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On the Interpretation of Serial Laboratory Measurements in Acute Myocardial
Infarction
Adelin Albert,1 Eugene K. Harris,2Jean-Paul Chapelle,’ Camille Heusghem,’ and Henri E. Kulbertus3

Serial laboratory determinations are now routinely performed
on patientsadmittedtointensive-careunits.Adequateinter-
pretation of such cumulative information for clinical decision-
making purposes is a challenging problem. We describe a
statisticalmethod for predicting-sequentially as the data
become available-thepatient’soutcome,deathorsurvival.
Thus the method goes beyond previouslyreported tech-
niques that base such prediction on only a single multivariate
observation.The methodhasbeenappliedtodailymeasure-
mentsofserum ureaand lactate dehydrogenase, performed
duringone week on patientshospitalizedinthecoronary-
care unitwith acute myocardial infarction. Two baseline
variables were also included in the dynamic risk index so
derived: the age of the patient and the number of previous
myocardial infarctions recorded on admission. We also dis-
cuss the problems of selecting the most-predictive laboratory
tests and of determining for each test the amount of past data
needed to achieve satisfactory prediction. We distinguish
between global evaluation of the dynamic risk index obtained
(in terms of specificityand sensitivity) and individual interpre-
tation (in terms of posterior/prior probability ratio) of a given
risk score for a particular patient. The approach described
may contributeto more effective use of results of repeated
laboratory tests on critically ill patients.
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Clinical chemistry has always played a major role in
intensive-care medicine, but the many technological ad-
vances have not always been matched by comparable prog-
ress in interpretation of laboratory data.

Thus, when a patient is admitted to a coronary-care unit
with suspected myocardial infarction, he is submitted to a
panel of clinical laboratory tests that are systematically
repeated throughout hospitalization. This yields a huge
amount of information that needs to be integrated and
interpreted by the clinician for diagnostic, prognostic, and
decision-making purposes. Among the various laboratory
tests performed, some are likely to present repetitious
information. As to those tests that truly reflect the patient’s
status, it is questionable whether the serial measurements
recorded are used optimally for outcome prediction. In this
context, we propose to address the problem of continuous
risk assessment in cases of myocardial infarction (MI) from
cumulative laboratory data collected during the patient’s
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first week in the coronary-care unit.4 This problemcan be
investigated by biokinetic modeling techniques, as de-
scribed by Groth and de Verdier (1), to derive values of
quantities more closely describing the temporal changes of
the pathological process. The approach developed here,
however, is entirely statistical.

Improved use of serial laboratory measurements has long
been claimed and recognized, but surprisingly little has
been done in this area. Moreover, the role of laboratory tests
in acute MI has been mainly directed toward diagnosis (2)
rather than prognosis. In most papers dealing with prognos-
tic indices, MI patients are classified into two groups,
survivors and nonsurvivors, on the basis of a single multi-
variate observation, by well-known discriminant analysis
techniques (3,4). In proceeding that way, however, nonsur-
vivors are all grouped together and the elapsed time be-
tween admission and death is not taken into account.
Further, the method provides only a static risk index and
does not account for the dynamics of the disease process and
possible late re-infarctions. Some authors (5) have proposed
fitting a polynomial function to the series of observations
and allocating the patients on the basis of the resulting
coefficients, but the method is cumbersome and hardly
works dynamically.

In a recent paper (6), we looked at serial determinations
as forming a response curve to the disease process by linear
interpolation between successive measurements of either
tissue markers (CK, LD) or biochemical components (AGP,
urea) that are increased by metabolic disturbances. We
conjectured that the shape of the response curves of these
various substances might bring valuable information for
outcome prediction. These considerations led one of us to
develop a theory of discriminant analysis (7) based on
multivariate response curves, which was successfully ap-
plied to a retrospective data base of more than 300 patients
with MI (6). Although exhibiting interesting dynamic char-
acteristics, the method was essentially descriptive and did
not account for the actual time of death of nonsurvivors, a
drawback that we have already mentioned for the classical
approach. This prompted us to propose a new methodology
for upgrading the interpretation of serial laboratory mea-
surements recorded from patients admitted to coronary-care
units.

The Data Base
Our study material consisted of 330 patients with docu-

mented MI admitted to the two coronary-care units of the
University Hospital, Liege, Belgium. Acute MI was diag-
nosed on the basis of typical clinical history, electrocardio-
graphic evidence, and a rise and fall of CK and LD activities
in serum.

Age (in years) and the number of previous MIs were
recorded for each patient at admission. The mean age of the

Nonstandard abbreviations: AGP, a,-acid glycoprotein; CK,
creatine kinase (EC 2.7.3.2); LD, lactate dehydrogenase (EC
1.1.1.27); MI, myocardial infarction; AIC, Akaike’s information
criterion; ML, maximum likelihood.
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patients was 57.4 (SD 9.5) years. Fifty-nine (17.9%) of the
patients were women, and 65 (19.7%) had a prior history of
myocardial infarction.

Blood was sampled at the time of hospital admission, and
then daily until the end of the first week of hospitalization.
Total CK and LD activities were measured by optimized

spectrophotometric methods (CK and LD UV tests, no. 3388
and 3399; Merck, Darmstadt, F.R.G.) (8,9) at 37 #{176}C,with an
ABA-100 discrete analyzer (Abbott Labs., North Chicago, IL
60064). We determined haptoglobin and AGP concentra-
tions by standard radial immunodiffusion (10), using Parti-
gen Plates (Behring Institute, F.R.G.). Serum urea, creati-
nine, and uric acid were assayed by the diacetyl monoxime
(11), modified Jaff#{233}reaction (12), and phosphotungstate (13)
techniques, respectively, in a continuous-flow analyzer
(SMA 12/60; Technicon Instruments Corp., Tarrytown, NY
10591).

The clinical significance and the evolutionary characteris-
tics of these laboratory tests after an acute MI have been
extensively studied and reported in a series of papers (14-
16). For illustrative purposes, we have restricted our atten-
tion here to the statistical treatment of three constituents
only: AGP, a “positive” acute-phase reactant possibly relat-
ed to the healing of the jeopardized myocardium (17); urea,
which is likely to reflect proteolysis and possible hemody-
namic impairment consequent to MI (18); and LD, the
amount of which is known to be closely related to the size of
the infarct (14). Because uric acid, creatinine, and urea, as
well as CK and LD are highly correlated, we expected that
little would be gained by adding the remaining variables.

Finally, the patient’s status, “alive” or “deceased,” was
recorded every day for all patients in the data base.

The StatisticalProblem

We are faced with the situation where patients are being
measured at equally spaced time points t (e.g., every day) up
to a certain time T, and their outcome recorded in every
time interval[t, t + 1].

Let Yt denote the outcome variable in the tth interval of
time, and assume that Yt takes only two values, namely, 1
for “alive” and 2 for “dead.” It follows that for each patient in
the data base, we can define a “sequence of states” (y1, Y2,

..) of maximum length T. In our application, T = 7 and
every sequence is a series of l’s terminated by either 1 or 2
depending on whether the patient survived or died. For
example, a patient dying in the fourth time interval [3, 4]
has the sequence (1,1,1,2), because he was alive during the
first three days after admission and died on the fourth.
Likewise, a patient alive at the end of the one-week investi-
gation period yields a full sequence of l’s.

Let Xt denote the vector of all observations made on the
patient up to and including time t. This vector may consist of
(a) baseline or “constant” variables measured only once, for
example, age and previous MIs on admission, and (b) serial
measurements of AGP, urea, and LD.

The question that we propose to answer-namely, how to
assess on a daily basis the patient’s survival chances from
previously recorded measurements-reduces to the follow-
ing statistical problem: “predict at each time-point t the
outcome variable Yt from the information vectorXt available
up to time t; or in other words, compute the probability
P’(Yt = 2 LYt).”

The problem is akin to classical regression analysis,
where one proposes to predict the patient’s outcome from a
vector of observations. In the present situation, however,
both the outcome and the predictor variables are time
dependent. Additionally, there is a double selection prob-
lem, namely, (a) to determine the best combination of

predictivevariables, and (b) to decide upon thenumber of
past observations that are needed to achieve a satisfactory
prediction at each time point. For instance, only the current
or last two measurements of the selected variables might
suffice for assessing the patient’s risk, earlier observations
having no effect on the outcome at time t.

Clearly, the number of possible “variable/time-point”
combinations to be tested in the regression analysis in-
creases dramatically with the number of components of
vector Xt. Thus, in practice, one usually proceeds hierarchi-
cally with models of increasing complexity and stops the
process when no statistically significant improvementcan
be obtained in the prediction of outcome.

In sum, one must keep in mind the quest for the most
parsimonious model and select the minimum number of
past observations needed.

The PredictionModel

In the following, we shall assume that the vector 7(2 has
the same length p at each time t, and denote its elements as
x1 xi,, remembering that the values of these elements
generally change with time t.
The basic model for prediction of a dichotomous response

variable based on repeated measurements was recently
proposed by Wu and Ware (19), and applied to three yearly
measurements made in two cohorts obtained in the Fra-
mingham Heart Study. This model, namely,

pr(y, = 2LYt) = exp(a0, + atXt)/[1 + exp(ao, + a,’X’)] (1)

assumes that the probability of death in the interval [t, t +
1] is a logistic function of a linear combination of past
observations (see also 20-22).
In the above equation at’ = (a1,, ..., a) is a vector of

length p whose elements are generally time dependent. In
vector notation, a,Xt means a1,,x + .. . + The complex-
ity of model 1 will vary greatly depending on (a) the number
p of elements to be included in the observation vectorXt, and
(b) whether the intercept aot or the vector of coefficients at or
both are assumed to be time dependent (if not, the subscript
t will be dropped).

The assumption of constant coefficients (stationary model)
throughout the monitoring period, at least for the intercept

is unrealistic in the acute-MI situation. Indeed, large
variations are observed in the concentrations in serum of
the biochemical markers investigated, especially during the
first week after admission to the hospital. Conversely, if one
assumes that the weighting factors a,t, (i = 0, . .., p), are
time dependent (nonstationary model), themodel conforms
better to reality. The drawback, however, is that the weights
have to be estimated for each variable at each time point-a
difficult task. One possible solution would be to apply at
each time t-i.e., every day-a classical discriminant analy-
sis between survivors and “next-day” nonsurvivors. This
approach is usually not feasible, because the number of
deaths each day issmall as compared with the number of
patients still alive. Alternatively,onecan subtract from the
observations some deterministicpart of the response to the
disease process,so as to bring stabilityto the time series

observed.In this case, a model with constant coefficients can
be postulated for the transformed variables,greatlysimpli-
fying the computations.

The two-stage approach. Figures 1-3 display the average
response curves for AGP, urea, and LD in three MI-patient
categories of increasing risk, namely, (a) the one-year
survivors, (b) the patients who died between one and 12
months, and (c) the deaths between seven days and one
month. For each biochemical parameter, there was a clear
ordering of the group response curves over the one-week
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Fig. 1. Average response curves of serumcs1-acidglycoprotein (g/L)
afteracute Ml in one-year survivors (group I, n = 272), deaths between
one and 12 months (group II, n = 17), and deaths betweenseven and
30 days (group III, n = 16) after admission
ValueofZerbe’s test for group differencesis F = 7.05,withdegreesof freedom
2.77and 418.77(p < 0.001)

study period, confirming a correlation between in-hospital
collected data and patient outcome after hospital discharge.
We compared the average response curves, using Zerbe’s
nonparametric test (23), and found a statistically significant
difference between the three groups (AGP: F = 7.05, p <

0.001; urea: F = 6.16, p < 0.01; LD: F = 9.44, p < 0.001).
From these results, one would expect that patients dying
during the first week exhibit, on average, even steeper
response curves than those found in the three groups above.
For the purpose of our study, we regarded the average
response curves of the one-year survivors (which represent
more than 80% ofour total patient population) as the typical
evolutions of AGP, urea, and LD data after an MI, and any
upper deviation from them was considered as an increase in
the patient’s risk. Hence we decided to correct every individ-
ual’s response curves for the deterministic component by
subtracting the curve representing the data for one-year

TIME (days)

Fig. 3. Averageresponsecurvesof lactate dehydrogenase (U/L) after
acute Ml
Valueof Zerbe’s test for group differences is F = 9.44.with degreesof freedom
2.29 and 346.39 (p < 0.001). Groupsas in Fig. I

survivors. Because the response curves envisaged in our
study were obtained by simple linear interpolation between
successive measurements, the correction above merely con-
sisted in standardizing every observation at time t, i.e., by
subtracting the mean and dividing by the standard devi-
ation for the one-year survivor group at that time. We
emphasize that this transformation was applied only to
time-dependent variables, not to baseline variables such as
age or previous MIs.

Let Z’ = (z1, ..., z,) denote the vector of transformed
elements of X’. It is clear that, on average, the elements of Z’
fluctuate around 0 for low-risk patients (one-year survivors)
andaround some positive value for high-risk patients (early
deaths). Therefore the assumption of constant coefficients in
the logistic model 1 becomes realistic.

In sum, we propose a two-stage approach for solving the
problem of dynamic outcome prediction in acute myocardial
infarction. The method consists of (a) transforming the
original time-dependent variables as described above, and
(b) assuming for the transformed set of data the logistic
model

pr(y, = 2LZt) = exp(b0 + b’Zt)/[l + exp(b0 + b’Z’)] (2)

where b0 and b’ = (b1, ..., br,) are now a set of unknown
“constant” parameters to be estimated from the data base.

We shall call the linear function S(t) = b0 + b’Z’ the “risk
index” at time t. As in classical discriminant analysis, this
index can take any value on the real line, increased values
being associated with high risk of death, easily seen from
equation 2; conversely, large negative scores are signs of
good prognosis.

Estimation. Model 2 can be postulated for any combina-
tion of vector Zt, dependingon how many elements are
included in this vector. For each model M considered, the
problem then reduces to estimating the coefficients of the
risk function S(t), by using the information contained in the
data base. The number of parameters to be estimated for
each model is obviously equal to p + 1, i.e., the p weights
associated with each element of vector Z’ and the intercept
b0.

Estimation of the parameters was obtained by maximiz-



Table 3. Results from Fitting Various Models for
Dynamic Outcome Prediction to the Data Base of

330 Patients with Acute Ml

Cumulative
no. of
deaths

No. of Total no.
survivors of patients

Model:S(t)
Ml: Intercept
M2: Intercept

Age
M3: Intercept

Age
PI

M4: Intercept
Age
P1
AGP(I)

M5: Intercept
Age
P1
Urea (l

M6: Intercept
Age
P1
LD (I)

M7: Intercept
Age
P1
Urea (t-1)
Urea (I)

M8: Intercept
Age
P1
LD (f-i)
LD (I)

M9: Intercept
Age
P1
Urea (I)
LD (

Estimated
coeff.

-4.18
-8.78

.077
-8.94

.076

.51
-8.92

.074

.50

.26
-7.85

.059

.66

.48
-7.86

.053

.41

.46
-7.91

.050

.65
_.158

.58
-7.86

.053

.41
.108
.41

-7.14
.038
.58
.38
.31

Log [b

-171.55
-163.76

-162.03

-160.29

-143.70

-143.39

-143.05

-143.12

-132.72

SE of
coeff.
.175

1.30
.020

1.34
.021
.240

1.33
.021
.241
.130

1.21
.019
.246
.066

1.32
.021
.27
.077

1.23
.019
.246
.129
.111

1.32
.021
.280
.129
.108

1.22
.019
.274
.073
.079

p+1

2

3

4

4

4

5

5

5

AIC
345.1
331.5

330.1

328.6

295.4

294.8

296.1

296.2

275.4
(minimum)

Table 2. Daily Means and Standard Deviations for
AGP, Urea, and LD for One-Year Survivors during

the First Week after an MIC
AGP, gIL Urea, gIL LD, UIL

Day after
admission Mean SD Mean SD Mean SD

0 0.90 0.21 0.38 0.13 571 292
1.07 0.31 0.37 0.16 1323 570

2 1.34 0.28 0.40 0.18 1418 623
3 1.50 0.33 0.45 0.20 1249 542
4 1.58 0.38 0.48 0.21 1031 412
5 1.60 0.40 0.49 0.21 916 344
6 1.63 0.43 0.50 0.23 800 291

These dataare from272 one-year survivors. The corresponding response
curvesare derivedbylinearinterpolationbetweenthe meanvalues(see Figs.
1-3).

8Nonsignificant at the 5% level by an asymptotically normal significance

test.
5The chi-square test for comparing Iwo models is obtained by taking twice

the difference between the corresponding log L values, and the number of
degrees of freedom is equal to the difference between the number of
parameters estimated in each model.

P1, no. of previous MIs.
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ing the logarithm of the likelihood function of the sample,
noted by log L.

To find out which model best fits the observations, we
used a log-likelihood ratio criterion asymptotically distrib-
uted as a chi-square test. We also computed Akaike’s
Information Criterion (24), which is particularly appropri-
ate when attempting to select a good model from among
many alternatives. This criterion combines for each model
the maximized likelihood (logL) with the number of pa-
rameters estimated (p + 1). By definition, AIC = -2 log L +

2(p + 1), and the procedure chooses as the “best” model the
one for which AIC is a minimum.

Results

For each patient in the data base, we associated a
sequence of states as described above under The Statistical
Probkm. We tallied the number of nonsurvivors in each
time interval, and included in the last interval all patients
who died between days 7 and 15, patients with such early
death also being considered as high-risk patients (Table 1).
The total number who died during the monitoring period
was 33 (10%).

As described above, the time-dependent variables AGP,
urea, and U) were standardized-i.e., Z = (x - )/SD-to
eliminate the deterministic component of the disease re-
sponse and to apply the simplified model 2. Table 2 gives the
means and standard deviations of the response curves for
the one-year survivors at each day for these three laboratory
tests. We note from Table 2 and from Figures 1-3 that (a)
there is a steady increase of AGP and urea from admission
until theend of the first week, and (b) LD activities reach a
maximum on the second day after admission, then regularly
decrease until the last day.

Table 1. Distribution of 330 MI Patients According
to Their State Sequence Recorded during the

First Week of Hospitalization

Time State No.
Interval,day sequence deaths

0-1 2 3 3 327 330
1-2 12 5 8 322 327
2-3 112 8 16 314 322
3-4 1112 3 19 311 314
4-5 11112 2 21 309 311
5-6 111112 4 25 305 309
6-7 1111112 8 33 2971) 305

8See text.
bThe sequence of states associated with each of the 297 survivors at the

end of the monitoring period is 1111111.

Fitting of Models
Several models were fitted to the data (Table 3). For each

model M, we determined (a) the maximum of the log-
likelihood function, log L; (b) the number of fitted parame-
ters, p + 1; (c) Akaike’s Information Criterion AIC, which
enables one to select the best of a series of models; and (d)
the estimated coefficients b0, ..., b and their asymptotic
standard errors. Finally a bias correction was applied to the
estimated coefficients for the “best” model, according to a
method by Anderson and Richardson (25).

Model Ml: Prior probabilities. The simplest model is to
assume that there are no covariates in the risk index, i.e., no
baseline variables and no time-dependent variables; thus
S(t) = b0. This model is equivalent to assuming that, on the
average, the prior probabilities of survival (P1) and death
(P2) are constant in every time interval. The ML estimate of
b0 was found to be -4.18. Consequently, by equation 2, the
daily probability of death is P2 = 0.0 15 and the probability
of survival P1 = 0.985. Allocation of the individual patients
into survivor and nonsurvivor groups is not possible merely
on the basis of overall prior probabilities. Therefore, it is
anticipated that adding the baseline variables (age and
previous MIs) and serial laboratory measurements into the
risk function will improve predictions.

Model M2: Effect of age. The introduction of age signifi-
cantly improved model Ml: x2= 2(log L2 - log L1) = 15.58,



S(t) = -7.14 + 0.038 age + 0.58PT + 0.38 u1 + 0.31 l (3)
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1 d.f. (p < 0.001). Akaike’s criterion decreased by 13.6 units.
The risk function obtained was S(t) = -8.87 + 0.077 age.
Hence, a 70-year-old patient has, on the average, a daily
probability of death of P2 = 0.033 [S(t) = -3.39], twice as
much as we found above.

Model M3: Effect of previous MIs. The addition of the
number of previous MIs to age produced no significant
difference at the 5% critical level ( = 3.46, not significant),
although the ratio of b2 to its standard error (0.51/0.24=

2.13)exceeded 1.96,the upper 2.5% point of the gaussian
distribution. We decided, however, to keep previous MIs in
the riskindex, because in previous studies (6, 22) this
parameter was always significantly efficient in discriminat-
ing survivors and nonsurvivors.

Models M4-M6: Use of the current biochemical observa-
tion. In these models, we added to age and previous MIs only
the most recent observation of AGP (M4), urea (M5), or LD
(M6). By comparing each of these models with model M3, we
found LI) to be the best biochemical parameter to use in
improving outcome prediction (x2= 37.28 vs 3.48 for AGP
and 36.66 for urea), and concluded that AGP did not help
much in assessing the current patient’s condition. This
result seems to contradict the high F-value (7.05) we found
when comparing the three risk categories depicted in Figure
1. The two situations, however, are entirely different. In one
case, we looked at early deaths only, and in the other at
patients dying later, after hospital discharge. Actually, we
showed that the effect of AGP only appears later in the
course of the disease (15) and that AGP probably is the best
biochemical test for making a long-term prognosis (26). Note
that blood urea was nearly as good a predictor as LD. When
we say this, what we mean is that the current (or most
recent) value of U) or urea at time t is a good predictor of
outcome in the next time interval.

At this point, we know that prediction is not significantly
improved by AGP, but is improved by the knowledge of urea
and U). Now two further questions need to be answered: (a)
Do past values of LD or urea improve the predictive power of
the current observation? (b) If we combine urea and LD, do
we obtain a better risk index than using each test separate-
ly?

Models M7, 8: Effect of previous laboratory measurements.
As the results clearly indicate, prediction was not signifi-
cantly improved by adding to the current value (time t) the
previous one (time t-l). For urea, the log-likelihood in-
creased from -143.70 to -143.05, leading to a x2valueof
1.30 (not significant). Likewise for U), we found a nonsignif-
icant value of x2 = 0.54. Hence, only the most recent
observation is needed to obtain satisfactory dynamic out-
come prediction in patients suffering from MI. In fact, high
correlations were found between successive standardized
test results across the population.

Model M9: Joint effect of urea and LD. When we combined
both urea and LD (most recent results) with age and
previous MIs in the risk index, there was a considerable
benefit in prediction efficiency. When we compared models
M3 and M9, thelog-likelihoodratio test obtained was highly
significant: x2 = 58.64 on two degrees of freedom. Model M9
was also the one for which the value for Akaike’s Informa-
tion Criterion reached a minimum, 275.44. Adding to M9
either AGP or previous observations of urea and LD yielded
only redundant and unnecessary information.

The Dynamic PrognosticIndexand ItsEfficiency

From the fitting of the various models, we concluded that
thebest risk index, that providing optimal dynamic outcome
prediction, was given by the following equation (bias correc-
tion applied to the coefficients):

where P1 is the number of previous MIs, and u1 and i
represent the current observations of urea and U), stan-
dardized as described above (by using Table 2). Both of these
standardized variables fluctuate around zero in one-year
survivors, urea having slightly more weight (0.38) than U)
(0.31) in assessing a patient’s risk. Also note that because all
the coefficients of thevariablesin equation 3 are positive,
increased values of the variables are indicative of severity
and bad prognosis.

To evaluate the overall efficiency of the dynamic prognos-
tic index derived, we computed the daily values of the index
(equation 3) for all 330 patients in the data base. For each of
the 297 patients still alive at the end of the one-week
monitoring period (survivors: group D), we determined the
highest value of S(t), i.e., the poorest score during the one-
week study period, whereas for the 33 patients who died
(nonsurvivors: group D), we recorded the score just preced-
ing death. We studied the distributions of these scores for
both groups by applying a likelihood ratio approach as
described elsewhere (27). By using the cutoff point where the
two distributions intersect (S* = -3.88), we correctly allo-
cated 238 survivors (specificity = 80%) and 24 nonsurvivors
(sensitivity = 73%) to their groups, thus yielding a total
efficiency of nearly 80%. For comparative purposes, when
the risk index was based on age and previous MIs alone
(thus excluding the serial values of urea and LD), specificity
and sensitivity dropped respectively to 67% and 58% (total
efficiency, 66%).

There is another way to appraise the predictive power of
the risk index obtained. For each patient in the data base,
we computed the accumulated probability of death condi-
tional on the observations available from admission until
the end of the seven-day period (or until death for nonsurvi-
vors). If P(t) denotes the conditional probability of death in
the tth interval of time as given by equation 2, then the
accumulated probability of death associated with every
patient, noted ir, is computed from the relations

IT = P(1) + t2 P(t)fl [1 -

where ‘r equals the actual time of death for nonsurvivors and
(r = 7) for survivors. As shown in Figure 4, the cumulative
frequency distributions of these probabilities ir in survivors
(n = 297) and in nonsurvivors (n = 33) are notably distinct.
For instance, an accumulated probability of death of at least
0.15 was obtained in only 10% of survivors, but in more than
40% of nonsurvivors, emphasizing the difference between
the two groups. Practically, one can say that any value of ir
exceeding 10% was a clear sign of poor prognosis.

The excellent performance of this dynamic risk index
derived from our data base was recently confirmed on a test
sample of 76 more MI patients. From among the 11 patients
who died during hospital stay, eight (73%) had a scorelarger
than the critical cutoff point of -3.88 before death. Among
the 65 survivors, 54 (83%) showed persistent negative
values less than -3.88 during the one-week monitoring
period.

Interpretation of Individual Risk Scores

The data above provide an overall evaluation of the

‘If we regard the accumulated probability v as a function ofT (=

2, 3, . . .), not as an end-study statistic, it could be computed
sequentially (i.e., every day) as a warning sign that increased
therapeutic effort is necessary. The complementary function a(r) =

1 - ift) actually represents the probability of survival conditional
on past observations collected from the patient.
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0 1 2

0.62
878
-2.83

3

1.22
1406

-1.80

4

1.60
1360

-1.36

5

0.44
350
-4.35

Table 4. Dynamic Risk Scores S(O and Associated Probabilities of Death P(O Calculated for Two
Patients with Acute Ml

Day alter admIssIon

Patient la
Urea, g/L
LD, U/L
Score, S (t)
Prob.,P(O 0.06 0.14 0.21

Patient21
Urea,g/L
LD, U/L
Score,S(t)
Prob., P(t) 0.01 0.05 0.07
apatit no.5428; age = 71 yrs,one previousinfarct(P1= 1); died on the thirddayfollowingadmission(accumulatedprobability of death IT 0.36).
b Patientno.296A; age = 75 yrs, no previous infarct (P1 = 0); died 32 daysaftercurrentheartattack(accumulatedprobabilityof death IT = 0.37).

6

0.66
2460

-2.99

0.89
2815

-2.56

0.85
2900

-2.58

0.84
2815

-2.30
0.07

0.84
2295

-2.42
0.09

0.84
1770

-2.70
0.08 0.06
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efficiency of the dynamic prognostic index based on age,
previous MIs, urea, and U). We may, however, investigate
the implication of a given index score on the predicted
outcome of an individual patient. As an illustration (Table
4), we computed the daily risk scores S(t) and the corre-
sponding probabilities P(t), using equations 2 and 3, for two
patients selected from the data base.

Patient 1 was 71 years old and had had one previous
infarct. He showed increasing index scores from the time of
admission, and he died on the third day. Beforedeath(t = 2),
he had a score of S(2) = -1.36 and his probabilityofdeath
for the next day was 21%. Comparing this result with the
unconditional probability of death found previously (see
model Ml: P2 = 0.015) shows more than a 10-fold increase.

Patient 2, 75 years old, died one month after hospitaliza-
tion;he had had no previous infarct. His highest index score
during the first week of hospital stay was recorded on day 4,
S(4) = -2.30. This value, well above the critical score of
-3,88, indicates that the patient had an index value that is
found more frequently in nonsurvivors than in survivors.
Likewise his probability of death at that time was 0.091, six-
fold greater than the prior probability of 0.015. These
results confirm that the patient was already at high risk
during his hospital stay, and they may have provided a hint
of the late fatal outcome.

55

UI
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z
Si
0
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I’

Si
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ACCUMULATED PROBABILITY OF DEATH

FIg. 4. Cumulativefrequencydisttibutionsof the accumulatedcondi-
tionalprobabilityofdeath (iv) insurvivor(n = 297) and nonsurvivor(n =

33) groups

The practical use of the methodology proposed is straight-
forward. For any new patient entering the coronary-care
unit, record the age and number of previous infarctions.
Each time results for urea and LD become available, stan-
dardize these results and compute the value S(t), using
equation 3; finally, equation 2 provides an estimated proba-
bility of death (and of survival). The risk index S(t) can be
considered as summarizing the joint value of age, previous
MIs, and biochemical information at time t. Instead of
having to interpret several results, the clinician is presented
witha single score,whichwe know is optimal with regard to
the patient’s past and present history for predicting immedi-
ate future outcome. Obviously, the clinician is receiving
additional pieces of information from other sources, so the
value of 5(t) has to be integrated into the general clinical
assessment of the patient’s risk.

DIscussion
Serial measurements are a natural part oflaboratory

medicine, e.g., in health surveillance, therapeutic monitor-
ing, and intensive care.

Recently, there has been growing concern as to the best
use of such cumulative results for prognostic and predictive
purposes (1,6,28). For example, Harris (29,30) has provided
a comprehensive methodology for monitoring individuals
enrolled ina health-surveillanceplan and sampled at regu-
lar time intervals. Models, such as the strictly homeostatic
(assuming independent serial observations) or the nonsta-
tionary random walk, may also be indicated for detecting
changes in stablepathophysiologicalprocesses.Untilnow,
however, their use in patients has been quite limited and
may have been hindered by interfering factors such as drug
administration and treatment. Recently, Winkel et al. (31)
considered the problem of predicting, from cumulative labo-
ratory results, recurrence in patients with breast cancer and
found that an appropriate statistical treatment of such
results considerably improved the prediction of recurrence.
All the potential benefits of these pioneering studies may
not yet have been fully perceived, but clearly in many
clinical situations serial laboratory measurements are im-
properly used and underevaluated.

In acute diseases, as opposed to stable disease processes,
biochemical components do not always fluctuate around
some threshold value but oftentimes follow a typical deter-
ministic pattern. As we mentioned before, after an acute MI,
there is a characteristic rise and fall in serum enzymes such
as creatine kinase, its isoenzyme CK-MB, LI), and aspartate
aminotransferase; serum ureaand AGP concentrations tend
to increase (15).

In this paper we have investigated the problem of dynam-
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icoutcomeprediction, in termsofdeathor survival, from
laboratory data recorded serially during the patient’s stay in
the coronary-care unit. Most methods suggestedin the
literature to date (4,22) are too rigid, in the sense that they
do not emphasize the dynamics of the disease process, but
instead base prediction on a single multivariate observa-
tion. The vector may, for example, consist of data available
on admission and of the maximum enzyme valuesrecorded
during hospitalization. By proceeding this way, patients
dying before enzyme values reach their maximum are
discarded from the study.

The approach we developed overcomes these drawbacks
and makes optimal use oftheoutcome (orstatesequence)
and serial data of every patient in the data base. We assume
that measurements are made at regular time intervals-for
instance, every day-and that there is a logistic relation
between survival probability and risk index. It is known,
however, that logistic models are robust and applicable to a
mixture of discrete and continuous variables (20, 21, 27).
Moreover, as shown in our application, baseline variables
(e.g., age, previous MIs) and time-dependent variables (e.g.,
urea, LD) can be handled with equal facility.

We have also emphasized that maximum likelthood esti-
mation of the coefficients of the linear risk index is simpli-
fied when these coefficients do not depend on time (station-
ary model). To achieve this property in our series of observa-
tions, we adjusted the individual response curves by
subtracting the deterministic component of the evolution.
We decided to consider the one-year survivors (patients at
lowest risk in our data base) as providing the typical
evolutionary pattern of LD and urea after MI. The choice of
the deterministic component should not affect the general
results of our study, for we are interested in outcome
prediction in the early phase of the disease. It ismerely a
convenient way of stabilizing the observation series and
allowing the use of a simple logistic regression model.

Test selection considerations in dynamic prognosis have
been alluded to and are twofold. First, which biochemical
test should be included in the dynamic index, and what
combination of tests provides the best prediction? Second,
how many past observations should be used for each vari-
able? In our application, we studied three constituents but
only urea and LD were useful discriminators; AGP did not
contribute significantly to outcome prediction. Furthermore,
the most recent observations of urea and LD were sufficient
for assessing satisfactorily the patient’s status.

Our results confirm the importance of LD in short-term
prognosis of acute MI and its relationship to infarct size (14).
They also re-emphasize the preponderant role of serum urea
in monitoring patients with acute diseases (18). As for age
and number of previous episodesof MI, several studies have
confirmed their prognostic effectiveness in acute MI (6,22).

In conclusion, the linear risk index derived from our data
base enables one to predict, on a daily basis, the patient’s
survival chances from simple demographic data and from
urea and LD measurements, as they become available. We
believe that the methodology developed should enhance the
interpretation of cumulative laboratory results, not only in
acute MI, but also in any disease in which there is an acute
phase during which the patient is closely monitored and
multiple serial measurements are made.

This research project was carried out while A.A. was a Fogarty
International Research Fellow (grant F05 TW02964) at the Labora-
tory of Applied Studies, National Institutes of Health, Bethesda,
MD.
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