
Improving TCP in wireless networks with an

adaptive machine-learnt classifier of packet loss
causes

Ibtissam El Khayat, Pierre Geurts, and Guy Leduc

Department of Electrical Engineering and Computer Science
University of Liège

Institut Montefiore - B28 - Sart Tilman
Liège 4000 - Belgium

Abstract. TCP understands all packet losses as buffer overflows and
reacts to such congestions by reducing its window and thus its rate. In
hybrid wired/wireless networks where a non negligible number of packet
losses are due to link errors, TCP is unable to sustain a reasonable rate.
In this paper, we propose to extend TCP Newreno with a suitable packet
loss classifier built by a supervised learning algorithm called ’decision
tree boosting’. The learning set of the classifier is a data base of 25,000
packet loss events in a thousand of random topologies. Since a limited
percentage of wrong classifications of congestions as link errors is allowed
to preserve TCP friendliness, our protocol computes this constraint dy-
namically and tunes a parameter of the classifier accordingly to maximize
the TCP rate. Our classifier outperforms the Veno and Westwood clas-
sifiers by achieving a higher rate in wireless networks while remaining
TCP friendly.

1 Introduction

TCP has been deployed in the eighties. Its congestion control is based on the
fact that packet losses are mainly due to buffer overflows and it works quite
well in such situations. However, nowadays, many applications use TCP as their
transport protocol and hence pass through wireless links, which become common
in the Internet. Over these links, packet losses are not due anymore only to
overflows but can also be caused by link errors. TCP, which has no mechanism
to distinguish packet loss causes, reduces systematically its rate whenever it faces
a packet loss. This reduction is not justified when there is no congestion and the
consequence is that the throughput of TCP over wireless link is lower than what
it could be.

To increase its throughput, TCP should avoid reacting to a packet loss due
to a link error as it does when it faces a congestion. Two possibilities have
been proposed in the literature. The first one is to hide link error losses from the
sender (for example by splitting the TCP connection [1] or retransmitting in link
layer). These kinds of solutions assume the support of the network. Splitting the

TCP connection has another important drawback which is the violation of the
principle of end-to-end TCP: It allows to send an acknowledgment to the sender
before the sink has received the packet. The second approach, which is the one
adopted in this paper, is to endow one of the end systems with an algorithm that
classifies the packet loss causes. Following this strategy, Veno [7] and Westwood
[15] use some simple test to classify loss causes. Veno estimates the backlog
and consider that the loss is due to a congestion if the backlog is higher than
3. Westwood classifies loss causes by a test equivalent to comparing the current
RTT to 1.4.RTTmin (where 1.4.RTTmin is the smallest RTT estimated by TCP).
In our opinion, one such simple test is not sufficient to make a good classification
of loss causes in general and indeed, our simulations below will show that these
two tests do not classify very well the loss causes in practice. Liu and al. [12]
use hidden markov models based on RTT values to make the discrimination.
It has been shown in [2] that there is no correlation between the round-trip-
time and the loss cause. Indeed, a modification in the return path affects the
round-trip-time without affecting the loss cause.

Therefore, we propose in this paper to infer a more complete model to clas-
sify loss causes that combines several indicators instead of one. Characterising
analytically the network conditions leading to a certain type of packet loss is dif-
ficult because real networks are very complex systems but also because their be-
haviours depend on a large number of random external factors (user behaviours,
current topologies,...) which are difficult to model analytically. On the other
hand, it is quite easy to simulate the network behaviour (e.g. with a network
simulator like ns-2) or to gather data from observation of the behaviour of a real
network. This is the typical situation where automatic learning techniques are
useful. These algorithms are general techniques to extract a model of a system
only from data obtained either by direct observations or by simulation of this
system. Of interest for our problem are supervised learning algorithms which fo-
cus on the approximation of an input/output relationship only from observations
of examples of this relationship.

More specifically, in this paper, we propose to apply a particular learning
algorithm called decision tree boosting to automatically design a model for dis-
criminating the two possible packet loss causes and then use this model at best
to improve the performance of TCP in wired/wireless networks. The paper is
structured as follows. In Section 2, we give a short general introduction to su-
pervised learning algorithms. The application of learning algorithms requires the
generation of a database from which to infer a model. Section 3 describes how we
generate this database and evaluates the performance of decision tree boosting
applied to this problem. In Section 4, we explain the design of our improved
TCP constructed upon Boosting. Finally, Section 5 evaluates our extension of
TCP with several simulations.

2 Supervised learning

Supervised learning is the part of the field of machine learning which focuses
on modeling input/output relationships. More precisely, the goal of supervised
learning is to identify a mapping from some input variables to some output
variable on the sole basis of a sample of observations of these variables. For-
mally, the sample of observations is called the learning sample LS and is a set
of input/output pairs, LS = {< x1, y1 >,< x2, y2 >, ..., < xN , yN >}, where
xi is the vector of values of the input variables (also called the attributes) cor-

responding to the ith observation (also called an object) and yi is its output
value. Attribute values may be discrete or continuous. The goal of supervised
learning can be formulated as follows: From a learning sample LS, find a func-
tion f(x) of the input attributes that predicts at best the outcome of the output
attribute y for any new unseen value of x. When the output takes its values in
a discrete set {C1, C2, ..., Cm}, we talk about a classification problem and when
it is continuous, we talk about a regression problem.

This problem is solved by a (supervised) learning algorithm. Loosely speak-
ing, a learning algorithm receives a learning sample and returns a function f (an
hypothesis or a model) which is chosen in a set of candidate functions (the hy-
pothesis space). There exist many learning algorithms, which differ mainly in the
hypothesis space but also in the optimization algorithm that searches this space
for a good model. Among the most popular supervised learning algorithms, there
are decision trees and neural networks. In this paper, we will use an algorithm
called decision tree boosting, which is a powerful extension of decision tress.

For a complete reference on supervised learning, see for example [9].

3 Loss classification by supervised learning

In this section, we focus on the problem of the derivation and the evaluation of
a model for predicting loss causes by using supervised learning techniques. The
question of the application of this model to improve TCP will be addressed in
the next sections.

3.1 The Database

To solve our problem of losses classification, each observation < xi, yi > of
the learning sample will be an input/output pair where the inputs xi are some
variables that describe the state of the system at the occurrence of a loss and
the (discrete) output yi is either C to denote a loss due to a congestion or LE
to denote a loss due to a link error.

To make the model generally applicable, the observations in the database
must be as much as possible representative of the conditions under which we
will apply the classification model. So, the database generation should take into
account all the uncertainties we have a priori about the topology of the networks,
the user behaviours, and the protocols. We describe below the way we generated
our observations and we discuss our choice of input variables.

Database generation The database was generated by simulations with the
network simulator ns-2. To generate our observations of losses, we have used
the following procedure: a network topology is generated randomly and then
the network is simulated during a fixed amount of time, again by generating
the traffic randomly. At the end of the simulation, all losses that have occurred
within this time interval are collected in the database. This procedure is repeated
until we have a sufficient number of observations in the database. In practice,
the larger the learning sample, the better it is for supervised learning algorithms.
In our study, we have collected 35,441 losses that correspond to more than one
thousand different random topologies.

To generate a random topology1, we first select a random number of nodes
(between 10 and 600) and then choose randomly the connections between these
nodes. The links are chosen simplex to avoid symmetrical topologies. The band-
width, the propagation delay and the buffer size of the links were chosen ran-
domly. The bandwidth is chosen between 56Kb/s and 100Mb/s while the prop-
agation delay varies between 0.1ms and 500ms. As Droptail is the most widely
deployed policy [4], our simulations all use this latter policy.

The number of wireless links, their place in the topology, the error model and
the loss rate were also drawn at random. The error models are either the simple
uniform error model, to mimic random losses, or the two-state Gilbert-Elliott
model, to mimic bursty losses. These two models are often used to simulate
wireless losses (eg. [15], [8]).

Concerning the traffic, 60% of the flows at least were TCP Newreno flows and
the others were chosen randomly among TCP and other types of traffic proposed
by ns-2 and based on UDP. The senders, the receivers, the packets size and the
duration of each traffic were set randomly. Thus, the database contains losses
belonging to short and long TCP sessions. This random choice of traffic length
allows us to avoid making any assumption about the network load which is
randomized in the database.

The choice of the inputs At the end system, the information we can measure
to predict a congestion is the inter-packet times and the one-way delay. Subse-
quently we will also use the term queuing delay to denote the one way delay.
These measures can be obtained at both sides. The one-way delay, computed by
one of the two entities, is the difference between the timestamp of the acknowl-
edgment and the timestamp of the TCP packet, and is actually the real one-way
delay minus the difference between the clocks of the sender and the receiver.
This latter difference is not important in our study since we will see below that
our inputs are based only on relative variation of the one-way delay.

To compute our inputs, we use the values of the inter-packet times and the
one-way delay for the three packets following the loss2 and the packet that
precedes it. To make the model independent of the absolute values of these mea-
sures, we normalized these values in different ways. To this end, we relate them

1 The TCL code used to generate our topologies can be found at [11]
2 We consider only losses detected by triple duplicates.

using various functions to the average, the standard deviation, the minimum,
and the maximum of the one-way delay and inter-packet time for the packets
that are sent during the last two round-trip-times before the loss. In total, this
normalization results in about 40 inputs.

3.2 Decision tree boosting

There exist many different learning algorithms that could be used for our prob-
lem and in fact, we have carried out experiments with several of them. However,
for the sake of brevity, we concentrate our discussion in this paper on the method
that gives the best results for our problem, which turns out to be decision tree
boosting.

Decision tree induction [3] is one of the most popular learning algorithm. A
decision tree represents a classification model by a tree where each interior node
is labeled with a test on one input attribute and each terminal node is labeled
with a value of the output (here C or LE). To classify an observation with such
a tree, we simply propagate it from the top node to a terminal node according
to the test issues and the prediction for this observation is the class associated
with the terminal node.

In supervised learning, ensemble methods are generic techniques that improve
a learning algorithm by learning several models (from the same learning sample)
and then aggregating their predictions. Boosting [6] is a particular ensemble
method where the models are built in sequence. Each model is built by increasing
the weights of the learning sample cases that are misclassified by the previous
models in the sequence. Then, the prediction of the resulting ensemble of models
is the majority class among the classes given by all models. When applied on the
top of decision trees, this method often improves very importantly the accuracy
with respect to a single tree. Actually, this combination of boosting and decision
tree is often considered as one of the best supervised learning algorithm for
classification problems[9].

In our experiments, we have used our own implementation of the algorithm
for decision tree induction proposed in [3] and the number of trees constructed
by boosting was fixed to 25.

3.3 Model evaluation

Usually, the error rate of the model at classifying loss causes in the learning
sample is very small since the learning algorithm explicitely tries to minimize
this error. Thus, this error is not a good indication of the ability of the model at
classifying losses in new unseen topologies. To get a more reliable estimate of the
error of the classifier, we have thus randomly divided the database into two parts:
a learning sample that is used to learn the model and a test sample on which
the resulting classifier is tested. Since the losses in both samples are obtained
from different topologies, the error rate of the model at classifying losses in the
test sample gives a good idea of the probability of misclassification of our model
in a new situation.

When evaluating the model on the test sample, there are two errors of inter-
est: the probability that the model misclassifies a congestion as a link error and
the probability that it misclassifies a link error as (a loss due to) a congestion.
We will denote these errors respectively ErrC and ErrLE . Of course, it is im-
portant to minimize these two types of errors but we will show later that if one
decreases the other increases. So, independently of the application of the model,
it is very desirable to be able to favour the accuracy of the prediction of one
type of loss over the other.

Actually, Boosting does not only provide a class prediction for each value
of the inputs x but also provides an estimate of the probability of each class,
C or LE, given x, i.e. two numbers P̂ (C|x) and P̂ (LE|x) such that P̂ (C|x) +
P̂ (LE|x) = 1. The class given by the model is then LE if P̂ (LE|x) is greater
than a threshold Pth and C otherwise. By default, the value of Pth is fixed to 0.5
so as to treat each class fairly. However, by changing the threshold, we can easily
favour the accuracy of the prediction of one class over the other. By taking Pth
lower than 0.5, more losses will be predicted as due to link error and hence, we
will decrease ErrLE and increase ErrC . On the opposite, by taking Pth greater
than 0.5, we will decrease ErrC and increase ErrLE . So, this parameter allows
us to obtain different classification models with different tradeoffs between the
two types of error. It is also important to note that the user can choose the
tradeoff that fits his application without re-running the learning algorithm. All
he has to do is to change the value of Pth when making a prediction with the
model.

3.4 Results

The database of 30,441 losses has been randomly divided into a learning sample
of 25,000 cases and a test sample with the remaining 10,441 cases. The decision
tree boosting algorithm has been run on the learning sample and tested on the
test sample. For a value of Pth = 0.5, the boosting model misclassifies only 6.34%
of the losses in the test sample. This result is very good considering the large
diversity of the topologies in the test sample and the fact that these topologies
were not seen by the learning algorithm. For comparison, Veno and Westwood
misclassify respectively 34.5% and 41.5% of the losses in the test sample. So,
although these two simple models can still be good at predicting loss causes in
some topologies, the boosting classifier is much better in average.

We also evaluated the two types of errorsErrC and ErrLE on the test sample
for different values of Pth going from 0.02 to 0.98 by step of 0.02. The left part
of Figure 1 plots ErrC in function of ErrLE when varying Pth. The closest the
curve to the origin the best the model. We can see clearly that the curve is not
far from the origin. There is clearly a tradeoff between the two types of error.
It is possible to reduce the error of one class to zero but this is always at the
expense of the other. One important thing to note is that we can decrease greatly
the error on the classification of LE without increasing too much the error on
the detection of congestions.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

E
rr

LE
 (%

)

ErrC (%)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

P
th

ErrC (%)

Fig. 1. At the left: The classification error obtained by Boosting. At the right: ErrC
in function of Pth

On Figure 1, the point corresponding to TCP, which has no mechanism to
distinguish loss causes, is (ErrC , ErrLE) = (0, 100%). The operating points cor-
responding to the classification rules used by Veno [7] and by Westwood [15] are
respectively (ErrC , ErrLE) = (54.29%, 0.50%) and (ErrC , ErrLE) = (63.20%,
4.25%). These results are again much worse than what we obtain with our ap-
proach. For example, for the same value of ErrLE as Veno and Westwood,
boosting gives respectively an ErrC of about 22% (for Pth = 0.18) and 8%
(for Pth = 0.4).

In terms of computing times to make a classification, it is clear that the
boosting model is more expensive than Veno’s or Westwood’s rule. However,
computing times remain very reasonable. Assuming the inputs have been com-
puted, one classification with boosting requires about 250 simple comparisons.
To give a rough idea, in our implementation3, the classification of the 10,441
losses in the test sample requires about 570 msec, i.e. about 55µsec per classifi-
cation. So, the computational cost of the classification should not be an issue in
most cases.

4 Enhancement of TCP with the loss classifier

Given a classification model for loss causes, we propose to modify TCP (Newreno)
in the following way: When a loss is detected by triple duplicates, the result of
its classification by the model is checked. If the cause is classified as congestion,
the sender acts normally (i.e. it divides its congestion window by two), otherwise
it maintains its congestion window constant.

However, we have at our disposal, not only one, but several classification
models corresponding to different tradeoffs between the two types of error (by
changing Pth). So, the question now is which value of Pth should be chosen
with the double goal of improving TCP in wireless case and maintaining TCP-
Friendliness. To ensure TCP-Friendliness, it is sufficient to maintain ErrC very
close to zero. But, when ErrC is very low, Figure 1 shows that the corresponding
ErrLE is too high to allow our model to really improve TCP in wireless case.
So, the solution is to determine the lowest ErrLE that still preserves TCP-
Friendliness. Since the two errors evolve in opposite direction to a change in

3 The classifier is implemented in C and is run on a pentium 4 2.0 GHz

Pth, this is equivalent to determining the highest ErrC that preserves TCP-
Friendliness. By definition, a protocol is considered TCP-Friendly if the ratio
between its rate and that of a competing TCP belongs to [1/K,K] with K ≤ 1.78
[5]. So, the value of ErrC (and hence of Pth) should be chosen as the largest
value that still fulfills this condition.

To determine the target value of ErrC , let us suppose that we run one TCP
NewReno, referred to simply as TCP in the sequel, and one TCP NewReno
equipped with our Boosting classifier on the same network path4 and that both
flows lose a proportion p of their packets. According to Padhye et al. [14], the
throughput of the TCP flow is equal to:

Btcp =
1

RTT
√

2p
3 + T0min(1, 3

√
3p
8)p(1 + 32p2)

with the assumption that there is no delayed acknowledgment (b = 1).5

The TCP NewReno equipped with our Boosting classifier is a normal TCP
except that it reacts only to a proportion p(1 − ErrC) of packet losses instead
of p. Its throughput over the network path is then equal to:

BC =
1

RTT
√

2pY
3 + T0min(1, 3

√
3pY

8 pY (1 + 32p2Y 2)
,

where Y = 1 − ErrC . So, using these equations, it is possible to compute, for
a given RTT and loss rate p, the largest value of ErrC such that BC

Btcp
< K.

However, since RTT and p are changing with time, instead of choosing a fixed
value of Pth, we propose to dynamically adapt the value of Pth to the current
values of RTT and p.

To this end, after each loss, we compute the loss rate p obtained over the
whole session. Then, from this estimation and the RTT , we compute the highest
value of ErrC such that BC/Btcp < K. Once the bound on ErrC is found, we
retrieve the value of Pth that provides an error on congestion lower than this
bound. The correspondence between Pth and ErrC is obtained on our test set
and is illustrated in the right part of Figure 1.

Since Pth is adapted dynamically after each loss, from now on, we refer to
TCP NewReno equipped by this classifier as “Boosting-adapt”.

In all our experiments below, we have used a value of K equal to 1.15 instead
of the standard value of 1.78. There are two reasons for that. The first one is that
we consider that 1.78 is too high; a smaller value will provide better friendliness.
The second reason is that we prefer a more conservative choice of K in our case.
Indeed, the value of ErrC for a given Pth in Figure 1 is only an estimate from
the test sample of the true value. Hence, for a given situation, the choosen value
of Pth can, in practice, lead to a higher ErrC than expected. By adopting a
lower K, we minimize the impact of such situation.

4 We focus here only on TCP-Friendliness in the wired case.
5 Using b = 1 in the formula was recommended in RFC-3448.

Sender 1

Sender n

Sink 1

Sink n

Fig. 2. Topology 1

Sender 11Mb, 0.01ms Sink

BS
45Mb, 35ms

Fig. 3. Topology 2

Source Récepteur

R1 R4

R3

R2

Fig. 4. Topology 3

5 Simulations with the learned models

In this section, we evaluate Boosting-adapt in wireless and wired networks. The
experiments in the case of wireless networks show the gain we can obtain in this
kind of networks where most of the losses are due to link errors. The experiments
related to wired networks concern the TCP-Friendliness and the bandwidth us-
age.

For comparison, we test also the classification rule used by Veno. We have
chosen Veno because both its errors are lower, than the ones of Westwood. All
the experiments have been done with ns-2.

5.1 The improvement in lossy links

We test the topology used in [15] and illustrated in Figure 3. It represents a
hybrid network. The first part, Sender-BS, is wired, and the second part, which
connects the base station to the sink, is wireless. The bottleneck is the wireless
link, which has a bandwidth equal to 11Mb/s. We compare the ratio between
the throughput obtained by Boosting-adapt and the one obtained by TCP when
we vary the packet loss rate from 0 to 5% over the wireless link. Each simulation
is run 50 times. To have a good point of comparison, we run also simulations
with an artificial TCP that classifies perfectly the cause of loss detected by triple
duplicates. The graph at Figure 5 illustrates the ratio obtained by TCP with
the three classifiers, the perfect one, Veno, and Boosting-adapt. Boosting-adapt
is much better than Veno and also very close to the perfect model. Its gain with
respect to TCP is not far from 300% when the loss rate is equal to 3%.

5.2 TCP-Friendliness and link capacity usage

Wired network In the previous section we have tested Boosting-adapt over
a wireless link, and we have compared the gain it obtained with those of TCP-
Perfect and Veno.

In this section we compare its fairness towards TCP in the wired case, which
is an important criterion that should be fulfilled by the classification model. To

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
at

io
 (T

C
P

-C
/T

C
P

)

Packet loss rate (%)

Perfect
Veno

Boosting-adapt

Fig. 5. The gain in lossy links

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

B
w

 (%
)

Time (s)

Boosting adapt
TCP

Fig. 6. TCP-Friendliness in wired case

Table 1. The bandwidth usage

Newreno Veno Boosting-adapt

Throughput(%) 95.06 93.90 97.82
Goodput (%) 92.50 86.96 93.18

test TCP-Friendliness, we use the topology illustrated in Figure 2 with n = 2,
often used to test the fairness. The experiment consists of running a Newreno in
competition with Boosting-adapt. Figure 6 illustrates the throughput obtained
by each flow and shows that the share is fair.

For comparison, we have used Veno in the same scenario and the share ratio
was slightly higher than five. This is not surprising since Veno is very bad at
detecting congestion loss (its ErrC is high) and hence, it reduces its bandwidth
less often than TCP.

Link capacity usage Too much misclassifications of congestion losses can also
lead to the underuse of the link when several TCPs equipped with a loss classifier
compete over the same bottleneck. Indeed, if the modified TCPs do not react to
packet losses due to a real congestion, then the congestion will actually worsen.
Thus, instead of reacting to triple duplicates as TCP would, the modified TCPs
would wait for the timeout expiration and thus get in average less throughput
than a normal TCP. To show that Boosting-adapt does not suffer from link
underuse, we have used an aggregate of 4 similar flows, competing over one link
(topology of Figure 2 with n = 4) and have computed their throughput and
goodput. For comparison, we have also run an aggregation of TCP equipped by
Veno in the same situation. The results are given in Table 1. We can see that the
throughput and the goodput of Boosting-adapt exceed those of Newreno while
those of Veno are much lower.

Route change and network reordering Route changes and failures have not
been taken into account in the generation of the database, but we think that
they will not affect the robustness of our approach. Indeed, our model has a
memory of 2 RTTs (for the computation of the inputs). Thus, in the worst case,
the classifier will misclassify all wireless losses happening during the two RTTs
following the route change (just like a standard TCP). After this transition,

 0

 1000

 2000

 3000

 4000

 0 5 10 15 20 25 30

N
um

 p
ac

ke
t l

os
s

Time (s)

Loss misclassified

 0

 1000

 2000

 3000

 4000

 0 5 10 15 20 25 30

N
um

 p
ac

ke
t l

os
s

Time (s)

 0

 1000

 2000

 3000

 4000

 0 5 10 15 20 25 30

N
um

 p
ac

ke
t l

os
s

Time (s)

Fig. 7. Losses classification. From left to right, top to bottom: shorter, equal, and
longer paths.

the path will become “stable” again and the classifier will retrieve its ability
of discriminating loss causes. For the same reason, network reordering was not
taken into account during the generation of the database. In addition, reordering
seems to be rare in actual networks [10].

To confirm our statements, we use the topology of Figure 4 where Boosting-
adapt is used between the sender and the sink and where the link R2-R4 breaks
down after 15 seconds. We study the cases where the new path is longer, shorter
and of the same length as the old one.

The graphs in Figure 7 show the packets lost in the three cases with the
misclassified losses represented by a square. In the three cases, the discrimination
quality is not deteriorated after the route change.

In the case of a shorter new path, we have observed a case of reordering.
Some packets arrive to the sink before their predecessors and they lead to triple
duplicates at the sender side. The sender uses the classifier and concludes that
the “loss” is not due to a congestion and then does not decrease its rate.

6 Conclusion

In this paper, we have applied a supervised learning algorithm, called decision
tree boosting, to automatically infer a loss cause classifier from a database of
losses observed in a large number of random topologies. The resulting classifier
has shown very good accuracy at classifying losses in random topologies that
were not seen by the learning algorithm. Then, we have proposed to use this loss
classifier to improve the performance of TCP in wired/wireless networks. To
this end, we have shown how to adapt dynamically the classifier to ensure TCP
friendliness. The new protocol, called Boosting-adapt, has shown a very good
behaviour in wireless networks. It offered a high gain in throughput over wireless
links and, at the same time, it preserved TCP-Friendliness in all topologies it
has been tested over.

We see two potential limitations to our approach. First, we have not taken
into account losses detected by timeout expiration, which were thus all con-
sidered as signs of congestion. However, even without classifying such losses,
the throughput gains observed in our simulations are already excellent and we

can only improve these results by taking into account time out expiration when
designing the loss classifier.

A second potential limitation is that our database was generated from sim-
ulated networks (topologies and traffics) which may differ to a certain extent
from actual ones. However, the learning sample was generated by randomizing
all networks conditions. Hence, there is no bias in the classifier. We have also
carried out experiments with a more realistic topology generator (BRITE [13])
that have not shown significant differences in terms of performance of the classi-
fiers with respect to the results presented in this paper. Furthermore, restraining
the learning to actual topologies and flows can only improve the accuracy of the
classification.

References

1. A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. 15th
International Conference on Distributed Computing Systems, 1995.

2. S. Biaz and N. H. Vaidya. Distinguishing Congestion Losses from Wireless Trans-
mission Losses: A Negative Result. Proc. IC3N, New Orleans, 1998.

3. L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Re-
gression Trees. Wadsworth International (California), 1984.

4. S. Floyd. A report on some recent developments in TCP congestion control. IEEE
Communication Magazine, 39(84-90), April 2001.

5. S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion
control for unicast applications. In SIGCOMM 2000, pages 43–56, 2000.

6. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In Proc. of the 2th European Conference on
Computational Learning Theory, pages 23–27, 1995.

7. C. P. Fu and Soung C. Liew. TCP Veno: TCP enhancement for transmission over
wireless access networks. IEEE (JSAC), February 2003.

8. A. Gurtov and S. Floyd. Modeling wireless links for transport protocols. SIG-
COMM Comput. Commun. Rev., 34(2):85–96, 2004.

9. T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning:
data mining, inference and prediction. Springer, 2001.

10. S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement and
Classification of Out-of-Sequence Packets in a Tier-1 IP Backbone. In Proc. of
IEEE INFOCOM, Mar 2003.

11. I. EL Khayat, P. Geurts, and G. Leduc. http://www.run.montefiore.ulg.ac.be/
˜elkhayat/ Boosting-DT/, 2004.

12. J. Liu, I. Matta, and M. Crovella. End-to-End Inference of Loss Nature in a Hybrid
Wired/Wireless Environment. In Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks, 2003.

13. A. Medina, I. Matta, and J. Byers. BRITE: A Flexible Generator of Internet
Topologies. Technical report, 2000.

14. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Reno perfor-
mance: a simple model and its empirical validation. IEEE/ACM Transactions on
Networking, 8(2):133–145, 2000.

15. R. Wang, M. Valla, M.Y. Sanadidi, B.K.F Ng, and M. Gerla. Effi-
ciency/Friendliness Tradeoffs in TCP Westwood. In In Proc. of the 7th IEEE
Symposium on Computers and Communications, Taormina, July 2002.

