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Abstract – This paper focuses on the protection of virtual cir-
cuits (Label Switched Paths, LSPs) in a (G)MPLS [1] (Gen-
eralised Multi-Protocol Label Switching) network. The pro-
posed algorithm is designed to protect traffic with strong delay
requirements such as EF (Expedited Forwarding) ordered ag-
gregates in a DiffServ domain. For this type of application end-
to-end recovery schemes are usually considered to be far too
slow. Local, fast-rerouting is the only solution which can com-
pete with restoration times offered by SONET self-healing ring.
However local restoration has a cost in terms of extra band-
width consumed for the backup paths. Our scheme thus in-
cludes a sophisticated resource aggregation mechanism based
on the concepts of “backup-backup aggregation” and “backup-
primary aggregation”. The path selection algorithm is also de-
signed to efficiently reduce the resource usage. Moreover, when
considering LSPs at different preemption levels, our algorithm
is able to correctly calculate the amount of bandwidth that can
be preempted despite the sharing of resource. We show that
our approach, though local, can compete with the state-of-the-
art end-to-end recovery schemes (such as the one presented in
[2]) in terms of resource reservation. The major contribution
of our scheme, the “backup-primary aggregation”, was then
also used in the context of end-to-end recovery and improved
its performance substantially.

Keywords : Fast recovery, MPLS, resource sharing, backup
LSP

1 Introduction

The introduction of optical technology in IP networks and
the development of near-terabit capacity routers have made
huge amounts of bandwidth available. Simultaneously, the
deployment of (G)MPLS and DiffServ in core networks al-
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lows ISPs to traffic engineer their network for maximum ef-
ficiency and to offer quality of service to their customers.
Indeed, MPLS behaves mostly like ATM where VCs (Vir-
tual Circuits) are replaced by LSPs (Label Switched Paths).
LSPs can be established to “emulate” the classical hop-by-
hop routing of IP but can also be source-routed, allowing to
precisely define how flows of traffic must make their way
through the network. Signalling protocols associated with
MPLS, namely RSVP-TE [3] (ReSerVation Protocol with
Traffic engineering Extensions), CR-LDP [4] (Constraint
Routing Label Distribution Protocol) both support the pro-
visioning of LSPs with bandwidth allowing to offer end-to-
end QoS guarantees.

Optical and electronic hardware running at breath-cutting
speeds are inherently unreliable. Hardware failures, soft-
ware bugs, maintenance/upgrade operations cannot be
avoided at some points in time. But, when forwarding pack-
ets at the speed of 10Gbps or more, a single second of in-
activity means that millions of bytes of precious customer’s
data are sent directly to the trash-bin and the QoS guarantees
you claimed to offer are gone the same way.

Consequently, lots of works have been undertaken to de-
velop algorithms and protocols that will allow the network
to quickly recover from any failure it may encounter. Such
algorithms where already studied for ATM and before for
X.25 for example. But at that time virtual circuits where
mostly established by hand based on planning tools and traf-
fic measurement. Nowadays many people agree that, to be
really useful, all this process has to be automated. Based on
a high level request (defining precisely the bandwidth and
QoS requirement of the traffic), the network must be able to
compute and establish a path from one ingress router to an
egress one and to protect it against failures.

A classical way to reach reliability is to use schemes re-
ferred to as 1+1 and 1:1 protection (cf. [5]). For each LSP
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we want to establish, we compute two completely disjoint
paths from the ingress to the egress. The best of the two
is the primary path, the other is the backup path. In the
1+1 scheme both paths are used simultaneously : all pack-
ets are duplicated at the ingress and sent on both paths. The
egress node continuously monitors both inputs and selects
the “best” one. This way of ensuring protection is of course
very costly in terms of bandwidth. [6] presents an approach
to limit the cost of the 1+1 protection. In the 1:1 scheme,
only the primary path is used to forward packets while the
backup path is in “standby” mode. If a failure occurs, a mes-
sage is sent to the ingress which switch the backup and the
primary path. The advantage of the 1:1 solution is that un-
der the single failure assumption significant bandwidth sav-
ing can be realized. Indeed if we assume that only a single
failure may happen in the network at any given time, not
all backup paths can be activated simultaneously. Resources
that must be reserved for independent backup paths can thus
be shared. For reliability and performance the computation
of primary and backup paths will probably be distributed
and handled by ingress nodes. Some information must thus
be made available to these devices if we want to achieve the
best possible aggregation of resources. [7] and [2] present
two approaches to do so. The authors of [2] show that with
a relatively small amount of data their algorithm is able to
protect the network against link failures while limiting the
extra bandwidth consumption to 63-68% which is a signifi-
cant improvement compared to previous methods.

Obviously the 1:1 protection induces far more delay than
the 1+1. Failure has to be detected, a message must propa-
gate to the ingress node which must then switch active and
standby paths. For this reason other approaches have also
been envisaged. In fact restoration strategies can be divided
into two classes : end-to-end recovery and local recovery
(often called “fast re-routing”). In a local scheme, the re-
routing is handled by the node directly preceeding the fail-
ure on the primary path or more generally by a node “close”
to the failure. The principle is to establish a set of backup
LSPs each one protecting the primary path against the fail-
ure of one particular node (or link).

It should also be noted that in both local and end-to-
end approaches, the computation and establishment of the
backup paths can be postponed until the occurrence of a fail-
ure. While this way of proceeding makes sense especially
with best effort traffic, it introduces large delays and, more-
over, restoration cannot be guaranteed to succeed. In the
context of this paper we consider only traffics with “strong”
protection requirements (the kind of guarantees one may
want for voice traffic for example). Without any loss of gen-
erality this paper will mainly focus on node failures.

2 Algorithm overview

Our algorithm offers improvements in two main areas com-
pared to any previously presented solution : (1) high quality
local bandwidth aggregation and (2) correct handling of pre-
emption levels.

2.1 Bandwidth sharing

2.1.1 Backup-Backup bandwidth sharing

As already explained, resource sharing is possible under the
assumption that, at any given time, at most a single fail-
ure will occur in the network. If this hypothesis holds,
two backup LSPs protecting two distinct nodes will never
be activated together. If these LSPs are using some com-
mon links, only the maximum bandwidth has to be reserved.
Figure 1 presents this scenario. The backup LSP “Src1-
Src2-B-C” was established to protect the primary LSP es-
tablished between Src1 and Dst1 against the failure of node
A. Meanwhile, the backup LSP “B-C-Dst1-D-E” was estab-
lished to protect the primary path between Src2 and Dst2
against the failure of the node labelled “failure”. Both
backup paths are using the link “B-C” on which we can re-
serve max(BW (Backup

1
), BW (Backup

2
)) where BW (l)

represents the bandwidth required by the LSP “l”. This type
of aggregation allows a high decrease in the bandwidth con-
sumption.

2.1.2 Primary-Backup bandwidth sharing

It is possible to improve further the scheme if we con-
sider that when a backup path is activated because of a fail-
ure, some bandwidth isn’t used any more on the primary
path. Indeed as soon as the failure is detected, the node
responsible for the local backup will switch the traffic be-
tween service and recovery path. Very rapidly the circum-
vented links of the primary path will see their bandwidth
consumption reduced. This bandwidth can thus be used by
other backup LSPs protecting the same node. Figure 1 de-
tails the situation. As in the previous case, Backup2 was
established to protect LSP2. A second backup was cre-
ated to protect LSP1 against the failure of the node “fail-
ure” : Backup3. Backup2 and LSP1 share link “C-Dst1”.
If node “failure” fails, packets propagated on LSP1 will be
encapsulated into the Backup3 tunnel at node “A”. At the
same time, packets propagated on LSP2 will be diverted on
Backup2. As Backup2 and LSP1 are never used simultane-
ously, only max(BW (Backup

2
), BW (LSP1)) must be re-

served on link “C-Dst1”.
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Figure 1: Resources sharing

2.1.3 Path computation

In many traffic engineering schemes, a central server using
some sort of mixed-integer programming algorithm com-
putes an optimal mapping between requests and LSP paths.
This approach usually require hours of computation and is
not very robust mainly because the global optimum discov-
ered by this mean is very sensitive : a few changes in the set
of requests leads to a completely different set of paths. In
our approach, path computation is completely decentralised
and real-time. Establishment requests are processed one af-
ter the other by the ingress node from which the LSP must
start, each ingress treating the requests it receives indepen-
dantly. Consequently our scheme can combine easily with
TE (Traffic Engineering) algorithms following the same de-
centralised philosophy, as well as with any more centralised
scheme.

In this paper we will always assume that the primary LSP
follows the shortest path according to a certain metric (usu-
ally a hop count). The reader is referred to [8, 9, 10] for other
TE schemes to establish primary paths. When the primary
path is known, we compute the set of backup LSPs required
to prevent any possible node failure along this path. This is
done by starting to protect against last node failure and then
going backward until we reach the first node. If a backup
path cannot be found under the node-failure hypothesis1, we
assume that only a link failure will occur and compute a new
backup path. If it fails again, the request is rejected.

1Obviously it is impossible to protect the path against the failure of
the egress node. However it is possible to protect the link between the
penultimate node and the egress. The backup computed for this purpose
only needs to be link-disjoint with the primary path.

To utilise bandwidth efficiently, the path computation al-
gorithm must favour paths where a lot of resource sharing is
possible. To compute the backup path we associate with
each link a cost corresponding to the increment of band-
width required if the backup LSP goes through the con-
sidered link. Dijkstra’s algorithm is then used to compute
the shortest path starting at the node preceding the protected
node of the primary path towards the egress node. We stop
the algorithm when it comes to a node that belongs to the
primary path which is located after the protected node.

2.2 Preemption levels

Preemption levels are used to define some LSPs as being
“more important” than others. When establishing a LSP, it
can preempt the bandwidth reserved by LSPs having a lower
preemption level. This makes it possible to request an estab-
lishment that will never block. In case of failure, LSPs with
a higher preemption level will also be restored first.

Handling preemption levels has no impact on the band-
width sharing efficiency. However combining resource shar-
ing and preemption levels in the same scheme requires some
special care. This problem will be explained more exten-
sively in section 3.2.

3 Detailed description

For the clarity of the rest of this paper we will first define
a few terms and functions. While the preemption levels are
meaningless for the bandwidth sharing, the most general no-
tation will be introduced. A network is represented by a
multi-valued graph G = (X ,U) where X is a set of nodes
and U a set of oriented arcs between these nodes. Each link
Lij ∈ U between nodes Ni ∈ X and Nj ∈ X is associated
with a set of values :

• Cij : the capacity of the link.

• Rij [p] : the total bandwidth reserved at preemption
level p. Rij =

∑P−1

p=0
Rij [p].

• Pij [p] : the total bandwidth reserved at preemption
level p for primary LSPs. Pij =

∑P−1

p=0
Pij [p].

• Bij(Lkn)[p] : the total bandwidth used by backup
LSPs at preemption level p in case of failure of link
Lkn. Bij(Lkn) =

∑P−1

p=0
Bij(Lkn)[p].

• Bij(Nk)[p] : the total bandwidth used by backup LSPs
at preemption level p in case of failure of node Nk.
Bij(Nk) =

∑P−1

p=0
Bij(Nk)[p].

• Fij(Lkn)[p] : the total bandwidth freed by primary
LSPs at preemption level p in case of failure of link
Lkn. Fij(Lkn) =

∑P−1

p=0
Fij(Lkn)[p].



• Fij(Nk)[p] : the total bandwidth freed by primary
LSPs at preemption level p in case of failure of node
Nk. Fij(Nk) =

∑P−1

p=0
Fij(Nk)[p].

P is the number of preemption levels. In a practical im-
plementation the source node of each arc is responsible for
maintaining this set of values up-to-date. From these defini-
tions, we have :

Bij(Nk)[p] =
�

∀m:Lmk∈U

Bij(Lmk)[p] (1)

Fij(Nk)[p] =
�

∀m:Lmk∈U

Fij(Lmk)[p] (2)

Rij = Pij + max � 0, max
L∈U

(Bij(L)− Fij(L)) ,

max
N∈X

(Bij(N)− Fij(N)) � (3)

Note that in equation 3 we have to consider the maximum
over all possible link failure scenarios even if we are pro-
tecting against node failure because it is not mathematically
guaranteed that the worst case bandwidth consumption will
be obtained when faced with a node failure. Indeed consider
the failure of link B-Failure on figure 1. In this scenario,
both Backup2 and LSP1 will be used simultaneously while
it is not the case if node “Failure” goes down. Of course, in
most pratical situation the worst case will be a node failure.

A LSP request is composed of :

• the source or ingress node : src ;

• the destination or egress node : dst ;

• the required bandwidth2 : bw

3.1 Path computation

3.1.1 Primary path computation

Dijkstra’s algorithm [12] is used to find the shortest path
from src to dst. The resulting path can be described by an
ordered set P = {Nx0

, Nx1
, . . . , Nxn

} with Nx0
= src and

Nxn
= dst.

2In this paper we assume that a single value defines the bandwidth re-
quired by each LSP. In a DiffServ context this corresponds to using L-
LSPs or E-LSPs with a single OA (Ordered Aggregate). Extensions of
the presented algorithms to handle E-LSPs with multiple OAs is straight-
forward and will be presented in our future works. Interested readers are
invited to read [11] for further information on how to combine DiffServ and
(G)MPLS and for a definition of L-LSPs and E-LSPs.

3.1.2 Backup paths computation

Given the primary path P we do :

1. k ← n

2. if k > 0 then k ← k − 1 else terminate

3. The node we try to protect is F = Nxk+1

4. Each link is assigned a cost Kij given by

• if we protect against node failure

Kij =

������ �����
Incij(F, bw) if i 6= F ∧ j 6= F

∧Incij(F, bw) 6= 0
ε if i 6= F ∧ j 6= F

∧Incij(F, bw) = 0
∞ if i = F ∨ j = F

• if we protect against link failure

Kij =

������ �����
Incij(F, bw) if (i 6= Nxk

∨ j 6= F )
∧Incij(F, bw) 6= 0

ε if (i 6= Nxk
∨ j 6= F )

∧Incij(F, bw) = 0
∞ if i = Nxk

∧ j = F

Where Incij(F, bw) represents the increase of Rij

when a backup LSP requiring bw units of band-
width and protecting node F uses link Lij . We have
Incij(F, bw) = R

′

ij −Rij where R
′

ij denotes the new
reserved bandwidth obtained after the new LSP estab-
lishment. If R

′

ij > Cij than Incij(F, bw) = ∞ (ca-
pacity constraint). It can be calculated using equations
1, 2 and 3. Dijkstra’s algorithm is run from root Nxk

until the next marked node by the procedure is N ∗ with
N∗ ∈ P . If no valid node-disjoint path is found, then
return to step 4 and select link failure protection. If it
fails once again, reject the request. ε is a small number
which is used instead of zero to favour the selection of
the shortest path if all Incij are null.

5. go to step 2.

This algorithm can even be further distributed to spread
the load of computation across as many routers as possible.
Indeed each router along the primary path could be respon-
sible for computing and establishing the backup LSP pro-
tecting the next node. This approach would require some
sort of synchronisation as, to benefit from maximum shar-
ing, backup paths cannot be calculated independently. It’s
worth also noting that this procedure is not optimal for two
reasons. First of all, it is not a network-wide optimum. It
is quite obvious because requests are treated one after the
other. This means that choices made for any particular LSP
will never be re-evaluated in the future. But this procedure



is also not optimal at the LSP level, i.e. does not lead to find
the set of LSPs minimising the increase of bandwidth reser-
vation. Indeed backup LSPs are calculated in order starting
at the last node and going backwards. Once again the im-
posed order prevents the algorithm to find an optimal solu-
tion.

Despite being sub-optimal, during our simulations, this
algorithm proved to be a good heuristic. We also tested an
enhanced version of the algorithm which consists of iterat-
ing on backup paths calculation until no more gain is ob-
served. In very rare cases it leads to a global improvement
on the total bandwidth consumed at the network level. In all
other cases it leads to no improvement at all or even to an
increase in the bandwidth consumption.

Moreover the type of solution we propose is designed to
be used also in a very dynamic environment where relatively
small LSPs (compared to the links capacity) are added and
removed permanently, following users needs. In this con-
text, a form of statistical multiplexing makes the ordering of
establishment less relevant.

3.1.3 Link state management

Each node must maintain and update the link state infor-
mation for all links it is responsible for. When a new
LSP is established through the link Lij , Pij [p], Bij(L)[p]
and Fij(L)[p] have to be updated. Rij [p] can then be re-
computed by means of a procedure described in section
3.2. Let l be a new LSP of preemption level pl with
BW (l) = bw. The path of LSP l is the ordered set
Pl = {Nx0

, Nx1
, . . . , Nxn

}. If l is a backup LSP, let its pri-
mary path be Pp = {Ny0

, Ny1
, . . . , Nym

}. Let s be the in-
dex for which Nys

= Nx0
, the protected node being Nys+1

.
Let e be the index for which Nye

= Nxn
i.e. the node where

primary and backup paths merge. Figure 2 details the situa-
tion.
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Figure 2: Primary and backup paths

• If l is a primary LSP, links Lij ∈ Pl
3 must be updated

according to :

1. Pij [pl]← Pij [pl] + bw

3The notation Lij ∈ Pl denotes ∃t : Nxt = Ni ∧ Nxt+1
= Nj .

2. Fij(L)[pl]← Fij(L)[pl] + bw ∀L : L ∈ Pl

The purpose of point 2 is to reflect the fact that at this
stage of the establishment no backup exists. If a failure
occurs at this point, reservations should thus be freed
along the primary path. This assumes that when an un-
protected LSP is interrupted by a failure the bandwidth
reserved is freed after and before the failure. This can
be achieved quite easily. Indeed each backup LSP is
associated with one particular node failure. When a
packet flows along a backup LSP, a router can thus
know that a failure occurred and where it is located.
As the router also knows the path of each primary LSP
established through him, it can decide to discard pack-
ets on failed LSPs before they reach the failure.

• If l is a backup LSP, all links Lij ∈ Pl ∪ Pp must be
updated according to :

1.
Bij(Lysys+1

)[pl]← Bij(Lysys+1
)[pl] + bw

if Lij ∈ Pl

2.
Fij(Lysys+1

)[pl]← Fij(Lysys+1
)[pl] − bw

if (Lij ∈ Pp) ∧ (j ≤ s ∨ e ≤ i)

The purpose of point 2 is to reserve bandwidth on the
primary path before the protected node and after the
merging point. Indeed when the primary LSP was es-
tablished it was unprotected and this bandwidth was
supposed to be freed in case of failure. Now that this
recovery path is in place a failure of node “Nys+1

” is
not fatal for the primary LSP.

Because of point 2, the establishment of a backup LSP
must also be signalled on the primary path to allow the
reservation of the required resources. In fact the only
information that must be made available is the starting
and the merging point.

3.2 Preemption levels aggregation

When combining both preemption levels and resources shar-
ing we must be careful that Rij [p] must correctly reflect the
amount of bandwidth which can effectively be preempted
(if required) at each preemption level. Indeed the preemp-
tion level is a property of LSPs not of bandwidth. But we
assign an amount of bandwidth to each preemption level to
reflect the fact that by removing all LSPs at a given level a
certain amount of bandwidth will be freed. When dealing
only with primary path everything is very easy : we have
to reserve at level p the sum of the bandwidth required by
all LSPs at level p. The introduction of backup LSPs and
bandwidth sharing makes things a bit more complex. Indeed
when using protection, removing a LSP does not necessar-
ily free any resource : if we recall equation 3, we see that



a decrease of Bij(N) only has an impact on Rij if node N

is the one that maximises the difference. The consequence
is that the preemption of a given quantity of bandwidth will
sometimes require that we tear down a set of LSPs whose
total bandwidth is bigger than the required bandwidth. To
do so the LSPs we are establishing must have a preemption
level higher than all the LSPs in this set.

An example is given in tables 1 and 2. The bandwidth
that must be reserved for backup LSP1 and LSP2 can be lim-
ited to max(BW (LSP1), BW (LSP2)) = 10Mbps because
they protect two distinct nodes. A new LSP with preemp-
tion level 14 would only be able to preempt bandwidth from
LSP1. But despite the fact that LSP1 requested 10 Mbps of
bandwidth, removing it will only free 5 Mbps because of
sharing.

LSP Failure Bandwidth Preemption Level

1 Nx 10 Mbps 2
2 Ny 5 Mbps 1

Table 1: Sharing with preemption levels : LSPs

Preemption level Bandwidth

Rij [1] 5 Mbps
Rij [2] 5 Mbps

Rij 10 Mbps

Table 2: Sharing with preemption levels : Rij [p]

As explained earlier preemption levels are used to give
priority to certain LSP requests. If a link is completely filled
then it is still possible to establish a new LSP through this
link by preempting resources belonging to less important
LSPs. But the bandwidth reserved on a link is the result of
three terms (cf. equation 3) which are composed in different
proportions for each preemption level.

The algorithm computing Rij [p] is composed of two
phases. The first one consists of computing an intermedi-
ate result Gij(L)[p] and Gij(N)[p]. The second phase com-
putes Rij [p] using this result.

3.2.1 Phase 1

The value Gij(L)[p] (resp. Gij(F )[p]) represents, up to pre-
emption level p, the increment of bandwidth that must be re-
served to be able to forward traffic in case of failure of link

4Preemption levels are numbered in decreasing order of priority. Level
1 is thus more important than level 2.

L (resp. node F ).

Gij(L)[p]← max � 0, � p

k=0
Bij(L)[k] − � p

k=0
Fij(L)[k] 	

∀p,L : 0 ≤ p < P, L ∈ U

Gij(F )[p]← max � 0, � p

k=0
Bij(F )[k] − � p

k=0
Fij(F )[k] 	

∀p, F : 0 ≤ p < P, F ∈ X

The algorithm is based on the following idea : we do not
need to reserve extra bandwidth at level p if, up to that level,
a sufficient amount of bandwidth will be freed by the failure
we consider. However we should note that Gij(X)[p] (X
being either a node or a link) can never be negative even
if

∑

Fij(X)[p] >
∑

Bij(X)[p] because it would mean we
have to “unreserve” bandwidth that is used by active primary
paths (recall that Fij(X)[p] is already reserved).

Figure 3 shows the situation. Up to level 1, a failure will
free more bandwidth that needed by the backup LSPs. For
this reason Gij(X)[0] = Gij(X)[1] = 0. For p ≥ 2,
∑p

k=0
Bij(X)[k] −

∑p

k=0
Fij(X)[k] > 0. The values

of Gij(X)[2], Gij(X)[3] and Gij(X)[4] are represented
graphically on the figure.

Gij(X)[p] is the balance up to level p between the re-
quired backup bandwidth and the freed primary bandwidth.
If Gij(X)[p0] > 0 for a particular p0, this means that we
must add a new reservation of bandwidth at level p0 to cor-
rect the difference. If we assume that the correction has al-
ready been done for all p < p0, the new reservation at level
p0 must consist of Gij(X)[p0] − Gij(X)[p0 − 1] units of
bandwidth.

This is only for a particular failure. As any node in the
network can fail, we have to define a new vector Mij [p]
accounting for the maximum difference between the total
bandwidth required and freed considering all possible fail-
ures. This is the purpose of phase 2.
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3.2.2 Phase 2

We introduce the vector Mij [p] given by :

Mij [p]← max

(

max
L∈U

(Gij(L)[p]) , max
F∈X

(Gij(F )[p])

)

∀p : 0 ≤ p < P

This vector plays the same role as Gij(X)[p] but at the
network-wide level. Now that we have such a failure inde-
pendent value we can compute :







Rij [0]← Pij [0] + Mij [0]
Rij [p]← Pij [p] + Mij [p]−Mij [p− 1]

∀p : 0 < p < P

Which is the same formulae we introduced by means of
our example. It should be pointed out that the difference
Mij [p]−Mij [p − 1] can be negative which looks a bit sur-
prising at first. Indeed it means we have to reserve less band-
width at level p than the sum of the bandwidth requirements
of all primary LSPs. In fact this just means that a certain
amount of bandwidth initially reserved at level p has been
upgraded to level p0 < p to be aggregated with backup
LSPs.

3.3 Signalling extensions

As all computations are done by ingress nodes, information
regarding the state of each link has to somehow propagate
to these nodes. This is done through a signalling protocol
which in our case can be of two kinds : a routing protocol or
a label distribution protocol.

An easy approach is to flood Rij , Bij(L)−Fij(L) along
with a routing protocol PDU. We could extend OSPF to
flood this vector regularly to allow ingress nodes to stay per-
manently up-to-date with the network state. If the TE algo-
rithm used for primary path is required to know the band-
width usage per preemption level, Rij [p] (∀p : 0 ≤ p < P )
must replace Rij . The delay between two floodings has to
be carefully chosen to minimise the number of LSP estab-
lishment failures due to obsolete information. This represent
a big amount of data. A first way to reduce this would be to
flood Bij(N)−Fij(N). If we recall equation 3, we see that
this is sufficient if the node failure is always worse that a
single link failure (which is a very realistic assumption).

In a very big network, even this “reduced” flooding might
became quite costly. The approach followed in [2] is to
extend RSVP-TE or CR-LDP to collect information while
establishing the primary path. However, to be able to do
so, a slightly bigger amount of data must be kept for each
link. Each node has to know the impact on the bandwidth

consumed on all links Lij in the whole network if each of
its links fails. A node Nx must thus collect and maintain the
following information :

Bij(Lkn)[p] and Fij(Lkn)[p]
∀i, j, k, n, p : Lij ∈ U , k = x ∨ n = x, 0 ≤ p < P

The information required for backup path calculation can
be easily collected at each primary LSP establishment. In-
deed if we use RSVP-TE for LSP signalling, a PATH mes-
sage will be forwarded along the primary path towards the
egress node. When the RESV message is forwarded back
to the ingress node, each node Nx belonging to the primary
path can append Bij(Nx) − Fij(Nx) to this message. The
ingress node will thus receive a fresh network state before
calculating the backup paths. Rij should continue to be
flooded by a routing protocol. We should note however that
this scheme introduces delays since the ingress node must
wait for the primary path to be completely signalled to start
computing the backup LSPs. Moreover it cannot be used if
the computations of the primary and of the backup paths are
done together to further minimise resource consumption.

4 Simulations

We used for our tests a topology which was composed of 50
nodes and 102 full-duplex links. Among the 50 nodes, 30
were chosen to act as border routers. We affected to each
ingress-egress pair a probability which was used to engineer
the network by means of a multi-commodity maxflow algo-
rithm. The purpose of this algorithm is to ensure that if a set
of requests follows the given distribution probability a load
of 100 % is achievable on all link. This approach was used
to mimic the way a real network is engineered. Network
engineering in the context of fault protection is still a very
active domain of research (cf. [13, 14]).

The most important value when designing a restoration
scheme is the “cost” of such a protection in terms of addi-
tional bandwidth reserved for backup LSPs. We will call
it “network over-subscription” and represent it by γ. It is
given by :

γ =

∑

Lij∈U Rij −
∑

Lij∈U Pij
∑

Lij∈U Pij

γ measures the network-wide bandwidth reservation in-
crease caused by the backup LSPs compared to the unpro-
tected case.

Four algorithms for node-failure protection are presented
in the following results. The first one (labelled “LOCAL”)
is as the name suggest a local recovery scheme using only



the “backup-backup” bandwidth sharing scheme. The sec-
ond one, “LOCAL with FBW”, is an enhanced version tak-
ing into account the concept of “primary-backup aggrega-
tion” (using the vector Fij(F )). The same difference ex-
ists between the two algorithms labelled respectively “END-
TO-END” and “END-TO-END with FBW”. It should be
noted that the “END-TO-END” algorithm is similar in its
behaviour to the algorithm presented in [2] which we con-
sider to be the state-of-the-art in resource aggregation.

4.1 Results

Figure 4 presents the evolution of γ when we progressively
add LSPs to the network. The vertical position of each al-
gorithm is not a real surprise. However it should be noted
how the introduction of vector F improves the performance
of the local recovery. Local restoration with FBW is as good
as end-to-end recovery without FBW. On this topology, the
“distance” between the best local approach and the best end-
to-end scheme is less than 10%, a price we consider quite
cheap to benefit from very short restoration delays.

The decrease of γ that occurs after the establishment of
2000 primary LSPs should be pointed out. This behaviour is
due to the method to choose the path of the primary LSP. In-
deed, as the primary always follows the shortest path, many
primary LSPs will tend to overlap while enough bandwidth
remains available on the shortest path. This tends to create
regions where links are used to protect only a small number
of nodes. This situation does not create a lot of opportunities
to aggregate bandwidth. If we take a look at figure 5, we will
see that after 2000 establishments, the mean reserved band-
width is close to 45%. This mean load suggests that some
links are completely filled. The following requests thus have
to make a detour to avoid the saturated links. Because of
this, backup LSPs are now established in other parts of the
network where an important sharing can be realized.

This is confirmed by figure 6 which shows the mean num-
ber of non-null elements in the vector Fij(F ), i.e. the
evolution of 1

|X |

∑

F∈X sign(Fij(F ))5. Despite not being
shown in this paper the same kind of behaviour is observed
for the density of vector Bij(F ). The slope of the curve
increases shortly after 2000 LSP establishments indicating
that backup LSPs are now using links where no bandwidth
has been reserved for protecting the same node. This sug-
gests that choosing our primary paths in a smarter way could
have a big impact on the amount of sharing.

While the absolute value we obtain for the over-
subscription cannot be considered a reference value with-
out extensive testing on many different topologies and traf-

5sign(x) is equal to 1 if x is positive, to −1 if x is negative and to 0 if
x is equal to 0.

fic matrices, it proves the interest of including restoration
mechanism in the MPLS layer. Indeed lower layer recov-
ery schemes such as SONET self healing rings impose an
over-subscription of 100% and is limited to link-failure pro-
tection.
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Figure 5: Evolution of mean load

5 Conclusions and future works

The contribution of this paper is twofold. First of all we
improved the best known bandwidth sharing scheme with-
out sacrificing simplicity. This new aggregation technique
is able to provide a substantial decrease of the network over-
subscription of fast-rerouting. We also proposed an efficient
way of computing backup paths in a decentralised or even
completely distributed manner. The signalling extensions
required to implement our approach remains simple and not
too costly in terms of resource. The second interest of this
paper is to explain the modification required to handle cor-
rectly the notion of “preemption levels”.
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Figure 6: Evolution of the mean number of links having
some bandwidth reserved for a particular failure

Results presented show that fast-rerouting is a viable ap-
proach to protect traffic that can only accommodate very
short interruptions. They also suggest that routing the pri-
mary path in a smarter way could help reduce the resource
usage further. This topic will probably be an active domain
of research for our future works.
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