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Abstract--The problem of defining and classifying power 

system stability has been addressed by several previous CIGRE 

and IEEE Task Force reports. These earlier efforts, however, do 

not completely reflect current industry needs, experiences and 

understanding. In particular, the definitions are not precise and 

the classifications do not encompass all practical instability 

scenarios. 

This report developed by a Task Force, set up jointly by the 

CIGRE Study Committee 38 and the IEEE Power System 

Dynamic Performance Committee, addresses the issue of stability 

definition and classification in power systems from a fundamental 

viewpoint and closely examines the practical ramifications. The 

report aims to define power system stability more precisely, 

provide a systematic basis for its classification, and discuss 

linkages to related issues such as power system reliability and 

security. 

 

Index Terms--Power System Stability, Terms and Definitions, 

Transient Stability, Voltage Stability, Small-Signal Stability, 

Oscillatory Stability, Frequency Stability, Lyapunov Stability 

I.  INTRODUCTION 

Power system stability has been recognized as an important 

problem for secure system operation since the 1920s [1,2]. 

Many major blackouts caused by power system instability 

have illustrated the importance of this phenomenon [3]. 

Historically, transient instability has been the dominant 

stability problem on most systems, and has been the focus of 

much of industry’s attention concerning system stability. As 

power systems have evolved through continuing growth in 

interconnections, use of new technologies and controls, and 

the increased operation in highly stressed conditions, different 

forms of system instability have emerged. For example, 

voltage stability, frequency stability and interarea oscillations 

have become greater concerns than in the past. This has 

created a need to review the definition and classification of 

power system stability. A clear understanding of different 

types of instability and how they are interrelated is essential 

for the satisfactory design and operation of power systems. As 

well, consistent use of terminology is required for developing 

system design and operating criteria, standard analytical tools, 

and study procedures. 

 

The problem of defining and classifying power system 

stability is an old one, and there have been several previous 

reports on the subject by CIGRE and IEEE Task Forces [4-7]. 

These, however, do not completely reflect current industry 

needs, experiences and understanding. In particular, 

definitions are not precise and the classifications do not 

encompass all practical instability scenarios. 

 

This report is the result of long deliberations of the Task 

Force set up jointly by the CIGRE Study Committee 38 and 

the IEEE Power System Dynamic Performance Committee. 

Our objectives are to: 

 

 Define power system stability more precisely, inclusive of 

all forms; 

 Provide a systematic basis for classifying power system 

stability, identifying and defining different categories, and 

providing a broad picture of the phenomena; and 

 Discuss linkages to related issues such as power system 

reliability and security. 

 

Power system stability is similar to the stability of any 

dynamic system, and has fundamental mathematical 

underpinnings. Precise definitions of stability can be found in 

the literature dealing with the rigorous mathematical theory of 

stability of dynamic systems. Our intent here is to provide a 

physically motivated definition of power system stability 

which in broad terms conforms to precise mathematical 

definitions.  

 

The report is organized as follows. In Section II the 

definition of Power System Stability is provided. A detailed 

discussion and elaboration of the definition is presented. The 

conformance of this definition with the system theoretic 

definitions is established. Section III provides a detailed 

classification of power system stability. In Section IV of the 

report the relationship between the concepts of power system 

reliability, security and stability is discussed. A description of 

how these terms have been defined and used in practice is also 

provided. Finally, in Section V definitions and concepts of 

stability from mathematics and control theory are reviewed to 

provide background information concerning stability of 

dynamic systems in general and to establish theoretical 

connections. 

Definition and Classification of 

Power System Stability 
IEEE/CIGRE Joint Task Force on Stability Terms and Definitions 

Prabha Kundur (Canada, Convener), John Paserba (USA, Secretary), Venkat Ajjarapu (USA),  

Göran Andersson (Switzerland), Anjan Bose (USA), Claudio Canizares (Canada),  

Nikos Hatziargyriou (Greece), David Hill (Australia), Alex Stankovic (USA), Carson Taylor (USA),  

Thierry Van Cutsem (Belgium), Vijay Vittal (USA) 



 

 

2 

The analytical definitions presented in Section V constitute 

a key aspect of the report. They provide the mathematical 

underpinnings and bases for the definitions provided in the 

earlier sections. These details are provided at the end of the 

report so that interested readers can examine the finer points 

and assimilate the mathematical rigor.  

II.  DEFINITION OF POWER SYSTEM STABILITY 

In this section, we provide a formal definition of power 

system stability. The intent is to provide a physically based 

definition which, while conforming to definitions from system 

theory, is easily understood and readily applied by power 

system engineering practitioners.  

A.  Proposed Definition 

 Power system stability is the ability of an electric power 

system, for a given initial operating condition, to regain a 

state of operating equilibrium after being subjected to a 

physical disturbance, with most system variables bounded 

so that practically the entire system remains intact.  

B.  Discussion and Elaboration 

The definition applies to an interconnected power system as 

a whole. Often, however, the stability of a particular generator 

or group of generators is also of interest. A remote generator 

may lose stability (synchronism) without cascading instability 

of the main system. Similarly, stability of particular loads or 

load areas may be of interest; motors may lose stability (run 

down and stall) without cascading instability of the main 

system. 

 

The power system is a highly nonlinear system that 

operates in a constantly changing environment; loads, 

generator outputs and key operating parameters change 

continually. When subjected to a disturbance, the stability of 

the system depends on the initial operating condition as well as 

the nature of the disturbance.  

 

Stability of an electric power system is thus a property of 

the system motion around an equilibrium set, i.e., the initial 

operating condition. In an equilibrium set, the various 

opposing forces that exist in the system are equal 

instantaneously (as in the case of equilibrium points) or over a 

cycle (as in the case of slow cyclical variations due to 

continuous small fluctuations in loads or aperiodic attractors).  

 

Power systems are subjected to a wide range of 

disturbances, small and large. Small disturbances in the form 

of load changes occur continually; the system must be able to 

adjust to the changing conditions and operate satisfactorily. It 

must also be able to survive numerous disturbances of a severe 

nature, such as a short-circuit on a transmission line or loss of 

a large generator. A large disturbance may lead to structural 

changes due to the isolation of the faulted elements.  

 

At an equilibrium set, a power system may be stable for a 

given (large) physical disturbance, and unstable for another. It 

is impractical and uneconomical to design power systems to be 

stable for every possible disturbance. The design 

contingencies are selected on the basis they have a reasonably 

high probability of occurrence. Hence, large-disturbance 

stability always refers to a specified disturbance scenario. A 

stable equilibrium set thus has a finite region of attraction; the 

larger the region, the more robust the system with respect to 

large disturbances. The region of attraction changes with the 

operating condition of the power system.  

 

The response of the power system to a disturbance may 

involve much of the equipment. For instance, a fault on a 

critical element followed by its isolation by protective relays 

will cause variations in power flows, network bus voltages, 

and machine rotor speeds; the voltage variations will actuate 

both generator and transmission network voltage regulators; 

the generator speed variations will actuate prime mover 

governors; and the voltage and frequency variations will affect 

the system loads to varying degrees depending on their 

individual characteristics. Further, devices used to protect 

individual equipment may respond to variations in system 

variables and cause tripping of the equipment, thereby 

weakening the system and possibly leading to system 

instability.  

 

If following a disturbance the power system is stable, it will 

reach a new equilibrium state with the system integrity 

preserved, i.e., with practically all generators and loads 

connected through a single contiguous transmission system. 

Some generators and loads may be disconnected by the 

isolation of faulted elements or intentional tripping to preserve 

the continuity of operation of bulk of the system. 

Interconnected systems, for certain severe disturbances, may 

also be intentionally split into two or more “islands” to 

preserve as much of the generation and load as possible. The 

actions of automatic controls and possibly human operators 

will eventually restore the system to normal state. On the other 

hand, if the system is unstable, it will result in a run-away or 

run-down situation; for example, a progressive increase in 

angular separation of generator rotors, or a progressive 

decrease in bus voltages. An unstable system condition could 

lead to cascading outages and a shut-down of a major portion 

of the power system.  
 

Power systems are continually experiencing fluctuations of 

small magnitudes. However, for assessing stability when 

subjected to a specified disturbance, it is usually valid to 

assume that the system is initially in a true steady-state 

operating condition. 

C.  Conformance with System –Theoretic Definitions  

In Section II.A, we have formulated the definition by 

considering a given operating condition and the system being 
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subjected to a physical disturbance. Under these conditions we 

require the system to either regain a new state of operating 

equilibrium or return to the original operating condition (if no 

topological changes occurred in the system). These 

requirements are directly correlated to the system-theoretic 

definition of asymptotic stability given in Section V.C.1. It 

should be recognized here that this definition requires the 

equilibrium to be (a) stable in the sense of Lyapunov, i.e., all 

initial conditions starting in a small spherical neighborhood of 

radius δ result in the system trajectory remaining in a cylinder 

of radius ε for all time t ≥ t0, the initial time which corresponds 

to all the system state variables being bounded, and (b) at time 

t   the system trajectory approaches the equilibrium point 

which corresponds to the equilibrium point being attractive. 

As a result, one observes that the analytical definition directly 

correlates to the expected behavior in a physical system. 

III.  CLASSIFICATION OF POWER SYSTEM STABILITY 

A typical modern power system is a high-order 

multivariable process whose dynamic response is influenced 

by a wide array of devices with different characteristics and 

response rates. Stability is a condition of equilibrium between 

opposing forces. Depending on the network topology, system 

operating condition and the form of disturbance, different sets 

of opposing forces may experience sustained imbalance 

leading to different forms of instability. In this section, we 

provide a systematic basis for classification of power system 

stability. 

A.  Need for Classification 

Power system stability is essentially a single problem; 

however, the various forms of instabilities that a power system 

may undergo cannot be properly understood and effectively 

dealt with by treating it as such. Because of high 

dimensionality and complexity of stability problems, it helps 

to make simplifying assumptions to analyze specific types of 

problems using an appropriate degree of detail of system 

representation and appropriate analytical techniques. Analysis 

of stability, including identifying key factors that contribute to 

instability and devising methods of improving stable 

operation, is greatly facilitated by classification of stability 

into appropriate categories [8]. Classification, therefore, is 

essential for meaningful practical analysis and resolution of 

power system stability problems. As discussed in Section 

V.C.1, such classification is entirely justified theoretically by 

the concept of partial stability [9-11].  

B.  Categories of Stability 

The classification of power system stability proposed here 

is based on the following considerations [8]: 

 The physical nature of the resulting mode of instability as 

indicated by the main system variable in which instability 

can be observed. 

 The size of the disturbance considered, which influences 

the method of calculation and prediction of stability.  

 The devices, processes, and the time span that must be 

taken into consideration in order to assess stability.  

 

Figure 1 gives the overall picture of the power system 

stability problem, identifying its categories and subcategories. 

The following are descriptions of the corresponding forms of 

stability phenomena.  

B.1  Rotor Angle Stability 

Rotor angle stability refers to the ability of synchronous 

machines of an interconnected power system to remain in 

synchronism after being subjected to a disturbance. It depends 

on the ability to maintain/restore equilibrium between 

electromagnetic torque and mechanical torque of each 

synchronous machine in the system. Instability that may result 

occurs in the form of increasing angular swings of some 

generators leading to their loss of synchronism with other 

generators.  

 

The rotor angle stability problem involves the study of the 

electromechanical oscillations inherent in power systems. A 

fundamental factor in this problem is the manner in which the 

power outputs of synchronous machines vary as their rotor 

angles change. Under steady-state conditions, there is 

equilibrium between the input mechanical torque and the 

output electromagnetic torque of each generator, and the speed 

remains constant. If the system is perturbed, this equilibrium is 

upset, resulting in acceleration or deceleration of the rotors of 

the machines according to the laws of motion of a rotating 

body. If one generator temporarily runs faster than another, the 

angular position of its rotor relative to that of the slower 

machine will advance. The resulting angular difference 

transfers part of the load from the slow machine to the fast 

machine, depending on the power-angle relationship. This 

tends to reduce the speed difference and hence the angular 

separation. The power-angle relationship is highly nonlinear. 

Beyond a certain limit, an increase in angular separation is 

accompanied by a decrease in power transfer such that the 

angular separation is increased further. Instability results if the 

system cannot absorb the kinetic energy corresponding to 

these rotor speed differences. For any given situation, the 

stability of the system depends on whether or not the 

deviations in angular positions of the rotors result in sufficient 

restoring torques [8]. Loss of synchronism can occur between 

one machine and the rest of the system, or between groups of 

machines, with synchronism maintained within each group 

after separating from each other. 
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Figure 1. Classification of Power System Stability 

 
The change in electromagnetic torque of a synchronous 

machine following a perturbation can be resolved into two 

components:  

 

 Synchronizing torque component, in phase with rotor 

angle deviation.  

 Damping torque component, in phase with the speed 

deviation.  

 

System stability depends on the existence of both 

components of torque for each of the synchronous 

machines. Lack of sufficient synchronizing torque results in 

aperiodic or non-oscillatory instability, whereas lack of 

damping torque results in oscillatory instability.  

 

For convenience in analysis and for gaining useful 

insight into the nature of stability problems, it is useful to 

characterize rotor angle stability in terms of the following 

two subcategories:   

 

 Small-disturbance (or small-signal) rotor angle 

stability is concerned with the ability of the power 

system to maintain synchronism under small 

disturbances. The disturbances are considered to be 

sufficiently small that linearization of system equations 

is permissible for purposes of analysis [8,12,13].  

- Small-disturbance stability depends on the initial 

operating state of the system. Instability that may 

result can be of two forms: (i) increase in rotor 

angle through a non-oscillatory or aperiodic mode 

due to lack of synchronizing torque, or (ii) rotor 

oscillations of increasing amplitude due to lack of 

sufficient damping torque.  

- In today's power systems, small-disturbance rotor 

angle stability problem is usually associated with 

insufficient damping of oscillations. The aperiodic 

instability problem has been largely eliminated by 

use of continuously acting generator voltage 

regulators; however, this problem can still occur 

when generators operate with constant excitation 

when subjected to the actions of excitation limiters 

(field current limiters). 

- Small-disturbance rotor angle stability problems 

may be either local or global in nature. Local 

problems involve a small part of the power system, 

and are usually associated with rotor angle 

oscillations of a single power plant against the rest 

of the power system. Such oscillations are called 

local plant mode oscillations. Stability (damping) 

of these oscillations depends on the strength of the 

transmission system as seen by the power plant, 

generator excitation control systems and plant 

output [8]. 

- Global problems are caused by interactions among 

large groups of generators and have widespread 

effects. They involve oscillations of a group of 

generators in one area swinging against a group of 

generators in another area. Such oscillations are 

called interarea mode oscillations. Their 

characteristics are very complex and significantly 

differ from those of local plant mode oscillations. 

Load characteristics, in particular, have a major 
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effect on the stability of interarea modes [8].  

- The time frame of interest in small-disturbance 

stability studies is on the order of 10 to 20 seconds 

following a disturbance. 

 Large-disturbance rotor angle stability or transient 

stability, as it is commonly referred to, is concerned 

with the ability of the power system to maintain 

synchronism when subjected to a severe disturbance, 

such as a short circuit on a transmission line. The 

resulting system response involves large excursions of 

generator rotor angles and is influenced by the 

nonlinear power-angle relationship.  

- Transient stability depends on both the initial 

operating state of the system and the severity of 

the disturbance. Instability is usually in the form of 

aperiodic angular separation due to insufficient 

synchronizing torque, manifesting as first swing 

instability. However, in large power systems, 

transient instability may not always occur as first 

swing instability associated with a single mode; it 

could be a result of superposition of a slow 

interarea swing mode and a local-plant swing 

mode causing a large excursion of rotor angle 

beyond the first swing [8]. It could also be a result 

of nonlinear effects affecting a single mode 

causing instability beyond the first swing. 

- The time frame of interest in transient stability 

studies is usually 3 to 5 seconds following the 

disturbance. It may extend to 10–20 seconds for 

very large systems with dominant inter-area 

swings. 

 

As identified in Figure 1, small-disturbance rotor angle 

stability as well as transient stability are categorized as 

short term phenomena. 

 

The term dynamic stability also appears in the literature 

as a class of rotor angle stability. However, it has been used 

to denote different phenomena by different authors. In the 

North American literature, it has been used mostly to 

denote small-disturbance stability in the presence of 

automatic controls (particularly, the generation excitation 

controls) as distinct from the classical “steady-state 

stability” with no generator controls [7,8]. In the European 

literature, it has been used to denote transient stability. 

Since much confusion has resulted from the use of the term 

dynamic stability, we recommend against its usage, as did 

the previous IEEE and CIGRE Task Forces [6,7].  

B.2  Voltage Stability 

Voltage stability refers to the ability of a power system 

to maintain steady voltages at all buses in the system after 

being subjected to a disturbance from a given initial 

operating condition. It depends on the ability to 

maintain/restore equilibrium between load demand and load 

supply from the power system. Instability that may result 

occurs in the form of a progressive fall or rise of voltages of 

some buses. A possible outcome of voltage instability is 

loss of load in an area, or tripping of transmission lines and 

other elements by their protective systems leading to 

cascading outages. Loss of synchronism of some generators 

may result from these outages or from operating conditions 

that violate field current limit [14].  

 

Progressive drop in bus voltages can also be associated 

with rotor angle instability. For example, the loss of 

synchronism of machines as rotor angles between two 

groups of machines approach 180° causes rapid drop in 

voltages at intermediate points in the network close to the 

electrical center [8]. Normally, protective systems operate 

to separate the two groups of machines and the voltages 

recover to levels depending on the post-separation 

conditions. If, however, the system is not so separated, the 

voltages near the electrical center rapidly oscillate between 

high and low values as a result of repeated "pole slips" 

between the two groups of machines. In contrast, the type 

of sustained fall of voltage that is related to voltage 

instability involves loads and may occur where rotor angle 

stability is not an issue.  

 

The term voltage collapse is also often used. It is the 

process by which the sequence of events accompanying 

voltage instability leads to a blackout or abnormally low 

voltages in a significant part of the power system [8,14,15,]. 

Stable (steady) operation at low voltage may continue after 

transformer tap changers reach their boost limit, with 

intentional and/or unintentional tripping of some load. 

Remaining load tends to be voltage sensitive, and the 

connected demand at normal voltage is not met. 

 

The driving force for voltage instability is usually the 

loads; in response to a disturbance, power consumed by the 

loads tends to be restored by the action of motor slip 

adjustment, distribution voltage regulators, tap changing 

transformers, and thermostats. Restored loads increase the 

stress on the high voltage network by increasing the 

reactive power consumption and causing further voltage 

reduction. A run-down situation causing voltage instability 

occurs when load dynamics attempt to restore power 

consumption beyond the capability of the transmission 

network and the connected generation [8,14-18].  
 

A major factor contributing to voltage instability is the 

voltage drop that occurs when active and reactive power 

flow through inductive reactances of the transmission 

network; this limits the capability of the transmission 

network for power transfer and voltage support. The power 

transfer and voltage support are further limited when some 

of the generators hit their field or armature current time-

overload capability limits. Voltage stability is threatened 
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when a disturbance increases the reactive power demand 

beyond the sustainable capacity of the available reactive 

power resources. 
 

While the most common form of voltage instability is 

the progressive drop of bus voltages, the risk of overvoltage 

instability also exists and has been experienced at least on 

one system [19]. It is caused by a capacitive behavior of the 

network (EHV transmission lines operating below surge 

impedance loading) as well as by under-excitation limiters 

preventing generators and/or synchronous compensators 

from absorbing the excess reactive power. In this case, the 

instability is associated with the inability of the combined 

generation and transmission system to operate below some 

load level. In their attempt to restore this load power, 

transformer tap changers cause long-term voltage 

instability.  
 

Voltage stability problems may also be experienced at 

the terminals of HVDC links used for either long distance 

or back-to-back applications [20,21]. They are usually 

associated with HVDC links connected to weak ac systems 

and may occur at rectifier or inverter stations, and are 

associated with the unfavorable reactive power “load” 

characteristics of the converters. The HVDC link control 

strategies have a very significant influence on such 

problems, since the active and reactive power at the ac/dc 

junction are determined by the controls. If the resulting 

loading on the ac transmission stresses it beyond its 

capability, voltage instability occurs. Such a phenomenon is 

relatively fast with the time frame of interest being in the 

order of one second or less. Voltage instability may also be 

associated with converter transformer tap-changer controls, 

which is a considerably slower phenomenon [21]. Recent 

developments in HVDC technology (voltage source 

converters and capacitor commutated converters) have 

significantly increased the limits for stable operation of 

HVDC links in weak systems as compared with the limits 

for line commutated converters. 
 

One form of voltage stability problem that results in 

uncontrolled overvoltages is the self-excitation of 

synchronous machines. This can arise if the capacitive load 

of a synchronous machine is too large. Examples of 

excessive capacitive loads that can initiate self-excitation 

are open ended high voltage lines and shunt capacitors and 

filter banks from HVDC stations [22]. The overvoltages 

that result when generator load changes to capacitive are 

characterized by an instantaneous rise at the instant of 

change followed by a more gradual rise. This latter rise 

depends on the relation between the capacitive load 

component and machine reactances together with the 

excitation system of the synchronous machine. Negative 

field current capability of the exciter is a feature that has a 

positive influence on the limits for self-excitation.  

As in the case of rotor angle stability, it is useful to 

classify voltage stability into the following subcategories:   

 

 Large-disturbance voltage stability refers to the 

system's ability to maintain steady voltages following 

large disturbances such as system faults, loss of 

generation, or circuit contingencies. This ability is 

determined by the system and load characteristics, and 

the interactions of both continuous and discrete 

controls and protections. Determination of large-

disturbance voltage stability requires the examination 

of the nonlinear response of the power system over a 

period of time sufficient to capture the performance 

and interactions of such devices as motors, under-load 

transformer tap changers and generator field-current 

limiters. The study period of interest may extend from 

a few seconds to tens of minutes.  

 Small-disturbance voltage stability refers to the 

system's ability to maintain steady voltages when 

subjected to small perturbations such as incremental 

changes in system load. This form of stability is 

influenced by the characteristics of loads, continuous 

controls, and discrete controls at a given instant of 

time. This concept is useful in determining, at any 

instant, how the system voltages will respond to small 

system changes. With appropriate assumptions, system 

equations can be linearized for analysis thereby 

allowing computation of valuable sensitivity 

information useful in identifying factors influencing 

stability. This linearization, however, cannot account 

for nonlinear effects such as tap changer controls 

(deadbands, discrete tap steps, and time delays). 

Therefore, a combination of linear and nonlinear 

analyses is used in a complementary manner [23,24]. 

 

As noted above, the time frame of interest for voltage 

stability problems may vary from a few seconds to tens of 

minutes. Therefore, voltage stability may be either a short-

term or a long-term phenomenon as identified in Figure 1.  

 

 Short-term voltage stability involves dynamics of fast 

acting load components such as induction motors, 

electronically controlled loads and HVDC converters. 

The study period of interest is in the order of several 

seconds, and analysis requires solution of appropriate 

system differential equations; this is similar to analysis 

of rotor angle stability. Dynamic modeling of loads is 

often essential. In contrast to angle stability, short 

circuits near loads are important. It is recommended 

that the term transient voltage stability not be used. 

 Long-term voltage stability involves slower acting 

equipment such as tap-changing transformers, 

thermostatically controlled loads and generator current 

limiters. The study period of interest may extend to 

several or many minutes, and long-term simulations are 
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required for analysis of system dynamic performance 

[17,23,25]. Stability is usually determined by the 

resulting outage of equipment, rather than the severity 

of the initial disturbance. Instability is due to the loss 

of long-term equilibrium (e.g., when loads try to 

restore their power beyond the capability of the 

transmission network and connected generation), post-

disturbance steady-state operating point being small-

disturbance unstable, or a lack of attraction towards the 

stable post-disturbance equilibrium (e.g., when a 

remedial action is applied too late) [14,15]. The 

disturbance could also be a sustained load buildup 

(e.g., morning load increase). In many cases, static 

analysis [23-24, 26-27] can be used to estimate 

stability margins, identify factors influencing stability 

and screen a wide range of system conditions and a 

large number of scenarios. Where timing of control 

actions is important, this should be complemented by 

quasi-steady-state time domain simulations [14,17].  

B.3  Basis for Distinction between Voltage and Rotor Angle 

Stability 

It is important to recognize that the distinction between 

rotor angle stability and voltage stability is not based on 

weak coupling between variations in active power/angle 

and reactive power/voltage magnitude. In fact, coupling is 

strong for stressed conditions and both rotor angle stability 

and voltage stability are affected by pre-disturbance active 

power as well as reactive power flows. Instead, the 

distinction is based on the specific set of opposing forces 

that experience sustained imbalance and the principal 

system variable in which the consequent instability is 

apparent. 

B.4  Frequency Stability 

Frequency stability refers to the ability of a power 

system to maintain steady frequency following a severe 

system upset resulting in a significant imbalance between 

generation and load. It depends on the ability to 

maintain/restore equilibrium between system generation 

and load, with minimum unintentional loss of load. 

Instability that may result occurs in the form of sustained 

frequency swings leading to tripping of generating units 

and/or loads.  

Severe system upsets generally result in large excursions 

of frequency, power flows, voltage, and other system 

variables, thereby invoking the actions of processes, 

controls, and protections that are not modeled in 

conventional transient stability or voltage stability studies. 

These processes may be very slow, such as boiler 

dynamics, or only triggered for extreme system conditions, 

such as volts/hertz protection tripping generators. In large 

interconnected power systems, this type of situation is most 

commonly associated with conditions following splitting of 

systems into islands. Stability in this case is a question of 

whether or not each island will reach a state of operating 

equilibrium with minimal unintentional loss of load. It is 

determined by the overall response of the island as 

evidenced by its mean frequency, rather than relative 

motion of machines. Generally, frequency stability 

problems are associated with inadequacies in equipment 

responses, poor coordination of control and protection 

equipment, or insufficient generation reserve. Examples of 

such problems are reported in references [28] to [31]. In 

isolated island systems, frequency stability could be of 

concern for any disturbance causing a relatively significant 

loss of load or generation [32].  

 

During frequency excursions, the characteristic times of 

the processes and devices that are activated will range from 

fraction of seconds, corresponding to the response of 

devices such as underfrequency load shedding and 

generator controls and protections, to several minutes, 

corresponding to the response of devices such as prime 

mover energy supply systems and load voltage regulators. 

Therefore, as identified in Figure 1, frequency stability may 

be a short-term phenomenon or a long-term phenomenon. 

An example of short-term frequency instability is the 

formation of an undergenerated island with insufficient 

underfrequency load shedding such that frequency decays 

rapidly causing blackout of the island within a few seconds 

[28]. On the other hand, more complex situations in which 

frequency instability is caused by steam turbine overspeed 

controls [29] or boiler/reactor protection and controls are 

longer-term phenomena with the time frame of interest 

ranging from tens of seconds to several minutes [30,31,33].  

 

During frequency excursions, voltage magnitudes may 

change significantly, especially for islanding conditions 

with underfrequency load shedding that unloads the system. 

Voltage magnitude changes, which may be higher in 

percentage than frequency changes, affect the load–

generation imbalance. High voltage may cause undesirable 

generator tripping by poorly designed or coordinated loss 

of excitation relays or volts/hertz relays. In an overloaded 

system, low voltage may cause undesirable operation of 

impedance relays. 

B.5  Comments on Classification 

We have classified power system stability for 

convenience in identifying causes of instability, applying 

suitable analysis tools, and developing corrective measures. 

In any given situation, however, any one form of instability 

may not occur in its pure form. This is particularly true in 

highly stressed systems and for cascading events; as 

systems fail one form of instability may ultimately lead to 

another form. However, distinguishing between different 

forms is important for understanding the underlying causes 

of the problem in order to develop appropriate design and 

operating procedures.  



 

 

8 

 

While classification of power system stability is an 

effective and convenient means to deal with the 

complexities of the problem, the overall stability of the 

system should always be kept in mind. Solutions to stability 

problems of one category should not be at the expense of 

another. It is essential to look at all aspects of the stability 

phenomenon, and at each aspect from more than one 

viewpoint.  

IV.  RELATIONSHIP BETWEEN RELIABILITY, 

SECURITY AND STABILITY 

In this section we discuss the relationship between the 

concepts of power system reliability, security and stability. 

We will also briefly describe how these terms have been 

defined and used in practice.  

A.  Conceptual Relationship [34,35] 

Reliability of a power system refers to the probability of 

its satisfactory operation over the long run. It denotes the 

ability to supply adequate electric service on a nearly 

continuous basis, with few interruptions over an extended 

time period.  

 

Security of a power system refers to the degree of risk in 

its ability to survive imminent disturbances (contingencies) 

without interruption of customer service. It relates to 

robustness of the system to imminent disturbances and, 

hence, depends on the system operating condition as well as 

the contingent probability of disturbances.  

 

Stability of a power system, as discussed in Section II, 

refers to the continuance of intact operation following a 

disturbance. It depends on the operating condition and the 

nature of the physical disturbance.  

 

The following are the essential differences among the 

three aspects of power system performance:  

 

1. Reliability is the overall objective in power system 

design and operation. To be reliable the power system 

must be secure most of the time. To be secure the 

system must be stable but must also be secure against 

other contingencies that would not be classified as 

stability problems, e.g., damage to equipment such as 

an explosive failure of a cable, fall of transmission 

towers due to ice loading or sabotage. As well, a 

system may be stable following a contingency, yet 

insecure due to post-fault system conditions resulting 

in equipment overloads or voltage violations.  

2. System security may be further distinguished from 

stability in terms of the resulting consequences. For 

example, two systems may both be stable with equal 

stability margins, but one may be relatively more 

secure because the consequences of instability are less 

severe.  

3. Security and stability are time-varying attributes which 

can be judged by studying the performance of the 

power system under a particular set of conditions. 

Reliability, on the other hand, is a function of the time-

average performance of the power system; it can only 

be judged by consideration of the system's behavior 

over an appreciable period of time.  

B.  NERC Definition of Reliability [36] 

NERC (North American Electric Reliability Council) 

defines power system reliability as follows:   

 

 Reliability, in a bulk power electric system, is the 

degree to which the performance of the elements of 

that system results in power being delivered to 

consumers within accepted standards and in the 

amount desired. The degree of reliability may be 

measured by the frequency, duration, and magnitude 

of adverse effects on consumer service.  

 

Reliability can be addressed by considering two basic 

functional aspects of the power systems:   

 

Adequacy – the ability of the power system to supply the 

aggregate electric power and energy requirements of the 

customer at all times, taking into account scheduled and 

unscheduled outages of system components.  

 

Security – the ability of the power system to withstand 

sudden disturbances such as electric short circuits or non-

anticipated loss of system components.  

 

The above definitions also appear in several IEEE and 

CIGRE Working Group/Task Force documents [37,38].  

 

Other alternative forms of definition of power system 

security have been proposed in the literature. For example, 

in reference [39], security is defined in terms of satisfying a 

set of inequality constraints over a subset of the possible 

disturbances called the “next contingency set.”  

C.  Analysis of Power System Security 

The analysis of security relates to the determination of 

the robustness of the power system relative to imminent 

disturbances. There are two important components of 

security analysis. For a power system subjected to changes 

(small or large), it is important that, when the changes are 

completed, the system settles to new operating conditions 

such that no physical constraints are violated. This implies 

that, in addition to the next operating conditions being 

acceptable, the system must survive the transition to these 

conditions.  
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The above characterization of system security clearly 

highlights two aspects of its analysis:  

 

 Static security analysis – This involves steady-state 

analysis of post-disturbance system conditions to verify 

that no equipment ratings and voltage constraints are 

violated.  

 Dynamic security analysis – This involves examining 

different categories of system stability described in 

Section III.  

 

Stability analysis is thus an integral component of 

system security and reliability assessment.  

 

The general industry practice for security assessment has 

been to use a deterministic approach. The power system is 

designed and operated to withstand a set of contingencies 

referred to as "normal contingencies" selected on the basis 

that they have a significant likelihood of occurrence. In 

practice, they are usually defined as the loss of any single 

element in a power system either spontaneously or preceded 

by a single-, double-, or three-phase fault. This is usually 

referred to as the N-1 criterion because it examines the 

behavior of an N-component grid following the loss of any 

one of its major components. In addition, loss of load or 

cascading outages may not be allowed for multiple-related 

outages such as loss of a double-circuit line. Consideration 

may be given to extreme contingencies that exceed in 

severity the normal design contingencies. Emergency 

controls, such as generation tripping, load shedding and 

controlled islanding, may be used to cope with such events 

and prevent widespread blackouts. 

 

The deterministic approach has served the industry 

reasonably well in the past – it has resulted in high security 

levels and the study effort is minimized. Its main limitation, 

however, is that it treats all security-limiting scenarios as 

having the same risk. It also does not give adequate 

consideration as to how likely or unlikely various 

contingencies are.  

 

In today’s utility environment, with a diversity of 

participants with different business interests, the 

deterministic approach may not be acceptable. There is a 

need to account for the probabilistic nature of system 

conditions and events, and to quantify and manage risk. The 

trend will be to expand the use of risk-based security 

assessment. In this approach, the probability of the system 

becoming unstable and its consequences are examined, and 

the degree of exposure to system failure is estimated. This 

approach is computationally intensive but is possible with 

today's computing and analysis tools. 

V.  SYSTEM-THEORETIC FOUNDATIONS OF POWER 

SYSTEM STABILITY 

A.  Preliminaries 

In this section we address fundamental issues related to 

definitions of power system stability from a system-

theoretic viewpoint. We assume that the model of a power 

system is given in the form of explicit first-order 

differential equations, i.e., a state-space description. While 

this is quite common in the theory of dynamical systems, it 

may not always be entirely natural for physical systems 

such as power systems. First-principle models that are 

typically used to describe power systems are seldom in this 

form, and transformations required to bring them to explicit 

first-order form may in general introduce spurious solutions 

[40].  

 

More importantly, there often exist algebraic (implicit) 

equations that constrain various quantities, and a set of 

differential-algebraic equations (DAE) is often used in 

simulations of power system transients. The algebraic part 

often arises from a singular perturbation-type reasoning that 

uses time separation between subsets of variables to 

postulate that the fast variables have already reached their 

steady state on the time horizon of interest [41,42].  

 

Proving the existence of solutions of DAE is a very 

challenging problem in general. While local results can be 

derived from the implicit function theorem that specifies 

rank conditions for the Jacobian of the algebraic part, the 

non-local results are much harder to obtain. One general 

approach to non-local study of stability of DAE systems 

that is based on differential geometry is presented in [43] 

(for sufficient conditions see [44]). The surfaces on which 

rank conditions for the Jacobian of the algebraic part do not 

hold are commonly denoted as impasse surfaces, and in the 

analysis of models of power systems it is typically assumed 

that equilibrium sets of interest in stability analysis are 

disjoint from such surfaces [41,45].  

 

An often useful approximation of the fast dynamics is 

based on the concept of dynamic (time-varying) phasors 

[46] and dynamic symmetrical components [47]. It is also 

typically assumed that distributed nature of some elements 

of a power system (e.g., transmission lines) can be 

approximated with lumped parameter models without a 

major loss of model fidelity. This is mostly dictated by the 

fundamental intractability of models that include partial 

differential equations, and by satisfactory behavior of 

lumped parameter models (when evaluated on the level of 

single element - e.g., the use of multiple “” section models 

for a long transmission line). Some qualitative aspects of 

fault propagation in spatially extended power systems can, 

however, be studied effectively with distributed models 

[48].  
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Power systems are also an example of constrained 

dynamical systems, as their state trajectories are restricted 

to a particular subset in the state space (phase space in the 

language of dynamical systems) denoted as the feasible (or 

technically viable, or permitted) operating region [45]. The 

trajectories that exit this desired region may either lead to 

structural changes (e.g., breaker tripping in a power 

system), or lead to unsafe operation. This type of 

consideration will introduce restricted stability regions in 

power system stability analysis.  

 

Several additional issues are raised by the fact that the 

power system interacts with its (typically unmodeled) 

environment, making the power system model non-

autonomous (or time-varying). Examples include load 

variations and network topology changes due to switching 

in substations. Additional interactions with the environment 

include disturbances whose physical description may 

include outages of system elements, while a mathematical 

description may involve variations in the system order, or 

the number of variables of interest.  

 

Finally, a power system is a controlled (or forced) 

system with numerous feedback loops, and it is necessary to 

include the effects of control inputs (including their 

saturation), especially on longer time horizons.  

 

The outlined modeling problems are typically addressed 

in a power system analysis framework in the following way:  

 

1. The problem of defining stability for general non-

autonomous systems is very challenging even in the 

theoretical realm [40], and one possible approach is to 

say that a system to which the environment delivers 

square-integrable signals as inputs over a time interval 

is stable if variables of interest (such as outputs) are 

also square integrable. In a more general setup, we can 

consider signals truncated in time, and denote the 

system as well-posed if it maps square integrable 

truncated signals into signals with the same property. 

In a power system setting, one typically assumes that 

the variables at the interface with the environment are 

known (or predictable) - e.g., that mechanical inputs to 

all generators are constant, or that they vary according 

to the known response of turbine regulators.  

2. The disturbances of interest will fall into two broad 

categories - event-type (typically described as outages 

of specific pieces of equipment), and norm-type 

(described by their size, e.g., in terms of various norms 

of signals); we will return to this issue shortly. We also 

observe that in cases when event-type (e.g., switching) 

disturbances occur repeatedly, a proper analysis 

framework is that of hybrid systems (for a recent 

review see [49]); event-type disturbances may also be 

initiated by human operators. Our focus is on time 

horizons of the order of seconds to minutes; on a 

longer time scale, the effects of market structures may 

become prominent. In that case the relevant notion of 

stability needs re-examination; some leads about 

systems with distributed decision making may be found 

in [50]. 

3. Given our emphasis on stability analysis, we will 

assume that the actions of all controllers are fully 

predictable in terms of known system quantities 

(states), or as functions of time; the dual problem of 

designing stabilizing controls for nonlinear systems is 

very challenging, see for example [51,8]. 

 

A typical power system stability study consists of the 

following steps:  

 

1. Make modeling assumptions and formulate a 

mathematical model appropriate for the time-scales and 

phenomena under study;  

2. Select an appropriate stability definition;  

3. Analyze and/or simulate to determine stability, 

typically using a scenario of events;  

4. Review results in light of assumptions, compare with 

the engineering experience (“reality”), and repeat if 

necessary. 

 

Before considering specifics about power system 

stability, we need to assess the required computational 

effort. In the case of linear system models, the stability 

question is decidable, and can be answered efficiently, in 

polynomial time [52]. In the case of nonlinear systems, the 

available algorithms are inherently inefficient. For example, 

a related problem of whether all trajectories of a system 

with a single scalar nonlinearity converge to the origin turns 

out to be very computationally intensive (i.e., NP-hard), 

and it is unclear if it is decidable at all [52]. Given the large 

size of power systems and the need to consider event-type 

perturbations that will inevitably lead to nonlinear models, 

it is clear that the task of determining stability of a power 

system will be a challenging one. It turns out, however, that 

our main tools in reducing the computational complexity 

will be our ability (and willingness) to utilize 

approximations, and the particular nature of event-type 

disturbances that we are analyzing. 

 

We also want to point out that a possible shift in 

emphasis regarding various phenomena in power systems 

(e.g., hybrid aspects) would necessarily entail a 

reassessment of notions of stability. For a recent review on 

notions of stability in various types of systems (including 

infinite dimensional ones) see [53]. 

B.  A Scenario for Stability Analysis 

We consider the system: 

( , )x f t x  
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where x is the state vector (a function of time, but we omit 

explicitly writing the time argument t), x  is its derivative, f 

is sufficiently differentiable and its domain includes the 

origin. The system described above is said to be 

autonomous if  xtf ,  is independent of t and is said to be 

non-autonomous otherwise. 

 

A typical scenario for power system stability analysis 

involves three distinct steps: 

 

1. The system is initially operating in a pre-disturbance 

equilibrium set Xn (e.g., an equilibrium point or 

perhaps even a benign limit cycle in the state space); in 

that set various driving terms (forces) affecting system 

variables are balanced (either instantaneously, or over 

a time interval). We use the notion of an equilibrium 

set to denote equilibrium points, limit sets and more 

complicated structures like aperiodic attractors (which 

may be possible in realistic models of power systems). 

However, in the vast majority of cases of practical 

interest today, the equilibrium points are the sets of 

interest.  

In general, an equilibrium set, or an attractor, is a set 

of trajectories in the phase space to which all 

neighboring trajectories converge. Attractors therefore 

describe the long-term behavior of a dynamical system. 

A Point attractor, or an equilibrium point, is an 

attractor consisting of a single point in the phase space. 

A Limit cycle attractor, on the other hand, corresponds 

to closed curves in phase space; limit cycles imply 

periodic behavior. A chaotic (or aperiodic, or strange) 

attractor corresponds to a equilibrium set where 

system trajectories never converge to a point or a 

closed curve, but remain within the same region of 

phase space. Unlike limit cycles, strange attractors are 

non-periodic, and trajectories in such systems are very 

sensitive to the initial conditions.  

2. Next, a disturbance acts on the system. An event-type 

(or incident-type) disturbance is characterized by a 

specific fault scenario (e.g., short circuit somewhere in 

the transmission network followed by a line 

disconnection including the duration of the event – 

“fault clearing time”), while norm-type (described by 

their size in terms of various norms of signals – e.g., 

load variations) disturbances are described by their size 

(norm, or signal intensity). A problem of some 

analytical interest is determining the maximum 

permissible duration of the fault (the so called “critical 

clearing time”) for which the subsequent system 

response remains stable. This portion of stability 

analysis requires the knowledge of actions of 

protective relaying.  

3. After an event-type disturbance, the system dynamics 

is studied with respect to a known post-disturbance 

equilibrium set Xp (which may be distinct from Xn). 

The system initial condition belongs to a (known) 

starting set p, and we want to characterize the system 

motion with respect to Xp, i.e., if the system trajectory 

will remain inside the technically viable set p (which 

includes Xp). In the case of norm-type disturbances, 

very often we have Xp = Xn. If the system response 

turns out to be stable (a precise definition will follow 

shortly), it is said that Xp (and sometimes Xn as well) 

are stable. A detected instability (during which system 

motion crosses the boundary of the technically viable 

set p - e.g., causing line tripping or a partial load 

shedding) may lead to a new stability study for a new 

(reduced) system with new starting and viable sets, and 

possibly with different modeling assumptions (or 

several such studies, if a system gets partitioned into 

several disconnected parts). 

 

The stability analysis of power systems is in general 

non-local, as various equilibrium sets may get involved. In 

the case of event-type disturbances, the perturbations of 

interest are specified deterministically (the same may apply 

to Xn as well), and it is assumed that the analyst has 

determined all Xp that are relevant for a given Xn and the 

disturbance. In the case of norm-type perturbations, the 

uncertainty structure is different - the perturbation is 

characterized by size (in the case of the so called small-

disturbance or small-signal analysis this is done implicitly, 

so that linearized analysis remains valid), and the same 

equilibrium set typically characterizes the system before 

and after the disturbance. Note, however, that norm-type 

perturbations could in principle be used in large-signal 

analyses as well. 

 

We propose next a formulation of power system stability 

that will allow us to explore salient features of general 

stability concepts from system theory: 

 

 “An equilibrium set of a power system is stable if, 

when the initial state is in the given starting set, the 

system motion converges to the equilibrium set, and 

operating constraints are satisfied for all relevant 

variables along the entire trajectory.” 

 

The operating constraints are of inequality (and equality) 

type, and pertain to individual variables and their 

collections. For example, system connectedness is a 

collective feature, as it implies that there exist paths (in 

graph-theoretic terms) from any given bus to all other buses 

in the network. Note also that some of the operating 

constraints (e.g., voltage levels) are inherently soft, i.e., the 

power system analyst may be interested in stability 

characterization with and without these constraints. Note 

that we assume that our model is accurate within p in the 

sense that there are no further system changes (e.g., relay-

initiated line tripping) until the trajectory crosses the 

boundary p. 
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C.  Stability Definitions from System Theory 

In this section, we provide detailed analytical definitions 

of several types of stability including Lyapunov stability, 

input-output stability, stability of linear systems, and partial 

stability. Of these various types, the Lyapunov stability 

definitions related to stability and asymptotic stability are 

the ones most applicable to power system nonlinear 

behavior under large disturbances. The definition of 

stability related to linear systems finds wide use in small 

signal stability analysis of power systems. The concept of 

partial stability is useful in the classification of power 

system stability into different categories.  

C.1  Lyapunov Stability 

The definitions collected here mostly follow the 

presentation in [54]; we present definitions for cases that 

are typical for power system models (e.g., assuming 

differentiability of functions involved), and not necessarily 

in the most general context. We will concentrate on the 

study of stability of equilibrium points; a study of more 

intricate equilibrium sets, like periodic orbits, can often be 

reduced to the study of equilibrium points of an associated 

system whose states are deviations of the states of the 

original system from the periodic orbit; another possibility 

is to study periodic orbits via sampled states and Poincare 

maps [55]. 

 

We again consider the non-autonomous system: 

( , )x f t x                                                                      (1) 

where x is the state vector, x  is its derivative, f is 

sufficiently differentiable and its domain includes the 

origin. Note that the forcing (control input) term is not 

included, i.e., we do not write f(t, x, u). In stability analysis 

in the Lyapunov framework that is not a limitation, since all 

control inputs are assumed to be known functions of time t, 

and/or known functions of states x. For technical reasons, 

we will assume that the origin is an equilibrium point 

(meaning that f(t,0) = 0, t  0). An equilibrium at the 

origin could be a translation of a nonzero equilibrium after 

a suitable coordinate transformation [54, p.132]. 

 

The equilibrium point x = 0 of (1) is: 

 

 stable if, for each  > 0, there is  = (, t0) > 0 such 

that: 

||x(t0)|| <   ||x(t)|| < , t  t0  0                                 (2) 

Note that in (2) any norm can be used due to topological 

equivalence of all norms. In Figure 2 we depict the 

behavior of trajectories in the vicinity of a stable 

equilibrium for the case 2Rx  (a two dimensional system 

in the space of real variables). By choosing the initial 

conditions in a sufficiently small spherical neighborhood of 

radius  , we can force the trajectory of the system for all 

time 
0

tt   to lie entirely in a given cylinder of radius . 

 
Figure 2. Illustration of the definition of stability [57]. 

 

 uniformly stable if, for each  > 0, there is  = () > 0, 

independent of t0, such that (2) is satisfied; 

 unstable if not stable; 

 asymptotically stable if it is stable, and in addition 

there is η(t0) > 0 such that: 

||x(t0)|| < η(t0)  x(t)  0 as t   

It is important to note that the definition of asymptotic 

stability combines the aspect of stability as well as 

attractivity of the equilibrium. This is a stricter requirement 

of the system behavior to eventually return to the 

equilibrium point. This concept is pictorially presented in 

Figure 3. 

Figure 3. Illustration of the definition of asymptotic stability [57]. 

 

 uniformly asymptotically stable if it is uniformly stable 

and there is δ0  > 0, independent of t0, such that for all 

||x(t0)|| < δ0, x(t)  0 as t  , uniformly in t0 and 

x(t0); that is, for each  > 0, there is T=T(, δ0) > 0 such 

that: 

||x(t0)|| < δ0  ||x(t)|| < , t  t0 + T(, δ0) 

In Figure 4 we depict the property of uniform asymptotic 

stability pictorially. By choosing the initial operating points 

in a sufficiently small spherical neighborhood at 
0

tt  , we 

can force the trajectory of the solution to lie inside a given 

cylinder for all  0 0,t t T    . 

 
Figure 4. Illustration of the definition of uniform asymptotic stability [58]. 
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 globally uniformly asymptotically stable if it is 

uniformly stable, and, for each pair of positive numbers 

 and δ0, there is T = T(, δ0) > 0 such that: 

||x(t0)|| < δ0  ||x(t)|| < , t  t0 + T(, δ0) 

 exponentially stable if there are δ > 0, ε> 0,  > 0 such 

that: 

||x(t0)|| < δ  ||x(t)||  ε||x(t0)||
 0tt

e


, t  t0; 

In Figure 5 the behavior of a solution in the vicinity of 

an exponentially stable equilibrium point is shown. 

 

 globally exponentially stable if the exponential 

stability condition is satisfied for any initial state. 

 

 
Figure 5. Illustration of the definition of exponential stability [58]. 

 

These definitions form the foundation of the Lyapunov 

approach to system stability, and can be most naturally 

checked for a specific system via so called Lyapunov 

functions. Qualitatively speaking, i.e., disregarding 

subtleties due to the non-autonomous characteristics of the 

system, we are to construct a smooth positive definite 

“energy” function whose time derivative (along trajectories 

of (1)) is negative definite. While unfortunately there is no 

systematic method to generate such functions (some leads 

for the case of simple power systems are given in [56,57]), 

the so called converse Lyapunov theorems establish the 

existence of such functions if the system is stable in a 

certain sense. 

 

In power systems we are interested in the region of 

attraction R(Xp) of a given equilibrium set Xp, namely the 

set of points in the state space with the property that all 

trajectories initiated at the points will converge to the 

equilibrium set Xp. If the equilibrium set is a point that is 

asymptotically stable, then it can be shown that the region 

of attraction has nice analytical properties (it is an open and 

connected set, and its boundary is formed by system 

trajectories). In the case of large scale power systems, we 

are naturally interested in the effects of approximations and 

idealizations that are necessary because of system size. 

Even if the nominal system has a stable equilibrium at the 

origin, this may not be the case for the actual perturbed 

system, which is not entirely known to the analyst. We 

cannot necessarily expect that the solution of the perturbed 

system will approach the origin, but could if the solution is 

ultimately bounded, i.e., ||x(t)|| is bounded by a fixed 

constant, given that the initial condition is in a ball of a 

fixed radius, and for sufficiently large time t. 

Characterization of stability in this case requires knowledge 

of the size of the perturbation term, and of a Lyapunov 

function for the nominal (non-perturbed) system. A related 

notion of practical stability is motivated by the idea that a 

system may be “considered stable if the deviations of 

motions from the equilibrium remain within certain bounds 

determined by the physical situation, in case the initial 

values and the perturbation are bounded by suitable 

constants” [59]. One does not require a more narrow 

interpretation that the deviation from the origin of ||x(t)|| can 

be made arbitrarily small by a suitable choice of the 

constants, as is the case with total stability. Roughly 

speaking, for practical stability we allow that the system 

will move away from the origin even for small 

perturbations, and we cannot make that motion arbitrarily 

small by reducing the model perturbation term. 

 

Another concept of interest in power systems is that of 

partial stability [9,10,11], introduced already by Lyapunov 

himself. The basic idea is to relax the condition for stability 

from one that requires stable behavior from all variables 

(because of the properties of the norm used in (2) and 

elsewhere) to one that requires such behavior from only 

some of the variables. This formulation is natural in some 

engineered systems [9], and leads to substantial 

simplifications in others (e.g., in some adaptive systems). It 

has been used in the context of power system stability as 

well [60]. 

 

A power system is often modeled as an interconnection 

of lower-order subsystems, and we may be interested in a 

hierarchical (two-level) approach to stability determination 

[61]. At the first step, we analyze the stability of each 

subsystem separately, i.e., while ignoring the 

interconnections. In the second step, we combine the results 

of the first step with information about the interconnections 

to analyze the stability of the overall system. In a Lyapunov 

framework, this results in the study of composite Lyapunov 

functions. An important qualitative result is that if the 

isolated subsystems are sufficiently stable, compared to the 

strength of the interconnections, then the overall system is 

uniformly asymptotically stable at the origin.  
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C.2 Input/Output Stability 

This approach considers the system description of the 

form: 

y = H (u)                                                                          (3) 

where H is an operator (nonlinear in general) that specifies 

the q-dimensional output vector y in terms of the m-

dimensional input u. The input u belongs to a normed linear 

space of vector signals 
m
eL  - e.g., extended bounded or 

square integrable signals, meaning that all truncations u of 

such signals (set to zero for t> ) are bounded or square 

integrable (this allows inclusion of “growing” signals like 

ramps etc. that are of interest in stability analysis). 

 

 Definition: A continuous function     ,0,0: a  is 

said to belong to class K if it is strictly increasing and 

  .00   

 Definition: A continuous function 

      ,0,0,0: a  is said to belong to class KL 

if, for each fixed s, the mapping  sr,  belongs to 

class K with respect to r and, for each fixed r, the 

mapping  sr,  is decreasing with respect to s and 

  0, sr  as s . 

 A mapping H: 
m
eL  q

eL  is L stable if there exists a 

class-K function () defined on [0, ), and a 

nonnegative constant  such that: 

   Hu u
  

LL
                                               (4) 

for all u
m
eL  and [0, ). 

It is finite-gain L stable if there exist nonnegative 

constants  and  such that: 

   Hu u
  

LL
                                                (5) 

for all u
m
eL  and [0, ). 

 

Note that if L  is the space of uniformly bounded 

signals, then this definition yields the familiar notion of 

bounded-input, bounded-output stability. The above 

definitions exclude systems for which inequalities (4) and 

(5) are defined only for a subset of the input space; this is 

allowed in the notion of small-signal L  stability, where the 

norm of the input signals is constrained.  
 

Let us consider a non-autonomous system with input: 

 x f t,x,u                                                                 (6) 

Note the shift in analytical framework, as in input/output 

stability inputs are not assumed to be known functions of 

time, but assumed to be in a known class typically 

described by a norm. 
 

A system (6) is said to be locally input-to-state stable if 

there exists a class-KL function  (,), a class-K function 

(), and positive constants k1 and k2 such that for any 

initial state x(t0) with ||x(t0)|| < k1 and any input u(t) with 

  20
supt t u t k  , the solution x(t) exists and satisfies: 

      0 0

0

sup
t t

x t x t ,t t u


  
 

 
    

                   (7) 

for all t  t0  0. 
 

It is said to be input-to-state stable if the local input-to-

state property holds for entire input and output spaces, and 

inequality (7) is satisfied for any initial state x(t0) and any 

bounded input u(t). This property is typically established by 

Lyapunov-type arguments [54]. 
 

Next, we consider the system (6) with the output y 

determined from: 
 

y = h(t, x, u)                                                                (8) 
 

where h is again assumed smooth. 

A system (6) is said to be locally input-to-output stable 

if there exists a class-KL function , a class-K function , 

and positive constants k1 and k2 such that for any initial 

state x(t0) with ||x(t0)|| < k1 and any input u(t) with 

  20
supt t u t k  , the solution x(t) exists and the output 

y(t) satisfies: 

      0 0

0

sup
t t

y t x t ,t t u


  
 

 
    

 

           (9) 

for all t  t0  0. 
 

It is said to be input-to-output stable if the local input-

to-state property holds for entire input and output spaces, 

and inequality (9) is satisfied for any initial state x(t0) and 

any bounded input u(t). 
 

The first term describes the (decreasing) effects of the 

initial condition, while the function  in the second term 

bounds the “amplification” of the input through the system. 

In the case of square-integrable signals, the maximal 

amplification from a given input to a given output is 

denoted as the 
2L  gain of the system. This gain can be 

easily calculated in general only for linear systems, where it 

equals the maximal singular value (the supremum of the 

two-norm of the transfer function evaluated along the 

imaginary axis, or the H norm) of the transfer function. 

One of main goals of control design is then to minimize this 

gain, if the input represents a disturbance. There exist a 

number of theorems relating Lyapunov and input-to-output 

stability, and some of the main tools for establishing input-

to-output stability come from the Lyapunov approach. 
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Note, however, that input-to-output stability describes 

global properties of a system, so in its standard form it is 

not suitable for study of individual equilibrium sets. Input-

to-output stability results are thus sometimes used in the 

stability analysis to establish Lyapunov stability results in a 

global sense [62]. For a more sophisticated use of the input-

to-output stability concept, in which the input-output 

properties are indexed by the operating equilibrium, see 

[63].  

C.3  Stability of Linear Systems 

The direct ways to establish stability in terms of the 

preceding definitions are constructive; the long experience 

with Lyapunov stability offers guidelines for generating 

candidate Lyapunov functions for various classes of 

systems, but no general systematic procedures. For the case 

of power systems, Lyapunov functions are known to exist 

for simplified models with special features [56,57], but 

again not for many realistic models. Similarly, there are no 

general constructive methods to establish input-to-output 

stability using (9) for nonlinear systems. 

 

One approach of utmost importance in power 

engineering practice is then to try to relate stability of a 

nonlinear system to the properties of a linearized model at a 

certain operating point. While such results are necessarily 

local, they are still of great practical interest, especially if 

the operating point is judiciously selected. This is the 

method of choice for analytical (as contrasted with 

simulation-based) software packages used in the power 

industry today. The precise technical conditions required 

from the linearization procedure are given, for example, in 

[62, p.209-211]. The essence of the approach is that if the 

linearized system is uniformly asymptotically stable (in the 

non-autonomous case, where it is equivalent to exponential 

stability), or if all eigenvalues have negative real parts (in 

the autonomous case), then the original nonlinear system is 

also locally stable in the suitable sense. The autonomous 

system case when some eigenvalues have zero real parts, 

and others have negative real parts, is covered by the center 

manifold theory; see [54] for an introduction. 

 

In this subsection we consider a system of the form: 

   x t x t A                                                                  (10) 

which is the linearization of (1) around the equilibrium at 

the origin. General stability conditions for the non-

autonomous case are given in terms of the state transition 

matrix (t,t0): 

x(t) = (t,t0) x(t0)                                                            (11) 

While such conditions [62, p.193-196] are of little 

computational value, as it is impossible to derive an 

analytical expression for (t,t0) in the general case, they are 

of significant conceptual value. 

In the case of autonomous systems (i.e., A(t) = A): The 

origin of (10) is (globally) asymptotically (exponentially) 

stable if and only if all eigenvalues of A have negative real 

parts. The origin is stable if and only if all eigenvalues of A 

have non-positive real parts, and in addition, every 

eigenvalue of A having a zero real part is a simple zero of 

the minimal characteristic polynomial of A. 

 

In the autonomous case, an alternative to calculating 

eigenvalues of A is to solve a linear Lyapunov Matrix 

Equation for a positive definite matrix solution; if such 

solution exists, it corresponds to a quadratic Lyapunov 

function that establishes stability of the system. 

D.  Stability Definitions and Power Systems 

D.1  Complementarity of Different Approaches 

While Lyapunov and input/output approaches to 

defining system stability have different flavors, they serve 

complementary roles in stability analysis of power systems. 

Intuitively speaking, “input/output stability protects against 

noise disturbances, whereas Lyapunov stability protects 

against a single impulse-like disturbance” [55, p. 103]. 

 

The ability to select specific equilibrium sets for analysis 

is a major advantage of the Lyapunov approach; it also 

connects naturally with studies of bifurcations [64] that 

have been of great interest in power systems, mostly related 

to the topic of voltage collapse. Note, however, that 

standard definitions like (2) are not directly applicable, as 

both the starting set p and the technically viable set p are 

difficult to characterize with the norm-type bounds used in 

(2). An attempt to use such bounds would produce results 

that are too conservative for practical use. For outage of a 

single element (e.g., transmission line), and assuming a 

known post-equilibrium set Xp and an autonomous system 

model, the starting set is a point; for a finite list of different 

outages of this type, the starting set will be a collection of 

distinct points. The requirement that such p be “covered” 

by a norm-type bound is not very suitable, as it would likely 

include many other disturbances to which system may not 

be stable, and which are not of interest to the power system 

analyst. Note also that partial stability may be very suitable 

for some system models [60]. In a very straightforward 

example, we are typically not interested in some states, like 

generator angles, but only in their differences. The concept 

of partial stability is hence of fundamental importance in 

voltage and angle stability studies. In such studies, we focus 

on a subset of variables describing the power system, and 

we assume that the disregarded variables will not influence 

the outcome of the analysis in a significant way. In practice 

we tend to use simpler reduced models where the ignored 

variables do not appear, but conceptually we effectively use 

partial stability. The other key difficulty in analysis stems 

from the fact that the construction of Lyapunov functions 
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for detailed power system models, particularly accounting 

for load models, is still an open question, as we commented 

earlier. Because of these two reasons, the stability of power 

systems to large disturbances is typically explored in 

simulations. Advances in this direction come from 

improved computer technology and from efficient power 

system models and algorithms; for a recent review of key 

issues in power system simulations that are related to 

stability analysis see [65]. In the case of power system 

models for which there exist energy functions, it is possible 

to approximate the viable set p using the so-called BCU 

method and related ideas; a detailed exposition with 

geometric and topological emphasis is presented in [65]. 

 

The input/output framework is a natural choice for 

analysis of some persistent disturbances acting on power 

systems (e.g., load variations). Note, however, that 

conditions like (9) are difficult to establish in a non-local 

(large signal) setting, and simulations are again the main 

option available today. 

 

The two approaches of stability coalesce in the case of 

linear system models. The use of such models is typically 

justified with the assumed small size of the signals 

involved. A range of powerful analysis tools (like 

participation factors [8]) has been developed or adapted to 

power system models. For noise-type disturbances, an 

interesting non-stochastic approach to the worst-case 

analysis is offered by the set-based description of noise 

detailed in [66]. Small signal analyses are a part of standard 

practice of power system operation today. 

D.2  An Illustration of a Typical Analysis Scenario  

In terms of the notation introduced here, a scenario 

leading towards a blackout is as follows: Following a 

disturbance, 1
pX  turns out to be unstable, and the system 

trajectory passes through 1
p . After actions of relays and 

line tripping, the system splits into k2 (mutually 

disconnected) components. The post-fault equilibria in each 

component are 2,l
pX , l = 1,…, k2, and some of them again 

turn out to be unstable, as their boundaries 2,l
p  are 

crossed by corresponding (sub)system trajectories. Note 

that up to this point k2+1, stability analyses have been 

performed. Then the stability assessment process repeats on 

the third step and so on. In this framework under a “power 

system” we understand a set of elements that is supplying a 

given set of loads, and if it becomes disconnected (in 

graph-theoretic sense) at any point, we have to consider as 

many newly created power systems as there are connected 

components.  

 

There exists a point of difference between theorists and 

practitioners that we want to comment upon here: Stability 

theorists tend to see a new system after the initial event 

(e.g., a line switching), while practitioners tend to keep 

referring back to the original (pre-disturbance) system. This 

is because stability limits are specified in terms of pre-

disturbance system conditions. While this is typically not a 

major obstacle, it points out toward the need for a more 

comprehensive treatment of stability theory for power 

systems as discussed in this section. 

VI.  SUMMARY 

This report has addressed the issue of stability definition 

and classification in power systems from a fundamental 

viewpoint and has examined the practical ramifications of 

stability phenomena in significant detail. A precise 

definition of power system stability that is inclusive of all 

forms is provided. A salient feature of the report is a 

systematic classification of power system stability, and the 

identification of different categories of stability behavior. 

Linkages between power system reliability, security and 

stability are also established and discussed. The report also 

includes a rigorous treatment of definitions and concepts of 

stability from mathematics and control theory. This material 

is provided as background information and to establish 

theoretical connections.  
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