Routing in a MPL S network featuring preemption mechanisms

Francois Blanchy, Laurent Mélon*, Guy Leduc

Research Unit in Networking
Electrical Engineering and Computer Science Department
University of Liege

{blanchy,melon,leduc}@run.montefiore.ulg.ac.be

Abstract — In the context of Multiprotocol Label Switch-
ing (MPLS), we propose an integration of a computationally
efficient preemption mechanism into a very dynamic Label
Switched Paths (LSPs) routing scheme described in a previous
paper. This preemption scheme includes a quick heuristic able
to select the most interesting LSPs to reroute from a link. The
efficiency of this algorithm is obtained through a very rigid but
seemingly appropriate policy concerning which LSPs are ap-
propriate for preemption. A feedback from preemption on the
routing process is proposed, in order to regulate the rate of the
reroutings and to tune the balance between stability and con-
tinuous reorganization in a network. This integrated traffic
engineering entity is tested on the accuracy of the heuristic, the
relevance of the feedback and the whole integration, the influ-
ence of the routing policy on the preemption mechanism and
the reliability of the managed network.

Keywords : MPLS, Traffic engineering, preemption

1 Introduction

With Multiprotocol Label Switching (MPLS), good oppor-
tunities exist to control and regulate traffic trunks in a net-
work by routing them along Label Switched Paths (LSPs).
Those LSPs can be provided with explicit routes, making the
Traffic Engineering possibilities much wider. They can also
be given certain guarantees on their allocated bandwidth
along with QoS properties and a priority or precedence level.
The latter allows the Traffic Engineering entity (the routing
mechanism) at work in the topology to remove or cripple
some disposable LSPs to favor more important ones, for ex-
ample to keep the integrity of the bandwidth guarantees on a
link. There is then the possibility for some LSPs to preempt
others of lesser priorities which must be rerouted.

Some protocols like RSVP-TE [1] or CR-LDP [2] now
make this possibility of explicit routing a reality, and a lot of

*Research Fellow of the Belgian National Fund for Scientific Research
(FN.R.S)

0-7803-7661-7/03/$17.00©2003 IEEE.

work is being done in the field of traffic engineering on the
optimal organization of the LSP mapping ([3], [4] and [5]
are a few examples). Fewer work has been done on preemp-
tion mechanisms, and, to our knowledge, even less on the
relationship between the routing and preemption procedures
and the impact of this on the overall performance. Two ma-
jor papers on this topic, [6] and [7], center on the selection
of the LSPs to reroute from a link once the amount of band-
width to preempt is known. [6] also gives some inkling on
the overall impact in terms of network availability. [7] ad-
ditionally offers the interesting possibility for some LSPs to
reduce their transmission rate rather than being simply cast
out.

In this paper we want to focus on the integration of a pre-
emption mechanism in a generic LSP routing scheme. The
latter comes from [8] and will be briefly presented in section
2. From our point of view, this integration required two main
developments that will be looked upon in section 3. First, an
efficient algorithm is needed to select the preempted LSPs
on a link. Indeed, we feel that the flexible algorithm pro-
posed in [7] is too costly for a task that is often trivial. By
adding some rigidity to the preemption policy, we are able
to make a substantial gain in computational efficiency. Sec-
ondly, we will introduce a feedback of the preemption mech-
anism on the route selection. Indeed, the preemption of a
weaker LSP causes its rerouting, which has a practical cost
in terms of network management resources. For this rea-
son, we want to have the possibility to penalize in the rout-
ing procedure the use of a link where preemption is needed.
This will enable us to play on the balance between stability
and perpetual reorganization of the network. We will finally
present in section 4 a collection of results that, we hope so,
will illustrate the relationship between routing and preemp-
tion and the relevance of the integrated approach. Our con-
clusions will close this document.

2 Background: a generic LSP rout-
ing scheme

Our work in the field of MPLS focuses on the develop-
ment of an effective on-line decentralized scheme for rout-
ing LSPs throughout a given network ([8]).

In an on-line approach, the LSP mapping is done in an in-
cremental way, all LSPs being added to the network one af-
ter the other in the order of arrival. When computing a route,
there is no awareness of any other LSP running through,
only a synthetic knowledge of each link state in the topology.
On the contrary, an off-line procedure is aware of all LSPs
inside the network and computes the best (re)organization
for all of them at the same time (a very expensive task).
Both approaches can be implemented in either a centralized
(the computation is done by a server) or a decentralized way
(the computation is done at an ingress router). Of course,
the on-line way of thinking is rather meant for a decentral-
ized scheme, whereas the off-line one is more suitable for a
centralized implementation because of the computing power
required.

A generic on-line LSP routing scheme can usefully be
split into three independent components: a score function
used to compare route "qualities", a constraint predicate that
tells whether a link can be used to carry the new LSP and of
course a computation algorithm based on the first two com-
ponents able to choose a path for the LSP.

2.1 The score function

The value of this function has a network-wide meaning and
depends on the synthetic link states throughout the topol-
ogy. This is the image of the objective function of the whole
optimization procedure. Basically, this component allows a
network operator to stress what kind of criteria should be fa-
vored throughout the network (e.g. low blocking probability
thanks to a load balancing score, low delay and minimal use
of the resources with a shortest path,...). In this document
we will be concerned with two kinds of score functions: a
classical shortest path involving the number of hops and a
load balancing measure. The first is straightforward but the
latter should require an explanation.

Let L(; ;) be the load on the link from a node 7 to a node
Jand C; ;) be the capacity of this link. ¢/ is the set of all
links in the topology.We have

— \ 2 9
3 <L<m> 3 [ﬁD S (Lm))
ieu \Can L€ (e \CGad

as the load balancing function, with

{ L] _ 1 L)
¢l U5k Cen
The « parameter allows us to play on the "load-balancing
versus traffic minimization compromise" : a low « will favor
longer paths in order to smooth the relative load deviation
throughout the network, whereas a greater « will try to min-
imize the traffic.

In the case of & = 0 it gives a low blocking probability
by avoiding single points of congestion.

2.2 The constraint predicate

This component allows us to set the constraints on the opti-
mization procedure. In particular, it can be used to specify
that the capacity threshold on a link must not be exceeded
when adding the new LSP. Let L ; ;) be the load on the link
from a node i to a node j and C'; ;) be the capacity of this
link, BW is the required bandwidth of the new LSP we have
obviously
Lij) + BW < Cij)

as a clausis of the predicate. It can also be used to some
extent to take care of QoS, overbooking, restoration and, as
we will see, preemption and rerouting.

2.3 The computation algorithm

Finding a path that minimizes the score function using only
the links allowed by the predicate is an NP-complete prob-
lem. For this reason we proposed in [8] an efficient approxi-
mation based on the Bellman-Kalaba algorithm ([9]) which
has a very short response time necessary to a highly dynamic
scheme. Basically it is a Constrained Shortest Path First
(CSPF), the costs on each link being the score variation that
would result from adding the new LSP to that link. However
this aspect is not relevant in this document.

3 Integration of preemption mecha-
nisms

Integrating preemption mechanisms in the generic scheme

proposed above requires some refinements. A preemption

level must be specified in each LSP request and the link

states must differentiate their reserved bandwidth according
to these levels. We have then

LSP request = (p, BW)
Link state = (C, RBW)

with p the preemption level, C' the capacity of the link, BW
a required bandwidth and RBW a vector summarizing the
amount of reserved bandwidth per preemption level. Note
that in this document, a higher p corresponds to a lower
precedence level: p = 0 is the highest priority for an LSP
that cannot be preempted.

On this basis, preemption can be introduced in the scheme
simply by extending the constraint predicate : we now have
on the link from nodes i to j

> RBWIk] + BW < C()

k<p

the condition to be respected when adding a new LSP of
priority p and of required bandwidth BW'.

In practice, this means that LSPs with weaker preemption
levels are not taken into account while evaluating the predi-
cate, they might as well be inexistent. As a consequence, if
the link is chosen to carry the new LSP, the capacity may be
exceeded and some low-precedence LSPs might need to be
rerouted. In this regard, there are two major issues :

» How to select the LSPs to preempt/reroute on a partic-
ular link?

« Since the high priority LSPs ignore completely the
low priority ones, how can we avoid an explosion of
reroutings?

The next two sections focus on both problems.

3.1 Selection of the preempted LSPs

Once a path has been computed for a new LSP, it will be
established thanks to explicit LSP routing mechanisms like
those of RSVP-TE [1] or CR-LDP [2]. As the necessary
bandwidth reservations may lead to exceed the link capacity
threshold, some LSPs of weaker preemption level must be
preempted (and rerouted). The problem is to choose which
ones are the most suitable (politically as well as practically)
to be cast out. Note that this is a local decision and is in-
dependent of the overall routing procedure (though the re-
verse is not necessarily true, as we shall see in next section).
This particular issue is tackled elegantly in [7]. The selected
LSPs are chosen on the basis of three criteria: the number
of LSPs to preempt, the precedence of the preempted LSPs,
the excess of bandwidth gained. There is also the possi-
bility for some LSPs to accept a rate reduction in order to
avoid rerouting. They propose a heuristic to solve this opti-
mization problem. We have done similar work though with-
out the rate reduction opportunity. Our selection method
is somewhat different and computationally more efficient,

though at the cost of flexibility. Indeed, we have in mind a
very dynamic scheme with a very short response time.

The same three criteria are used to make a choice but in a
more direct manner:

» The most important aspect is the precedence level. An
LSP of level p must not be preempted as long as any
LSP of weaker precedence p + 1 remains.

» Secondly, a set of LSPs is a better choice than another
set if it has a lower cardinality and the same maximal
precedence level among its members.

» Thirdly, a set of LSPs is a better choice than another
set with the same cardinality and the same maximal
precedence level if the preempted bandwidth is lower.

Finding the best set of LSPs to preemptin a link on the ba-
sis of those three criteria can be shown to be an NP-complete
problem. Looking for a dynamic, computationally efficient
algorithm, we have to settle for an approximation which will
sometimes put a bias on the third criteria (the least impor-
tant one). Under these conditions, this approach allows for
a very efficient implementation. Remember that RBW is
a vector of the link state summarizing the amount of re-
served bandwidth per preemption level. We suppose that we
have for each link (at the input interface node) some vec-
tors L? gathering all LSPs of preemption level p for all pos-
sible levels. These must be kept ordered by decreasing re-
served bandwidth (LP[0] is the greediest LSP of level p). Let
precedence be the preemption level of the new LSP coming
through, p,... the lowest authorized precedence level and
bskt the set of to-be-preempted LSPs. nd is the bandwidth
to gain on the link from node 7 to node j in order to respect
its capacity, with

nd =max(0, Y. RBWIk|+BW —C()

k<pmax

We can proceed using the following algorithm:

D := Pmaz; bskt = emptyset();
while nd > 0 do
if p < precedence
then ERROR;
fi
if nd > RBW p)
then foreach ! € L? do
bskt := bskt + [;

od
nd := nd — RBW|p];
p=p—1
else
while nd > 0 do
if LP[0] < nd
then
1:=0;
else
i := bin_place(L?,nd) — 1;
fi
bskt := bskt + LP[i];
nd := nd — LP[i]->BW,
shift(LP[i]);
od

od

Note that the bin_place(A, b) procedure computes the in-
dex b would have if it were inserted in the vector A (or-
dered by decreasing values), using a binary search. The
shift(Alb]) procedure removes the element of index b in
A and moves down all elements of superior index, which
can be done very efficiently.

At some point in the algorithm, there is an error case.
This occurs when there is not enough preemptable band-
width available to balance the need of the new LSP. In this
case, the reservation must be rejected and the establishment
fails. How can this happen? The routing procedure is done
at a distant ingress node whose knowledge is dependent on
periodic link state updates. Because of race conditions or
too long a span of time between updates, the routing process
can choose a certain link thinking erroneously that it has
enough bandwidth or preemptable bandwidth to sustain the
new LSP.

This algorithm has a complexity O(M), M being the
number of LSPs carried through the link. The algorithm
proposed in [7] requires to sort a vector of size M for each
new run. It has then a complexity O(M « log, M) (the pos-
sible size of the vector prevents a quicker sorting procedure
using address computation). It is important to note, how-
ever, that the complexity of our approximation can be de-
composed into O(L + K + log, N) where N is the number

of LSPs present on the link with the highest priority encoun-
tered among those preempted, K the number of preempted
LSPs of that level and L the number of different priority lev-
els in which preemption occurred. Practically, we will see
(section 4) that K remains very low (close to 1) and L is
bounded by the (low) number of preemption levels. Under
these conditions, the evolution of the computational cost of
our scheme falls down to O(log,) or O(log,, M), whereas
the approach in [7] does not have any best case.

As we mentioned previously, this algorithm yields an ap-
proximation on the optimal selection. Let us show this with
a small example. A new LSP requires a bandwidth gain of
135Mb among four LSPs consuming 60, 50, 45 and 30Mb.
The scheme presented above will select the 60, 50 and 30Mb
LSPs for rerouting, whereas the best choice would be to
reroute the 60, 45 and 30Mb LSPs. The accuracy and rele-
vance of this approximation will be put under test in section
4.

It is important to note that if the LSP population on a link
is big enough, the number of LSPs preempted and in need of
rerouting is very small (generally one, sometimes two). In-
deed the chances to find a LSP of the same size but with the
lowest precedence (therefore being optimal from any point
of view we could take) rises quickly. In this case, the more
costly though flexible algorithm described in [7] will give
similar results to the quicker, rigid scheme presented here.
For this reason, we think our approach is more suited to
a dynamic scheme routing lots of small volatile LSPs in a
short span of time, whereas the method described in [7] is
particularly interesting with bigger static LSPs.

3.2 Safeguard against rerouting explosion

The danger with such a scheme comes from the aggressiv-
ity in the routing process of a new potential LSP towards
those already active but with a lower precedence. Up to now,
the latter are completely ignored by the routing process. A
fully loaded link can indeed be used without concern for the
reroutings induced even though some other (less optimal)
path could be used without requiring any preemption pro-
cedure. This can be troublesome if a routing policy like a
shortest path is used. In that case, all LSPs with the same
source and destination will try to use the one optimal short-
est path between those two nodes. When the bottleneck of
this route is full, weaker LSPs are cast out each time a new
LSP is routed, though a small detour could avoid the need
for preemption. Moreover, a rerouted LSP will probably
take this small detour, making the overall network situation
no better or worse except that the computational cost and
the disturbance to existing flows are higher. As a conse-
quence, there is a need for a feedback from the preemption

mechanism on the routing procedure : a path requiring some
reroutings must be penalized in comparison to others that do
not involve preemption.

The penalization mechanism should ideally follow these
few guidelines:

 The penalization should be less (or zero) if the link is
really interesting (brings a low variation on the score
function) but should grow increasingly harder as it
makes the overall situation worse.

« Its effect must be tunable in order to adjust the balance
between stability and perpetual reorganization (the lat-
ter being, in our view, a sane feature but only up to a
certain limit).

* It must scale well with the score function. The penal-
ization must not be so great that it completely domi-
nates the score function. The routing procedure would
then correspond to a "minimal reroutings path™ what-
ever the case. On the other hand, it must not be so weak
that it cannot affect the choice of the optimal path.

« It must affect the routing procedure in similar propor-
tions whatever the score function used.

The principal difficulty comes from the fact that the score
variations brought by using a certain link cannot be nor-
malized. Indeed we want to stay general and independent
from the score function. As a consequence, a simple addi-
tive penalization cannot be used. Moreover some link may
bring a negative score variation when an LSP is added, im-
proving the overall situation (in the case of load balancing
for instance, by smoothing out the link load disparity). A
pure multiplicative penalization might then favor using links
with a negative cost (score variation) since their penalization
would be negative, and of course the absolute value is not an
acceptable solution. As a consequence, we make a distinc-
tion between positive and negative score variations, so that
the penalization is discontinuous in regard of the cost of the
link.

If Ascore is the score function variation brought by using
the link to carry the new LSP, Ascore’ is the corresponding
penalized link cost, BW is the bandwidth requested by the
new LSP, need is the minimal amount of bandwidth that
must be preempted (remember that the routing procedure
has no knowledge of the LSPs running through the link),
0 a tuning parameter, we choose to penalize the potential
selection of the link in this way :

(1+ 8= 7};—5‘?) * Ascore
if Ascore >0
Ascore otherwise

Ascore’ =

This induces that a LSP that does not increase the score
function (which should not be frequent) will not be penal-
ized. Another LSP is crippled increasingly with the ratio
of the bandwidth to gain: if all the LSP resources need to
be preempted, the cost of the link is multiplied by the user
defined 3 parameter. This simple mechanism, though very
simple, has appeared relevant and sufficient in our simula-
tions (section 4).

This issue of minimizing the number of reroutings is also
explored in [10]. The approach followed is to choose the
path with the lowest maximal priority among the LSPs pre-
empted on all its links. In case of equality of the impact
brought by two links, the widest path is used (the high-
est free bandwidth). One drawback is that the preemption
minimization feature becomes the main policy at work in
The traffic Engineering mechanism. In that sense, we think
our approach is more flexible since it is a secondary policy
that can be combined to any other Traffic Engineering main
policy (such as load-balancing) with an impact that is user-
tuned.

Note that in [2] a kind of safeguard against rerouting ex-
plosion is achieved by differentiating between holding pri-
ority (preemption level when the LSP is actual) and a lower
setup priority (preemption level for a would be LSP). The
difference between these two priorities allows to some ex-
tent to reduce the instability in the network. However, there
is no feedback on the routing procedure and this scheme still
do not take into account the amount of LSPs with weaker
preemption level rerouted. In fact, this two-priority scheme
is not in competition with our approach : both work at a dif-
ferent conception level and could combine very well.

4 Simulations and results

In this section, we will make a survey of the relevance and
the impact on reliability of the preemption mechanism we
have described. The results are all obtained with the same
generic approach:

» A topology (20 nodes) is randomly generated. 10
ingress nodes are selected and a source-destination
probability distribution along with a requested band-
width probability density are created. The latter is cho-
sen so that the average number of LSPs on a link is
close to 10, a kind of worst-case configuration for the
LSP selection heuristic. The capacities on each link are
then "engineered" much like a human designer would
do it (a more complete description can be found in [8]).

» Some LSP requests respecting these probabilities are
generated with an equiprobable precedence level taken
between 0 (most important) and 2 (most disposable).

Those LSPs are added up to a network load of 80%, a
difficult congested situation favoring lots of reroutings.
This network load is then kept stationary by removing
and establishing some LSPs as required. The idea is to
simulate the evolution of the network state in the long
run in order to average a few interesting values.

« In the three following sections 5000 LSP requests are
generated. The number of reroutings, of failed rerout-
ings, of establishment failures are used as indicators of
performance and must be put in relationship with these
5000 steps.

This test is organized in three parts. We will first study the
validity of our selection algorithm for the preempted LSPs
(section 3.1). We will then try to show that the feedback
given to the routing process by the preemption penalization
mechanism has the required characteristics (section 3.2). Fi-
nally, we will track the influence of preemption on reliabil-
ity, as well as the "preemption - score function" relationship.

4.1 Validation of the heuristic used for the se-
lection of the preempted LSPs

The approximative selection of our heuristic is compared
with that obtained with a mixed-integer solver used to find
the true optimal solution. Let us stress a few points of im-
portance. Both methods of selection will always choose the
same number of preempted LSPs. Moreover, with both ap-
proaches, all LSPs of a given priority will be preempted
before some LSPs with the directly superior precedence
level are chosen for rerouting. The only difference comes
from the choice of the LSPs to preempt in the highest pre-
empted level, in order to minimize the excess of bandwidth
gained. A mixed-integer solver finds the right combination
minimizing this excess, whereas our heuristic only finds an
approximation with the same number of LSPs within this
level. However, when there is only one LSP to choose in the
highest preempted precedence level, both solutions are rig-
orously identical. Finally, the practical difference between
both approaches should be close to nothing and indeed we
want to show that our heuristic is very accurate.

We have run a simulation using our algorithm and com-
pared each approximative selection of the LSPs to pre-
empt with the one a mixed-integer solver would have made
(though the LSPs rerouted in practice where those selected
by the heuristic). The mean bandwidth preempted with the
approximation exceeded that of the optimal approach by
only 3.76% which is more than acceptable. Of course, this
could have been be expected, since the average number of
LSPs selected for preemption is generally very close to 1:

1.26 for the heuristic and 1.34 for the optimal method in
two independent tests which showed no practical difference
in terms of reliability (failed establishments or reroutings)
or stability (number of reroutings). We already know that
the heuristic is exact when it chooses only one rerouting.
One preempted LSP being an optimum hard to tackle, we
can wonder if the use of a more flexible mechanism is really
worth the cost. Indeed, with such a low number of LSPs se-
lected (though the number of LSPs on a link has been chosen
quite small to make this test a worst case), the heuristic has
a complexity close to O(loga(NLsps)).

4.2 Relevance of the preemption penalization
feedback on the routing procedure

Figures 1 and 2 show the evolution of the number of rerout-
ings along with the repartition per preemption levels. The
shortest path is used in figure 1 while a load balancing score
function (o = 0) is involved in figure 2. Obviously, the pe-
nalization scales quite well with both score functions: the
number of reroutings (per preemption level or globally) de-
creases smoothly with an increase of . Of course, this num-
ber cannot fall below a certain level. For 5 big enough, the
only reroutings are those that are absolutely necessary (be-
cause there is no free path available, indeed 80% of network
load is a difficult configuration). Increasing £ in this situa-
tion will not have any significant effect. Another interesting
point is that the penalization mechanism, though formulated
in a generic manner, produces the same proportional evo-
lution of the number of reroutings with 5 under both score
functions. The tuning through the § parameter can then be
performed somewhat independently of the routing criteria in
use. Finally, the requirements formulated in section 3.2 are
all satisfied and the preemption mechanism has the possibil-
ity to perform a significant feedback on the routing proce-
dure.

2682 E

2360 3

2136 5

1812 »

1489 1555 1595 %
|

bS]

g

E

Z.

Figure 1: Rerouting penalization under a shortest path score
function

1903

1680
1539
1343

1175 1185 1239
1061

Number of LSPs rerouted

Figure 2: Rerouting penalization under a load balancing
score function

4.3 The "preemption - score function™ rela-
tionship and its influence on reliability

Figure 3 shows the number of failures of all kind (routing
+ rerouting) without preemption mechanism (None), with
penalized rerouting (3 = 5) and finally with unpenalized
rerouting (6 = 0). Whatever the score function in use, the
most obvious point is that without preemption the failures
are equally distributed among the three levels of precedence.
When preemption is added to the scheme though, the level 0
LSPs almost never fail, constituting a fully reliable connec-
tion, the level 1 LSPs have an acceptable chance of failure,
making an intermediate category, whereas the level 2 LSPs
endure the largest part of interruption and lack of available
route, which gives them a status of cheap and unguaranted,
disposable service. This possibility to make a distinction
between classes of service is, of course, the main reason for
using preemption mechanisms.

There is still another lesson to learn when we compare
the results obtained with the two different objective func-
tions. In the case of a shortest path, the overall reliability is
made worse by the introduction of preemption mechanisms.
Indeed, there are lots of difficult bottlenecks since no proce-
dure striving to avoid congestion is at work in the network,
and any rerouting is very risky. Moreover, there is generally
one single shortest path between two nodes, so that all level
0 LSPs are gathered on this path, casting out level 2 and
level 1 LSPs. The latter will use the second shortest path,
forbidding access to the level 2 LSPs. As a result, there are
lots of pure level 0 links or pure level 1 links which is not
suitable. Because of this for instance, the level 1 LSPs don’t
even gain any advantage in reliability from the use of pre-
emption. With load balancing, on the contrary, the overall
reliability is improved by the possibility of (penalized) pre-
emption. Indeed, the smooth repartition of the load through
the network makes rerouting an acceptable risk. Besides, an
appropriate repartition of all precedence levels is maintained
on each link. This allows level 1 LSPs to be preempted in

very few occasions.

More than being interesting from a pure routing strategy
point of view, the load balancing score function can bring a
useful increment to preemption mechanisms with a gain in
reliability and relevance.

Shortest-Path Load-Balancing

1755
1681 1585

967
809 722

Number of failures

B=08=5None B=03=5None

.P=0 .p=1 p=2

Figure 3: Impact of preemption on reliability / influence of
the score function

5 Conclusion

The integrated routing-preemption solution discussed in this
paper has two main advantages: its practical implementa-
tion is possible and it provides what is expected from a rele-
vant preemption mechanism with a remarkably low compu-
tational cost.

Its implementation is possible since RSVP-TE [1] and
CR-LDP [2] are now a reality and provide the possibility for
explicit routing, which is all that is required for the scheme
we proposed in [8]. We are currently considering an imple-
mentation of this traffic engineering entity in a last gener-
ation platform from an industrial partner. The preemption
mechanism described in this document is a simple internal
upgrade of this routing procedure, with very few modifica-
tions required.

It provides what is expected from a preemption mecha-
nism. The tests of section 4 showed that it allows us to make
a distinction between three politically interesting classes of
LSPs:

« High priority LSPs, sure to get through and never inter-
rupted.

» Medium priority LSPs, with a high probability of get-
ting through and seldom interrupted.

» Low priority LSPs, most subject to failures and inter-
ruptions.

This was only an example, but it shows interesting practical
possibilities. This is especially interesting since this result
is obtained with a very low computational cost thanks to an
heuristic which has proved accurate. It is important to note,
however, that this efficiency is obtained at the cost of flex-
ibility. In the difficult situation we chose for the test, the
number of reroutings remained acceptable. Besides, the lat-
ter is tunable through the feedback from preemption on the
routing process. It seems then possible to avoid an excessive
use of management resources coming from an explosion of
LSP reroutings. This feedback also allows a provider to de-
fine the reorganization tempo in his network, in accordance
with his own policies towards his clients.

A last advantage is that the overall reliability can be
improved through the use of a smart routing process able
to avoid congestion and to minimize the number of failed
reroutings (e.g. using a load balancing objective function as
in this document, but other alternatives exist). The relevance
of the preemption mechanism itself is improved through an
appropriate repartition of all priority levels on each link.

The main shortcoming of our preemption scheme is the
lack of opportunity to reduce the rate of some willing LSPs
instead of forcing reroutings. Of course, an adaptative rate
policy like that proposed in [7] could be introduced in the
scheme quite simply, provided that the computational effi-
ciency is not put at stake.

Acknowledgement

The authors would like to express their gratitude to Stefaan
De Cnodder from Alcatel and Olivier Bonaventure from the
Catholic University of Louvain-la-Neuve, for providing in-
teresting comments on an earlier version of this paper.

This work has been carried out in the I1ST-1999-20675
ATRIUM project funded by the European commission.

References

[1] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan,
and G. Swallow. RSVP-TE: Extensions to RSVP for
LSP tunnels:. RFC 3209, Dec 2001.

[2] B. Jamoussi, Editor, L. Andersson, R. Callon,
R. Dantu, L. Wu, P. Doolan, T. Worster, N. Feldman,
A. Fredette, M. Girish, E. Gray, J. Heinanen, T. Kilty,
and A. Malis. Constraint-based LSP setup using LDP.
RFC 3212, Jan 2002.

[3] Murali S. Kodialam and T. V. Lakshman. Minimum
interference routing with applications to MPLS traffic
engineering. In INFOCOM (2), pages 884—-893, 2000.

[4] P. Aukia, M. Kodialam, P. Koppol, T. Lakshman,
H. Sarin, and B. Suter. RATES: A server for MPLS
traffic engineering. RATES: A server for MPLS traf-
fic engineering, IEEE Network Magazine, pp. 34-41,
March/April 2000.

[5] S. Salsano, F. Ricciato, M. Listanti, and A Belmonte.
Offline configuration of a MPLS over WDM network
under time-varying offered traffic. INFOCOM, June
2002.

[6] Mohammad Peyravian and Ajay D. Kshemkalyani.
Connection preemption: Issues, algorithms, and a sim-
ulation study. IEEE Infocom, April 1997.

[7] J.C. de Oliveira, C. Scoglio, I.F. Akyildiz, and G. Uhl.
A new preemption policy for diffserv-aware traffic en-
gineering to minimize rerouting. IEEE Infocom, June
2002.

[8] F. Blanchy, L. Mélon, and G. Leduc. An
efficient decentralized on-line traffic engineering
algorithm for MPLS networks. Available at
http://run.montefiore.ulg.ac.be/"blanchy, July 2002.

[9] R. Bellman and R. Kalaba. Shortest paths through net-
works. Dynamic Programming and Modern Control
Theory, pp. 50-54, Academic Press, 1965.

[10] B. Szviatovszki, A. Szentesi, and A. Juttner. Mini-
mizing re-routing in MPLS networks with preemption-
aware constraint-based routing. Computer Communi-
cations 25 (1076-1083), 2002.

[11] E. Rosen et al. Multiprotocol label switching architec-
ture. RFC 3031, Jan 2001.

[12] F. Le Faucheur and W. Lai. Requirements for
support of diff-serv-aware MPLS traffic engineer-
ing. IETF Draft draft-ietf-tewg-diff-te-reqts-06.txt,
September 2002.

