
TCP Vegas-like algorithm for layered multicast

transmission

Omar Ait-Hellal

Department of Computer Science,

Long Island University

1 University Plaza, Brooklyn,

New York 11201-8423.

Guy Leduc

Research Unit in Networking,

Institut Montefiore,Bat B28,

Université de Liège,

B4000 Liège 1, Belgium.

Abstract

Layered multicast is probably the most elegant solution

to tackle the heterogene ity problem in multicast de-

livery of real-time multimedia streams. However, the

multiple join experiments carried out by different re-

ceivers in order to detect the available bandwidth make

it hard to achieve fairness. In the present paper, we

present a simple protocol, inspired from TCP-Vegas,

that reduces considerably the unnecessary join experi-

ments while achieving intra-session and inter-session

fairness as well as being TCP-Friendly.

1 Introduction

Layered transmission is seen as the most ele-
gant way to transmit real-time multimedia streams
over the Internet. The technique consists of di-
viding the stream into multiple layers and multi-
casting each layer over a separate multicast group.
Then, it is up to the receivers to choose the ap-
propriate number of layers they can receive with
a reasonable loss rate.

Several algorithms have been proposed for
the rate adaptation at the receivers [13, 16, 4,
10, 7] to cite just few. In all these algorithms the
persisting problem of one layer oscillation is not
completely solved. Indeed, when the estimated
loss rate at a given receiver is small enough, the
receiver makes join experiment in order to check
whether the available bandwidth could support a
new layer. If it cannot, then the layer is dropped
and the experiment is scheduled for sometime
later. Unfortunately, if the available bandwidth
remains, for a long period of time, insufficient

to support a new layer, the receivers will keep
joining and dropping an upper layer unneces-
sarily. This may alter the fairness among dif-
ferent receivers (intra-session fairness), and spe-
cially among different sessions (inter-session fair-
ness). The problem may be worse if several ses-
sions compete for an available bandwidth that
is not sufficient for supporting any session’s new
layer [4].

In [13], a back-off mechanism, similar to TCP’s
timeout [8], is introduced in order to reduce these
unnecessary joins. When a receiver joins a new
layer and the join fails within a certain period of
time ”D”, then the join timer for that layer is
backed-off (multiplied by a constant larger than
1), so that the next join will be delayed enough.
The timeout ”D” is computed dynamically by
monitoring the failed joins, and estimating the
detection time which is the time after which a
join is considered to be a success. This solution,
unfortunately, even if it reduces the frequency
of unnecessary joins, does not solve them com-
pletely. On the other hand, it may penalize the
convergence of the algorithm for long sessions.

In the present paper we present a simple sche-
me based on the queuing delay estimation, and
inspired from TCP Vegas [6]. For optimality rea-
sons, our algorithm needs to estimate the round
trip time only once over the session, and thus
introduces a negligible overhead. However, it
can work well without any round trip time es-
timation, and therefore scales very well to large
multicast groups. Due to space limitations, we’ll
focuss more on the description of our algorithm
rather than its evaluation; therefore many sim-
ulations where we evaluate our algorithm and

comparing it to others (mainly [13]), in terms
of covergence, stability and intra as well as inter-
session fairness, will be subject of a future com-
munication.

2 Background

2.1 Feedback information

Internet real-time multimedia applications gen-
erally use the Real-Time Transport Protocol (RTP)
to transport their data. RTP [15] (data) pack-
ets contain header information that helps these
applications to perform a number of typically
needed tasks, such as payload type identification,
packet sequence reordering, media synchroniza-
tion, etc. RTP is accompanied by RTCP, a con-
trol protocol designed to monitor RTP sessions
in a light-weight and scalable manner. RTCP
(control) packets carry, among other informa-
tion, receiver reports (RR) that include QoS-
related feedback information such as the expe-
rienced packet loss, delay and jitter. These re-
ports are sent to all session members, and can
then be used for a variety of tasks such as QoS
adaptation, reception quality statistics, network
management.

In our algorithm RTCP reports are used only
at the beginning of the session to estimate the
round trip time. In case the estimation of the
one way delay is hard to achieve, we propose to
use a virtual round trip time derived from TCP
performance.

2.2 TCP Friendly and bounded fair-

ness

TCP-Friendly protocols are protocols for real-
time applications (which typically use UDP) that
try to mimic the behavior of an ideal TCP con-
nection.

TCP-Friendly algorithms are more fair, in the
sense that the bandwidth a connection will get
is close to that of an ideal TCP connection [11,
12, 3]. An ideal TCP connection would use a
bandwidth given by the following formula [11]:

B =
C · MTU

RTT ·
√

P
, (1)

where, C is a constant (ranging from 1.22 to 1.3

[12, 11, 3]), MTU is the mean packet size, RTT
is the average round trip time and P is the loss
ratio observed by the destination.

From this formula we can see that if a given
source sends data with the rate B and the ob-
served loss rate at the destination is close to P =
(

C·MTU

RTT ·B

)2
, then the source is TCP friendly1. There-

fore, if, in addition, the RTT is known, the source
(or the destination as will be shown later) can
adapt its rate such that the above equation can
be met.

To guarantee suitable conditions for TCP, it
would be sufficient to guarantee a bounded fair-
ness [10]. By bounded fairness we mean that if
two (equidistant) connections i and j are com-
peting for a bandwidth B, and are not restricted
somewhere (both can send at the maximum band-

width B), then the shares would satisfy Bi

Bj
≤ K,

where K is a constant.

TCP Vegas is an example of algorithms that
satisfy the bounded fairness [2, 6, 14]. The algo-
rithm we propose below ensures a bounded fair-
ness between the receivers of the same session as
well as between different sessions.

3 Rate adaptation using RTT

variations

The scheme we propose in the present paper
is an enhanced scheme of the one presented in [4].
In [4] a TCP-friendly like adaptation algorithm is
proposed, in which the rate is updated as follows:
The receiver computes the rate B(li) at which
RTP packets arrive when it has subscribed to i
layers as well as the loss ratio P (li) by observing
the sequence number of the received packets. It
joins an upper layer only if [12, 4]

P (li) < Lmini

∆
=

1.613 · α(li)

RTT 2 · B(li)
2 (2)

and it leaves the upper layer only if

P (li) > Lmaxi

∆
=

1.613 · β(li)

RTT 2 · B(li)
2 (3)

1In the rest of the paper we will express B in mean

packet size per second, so that MTU disappears

where α(li) and β(li) are constants set respec-
tively to 0.5 and 1.5, and RTT is the round trip
delay (without the queuing delay) measured at
the beginning of a session.

3.1 Mean round trip time and TCP

Vegas

The congestion window in TCP represents the
number of packets (amount of data) sent but
not yet acknowledged (packets in transit). Thus,
by varying the size of this window, TCP con-
trols its sending rate [8]. The congestion win-
dow is increased if no losses are observed other-
wise it is decreased. In Vegas version of TCP,
the mean round trip time RTT is estimated ev-
ery time an acknowledgment is received, and the
window is updated once every round trip time,
more precisely upon reception of the acknowledg-
ment of the last packet of the previous window
of data (see [11] for more details on the window
of data). Vegas keeps also the minimum over all
measured round trip times (T). It increases the

window only if Win
T

− Win
RTT

< α
T

and decreases it

if Win
T

− Win
RTT

> β
T

, where α and β are constants

typically set to 2 and 4 packet size respectively.
In case the above difference is between the two
thresholds, the window is kept unchanged (sta-
ble).

From the above formulas, we deduce that TCP
Vegas increases, resp. decreases, its window only

if RTT −T < α∗ RTT
Win

, resp. RTT −T > β∗ RTT
Win

.

On the other hand Win
RTT

is the sending rate of

TCP (available bandwidth), thus TCP Vegas in-

creases, resp. decreases, its window only if ε
∆
=

RTT − T < α
B

, resp. ε
∆
= RTT − T > β

B
. ε is

simply the mean queuing delay and can be esti-
mated as discussed below (see section 3.2), even
without having an RTT estimation, and without
the synchronization of the clocks, just assuming
no drift.

3.2 Round Trip time and queuing de-

lay estimation

To estimate the round trip time, one solution is
the use of RTCP reports [15], so that the source
can estimate its round trip time to a given re-
ceiver as follows: each Receiver Report (RR)

contains, for each RTP source, the timestamp
(tlsr) carried in the last RTCP Sender Report
(SR), and the elapsed time (dlsr) between re-
ceiving the last SR and sending the RR; for a
source that receives a RR at time trr, the RTT
can be calculated as: RTT = trr − tlsr − dlsr. In
a receiver driven algorithm, all the decisions on
joining or leaving a group are made at the des-
tination, hence the destination should have an
estimation of its RTT, if necessary. This can be
done either by receiving the RTT directly from
the source or computing it by the destination
itself, in the same way as above (by swapping
the sender and the receivers). The drawback of
the two solutions is that the source has to man-
age several RTCP reports from different destina-
tions (compute the dlsr and remember the time
tlsr for each receiver, or to send the RTTs once
computed to all the destinations). This leads,
unfortunately to feedback implosion in case of
a large group size. Nevertheless, one can reduce
that by estimating the RTT only at the join time,
by doing something similar to ping. In our al-
gorithm, the last solution is adopted, thus the
estimated round trip time is constant during the
whole session and corresponds to the round trip
delay (round trip time without the queuing de-
lay).

Having an estimation of the round trip de-
lay, the round trip time can be approached at
the receivers without using any other informa-
tion from the source except RTP headers (times-
tamps). Indeed, the round trip time can be mea-
sured by estimating the queuing delay separately
each time an RTP packet is received. More specif-
ically, assume that the round trip delay is T ,
and assume two RTP packets respectively with
timestamps2 t1s and t2s. Assume that their ar-

rival time at the receiver are respectively t1r and

t2r . If the clock of the sender is synchronized
with that of the receiver then the one way de-
lay is easy to estimate and therefore one can
have an estimation of the RTT since the delay
from the source to the receiver can be assumed
to be constant. Otherwise, just assuming no
drift between the clocks, we have to compute

Dl
∆
= D1 −D2

∆
= (t1r − t1s)− (t2r − t2s) which repre-

2The timestamp represents the instant when the

packet was transmitted by the source.

sents the queuing delay if one of the packets has a
zero queuing delay (thus RTT = T + Dl). Since
we are not able to determine whether one of the
packets has zero queuing delay then we have to
keep the minimum of all estimated Di’s, let it be
Dmin = min(tnr − tns), and compute the queuing
delay as if Dmin is the smallest one way delay,
and use the above formula to have an estimation
of the queuing delay (i.e. tnr − tns − Dmin is the
queuing delay of the nth packet).

3.3 Adapting Vegas to multicast lay-

ered transmission

The adaptation of TCP-Vegas to multicast lay-
ered transmission can be done as follows: each
receiver estimates the aggregate rate of the layers
it is receiving, and uses it together with the esti-
mated queuing delay to control the received rate
as TCP Vegas does, i.e. adds a new layer if the
queuing delay ε is smaller than α

B(li)
and drops a

layer whenever the queuing delay is larger than
β

B(li)
. This adaptation raises two main problems:

-Firstly, as discussed above, TCP Vegas al-
lows every connection to have at least α extra
buffers in the network [2]. So, in case of multi-
ple sessions, the number of allowed extra buffers
will be proportional to the number of connec-
tions, and thus might be too large (exceeding the
buffering capacity of the network) to avoid losses.
If the layers are dropped only if the queuing de-

lay is larger than β
B(li)

, a receiver may never see

a queuing delay larger than this value (hence lay-
ers are not dropped) even if the loss rate is large
enough.

The solution to the above problem, is to keep
also an estimation of the loss rate, and drop the
highest layer (i) whenever the queuing delay is

larger than β
B(li)

or the loss rate exceeds a cer-

tain threshold Lmaxi
. This threshold can be set

to a fixed reasonable loss rate, or dynamically
depending on the received rate (TCP Friendly,
see below).

-Secondly, the fairness will be independent of
the round trip time and thus non TCP Friendly.
Indeed, it can be shown that two TCP Vegas
connections i, j sharing a same bottleneck link,

will get shares satisfying β
α

> µi

µj
> α

β
, whatever

the round trip time of the connections are. Thus
TCP Vegas achieves a proportional fairness [9]
based on the queuing delay (or equivalently on
the number of crossed congested routers), which
is in our view better than TCP’s fairness.

To achieve a TCP-like fairness, one could im-
plement the following solution: we know that
if the actual bandwidth achieved by TCP (or a
TCP friendly algorithm) is Bact with a loss rate
of Lact, then following equation 3, and assum-
ing that the RTT does not change enough when
the number of layers changes (i.e the number of

layers changes from i to j and (RTTi/RTTj)
2≈

1), when the achieved bandwidth is Bnew, the
new loss rate Lnew should satisfy Lnew ≤ Lact ·
(

Bact

Bnew

)2
. In practice, we can set an upper loss

rate Lup for the first layer (or for a minimum

required bandwidth Bmin). So, if the estimated
loss rate, when receiving less than Bmin exceeds
the threshold, then it means that there are not
enough available resources in the network and
the receiver has to leave the session. Otherwise,
the upper loss rate threshold Lmaxi

is set dy-
namically, as the layers are added or dropped, as
follows:

Lmaxi
= Lup ·

(

Bmin

Bli

)2

(4)

where Bmin is the bandwidth consumed by the
base layer or a minimum required bandwidth,
and Bli is the bandwidth when the receiver re-
ceives i layers. Having such a threshold ensures
a bounded fairness with TCP connections, as ob-
served in our simulations.

3.3.1 Avoiding unnecessary join experi-

ments

Our solution is to back-off the lower threshold
on the queuing delay each time a join to a new
layer fails within a certain timeout D (problem-
atic layer), hopping to stabilize the receiver at
the previous layer. When the available band-
width becomes sufficient to add a new layer, the
queuing delay decreases, and is likely to go below
the lower threshold, allowing then the receiver to
carry out a new join experiment.

To avoid a potential underutilization (star-
vation), which can be caused by the back-off of
the lower threshold, we maintain a limit to the

latter. This limit should be set adequately so
that if ressources become available to add safely
a new layer, then the mean estimated queuing
delay should go below that value indicating that
a new layer can be added. We set the limit to
the mean queueing delay estimated just before
the current layer was added (see section 3.3.3),
hopping that the same conditions (queueing de-
lay) will lead to the same results (i.e. the current
layer is safely added).

3.3.2 Protocol state machine

Here we give a brief description of how layers are
added and dropped, see [4] for more details.

The receiver uses a timeout in order to avoid
successive joins and drops, thus drops or joins
are separated at least by the timeout D (see
figure 1). This timeout (D) is estimated as in
RLM (Receiver-driven Layered Multicast) [13].
We first estimate the detection time (TD) each
time a layer is dropped. We used an estimator
for each layer; when layer i is dropped, TD[i] is
updated to the time T elapsed between the last
join, and the drop, i.e. at the nth drop, TD is
updated as: TDn[i] = (1 − a) · TDn−1[i] + aT .
The deviation of the detection time is also es-
timated using a first order filter, i.e Devn[i] :=
(1 − b) · Devn−1[i] + b · Diff , where Diff =
|T − TDn−1[i]|, a and b are constants smaller
than 1 (typically set to 0.25). The timeout is
then set to D = g1TD[i] + g2Dev[i], where i
is the dropped or added layer. The estimation
of the detection time above is similar to that of
RLM, however RLM uses a single estimator for
TD, and the time T above is considered as the
time elapsed between the last join to the layer
we are dropping and the drop. This may lead to
large timeouts and therefore to slow convergence.

A measurement interval of TM seconds (0.5)
is used to estimate the loss rate by using a sliding
window (see [4]). The decisions are made at the
timeout D expiration and each TM interval.

When a new layer is added (transition (S) to
(W) in figure 1, where the receiver is assumed
to have layer i as its upper layer), and the loss
rate exceeds Lmaxi

or the queuing delay exceeds
its upper threshold, before the expiration of the
timeout D, then the layer is dropped and con-
sidered problematic, and thus the threshold α for

that layer is divided by 2 (transition (W) to (D)).
If the layer is not dropped within the timeout D
then the join is considered successful (transition
(W) to (S)).

A join to a new layer cannot be carried out
if the estimated time to join is larger than the
current time (transition (S) to (W)). Firstly this
helps to introduce some randomness in joins be-
tween several receivers, avoiding synchronized joins.
Secondly it helps also to space in time the joins
to the same layer, if the latter is problematic.
More specifically, the time to join is reset after
each expiration of the timeout D, to the current
time plus the duration of a cycle times a constant
back-off k. The cycle represents the estimation
of a cycle in an ideal TCP (the time separat-
ing two consecutive decreases of the congestion
window, see [4] for more details). We chose this
value to give more chances to receivers receiv-
ing a small bandwidth to carry out joins, since
the duration of a cycle is proportional to the re-
ceived bandwidth and is given approximately by:
Cycle ≈ 0.61·B(li)·RTT 2, where B(li) is the ag-
gregate received rate, and RTT is the estimated
round trip delay (see section 3.2). A constant k
is kept for each layer, and backed-off (multiplied
by 2) every time the layer is dropped (transition
(D) to (S)), and divided by 2 every time a join
to the corresponding layer has succeeded. Thus,
this will reduce the frequency of joining problem-
atic layers.

The receiver remains in state (S), while the
mean queuing delay is between the two thresh-
olds and the loss rate is smaller than Lmaxi

. It
transitions to state (D) (from (S)) and drops a
layer if the loss rate exceeds the threshold Lmaxi

or the mean queuing delay is larger than the
upper threshold, then after D it comes back to
state(S).

3.3.3 Pseudo code

In the present section we give a simplified pseudo
code for the above algorithm to show how α is
updated. Consider that a given receiver has layer
i as its upper layer.

MeanD is estimated as described in sec 3.1

if ((MeanD > Beta/B(l_i))||(Loss > L_max)) {

if (layer i is newly added) {

// timeout D is pending

Timers T and D clock the FSM

DS

W

Ti
m

eo
ut

 D

(lastadd_ = t)

Timeout D

(R
es

et
 k

 fo
r t

he
 p

re
vi

ou
s l

ay
er

)

(la
st

ad
d_

 =
 t)

M
ea

nD
 <

 A
lp

ha
[i]

/B
(l_

i)
&

&
cu

rr
en

t_
tim

e-
la

st
ad

d_
>k

 C
yc

le
_ (backoff k)

L>Lmax || MeanD > Beta/B(l_i) (Drop)

L>Lmax
 ||

M
ea

nD > B
eta

/B
(l_

i)
(D

rop)

bac
koff

Alpha[i
]

(Estimate TD)

&& L <= L_max
(Alpha[i]/B(l_i)<= MeanD <= Beta/B(l_i))

Figure 1: Protocol state machine

// layer i is thus problematic

Drop layer i;

Alpha[i-1] = max (Alpha[i-1] / 2,

Mean[i-2]*B(l_(i-1)));

} else { // layer i is not problematic

Drop i; }

} else { if (MeanD < (Alpha[i] / B(l_i))) {

if (Now > Time_to_join) {

Mean[i] = MeanD; Join layer i+1;

wait D; } } }

if the join to i+1 has succeeded

Alpha[i] = min (2, Alpha[i]*2);

4 Simulations

Due to space limitations we’ll show only few sim-
ulations obtained using the NS-2 [1] simulator.
Extensive simulations have been done to inves-
tigate the effects of RTT, packet size, and the
number of connections (multicast and TCP) and
the results are very promising and will be subject
of a future communication. Here we’ll present
two small experiments to show the convergence
(and fairness) of VALM (TCP Vegas Algorithm
for Layered Multicast) and the smoothness in the
throughput. In these experiments, five (5) dif-
ferent unicast VALM sessions (each with one re-
ceiver) are competing for a bottleneck node of 2.5
Mbps, and 100 packets buffering capacity, with
five (5) TCP (Reno) connections. The round trip
delay (round trip time without queuing delay) of
the sessions, TCP included, is about 500ms. We
consider an upper loss rate of 25% when receiving

the first layer, and set dynamically the loss rate
threshold following equation (4). The measure-
ment interval for the loss estimation is set to 0.5
seconds, and the duration of all the simulations
is 2000 seconds. The stream sent by the mul-
ticast session is composed by 10 CBR-like [13]
equivalent layers of 50 kbps each.

4.1 VALM vs RLM

As seen in many simulations, RLM [13] is in-
deed fair when the connections start almost at
the same time. However, when a connection (a
TCP connection or RLM session) starts while
another session is in its steady state, the start-
ing connection is very likely to get much less
bandwidth than the running one. In order to
compare VALM to RLM, and to show an ex-
ample where RLM fails in achieving fairness, we
consider the scenario described above, with one
RLM (vs VALM) session and one TCP connec-
tion (instead of 5). The bottleneck link is set
to 0.5 Mbps (instead of 2.5Mbp). The TCP con-
nection starts 400 seconds after the multicast ses-
sion.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Thro
ugh

put
in bp

s

Time in seconds

TCP
TCP

Figure 2: A TCP connection starting while an
RLM session is in its steady state

Figure 2, plots the throughput of RLM and TCP.
We can see that the TCP connection remains at
the very low stages and does not get its fair share.
The opposite scenario, where RLM session starts
400 seconds after the TCP connection, also leads
to comparative situation, even though a little im-
provement in the fairness is seen.

In figure 3, the same scenario as above is simu-
lated using VALM instead of RLM. The figure
shows that TCP converges to a relatively fair
share even though the convergence is relatively
slow. The other scenarios, where VALM starts

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Thro
ugh

put
in bp

s

Time in seconds

VALM
TCP

Figure 3: A TCP connection starting while a
VALM session is in its steady state

at the same time or later than TCP give almost
the same results (VALM converges to the same
fair share).

4.2 Rate stabilization

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

0 20 40 60 80 100 120 140 160 180 200

Thro
ugh

put
in bp

s

Queue size in packets

TCP
VALM

Figure 4: Mean throughput for TCP and VALM,
as the queue size varies

The aim of the proposed algorithm is to keep the
receiver in a stable state, where unnecessary join
experiments are avoided. However, it is known
that when the queue length is not large enough,
Vegas cannot stabilize its rate [2]; and therefore
so is our algorithm. To show the effects of the
queue size on the performance of VALM, we run
the scenario described in 4 with five VALM (uni-
cast) session and five TCP connections.

Figure 4 shows the mean achieved through-
put for VALM together with TCP when the queue
size varies from 4 packets to 200 packets. We ob-
serve that as the queue size increases, the utiliza-
tion of the link increases. When the queue size
is larger than 50 packets the rate of each VALM
session converges to a stable value. Another ob-
servation, as expected, is that the rate gets stable
(no oscillation [5]) when the queue size is larger
than β · Number connections; in our case the
number of connections is 10, then a queue size

larger than 40 packets is needed to get a stable
rate for VALM.

5 Conclusion

In this paper we presented a new scheme for lay-
ered multicast delivery over the Internet. Our
scheme is inspired from TCP Vegas, and thus
behaves like it. It is fair, convergent and more
importantly TCP-Friendly. In extensive simu-
lations, we have found that VALM achieves in-
tra and inter-session fairness, while reaching near
full utilization when the buffers are large enough.
Unfortunately, when the buffers in the interme-
diate switches are not sufficiently large, the uti-
lization and fairness tend to be poor because of
Vegas’ conservatism. Currently, we are investi-
gating ways to tackle this problem by making
Vegas more aggressive in similar situations.

References

[1] Network Simulator (NS-2), http://www.isi.edu/nsnam/ns/

[2] O. Ait-Hellal, E. Altman, “Analysis of TCP Vegas and TCP
Reno”, In Telecommunication systems, 2000.

[3] O. Ait-Hellal, L. Yamamoto, G. Leduc, “Cycle-based TCP-
Friendly algorithm”, In Proc. Of Globcomm’99, Rio de Janeiro,
Dec. 1999.

[4] O. Ait-Hellal, L. Yamamoto, L. Kuty, G. Leduc, “Layered multi-
cast using a TCP friendly algorithm”, Research report, University
of Liege, Belgium, 1999.

[5] O. Ait-Hellal, E. Altman, “Stability of ABR congestion control
using the theory of delayed differential equations”, International
Journal of Systems Science, Vol. 34, Numbers 10-11, 15 August-
15 September 2003, pp. 575-584.

[6] L.S. Brakmo, L.L. Peterson, “TCP Vegas : End to End Conges-
tion Avoidance on a Global Internet”, IEEE Journal on selected
Areas in communications, vol. 13, pp. 1465-1480, October 1995.

[7] I. El Khayat and G. Leduc, “A stable and flexible TCP-friendly
congestion control protocol for layered multicast transmission”,
Proc. of 8th Int. Workshop on Interactive Distributed Multimedia
Systems (IDMS’2001), 4-7 Sep. 2001, Lancaster, UK.

[8] V. Jacobson, “Congestion avoidance and control”. ACM SIG-
COMM’88, pp. 273-288, 1988.

[9] F. P. Kelly, A.K. Maulloo, D.K.H. Tan, “Rate control in com-
munication networks: shadow prices, proportional fairness and
stability”,Journal of the Operational Research Society, 49, pp. 237-
252, 1998.

[10] X. Li, M.H. Ammar, S. Paul,“Video Multicast over the Internet”,
IEEE Network Magazine, April 1999

[11] J. Mahdavi, S. Floyd, “TCP-Friendly”, Technical note sent to the
end2end-interest mailing list, January 8, 1997.

[12] M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic be-
havior of the TCP congestion avoidance algorithm”, Computer
Communication Review, 27(3), July 1997.

[13] S. McCanne, V. Jacobson, M. Vetterli, “Receiver-driven layered
multicast”, in Proceedings of ACM Sigcomm, pages 117-130, Palo
Alto, California, August 1996.

[14] Samios, C. (Babis) and M. K. Vernon, ”Modeling the Through-
put of TCP Vegas”, Proc. ACM SIGMETRICS 2003 Int’l. Conf.
on Measurement and Modeling of Computer Systems (Sigmetrics
2003), San Diego, June 2003.

[15] H. Schulzrinne, S. L. Casner, R. Frederick, V. Jacobson, “RTP:

A Transport Protocol for Real-Time Applications”, Internet RFC

1889, January 1996 (update in progress).

[16] T. Turletti, S. F. Parisis, J. Bolot, “Experiments with a Layered

Transmission Scheme over the Internet”, INRIA Research Report

No 3296, Nov. 97.

