are the vertices of P%(4,dp), d € QP is a non-negative combination of the extreme rays of P*(d, do),
A1, A2y ..., A > 0 and Zle A; = 1. From what was shown above, we have that for every i € {1,2,...,k},
there exists y* € R? such that (2 +d,y*) € P and (6°)7 (2" +d)+ (6¥)Ty* = &y. By letting § := Zle iy,
we have that (z,y) € P and (6%)72 + (6%)Ty = do. O

The faces of P*(«, 3) can now be characterized. Let P = {(z,y) € R? x R? : Az + Dy < b} be an
outer description of P, where A € Q™*?, D € Q™*? and b € Q™, and let M := {1,2,...,m}. Lemma
shows that P*(d,dp) can be written in the form

P7(6,60) = {x € RP : alx+dly=b,ie M,
alz+dly <bi,ie M\ M,
(6") 2 + (0¥) 'y = 6o},
where M= C M denotes those constrains ¢ € M for which al z + d; y = b; for all (z,y) € P(5,5) that

satisfy (0%)Tz + (6¥)Ty = do. Also, for every i € M \ M=, there exists (z,y) € P(§,dp) that satisfies
(69 z + (6Y) Ty = dp and alx +d; y < b;.

A non-empty face I of P*(§,80) can be characterized by a set MY C M of inequalities that satisfies
M= C M¥. Every face F of P*(§,0p) can be written in the form

F={zcRr: alz+dly=by,ie MF,
alz+dly <b,ie M\ MF,
(6 Tz + (6Y)Ty = 6o}
Consider an arbitrary proper face F' of P*(6,80). In order for (6%)x + (6¥)Ty > &y to be valid for Py,
(6%)Tz + (6¥)Ty > §p must be valid for all (x,y) € P such that € F. The following lemma shows that

F is of exactly one of two types depending on the coefficient vectors on the continuous variables in the
tight constraints.

LEMMA 5.3 (A characterization of the faces of P*(6,00))
Assume P*(9,00) = conv(P§(6,00)). Let F be a face of P*(d,0o).

(1) If 6% ¢ span({d; } ;e prr )

(a) F is lattice point free.
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(b) For every x € 1i(F), there exists y € RY s.t. (z,y) € P and (6*)Tx + (6¥)Ty < &.

(ii) If 6V € span({d; };c /)
The inequality (6%)Tx + (6¥)Ty > o holds for all (z,y) € P satisfying x € ri(F).

PROOF. (i) Suppose 8 ¢ span({d; },c,,r), and let T € ri(F) be arbitrary. This implies there exists
y € R? such that a] Z 4+ dly < b; for all i € M \ M. Since 6¥ ¢ span({d;.},c,;r), the linear program
min{(6¥)%r : dF'r = 0,Vi € M¥'} is unbounded. Choose 7 € R? such that (6%)7# < 0 and d¥'# = 0 for all
i € M¥. We have that (6°)Tz + (6Y)T (g + pr) < (6°)Tz + (6¥)Ty = o for every p > 0. Furthermore,
since (Z,y) satisfies al Z + dly < b; for all i € M \ M¥, there exists i > 0 such that (z,j + iar) € P
and (6%)7z + (6¥)T(y + pir) < dp. We can not have 7 integer, since this would contradict that dy is the
optimal objective of MIP.

(ii) Let (z,7) € P satisfy € ri(F), and suppose 6¥ € span({d;.};cpr). If (6°)72 4+ (6¥)Ty > bo,
we are done, so suppose for a contradiction that (6%)7z + (6¥)Ty < dp. Since T € ri(F), there exists
7 € R? such that (z,7) € P, (6°)Tz + (6Y)T§ = dp and alz + dl'§ < b; for all i € M \ MF. Consider
the vector 7 := 3 — 3. We have dL7 = 0 for all i € M¥ and (6¥)T# < 0. However, this contradicts
0¥ € span({d;.};cprr)- O

We can now identify the mixed integer split polyhedra that are needed to provide a finite split polyhe-
dron proof of validity of (6%)Tz + (6¥)Ty > &y for P;. Let F denote the finite set of all faces of P*(d, dp),
and let FV :={F € F:3(x,y) € Ps.t. € F and (6°)Tz + (6¥)Ty < §o} denote those faces F' € F for
which there exists (z,y) € P such that x € F and (z,y) violates the inequality (6*)7x + (6¥)Ty > 6. A
face F € FV is called a violated face. Lemma [5.3(i) shows that every violated face is lattice point free.
A mixed integer split polyhedron L C R™ that satisfies (6%)Tx + (6¥)Ty > & for every (z,y) € R(L, P)
such that = € F is said to prove validity of (6%)Tx + (6¥)Ty > 6o on F. Given a violated face F' € FV,
the following lemma gives a class of split polyhedra that can prove validity of (6%)Tz + (6¥)Ty > 6o on
F.

LEMMA 5.4 (Split polyhedra for proving validity of (6%)Tz + (69)Ty > 8o on a face of P*(8,80))
Assume P*(8,80) = conv(P#(8,80)). Let F € FV be a violated face of P*(3,00), and suppose G ¢ FV
for every proper face G of F. Every mized integer split polyhedron L C R™ that satisfies ri(F) C int(L)
proves validity of (6°)Tx + (6¥)Ty > 69 on F.

PROOF. Let L be a mixed integer split polyhedron that satisfies ri(F') C int(L), and let (Z,7) €
satisfy £ € F and Z ¢ int(L). Since ri(F) C int(L), it follows that Z ¢ ri(F). Since T € F \ ri(F),
must be on some proper face G of F. Since G ¢ F", we have (6%)Tz + (6¥)Ty > do. Since R(L, F)
conv({(z,y) € F:x ¢ int(L)}), the result follows.

Ol s v

By iteratively considering the finite number |FV| of violated faces of P(d,dp), we obtain a finite split
polyhedron proof for the validity of the inequality (6%)%x + (6¥)Ty > &y for Pr.

COROLLARY 5.1 (Upper bound on the size of the inequality (6%)Tx + (69)Ty > &)
There exists a split polyhedron proof for the validity of (6%) Tz + (6¥)Ty > 8o for Pr of size

max{size(F): F € FV}.
We can now prove the main theorem of this section.

THEOREM 5.1 (A formula for the size of the inequality (6%°)Tx + (6¥)Ty > o)
Let size(d,00) denote the smallest number s 5,y for which there exists a finite split polyhedron proof of
validity of (6°)Tx + (6%)Ty > 8o for Pr of size 5(6,50)- Then

size(d, 00) = max{size(F): F € FV}.

PROOF. Let L be a mixed integer split polyhedron of smaller size than max{size(F) : F € FV}.
This implies there exists F € F" and 2’ € ri(F) such that 2’ ¢ int(L). Furthermore, since 2’ € ri(F), it
follows from Lemma [5.3](i) that there exists y’ € RY such that (z/,y’) € P and (6%)T2’ + (6¥)Ty’ < do.
We now have (z/,y’) € R(L, P) and (6%)Ta" + (6¥)Ty" < do. O
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EXAMPLE 5.2 Consider the mixed integer linear program (MILP), and the inequality y < 0 considered
earlier. We have 6* =0, 6Y = —1 and dg = 0.

Observe that any proper face G of P*(4,dp) contains mized integer points in their relative interior.
It follows that the inequality y < 0 is valid for every (xz,y) € P such that x belongs to a proper face of
P*(6,00). Hence the only interesting face of P*(d,do) to consider is the improper face F' := P*(6,00) = SP.
The only mized integer split polyhedron L that satisfies ri(F') C int(L) is the split polyhedron L = SP. The
polyhedron SP has both maz-facet-width and lattice width equal to p, and is therefore relatively “large”
compared to split sets. However, it follows from Theorem [51] that the mixzed integer split polyhedron
L = S? is necessary in order to obtain a finite split polyhedron proof of y < 0 in a finite number of steps.



