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Abstract Recession flow of aquifers from a hillslope can be described by the non-linear 

Boussinesq equation.  Under strong assumptions and for specific conceptual formulations, 

Boussinesq and others, obtained analytical approximations or linearized versions to this partial 

differential equation.  A comparative analysis between analytical approximations of the 

Boussinesq equation and numerical solution of the receding flow of an unconfined homogeneous 

aquifer (horizontal, inclined and concave aquifer floor) was carried out.  The objective was to 
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define the range where the analytical solutions approximate the numerical solution.  The latter was 

considered in this study as the reference method, because it requires less simplifying assumptions.  

Results showed that recession flows obtained with the considered analytical approximations yield 

similar values only for certain ranges of aquifer properties and geometries. 

 

Keywords Boussinesq equation, groundwater flow, analytical approximations, 

numerical solutions, numerical modeling 

 

Introduction 
Boussinesq (1877) was among the first researchers to conduct theoretical work on 

recession hydrographs, more in particular on spring flowrates.  Under strong 

assumptions, he found that the outflow from an aquifer with a concave floor had 

the form Ce-αt, with C being an arbitrary value depending on the initial conditions 

and α (generally known as recession coefficient) a positive constant dependent of 

the geometric configuration of the aquifer and its hydraulic conductivity.  During 

the years, exponential decay relationships of the same type Q ~ e-αt were derived 

by Maillet (1905), Horton (1933), Nathan and McMahon (1990), Vogel and Kroll 

(1992), Brutsaert (1994), Shevenell (1996), Long and Derickson (1999), among 

others.  Different approximations have also been proposed considering inclined 

aquifer floor, as proposed by Boussinesq (see Eq. 2). For example, when the slope 

angle, i, of the aquifer bottom is large, the kinematic wave approach becomes 

applicable (Henderson and Wooding, 1964; Beven, 1981; Troch et al., 2002), 

since under this approximation the second-order diffusive term disappears. In the 

latter case the hydraulic gradient is assumed to be equal to the bed slope, 

rendering the analytical solution inappropriate for small to intermediate slopes.  
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For horizontal aquifer floors, i=0, several analytical solutions are known.  Among 

them, two relevant equations exist the short-time and long-time solution, 

respectively.  Polubarinova-Kochina (1962) developed the short-time solution 

applicable to a fully penetrating stream draining an initially saturated aquifer, said 

to be valid before the water table reaches the upward corner of the considered 

aquifer at x=B (Fig.1).  Of particular interest in the present study is the long-time 

Boussinesq exact analytical solution.  

Based on simplifying assumptions, Boussinesq (1904) obtained a solution 

assuming an inverse incomplete beta function as the initial condition for the 

groundwater table. Its outflow is characterized by non-linear behaviour (quadratic 

form), said to be valid after large t, when the water table height at x=B is smaller 

than the aquifer depth D (Fig.1), and the water table profile resembles the 

assumed shape of the inverse incomplete beta function.  In contrast to the 

exponential decay relationships, where the recession coefficient α is constant, the 

performance of the previously described short and long-time solutions, is sensitive 

to the choice or definition of t=0 in the hydrograph Q=Q(t).  It is practically 

impossible to determine in any consistent way the beginning of the recession from 

a continuous river flow record with intermittent dry and wet periods.  To avoid 

this difficulty Brutsaert and Nieber (1977) proposed to analyze the hydrograph in 

a differential form, meaning the elimination of the uncertainty involved in the 

determination of a consistent time reference.  Brutsaert and Nieber (1977) 

presented two equations of the form dQ/dt=-aQb, one valid for small t with slope 

b1=3, and the other valid for large t with slope b2=3/2. Each equation, when 

plotted in a log-log diagram defines two lines.  The intercept of these two lines, 

which according to Brutsaert and Nieber (1977), solely depends on the hydraulic 
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and geomorphologic characteristics of the basin, would define the situation where 

it is assumed that the aquifers start to behave in accordance with the solution of 

large t.  Brutsaert and Nieber (1977) low flow analysis has been extensively 

applied (Troch et al., 1993; Brutsaert and Lopez, 1998; Szilagyi et al., 1998; 

Parlange et al., 2001; Mendoza et al., 2003; Rupp and Selker, 2005; among 

others).  In order to find a unifying theory that explains both short-time and long-

time behaviours, Parlange et al. (2001) provided a single analytical formulation 

that gives a smooth transition between the two flow regimes.  However, the 

application of the method is fundamentally linked to the Brutsaert and Nieber 

(1977) solution, since it requires that the data to be analyzed show a slope of 3 for 

the short time and 3/2 for the long-time formulation.  

Brutsaert (1994) derived for the groundwater flow equation in a sloping aquifer, 

Equation 2, an analytical solution assuming h=pD, p being a constant to 

compensate for the approximation resulting from the linearization.  In this way he 

obtained the outflow rate when draining from a complete saturation of the 

hillslope aquifer.  Even though his solution may be applied for a broad range of 

slope angles, i, applications in sloping conditions are still said to be subject for 

further research.  In his paper Brutsaert (1994), also presented an equation for the 

case of i=0, which is quite similar to the Boussinesq (1877) equation for the case 

of a concave aquifer floor.  Currently, different researchers are developing 

alternative analytical approximations for computing baseflow to rivers and 

hillslope groundwater flows (Serrano and Workman, 1998; Verhoest and Troch, 

2000; Troch et al., 2002; Troch et al., 2003; Rupp and Selker, 2005; among 

others).  Parallel to this evolution, numerical models are increasingly used for 

analyzing groundwater flow and for assessing the efficiency of the different 
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proposed analytical solutions (Szilagy et al., 1998; Dewandel et al., 2003; 

Paniconi et al., 2003; Troch et al., 2003; Basha and Maalouf, 2005; Huyck et al., 

2005; Pulido-Velazquez et al., 2006; among others).  Wittemberg (1999) even 

suggests that to better describe the groundwater component of a basin or hillslope 

the use of numerical models should be encouraged.  Whereas some of the 

numerical assessments or comparisons with numerical models of Boussinesq 

approximations include a sensitivity or uncertainty analysis to the soil hydraulic 

properties (i.e., Dewandel et al., 2003; Troch et al., 2004; Huyck et al., 2005), in 

general most of them assumed quite similar hydraulic properties, covering a rather 

limited range.  In a similar way, when assessing the different geometry 

configurations used in those studies, similar characteristics are generally found.  

In the present research a comparative analysis between analytical approximations 

of the Boussinesq equation and the numerical solution of the recession flow of an 

unconfined homogeneous aquifer is carried out, for different aquifer materials and 

geometry.  The main question addressed is whether analytical approximations and 

numerical model solutions, yield similar values for different ranges of aquifer 

hydraulic properties and geometries.  MODFLOW (McDonald and Harbaugh, 

1988) in this study is used as numerical tool for the reference method, and three 

cases of aquifer geometry are assessed, i.e. an aquifer with horizontal, sloping and 

concave floor.  

Theory 
Unconfined groundwater flow in a sloping aquifer (Fig. 1) is based on the Darcy’s 

equation as formulated by Boussinesq (1877): 
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where q [L2T-1] is the flowrate in the x direction per unit width of the aquifer, K 

[LT-1] is the hydraulic conductivity, h=h(x,t) [L] is the elevation of the 

groundwater table measured perpendicular to the underlying impermeable layer 

which has a slope angle i, and x [L] is the coordinate parallel to the impermeable 

layer.  Combining this equation with the continuity equation and assuming that 

the aquifer is porous, isotropic, and homogenous, no spatial variability in K, f, and 

i, one obtains the Boussinesq equation for a sloping aquifer: 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
hi

x
hh

x
i

f
K

t
h sincos     (2) 

where t [T] is time and f [-] is the drainable porosity, or specific yield  (see 

Brutsaert and Lopez, 1998, Charbeneau, 2000, Mendoza et al., 2003). 

Equation 2 neglects the effect of capillary rise above the water table and invokes 

the Dupuit-Forcheimer approximation, i.e. the hydraulic head is independent of 

depth.  In this formulation the streamlines are assumed to be approximately 

parallel to the bed.  No general analytical solution of Eq. (2) exists.  Therefore 

during the years, simplifications have been proposed, introducing additional 

approximations.  When horizontal bedrock, i=0, is assumed Eq. (2) becomes: 
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Equation 3 describes the elevation of the transient groundwater table h(x,t) above 

a horizontal impermeable layer through a saturated porous medium.  Boussinesq 

(1877) integrated Eq. (3) by introducing additional assumptions (see Fig. 2): 

concave aquifer floor with a depth H [L] under the outlet level, and variations of h 

are small and negligible compared to the depth H.  He then assumed that h+H 
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could be reduced to the known variable H.  Under previous assumption, the 

problem is linearized and can be compared to the problem of the “cooling of a 

prismatic homogeneous rod, laterally impermeable, of length B, having its 

extremity x=0 immersed in melting ice and its other extremity, x=B, impermeable 

to the heat just like the sides”. He assumed that the solution would “more or less” 

rapidly simplify to Fourier’s solution, Ce-αt, with C being an arbitrary constant 

depending on the initial condition, and α a positive constant function of the 

geometry of the aquifer and its hydraulic conductivity. Then, the flowrate q [L2/T] 

per unit width of the aquifer that Boussinesq obtained is:  

tCe
B

KHq απ −=
2

    (4) 

where 

2

2

4 fB
KHπα =

     (5) 

α [1/T] is the recession coefficient, B [L] the width of the aquifer, H [L] the depth 

of the aquifer under the outlet, and D [L] the initial hydraulic head at distance 

x=B. 

Brutsaert (1994) linearized Eq. (1) as: 

ihK
x
hiKpDq sincos +
∂
∂

−=−     (6) 

where D is the thickness of the initially saturated aquifer, and p a constant 

introduced to compensate for the approximation resulting from the linearization.  

According to Brutsaert (1994) p is situated between 0 and 1 and in general best 

determined as a parameter by calibration.  Some authors, such as Kraijenhoff van 
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de Leur (1979) and Brutsaert and Nieber (1977) suggest that p=1/3, but values of 

p=1/2 (Brutsaert, 1994) can also be found. 

Most of the exponential type analytical approximations are based on very simple 

conceptual models, such as the emptying reservoir used by Maillet (1905).  Then, 

such models can not be used under different aquifer domain configurations such 

as inclined floor. However the outflow rate from a hillslope as proposed by 

Brutsaert (1994) is: 

( )[ ] ( )[ ]∑
∞

=

−

++
−+−−

=
,...2.1

2222

22222

3 '2/'4//
''4//'exp1cos2'2

n n

nn
aB

n

BKUKUBz
tKKUBzKzez

B
fDKq  (7) 

where K’=KpD cos(i/f), U=K sin(i/f), a=-U/(2K’), and zn=(2n-1) π/2 for nearly 

horizontal flow or thick aquifers and zn= n π for steep slopes or shallow aquifers. 

Then, the outflow from the hillslope for horizontal aquifer floor, i=0 in Eq. (7), 

becomes: 
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Expression 8 was already implicit in the work of Boussinesq (1877), and Eqs. 4, 5 

and 8 are quite similar. Boussinesq considered that his solution would reduce 

rapidly to the simple fundamental solution of Fourier, the first term in the series of 

Eq. (7), so the higher-order terms were considered negligible. As quoted by 

Brutsaert (1994), the full series were not used in hydrology until the work of 

Kraijenhoff van de Leur (1958). 

Boussinesq (1904) presented an “exact” solution h(x,t) to Eq. (3), depicted in Eq. 

(9), for the same assumptions as previously described, i.e. homogeneous aquifer, 
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groundwater table h above a horizontal impermeable layer (i=0).  In addition, he 

assumed that the water level in the channel at x=0 was equal to zero (see Fig. 1), 

and that the initial groundwater table had the form of an inverse incomplete beta 

function:  
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where )/( Bxφ designates the initial form of the free surface. 

The resulting outflow qb from the hillslope is: 
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where: 
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being α’ [1/T] the recession coefficient in the Boussinesq quadratic form equation. 

Equation 10, becomes applicable only when the shape of the water table is 

assumed to resemble the inverse incomplete beta function )/( Bxφ , when the 

recession drawdown reaches the entire width of the aquifer, or h(x, t)<D.  

Equation 10 is cited in the literature as the long-time solution.  

It is also possible to solve Eq. (3) for the initial condition of complete saturation 

of the aquifer. For t small, as the outflow at x=0 starts, the non-flow boundary 

condition at x=B (representing the water divide) has no effect; therefore the 
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solution is the same as if B were infinitely large.  Polubarinova-Kochina (1962) 

presented an exact solution for the case B=∞, namely: 

...)11/432(365.2),( 1074 −−+−= YYYYDtxh   (12) 

in which η487.0=Y  and ( ) ( )KDtx 2/ϕη = .  The resulting outflow rate (per 

unit length) for x=0 can then be written as:  
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Equation 13 is known as the short-time solution.  As soon as the water table for 

x=B drops below D this solution can no longer be used, and at this point 

according to Troch et al. (1993) the long-time exact solution proposed by 

Boussinesq (1904) becomes valid and can be used.  In the present research only 

the latter is considered. 

The analytical approximations here presented, share one common and 

fundamental aspect, they are all based on strong simplifying assumptions such as, 

unconfined conditions, porous, homogeneous and isotropic aquifer, and capillary 

effects above the water table are neglected.  For the particular case of a concave 

aquifer floor, Boussinesq assumes that variations of h, are negligible compare to 

the depth H.  However no insight is given in the effect of different H values, and 

whether the analytical approximations, considering flow parallel to the aquifer 

floor, can still be used 

Numerical model is here used as a tool to asses; up to what extent the analytical 

approximations are able to mimic different domain characteristics and conditions, 

such as the ones found in reality.   



11 

Materials and methods 
Numerical model  

2D numerical models have been constructed to simulate recession conditions 

among other groundwater flow problems, to explain measurements and to perform 

scenario-analyses.  The validity of numerical models can be tested by comparing 

for identical situations the model output with the result of the analytical solution.  

Such a comparative analysis enables to define the conditions for which the 

analytical approximations and numerical model solution yield similar results; in 

this case similar recession curves or outflow rates.  It is well known that results of 

a numerical groundwater model are dependent on the way the model describes the 

flow domain, the knowledge and exact formulation of the boundary conditions 

and the estimation of the hydraulic properties.  Given this, it was decided prior to 

the comparative analysis to conduct a sensitivity analysis in which the sensitivity 

of the model output was examined in function of the discretization in space and 

time, the aquifer geometry and hydraulic properties, and the initial condition. 

Numerical model governing flow equation 

The transient groundwater flow can be described by the general 2D partial 

differential equation: 
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where Txx, and Tyy  [L2T-1] are defined as transmissivities, h [L] is the hydraulic 

head (groundwater table elevation in the Boussinesq’s equations), fluxes 

representing sources and/or sinks of water are represented by W’ [LT-1], S[-] is the 

storage coefficient, and t [T] is time.  Equation 14 describes the horizontal 

groundwater flow in a saturated heterogeneous and anisotropic porous medium, 
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provided the principal axes of transmissivity (hydraulic conductivity integrated on 

the saturated thickness) are aligned with the coordinate directions.  Equation 14 is 

numerically solved in MODFLOW (McDonald and Harbaugh, 1988) using a 

block-centered finite difference approach. MODFLOW simulating only the 

groundwater flow in saturated conditions, deals with the moving water table by 

introducing an iterative process for solving the non-linearity of the transmissivity 

(T=Kh), and layers can be simulated as confined, unconfined, or a combination of 

both. For unconfined aquifers, usually changes in storage due to compaction of 

the porous medium can be ignored with respect to changes in storage due to 

variations of the groundwater table position, then, the storage coefficient is 

approximated by the specific yield or drainable porosity f [-], as used in the 

Boussinesq’s equation.  

Flow domain 

The following three different cases are analyzed.  

Case 1:  Corresponds to a horizontal aquifer floor (i=0), as depicted in Fig. 1. For 

this case two analytical solutions were evaluated, i.e. Brutsaert’s (1994) solution 

(Eq. (8)), and the so-called “exact” Boussinesq quadratic long-time analytical 

solution (Eq. (10)).   

Case 2:  Considers different sloping aquifer floors, with slope angle i equal to 0.5, 

1, 2, 5 and 10% (see Fig. 1).  Brutsaert’s (1994) analytical solution (Eq. (7)) was 

used.   

Case 3:  Different concave aquifer floor depths (see Fig. 4) are considered with H 

respectively equal to 0.4, 0.8, 1.6, 3.2 and 6.4 m.  The analytical solution 

presented in Eq. (4) is applied for this conceptual scheme. 
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The analytical approximations used in the three previously described cases, were 

selected from many others, due to the fact that they were specifically dedicated to 

the described specific domain characteristics. 

Soil hydraulic properties  

The soil hydraulic properties, K (m s-1) and f (-), for the numerical experiments 

were taken from Smith and Wheatcraft (1992) (see Table 1).  During the 

simulations each pair of hydraulic properties was kept constant and uniform over 

the entire flow domain. 

Numerical model sensitivity analysis 

X- and Z-discretization 

For cases published in literature on the comparison between analytical solutions 

and the output of numerical models, usual aquifer configurations are: B=200 m 

and D=2 m (Brutsaert, 1994); B=400 m and D=10 m (Szilagyi et al., 1998); 

B=100 m and D=1.5 m (Verhoest and Troch, 2000; Verhoest et al., 2002; 

Pauwels et al., 2003; Huyck et al., 2005); B=100 m and D=2 m (Troch et al., 

2002, 2003 and 2004).  For the assessment of the sensitivity of the model output 

to the spatial discretization a reference geometry of B=100 m and D=2 m was 

selected.  Maintaining this geometry, various simulations were carried out 

progressively reducing the column width along the aquifer domain (x direction) 

from 2 to 0.25 m. Each simulation run was repeated for the 5 material classes of 

which the hydraulic properties are listed in Table 1.  A similar analysis was 

performed for the number of layers, varying from 1 to 8 layers with equal 

thickness. 

Recession curves of 300 days were computed for the different grid systems using 

one-day time step and compared to the analytical solution of Boussinesq (Eq. 
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(10)).  The outlet by a fully penetrating stream was mimicked by a cell with a 

prescribed head of 0.005 m, small enough to be consistent with Boussinesq’s 

(1903) assumption.  The initial condition, a realistic piezometric profile, was 

obtained with a steady-state simulation considering a constant recharge rate, all 

along the upper boundary of the flow domain.  The recession curves were then 

computed with a transient-state simulation starting from the above described 

initial condition with a zero recharge rate.  For each mesh, the simulated discharge 

is normalized with respect to the Boussinesq analytical solution, from which the 

apparent bias R=Qsim/QBouss and deviations (Eq. (15)) are calculated and expressed 

in percent: 

Bouss

Bousssim

Q
QQDeviation −

= *100(%)     (15) 

The bias and deviation between the simulated and the Boussinesq flowrates reveal 

that the simulation results for clay and silt are sensitive to the column width 

variation. However, results for fine sand, coarse sand and gravel are considerably 

less affected.  When the number of layers with equal thickness increased, clay 

results showed that one layer configuration had the least mean apparent bias and 

mean deviation, when the aquifer in the z direction was split in four equal 

horizontal layers.  For silt and fine sand, increasing from one to four layers had  

slight effects only, and the results for coarse sand were opposite to those for clay.  

The lowest variations were found for the four layers configuration, and the largest 

for the one layer condition.  The mean apparent bias and mean deviation did not 

differ much for a one to four layer configuration in gravel.  The conclusion with 

respect to the number of horizontal layers in which the aquifer is discretized, 

based on the match between the simulated output and the output of the 
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corresponding analytical solution, is that a one layer geometry is most 

recommendable when the domain is composed of fine materials such as clay and 

silt, while four or more layers should be considered for coarse sand and gravel 

aquifers. 

Time discretization   

The sensitivity of the output of the numerical model was also determined with 

respect to the time step.  Since in previous analysis the deviation between the 

simulated recession and the recession curves obtained with the Boussinesq 

equation were smallest for the coarse sand material, also for the time 

discretization analysis a coarse sandy aquifer was assumed.  Four simulations with 

time step 0.5, 1, 5, and 10 days were performed for a recession period of 300 days 

(Fig. 5).  The results in Fig. 5 show that except for the 10 day case (-7.9% mean 

deviation) there is not much difference between a time step of 0.5 and 5 days, 

having the smallest deviation, respectively 0.89% and 0.97%, for a 0.5 and 1 day 

time step.  For practical reasons a 1 day time step was used in all the simulations. 

Sensitivity to aquifer geometry and soil hydraulic properties 

Since analytical approximations (Eqs. 4, 7, 8 and 10) are dependent on the aquifer 

geometry, a sensitivity analysis was performed to assess the effect of different 

aquifer configurations.  As in previous sections, the hydraulic conductivity and 

drainable porosity for coarse sand were used. Progressively B values were 

modified from 50 to 450 m (with 50 m increments), keeping D=2 m constant. 

Subsequently, it was found that two combinations of aquifer geometry yielded the 

least differences in their recession curves with respect to the Boussinesq long-time 

quadratic solution, i.e. B=100 m with D=2 m, and B=200 m with D=4 m.  This 

result suggests that a ratio D/B=1/50 might be the most adequate for having the 
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least differences in recession curves. In order to verify the validity of this ratio 

four different cases with the same ratio were analyzed: D=0.5 m with B=25 m, 

D=4 m with B=200 m, D=8 m with B=400 m, and D=16 m with B=800 m.  

Simulations for each case, and different soil hydraulic properties, were performed.  

Deviations calculated with Eq. (15) are presented in Fig. 6. 

For clay (Fig. 6a) the effect of the scale is practically zero, having for the 

considered geometric configurations mean deviation values of 16%.  When silt is 

considered (Fig. 6b) mean deviations range from 15.8 to 11.7%, corresponding to 

DxB=16x800 m and DxB=0.5x25 m, respectively.  For fine sand (Fig. 6c) 

variations in the mean deviations range from 9.7 to 2.0% for DxB=16x800 m and 

DxB=0.5x25 m.  For coarse sand (Fig. 6d), except for the smallest domain 

configuration (DxB=0.5x25 m), with mean deviation of -19.5%, others have mean 

deviation values of around 1.0%.  For gravel (Fig. 6e) a mean deviation value of -

86.7% is found for the smallest domain (DxB=0.5x25 m) and a mean deviation of 

2.7% for the largest domain (DxB=16x800 m).  These results suggest that for fine 

materials (such as clay and silt) smaller domains lead to smaller differences 

between the results of the numerical model and the Boussinesq solution, while 

large domains are preferred for coarser aquifer materials.  When the effect of the 

different aquifer materials was analyzed, it was found that the recession curves 

from the numerical model when compared to the Boussinesq long-time analytical 

solution, present larger variations primarily for the finer materials considered 

(clay, silt), having mean deviations of 16% to 12%.  However, for fine sand, 

coarse sand and gravel these deviations are less than 10%, particularly coarse 

sand, with mean deviation values are around 1.0%. 
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Typical values of hydraulic conductivity and drainable porosity found in the 

literature, when analytical solutions to the non-linear Boussinesq equation are 

tested (synthetic cases) versus the output of numerical models are: 

K=8E-4 (m s-1) and f=0.34 (Verhoest et al., 2000; Huyck et al., 2005);  K=1E-3 

(m s-1) and f=0.34 (Verhoest and Troch, 2002), K=3E-4 (m s-1) and f=0.3 (Troch 

et al., 2002, 2003 and 2004); K= 8E-4 (m s-1) and f=0.33 (Basha and Maalouf, 

2005); or K= 6E-4 (m s-1) and f=0.1(Pulido-Velazquez et al., 2006).  These values 

indicate that so far the match between numerical and analytical solutions has been 

examined for a limited range of aquifer materials, corresponding in most of the 

cases to fine sands according to the range of aquifer properties listed in Table 1.  

The range of variation in the deviations for the different aquifer materials 

analyzed (see Fig. 6) urge that when analytical solutions are compared with 

numerical models that the values of hydraulic properties are carefully taken into 

consideration.  In the present research, results suggest that the Boussinesq long-

time quadratic equation, when compared to numerical model output, is better 

suited for materials such as fine or coarse sands, while in materials such as gravel, 

larger differences can be expected.  Effects of the different materials are further 

described in results and discussion section. 

Applied geometry and discretization scheme 

As a result of the sensitivity analyses the adopted geometry and discretization for 

the comparative analysis of the three cases described in flow domain section for 

horizontal conditions are: length of the flow domain (taken orthogonal to the 

draining stream) B=400 m, aquifer thickness D=8 m; length parallel to the stream 

l=1 m, cell width 2 m, and four uniform layers with equal thickness (see Fig. 7). 
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When a sloping aquifer is considered, there are two options to present geometry in 

a numerical model.  The first would be to simulate exactly the same inclined 

aquifer geometry, which is not possible in MODFLOW.  The second option, is 

setting the flow domain to Bx=Bcos(i) and Dz=D/cos(i) in order to preserve the 

cross-sectional area (Fig. 3).  This latter option has been adopted and the 

differences in the simulation results, consequence of the different flow domains, 

have proven to be insignificant partly because of the very small difference in 

width and depth found with the new settings. 

Initial conditions 

The first initial condition was obtained with the numerical model (with the chosen 

geometry and discretization as defined in the previous section) simulating the 

drainage of a fully saturated aquifer domain, and considering the groundwater 

profile when the head becomes smaller than D for x=B (see Fig. 8) as initial 

condition.  Another way of obtaining the initial condition is assuming a constant 

recharge along the upper boundary of the numerical model, generating a realistic 

steady-state piezometric profile with a hydraulic head reaching D for x=B.  In Fig. 

8 these two initial conditions are compared to the inverse incomplete beta function 

φ (2/3, 1/2), as proposed by Boussinesq (1904) (see Polubarinova-Kochina, 1962; 

Rupp and Selker, 2005).  Figure 8 reveals that the profile obtained assuming a 

constant recharge matches closely the initial condition proposed by Boussinesq.  

Figure 8 also shows that the initial condition obtained through the drainage of a 

fully saturated domain differs significantly from the two other initial conditions, 

i.e. the water profile obtained under constant recharge and the inverse beta 

function.  The difference may suggest that using the short-time equation (Eq. 

(13)), which is said to be valid before the wave reaches the end of the aquifer 
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(x=B), and subsequently the long-time Boussinesq equation (as suggested in 

Troch et al., 1993) may not be adequate.  Model results show that the water table 

profile, starting with a fully saturated condition (the same as the short-time 

equation; see Eq. (13)), when reaching the end of the aquifer, x=B, is different to 

the one suggested by Boussinesq (inverse incomplete beta function initial 

condition profile); consequently leading to different recession curves. 

Since in the present work the comparative analysis will be carried out only 

starting when the wave reaches x=B, when the Boussinesq long-time solution is 

said to be valid, no further discussion is presented for the fully saturated initial 

condition and the sensitivity analyses presented here after are carried out only 

with the infiltration by recharge and incomplete inverse beta function as initial 

condition. 

Sensitivity to the initial conditions 

As stated previously, the initial condition obtained assuming a constant recharge 

is quite similar to the one used by Boussinesq. In order to asses the effect of each 

initial condition, a sensitivity analysis was carried out following the methodology 

applied for the assessment of the X- and Z-discretization previously presented.  

The sensitivity analysis to the initial conditions was performed considering the 

hydraulic properties of the aquifer materials listed in Table 1.  Results show that 

for the different materials studied, recession curves from the numerical model, 

using infiltration by recharge as initial condition, deviate generally least from the 

results obtained with Boussinesq long-time quadratic equation.  Mean apparent 

bias and mean deviations using infiltration by recharge as initial condition, are in 

general less when compared to equivalent values using the inverse incomplete 

beta function profile.  From this it can be concluded that even though the 
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differences in the two initial conditions seem to be small, when fine materials are 

considered (particularly clay), results are quite sensitive to the considered initial 

condition.  In coarse materials, such as gravel, the two tested initial conditions 

have practically no influence on the recession curve.  Since infiltration by 

recharge as initial condition showed the least influence on the mean deviation 

between the output of the numerical model and the analytical solution, this initial 

condition was selected for the comparative analysis, which is presented in the 

following section. 

Results and discussion 
The results of the comparative analysis of the recession outflows derived with the 

analytical solutions and the numerical model are presented in here.  Differences 

between the methods are expressed in percent deviation (Eq. (15)).  The geometry, 

the discretizations and the initial and boundary conditions used in MODFLOW 

were defined in the numerical model sensitivity analysis section.  The results are 

presented according to each flow domain case. 

Case 1: Horizontal aquifer floor 

Two analytical approximations for an aquifer with an horizontal floor, i=0, were 

used for comparison of the recession outflow with the outflow generated using 

MODFLOW.  The first one is given in Eq. (8) (Brutsaert, 1994), which is referred 

from now on as the exponential solution, and the second one is the so-called 

“exact” Boussinesq quadratic long-time analytical solution (Eq. (10)).  The 

percent deviations for the five materials (see Table 1) are shown in Fig. 9 for a 

recession period of 300 days. Figures 9a and 9b illustrate that for clay and silt the 

outflow of the numerical model matches exactly the outflow calculated with 

Brutsaert’s exponential equation.  The mean percent deviation between both 
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outputs is within -0.1 and 0.1%.  The best match was obtained by putting p=0.5.  

The outflows generated by Boussinesq’s quadratic solution deviate on average 

with 15% (silt) to 16% (clay) from the MODFLOW outflows, and this throughout 

the entire recession period.  The observed difference is somehow unexpected 

since MODFLOW solves Eq. (14) assuming that the flow is essentially (or 

practically) horizontal (i.e., the Dupuit assumption).  It is believed that the 

observed difference is due to the initial condition which in the quadratic long-time 

analytical solution and MODFLOW is different. 

The deviations for fine sand, coarse sand and gravel are depicted in the Figs. 9c, 

9d and 9e, respectively.  In contrast to the fairly constant percent deviation during 

the entire recession period observed for clay and silt, for the coarser materials the 

calculated deviations vary with time.  For fine sand the outflow generated with 

Brutsaert’s exponential equation deviates from 13% (t=0) to -7% (t=300 days), 

with mean deviation of 0.3%; the approach is not valid for coarse sand since 

deviations in the first 127 days varied from -34% up to 800%; similarly the 

exponential equation does not hold for gravel.  For fine sand the p factor was 

calibrated at 0.44.  The deviations between the outflows generated with the 

Boussinesq quadratic equation and the model for fine sand, coarse sand and gravel 

show a rather similar pattern throughout the recession period, i.e. the percent 

deviation decreases with the recession time.  For fine sand the percent deviation 

decreases from 16% (t=0) to 4% (t=300 days), with mean deviation 7%; the 

percent deviation varies only slightly with the recession time in the coarse sand 

aquifer, being on average 0.7%; and in gravel it drops from 23% at t=10 days to -

5% for t=300 days, with mean deviation of 3%.   
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The comparative analysis reveals that Brutsaert’s exponential analytical solution 

is mainly valid for fine materials.  This can be partly explained by the fact that the 

numerical model recession curves present a linear behaviour for those materials.  

For coarser materials, such as fine and coarse sand, this is not the case and 

numerical model results show a non-linear behaviour, being most clear for the 

gravel aquifer (Fig. 9e).  From this, it is concluded that the exponential approach 

is less capable of reproducing the outflow of coarse aquifers with a horizontal 

floor, and that the percent deviation increases the coarser the material of the 

aquifer.  In general, notwithstanding the percent mean deviations found for clay 

and silt, between 16 and 15% respectively, which seems to be the consequence of 

the assumed initial condition, the numerical generated outflows seems to agree 

mostly with the outflows obtained using the Boussinesq quadratic analytical 

equation, indicating that the quadratic approach best mimics the non-linear 

behaviour of the groundwater flow. 

Case 2: Sloping aquifer floor 

The percent deviation between the outflows generated with MODFLOW and 

Brutsaert’s (1994) analytical solution for aquifers with a sloping floor of 0.5, 1, 2, 

5 and 10% composed of clay, silt, fine sand, coarse sand and gravel are presented 

in Fig. 10a, b, c, d and e.  Here again the trend in percent deviation for clay and 

silt are quite similar, as it was the case for the horizontal aquifer floor.  For slope 

angles of 0.5% and 1% the mean percent deviations are within the order of 0.3% 

to 0.7%, whereas within the first 30 (clay) to 10 days (silt) the percent deviation 

drops from respectively 40 and 30% to nearly 0%.  For sloping aquifer floors of 2, 

5 and 10% mean percent deviations found for clay were -68, -80 and -93%, and -

74, -80 and -93% for silt.  The percent deviation between the modelled outflow 

and the outflow calculated with Eq. (7) for a fine sand aquifer as a function of the 
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recession time behaves very similar than for clay and silt.  Aquifer slopes 0.5% 

and 1%, having mean percent deviations of 0.14% and 3%, showed a tendency of 

increasing percent deviation as from t=100 days onwards, reaching for the 1% 

slope case a percent deviation of 8% at t=300 days.  For coarser aquifer material, 

such as coarse sand and gravel, the numerical model is not able of generating 

similar outflows in comparison to the outflows obtained with Eq. (7).  The percent 

deviations vary strongly from negative to very large positive values within a short 

period as depicted in Fig. 10d (coarse sand), and deviations can even not be 

assessed with the numerical model for gravel aquifers (Fig. 10e):  the main reason 

is that the aquifer dries out.  As can be seen in Figs. 10d and 10e the time that the 

aquifer becomes dry decreases as the slope of the aquifer floor increases and the 

aquifer material is coarser. 

The analysis revealed that the value of the p factor had little effect for slopes 

above 1%, whereas the optimal value for the slope of 0.5 and 1% by calibration 

was found to be within 0.5<p<0.7.  From the Figs. 10a (clay), b (silt) and c (fine 

sand) it can be seen that for slopes larger than 1% the percent deviations increase 

rapidly.  This can be explained reformulating the dimensionless parameter -aB in 

Eq. (7) as: 

pDBiaB 2/)tan(=−      (16) 

This parameter represents the relative magnitude of the slope term, i.e., the gravity 

versus the diffusion term.  Its value increases with slope i, and with the 

shallowness (B/D) of the aquifer.  When small i values are considered, according 

to Brutsaert (1994), the flow problem can be treated as a horizontal flow case, and 

Eq. (8) can be used.  However, Brutsaert (1994) quotes that slopes of 0.01% may 
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not be all that small and their effects should be considered.  At the contrary the 

results presented in Fig. 10 suggest that cases with slopes up to 1% may be treated 

as horizontal flow cases.  When large values of -aB are present, diffusion becomes 

small and q decays mostly because gravity flow, due to the steepness of the slope, 

overtakes diffusive flow.  According to Brutsaert (1994) the solution presented in 

Eq. (7) is likely to become less reliable in describing accurately the free surface 

outflow because of the inherent limitations in the hydraulic approach.  

Furthermore, the effect of the dimensionless parameter, unlikely resembles the 

real effect of gravity found in hillslopes.  (-aB) increases proportionally as the 

aquifer floor slope i increases.  When it is expressed as e-aB, as in Eq. (16), the 

effect of this term is determinant.  In Fig. 11 log(e-aB) is plotted as a function of 

the aquifer floor slope illustrating that the effect of slope gradually becomes more 

important as the slope increases.  The difference in log(e-aB) for aquifer slopes of 

0.5 and 1% is relative small (the same order of magnitude) compared to the 

difference found for slopes above 1% (several orders of magnitude).  In 

conclusion, the results presented in Fig. 10 suggest that the effect of gravity might 

be overestimated in Brutsaert’s exponential expression (Eq. (16)) when compared 

to the results obtained with the numerical model. 

Case 3: Concave aquifer floor 

The outflow generated with the numerical model for a concave aquifer floor, with 

H equal to 0.4, 0.8, 1.6, 3.2 and 6.4 m, was compared to the outflow using 

Boussinesq’s equation (Eq. (4)).  As could be expected the trends in percent 

deviations found for the cases (clay, silt, fine sand, coarse sand and gravel) with 

concave floor (Fig. 12) are very similar to the trends presented for those of the 

same material with horizontal floor (Fig. 9).  This should not surprise since, as 

mentioned already, Boussinesq’s concave analytical solution is quite similar to 
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Brutsaert’s exponential equation used for the horizontal floor case.  The C factor 

in Eq. (4), which Boussinesq defined as being dependent on the initial condition, 

was defined by trial and error similarly to the way the p factor was derived.  

Figure 12a illustrates that for all H values the numerical model yields nearly the 

same outflows as the analytical approach and this for the entire recession period 

of 300 days, with mean percent deviation of 0.4%.  A similar conclusion can be 

drawn for silt, showing a mean percent deviation of -2%.  For a fine sand aquifer 

the percent deviation between the outflow generated with the analytical solution 

and MODFLOW tends to be larger than for clay and silt, ranging from 9% for t=0 

to nearly -9% for t=300 days, having a mean percent deviation of -1%.  Figure 

12c also shows that the percent deviation in outflow between both approaches 

decreases as the value of H increases.  For aquifers composed of coarse sand and 

gravel the exponential equation does not yield the same outflows as the outflows 

simulated with MODFLOW.  For coarse sandy aquifers the percent deviations for 

all H values was of the order of 2% for t=0, decreasing to nearly -20% and 

increasing to unacceptable values after 20 to 50 days.  For gravels, just as for 

aquifers with horizontal floor, the percent deviation between the analytical 

generated outflows and the simulated outflows were already out of range after 1 to 

2 days of recession.  It is observed that the percent deviation between the outflows 

generated with the analytical approximation and MODFLOW, tends to be larger 

for increasing H values and particularly when coarse materials are considered (see 

Fig. 12).  These results may also suggest that under such conditions, the 

assumption that the streamlines are approximately parallel to the aquifer floor (see 

Boussinesq, 1877), may no longer be acceptable. 
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Conclusions 
During the last century, analytical solutions have been extensively used to predict 

the outflow of homogeneous unconfined hillslope aquifers.  Although recently 

new aspects were integrated as to make the analytical solutions applicable for 

more conditions, analytical solutions in general are based on strong simplification 

of the reality and therefore only valid for well defined conditions.  In the present 

research a comparative analysis was conducted between different analytical 

approximations of the non-linear Boussinesq equation and the numerical solution 

of the receding flow of an unconfined homogeneous aquifer in MODFLOW, 

whereby the simulated outflows were considered the reference.  The percent 

deviation in outflow, calculated with an analytical approximation and numerical 

model, for a homogeneous aquifer with varying geometry and hydraulic 

properties was used as evaluation criteria.  Prior to the comparative analysis a 

sensitivity analysis was carried out as to identify for the numerical model the 

aquifer geometry, scale and the space and time discretization to get the best match 

between the analytical and numerical generated recession curves.  An aquifer 

geometry with D/B ratio of 1/50, D=8 m and B=400 m, ∆x=2 m, ∆z=2 m, and time 

step of 1 day was found to provide the best match. 

For aquifers with a horizontal floor it has been shown that Brutsaert’s exponential 

solution is primarily valid for clay and silt materials, but fails to reproduce the 

receding outflow for fine and coarse sand and gravel aquifers.  The deviation to 

the reference receding outflows simulated with the numerical model increases the 

coarser the aquifer material, being most striking for the gravel aquifer.  

Boussinesq’s quadratic analytical solution better reproduces the receding outflows 

of fine and coarse sand and gravel aquifers.  Results presented herein suggest that 
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the issue of linearity and non-linearity, stressed by different authors (Hall, 1968; 

Burtsaert and Lopez, 1998; Wittenberg, 1999; Dewandel et al., 2003; among 

others) is strongly related to the properties of the aquifer medium.  For hillslope 

aquifers with a uniform sloping floor it has been demonstrated that, for slopes 

larger than 1%, the outflows obtained with Brutsaert’s analytical solution 

increasingly deviate from the MODFLOW simulated outflows, and that the 

percent deviation increases the coarser the aquifer medium.  Brutsaert’s analytical 

solution does not yield acceptable values for coarse sand and gravel aquifers, most 

likely because the effect of gravity might be overestimated with this particular 

expression.  The analytical solution for aquifers with concave floor, having an 

exponential form, produces up to a certain extent similar outflows as 

MODFLOW.  However, as the case of the horizontal aquifer floor, the 

exponential equation is proven to be primarily valid for fine medium aquifers. 

Table 2 gives a summary of the researched conditions for which the analytical 

approximations yield a similar output as the numerical solution of the general 

groundwater flow equation, using MODFLOW as code. 

Summarizing, this comparison of recession outflow for a hillslope aquifer 

calculated by analytical solutions and numerical models (in this case 

MODFLOW), for checking the agreement between the analytical and numerical 

solution are only valid for certain ranges of hydraulic properties of the aquifer 

medium, the geometry of the flow domain and the initial and boundary conditions.  

It is here underlined, that the results presented were obtained for homogeneous 

aquifers, and it is to be expected that the ranges for which the analytical 

approximations yield similar results to those of the numerical model, will be 

different for heterogeneous aquifers.  
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Figure 1:  Conceptual drawing of the cross-section of a hillslope aquifer with 

inclined slope 

Figure 2:  Sketch of Boussinesq (1877) conceptual model 

Figure 3:  Schematic presentation of an aquifer with sloping floor as used in the 

numerical model 

Figure 4:  Sketch of Boussinesq (1877) conceptual model for a concave aquifer 

floor 

Figure 5:  Variation of the percent deviation between the simulated outflows and 

the outflow generated with the Boussinesq equation for a coarse sand aquifer as a 

function of the time step [(x) = 0.5 days; ( ) = 1 day; ( ) = 5 days; (▲) = 10 

days]  

Figure 6:  Results of the sensitivity analyses with respect to the size of the domain 

[triangles (▲): D = 16 m and B = 800 m; squares ( ): D = 8 m and B = 400 m; 

circles ( ): D = 4 m and B = 200 m; crosses (x) D = 0.5 m and B = 25 m] and 

aquifer materials [(a) clay; (b) silt; (c) fine sand; (d) coarse sand; and (e) gravel] 

Figure 7:  Schematic presentation of the geometry of the numerical model of a 

homogeneous aquifer with horizontal floor; discretization of 2 m in the x- and z-

direction (not to scale); black square ( ) depicts the outlet with imposed potential 

Figure 8:  Graphical presentation of the three different initial conditions at the top 

of the aquifer. Dashed dotted line: water table profile obtained by drainage of a 

fully saturated aquifer; dashed line: water table profile obtained under constant 

recharge; and solid line: the inverse incomplete beta function (Boussinesq, 1904; 

Polubarinova-Kochina, 1962; Rupp and Selker, 2005) 

Figure 9:  Deviation between the simulated flow and the flow derived using 

Boussinesq’s quadratic (x) and Brutsaert’s exponential ( ) solution, for a 

homogeneous aquifer with horizontal floor and different K and f values [(a) clay; 

(b) silt; (c) fine sand; (d) coarse sand; and (e) gravel] 

Figure 10:  Deviation between the simulated flow and the flow derived using 

Brutsaert’s sloping aquifer floor solution for different slopes (x 0.5% slope;  1% 
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slope; ▲ 2% slope and  5% slope) and aquifer materials [(a) clay; (b) silt; (c) 

fine sand; (d) coarse sand; and (e) gravel] 

Figure 11:  Logarithm of the exponential form of the dimensionless parameter –

aB (Eq. (16)) as a function of slope of the aquifer floor 

Figure 12:  Deviation between the simulated flow and the flow derived using 

Boussinesq’s concave aquifer floor solution for different concave depths [(x) H = 

0.4 m; ( ) H = 0.8 m; (▲) H = 1.6 m; ( ) H = 3.2 m; and (□) H = 6.4 m] and 

aquifer materials [(a) clay; (b) silt; (c) fine sand; (d) coarse sand; and (e) gravel] 
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Table 1:  Representative values for K and f (after Smith and Wheatcraft, 1992) 

Material K (m s-1) f (%) 

Clay 1.00 E-09 3 

Silt 1.00 E-07 10 

Fine sand 1.00 E-05 15 

Coarse sand 1.00 E-03 20 

Gravel 1.00 E-01 25 
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Table 2:  Ranges for which the analytical approximations match the recession outflows of a homogeneous hillslope aquifer generated with 

MODFLOW 

 

Domain material (after Smith and Wheatcraft, 1992) Analytical 
approximation per 

flow domain Clay Silt Fine sand Coarse sand Gravel 

Horizontal aquifer 
floor:  

Eq.(8) and Eq. (10) 

Eq. (8): good match 
for 0≤trec≤300 days 

Eq. (8): good match for 
0≤trec≤300 days 

Eq. (8) and Eq. (10):  

good match for 
trec≥100 days 

Eq. (10): good match for 
0≤trec≤300 days 

Eq. (10): good match 
for trec≥200 days 

Sloping aquifer floor: 
Eq. (7) 

Slopes 0.5 and 1%: 
good match for 
0≤trec≤300 days 

Slopes 0.5 and 1%: 
good match for 
0≤trec≤300 days 

Slopes 0.5 and 1%: 
good match for 
0≤trec≤300 days 

No match No match 

Concave aquifer floor: 
Eq. (4) 

H=0.4 to 6.4 m: good 
match for 0≤trec≤300 

days 

H=0.4 to 6.4 m: good 
match for trec≥50 days 

H=0.4 to 6.4 m: good 
match for trec≥50 days No match No match 

Legend: trec = recession time in days 
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