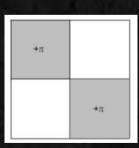


Next-generation phasemask coronagraphy for extrasolar planetary system imaging

Dimitri Mawet, Charles Hanot & Jean Surdej, ULg

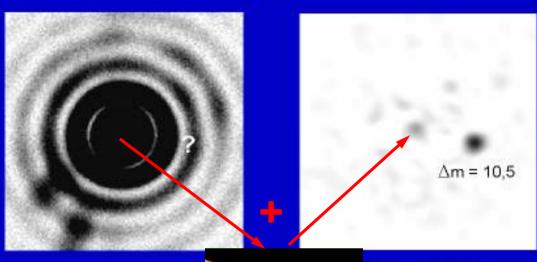
Pierre Riaud, Jacques Baudrand, Anthony Boccaletti, Pierre Baudoz, Daniel Rouan, LESIA

ROB March 2007

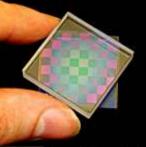


Coronagraphy

Optical Detection

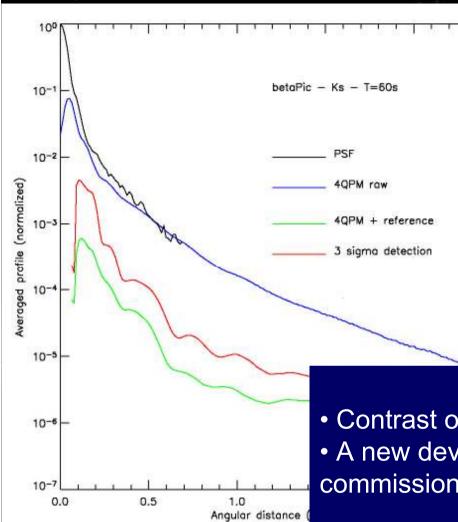

Optical Detection

- □ So far, opaque/amplitude masks (Lyot coronagraphs)
 - Mask the star (annoying for companionship analysis)
 - Mask the objects behind it (up to 6 λ /D)
- Phase mask coronagraphs (transparent)
 - FQPM much more efficient but still not perfect
 - Achromatization
 - FQPM discovery space affected by quadrant transitions (loss of 20 % at 5 λ/D)
 - Transitions creates artefacts in extended objects studies


| Four Quadrant Phase Mask

Détection d'un compagnon faible à proximité de son étoile brillante

Sans le 4QPM

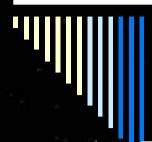

Avec le 4QPM

manufactured and characterized for :

- Visible (laboratory R&D)
- Near IR (implemented on NACO/VLT)
- For mid IR (JWST/MIRI project)
- Near IR achromatic version (VLT/SPHERE project)

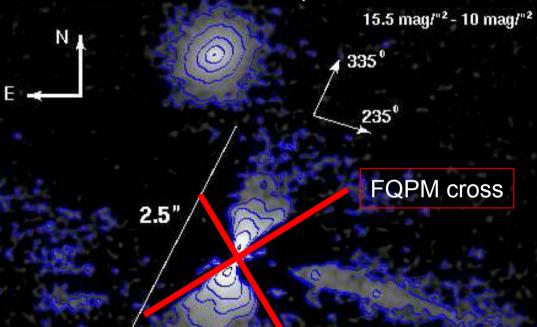
Rouan et al., 2000, PASP;

Riaud et al., 2001, PASP; Riaud et al. 2003, PASP

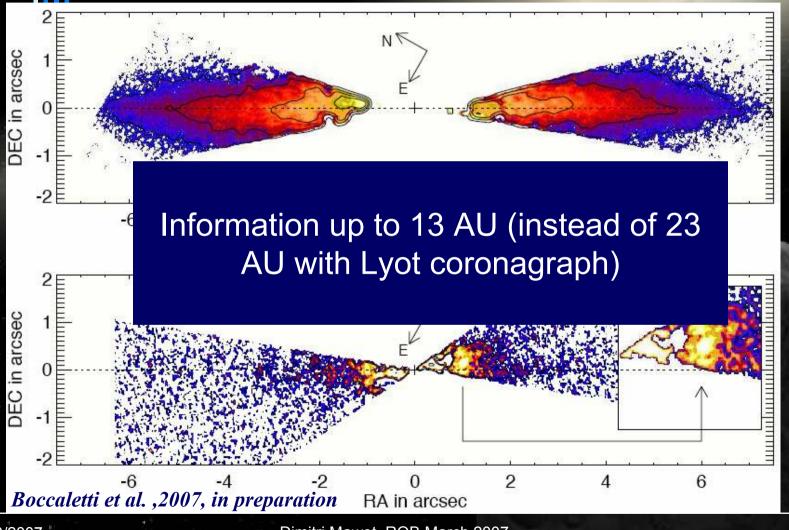


FQPM @ VLT

HIP 1306 $\rho = 0.128" - 1.075"$ $\Delta m = 1 .6 - 3.5 mag$ seeing = 0.9"


- Contrast of 10⁻⁴ @ 0.5 "
- A new device coupled with differential imaging was commissionned last month

Boccaletti et al. ,2004, PASP; Boccaletti et al. ,2007, in preparat centrosymmetrical subtraction


NACO / FQPM imaging I

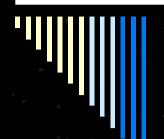
Putative brown dwarf companion

PDS70 (WTTS) disk/jet structure imaged with NACO/FQPM Riaud, Mawet, Absil et al. 2006, A&A, accepted

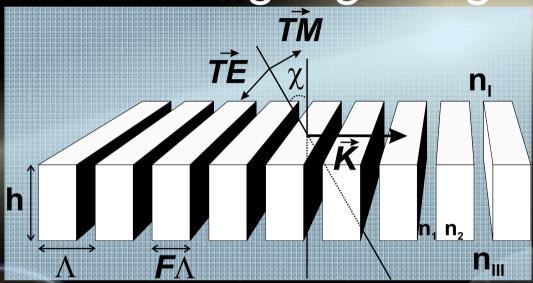
Achromatic FQPM with halfwave plates: laboratory results

Achro provio plates

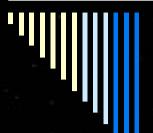
Prototypte IR Halfwave FQPM for SPHERE/VLT


- □ White
 - labora Techniqu
 - Tot
 - (~ the
 - Pe
 - Co

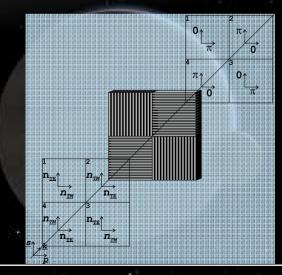
Technique limited to 10⁻⁶ to 10⁻⁷ for large bandwidth


MgF2

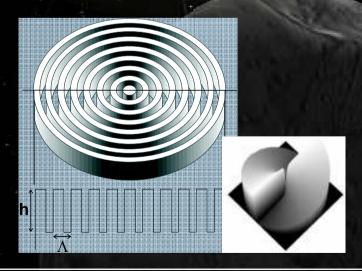
Mawet D. et al, A&A 448

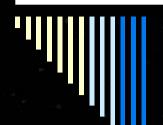

-5

Subwavelength gratings

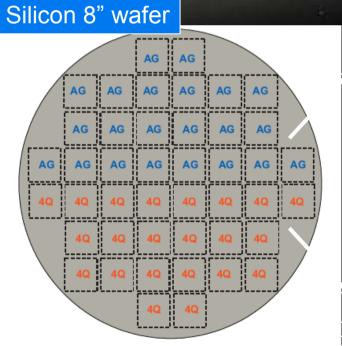


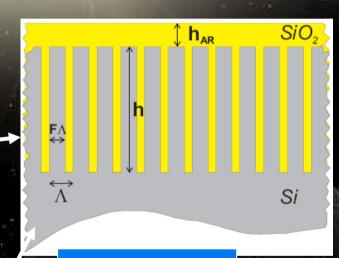
- Subwavelength gratings / Zeroth Order Gratings are artificially birefringent
- The effective indices, associated to the polarization states TE and TM, can be tuned by controlling the geometry at the nanometer scale (period, filling factor)
- The subsequent phase shift can be made quasi- achromatic




Coronagraphic implementation

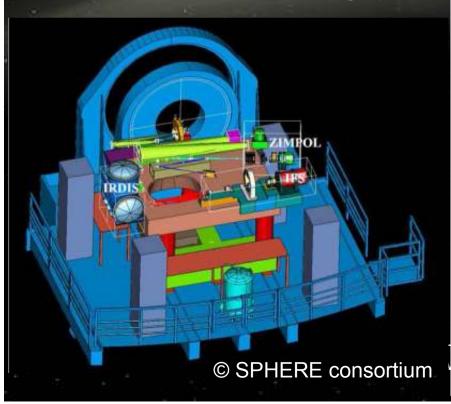
- 4QZOG: Mawet *et al.* 2005, Appl. Opt. 44, 34, 7313
- □ An anti-symmetrical implementation of 4 identical ZOGs can mimic the FQPM focal plane phase shift distribution
- Monolithic structure (engraved on a unique substrate)

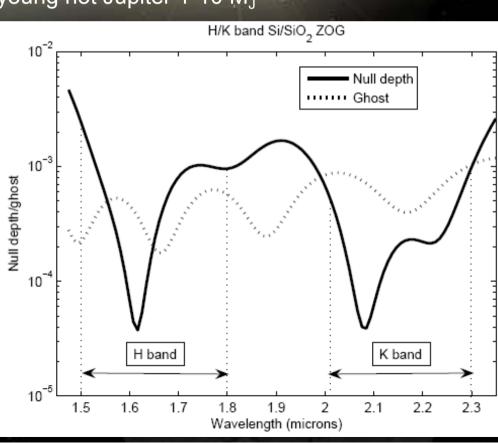

- AGPM (Mawet *et al.* 2005, ApJ 633, 1191)
 - Annular Groove Phase Mask Coronagraph
- AGPM creates a second order *Optical Vortex* (= phase singularity)
- Prevent the source attenuation on the quadrant transitions
- □ Chromatic behavior as good as the 4QZOG (same optimized ZOG)

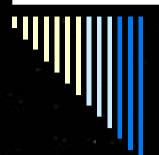


4QZOG & AGPM Prototyping

- Collaboration Belgium-France:
 - ULg/LESIA/LAOG/CEA-LETI
 - Micro-electronics Silicon technology




ZOG geometry


Parameters	Value
Grating period Λ	$0.402 \ \mu {\rm m}$
Grating depth/thickness h	$2.1973 \ \mu {\rm m}$
Grating filling Factor F	80%
SiO_2 AR layer thickness h_{AR}	$280~\mathrm{nm}$

SPHERE

- □ VLT-Planet Finder/SPHERE:
 - Second generation instrument for the VLT
 - Extreme Adaptive Optics system (41x41 actuators, 90% Strehl at H)
 - Detection and characterization of young hot Jupiter 1-10 M_J
 - 3 instruments + coronagraphs

Conclusion

- Phase-mask coronagraphy provide very small Inner Working Angles and high contrasts;
- They advantageously replace classical amplitude Lyot coronagraphs;
- □ Have already allowed state-of-the-art high contrast imaging Science at the VLT;
- Subwavelength gratings metamaterial synthesis ability will be used in the near-future to further improve their performance.

Perspectives

- **VLT-PF/SPHERE**
- Palomar/Keck WCS
 - Extreme AO before time
- Super Earth Explorer-COAST
 - will be proposed to ESA's Cosmic Vision
- TPF-C and precursor missions.