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Abstract

In the last few years, there has been a large body of literature on congestion control
based on optimization and control theories. This paper provides an overview of
optimization flow control starting from the first original papers, and traces the
development in a unified framework, from unicast to multicast, from theory to
algorithms to implementation issues.

The optimal congestion control problem is formulated, both for unicast and mul-
ticast. Decentralized theoretical solutions are derived by applying duality theory.
Based on these results, actual generic algorithms and implementations are pro-
posed for solving these problems in a distributed way. Some alternative methods
not based on duality theory are also reviewed. Finally the complementary problem
of choosing suitable utility functions in the optimisation problem is addressed.
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1 Introduction

This work presents a survey of the recent applications of optimization theory
to network congestion control. A growing amount of works have been dedicated
to this field, giving today a strong analytical basis to the previously empirical
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research on congestion control. This basis is both a source of understanding
of well known protocols such as TCP and of inspiration for original proposals.

We will adopt a constructive approach by first exposing the mathematical
formulation of the network congestion control problem and then developing
theoretical solutions and their practical implementations. As the ground work
in the field has been developed in the unicast case, we will also articulate the
survey around the unicast context first and in parallel develop the various ex-
tensions relating to multicast communications, either single-rate or multirate.

The related works that we consider to be the most relevant will also be men-
tioned in this survey, but care will be taken to integrate them directly in the
text body, in order to give a self-contained presentation of optimal congestion
control.

The paper is structured as follows. Section 2 formulates the optimal conges-
tion control problem, both for unicast and multicast. Section 3 explains how
decentralized theoretical solutions can be derived in both cases by applying
duality theory. Based on these results, section 4 presents generic actual al-
gorithms and implementations for solving these problems. Section 5 reviews
some alternate methods not based on duality theory. Finally section 6 ad-
dresses the complementary problem of choosing suitable utility functions in
the optimisation problem. A reminder of optimisation theory is provided in
annex A.

2 Optimal congestion control problem formulation

2.1 The unicast case

The basic objective of congestion control is to best exploit the available net-
work resources while preventing sustained overload of network nodes and links.
This idea can by itself be easily formulated in an optimization theory frame-
work.

We first introduce some notation. Let L = {1, . . . , L} be the set of unidirec-
tional network links. Each link l ∈ L is characterized by its capacity cl. We
consider a set S = {1, . . . , s} of sources using these links. Each of these sources
is characterized by a strictly concave utility function Us which is a function
of the transmission rate xs of that source. We consider that the rate of the
source must lie within some interval Is, i.e. xs ∈ Is = [bs, Bs]. We denote by
Sl the set of flows using link l.
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In [1], Kelly argues that bandwidth should be shared so as to maximize an
objective function representing the overall utility of the flows in progress,
while keeping the sum of rates on a link below that link’s capacity. This gives
formally the following objective function and associated constraints [2]:

max
xs∈Is

∑
s∈S

Us(xs)

subject to
∑
s∈Sl

xs ≤ cl, l = 1, . . . , L
(1)

A unique solution to this problem exists, since the objective function is strictly
concave and the feasible set is convex (see appendix A for some theoretical
background). Concave utility functions are suitable and have been used exten-
sively for traditional elastic data services in the Internet, turning problem (1)
into a convex optimization problem. However, for delay and rate sensitive ser-
vices and many services in wireless networks, non concave utility functions
(e.g. sigmöıdal-like “S” functions) are more realistic [3], although requiring
more complex algorithms to find the global optimum of problem (1).

We now give some comments on this particular formulation. The congestion
control problem is not only considered for a particular flow between two end
nodes but instead at the whole network level, all the receivers being simulta-
neously introduced in the sum of utilities. The solution to this optimization
problem is thus meant to be a global optimum for all network users. Although
the congestion constraints introduced for the links seem unavoidable in the
problem formulation, one might question the use of utility functions or more
generally the choice of the objective function. The objective function trans-
lates in mathematical terms the actual quantity to be optimized. Using utility
functions in the objective function definition allows a great flexibility in terms
of problem formulation : the choice of a particular function or class of functions
enables us to focus on particular aspects of the congestion control problem,
while retaining the solution developed for the more general formulation based
on utility functions. These aspects include bare throughput maximization and
fairness.

Besides this formulation considerations, an issue to be also considered for a
given optimal solution is the impact of the choice of a particular class of
functions on the properties of the resulting algorithm, such as convergence
and stability.

Another important aspect at this point is that, whatever solution we develop
for this problem, it will imply the nodes in its implementation, as the capacities
are explicitly introduced in the problem formulation.
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2.2 The multicast case

The above classical formulation (1) for the unicast case can readily be gen-
eralized to the single-rate multicast case, where the considered rates are now
multicast session rates.

The work in [2] has been specifically extended to the multirate multicast case
in [4]. Let M denote the set of all multicast groups in the network and, for
any m ∈ M , let Rm denote the set of receivers for group m. To express
the link capacity constraints in the layered case, we need an expression of
the flow rate of a multicast group m on a given link l, based on the choice
variable xr representing the rate associated with receiver r. If we consider a
hierarchically encoded layered stream, the rate on a link upstream to a subset
of receiver is the maximum of all rates reaching this subset of receivers, so
that the cumulated rate of multicast group m on link l is simply max

r∈Sl∩Rm

xr.

The problem (1) can now be formulated as

max
xr∈Ir

∑
r∈R

Ur(xr)

subject to
∑

m∈M

max
r∈Sl∩Rm

xr ≤ cl, ∀l ∈ L
(2)

where R = ∪
m∈M

Rm is the set of all multicast receivers, considering — with no

loss of generality — disjoint sets of receivers.

If we assume that there exists an interior point to the set of constraints,
problem (2) is feasible. If we further assume that the utility functions are
strictly concave, then this solution is provably unique (see section A).

3 Decentralized solution

The various optimization problems formulated consider the congestion con-
trol problem at the network level. Although the associated objective functions
are separable in the choice variables, a coupling among these variables is sys-
tematically introduced by the congestion constraints on the link, so that any
solution would in the end involve synchronization and communications be-
tween all users in the network, each of them controlling the evolution of one
such variable. This of course would lead to an impractical solution in a real
environment.

The common key in solving these optimization problem is to use duality theory.
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This part of optimization theory is amenable to determine decentralized and
scalable solution to optimization problems where the objective function and
constraints are additive, i.e. are the sum of functions depending only on one
choice variable. We will now see how this can be applied in our context.

3.1 The unicast case

The basic idea behind duality theory is to construct and solve a new optimiza-
tion problem — called the dual — of the original problem — called the primal.
As the optimal solutions for each of them are closely related, it is possible to
deduce the solution of the primal from the solution of the dual. As solving the
dual can also lead to decentralized solutions while this is not the case for the
primal, it is therefore possible to obtain a decentralized algorithm to solve the
primal, although it is basically not separable.

The basic optimization problem (1) is precisely one example of an additive
problem for which no decentralized solution can be expected by direct solving
of this problem. To build its dual, we first construct the Lagrangian L(x, p) of
the problem, where x = (xs, s ∈ S) represents the vector of choice variables
and p = (pl, l ∈ L) a vector of newly defined dual variables called the La-
grange variables. One such variable is introduced per constraint, so that the
Lagrangian has in our case arity S + L.

L(x, p) =
∑
s∈S

Us(xs)−
∑
l∈L

pl

∑
s∈Sl

xs − cl


=
∑
s∈S

Us(xs)− xs

∑
l∈Ls

pl

+
∑
l∈L

plcl

where Ls is the set of links used by flow s.

The objective function D of the dual problem is defined by maximizing the
Lagrangian on the original choice variables, resulting in a function of the only
Lagrange variables:

D(p) = max
xs∈Is

L(x, p)

The dual problem consists then of minimizing the dual objective function on
the dual variables:

min
p≥0

D(p) (3)

In the case of the problem (1), the Lagrangian is separable in the choice
variables xs, so that the maximum of L can be expressed as a sum of maximum
depending only on one choice variables. The dual objective function can thus
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in this case be expressed as

D(p) = max
xs∈Is

∑
s∈S

Us(xs)− xs

∑
l∈Ls

pl

+
∑
l∈L

plcl


=
∑
s∈S

max
xs∈Is

(Us(xs)− xsp
s)︸ ︷︷ ︸

Bs(ps)

+
∑
l∈L

plcl, with ps =
∑
l∈Ls

pl

(4)

The fundamental point to notice here is that the evaluation of the dual objec-
tive function D for a given vector p of dual variables can be distributed among
the network users, as each of them can now perform on its own the maximiza-
tion required in the calculation of each Bs term. As the only constraint for the
dual problem is for the dual variables to be positive, the solving of the dual
problem can thus be performed in a decentralized way, although this was not
the case for the original primal problem. As we will see, the minimization (3)
can then possibly be performed in a decentralized way too.

Suppose now the dual solution p∗ is known. The most general duality result
states that F (x∗) ≤ D(p∗), where F and x∗ are the primal objective function
and solution respectively. The basic problem of duality is to determine under
which conditions this inequality turns out to be an equality, in which case we
can say there is no duality gap. One particular case where there is no duality
gap is when the objective function is concave and the constraints are linear (see
appendix A), which is precisely the case for problem (1), the utility functions
being supposed concave. When there is no duality gap, the solution of the
primal problem are amongst the maximizers of the Lagrangian L(x, p∗) where
the dual variables are set to the dual solution. The utility functions appearing
in the formulation of problem (1) being strictly concave, the function L(x, p∗)
admits a single maximizer, which is therefore the solution x∗ to the primal
problem. We thus have

x∗ = arg max
x∈I

L(x, p∗) = arg max
x∈I

∑
s∈S

Us(xs)− xsp
s∗ (5)

= arg
∑
s∈S

max
xs∈Is

(Us(xs)− xsp
s∗) (6)

= arg
∑
s∈S

Bs(p
s∗) (7)

where I = (Is, s ∈ S). The key point is that the maximization (7) can be done
in a decentralized way, each source performing on its own the maximization of
its associated function Bs(p

s∗). This supposes of course that each source knows
the dual solution p∗, which acts as synchronization signal between them.

The classical interpretation of Lagrange variables as prices in an economical
framework gives some insight in the considered problem. If the dual variable
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pl is seen as the price per unit bandwidth used at link l, we see that aggre-
gate price ps represents then the total price per unit bandwidth source s is
virtually charged for the path it uses. The resulting cost is xsp

s and we see
that the local maximization performed by each source reduces to the maxi-
mization of its individual benefits. The aggregated price acts in this context
as synchronization signal that aligns individual welfare with social welfare for
all network sources.

Note also that at the optimal pair (x∗, p∗), the complementary slackness con-
ditions state that pl > 0 if and only if the associated constraint is active, i.e.∑

s∈Sl
xs = cl, meaning that the price of an uncongested link is zero.

3.2 The multicast case

Obtaining a distributed and scalable solution is of critical importance in the
multicast case. Any derived solution must indeed scale not only at the multi-
cast group level like in the single source-single receiver case, but also inside a
given group.

Although the max functions appearing in the link constraints of problem (2)
are non linear, the constraint set remains convex and there is thus no dual-
ity gap, the utility functions being strictly concave. Duality theory, if being
applied directly, would however in this case lead to a more difficult solution
precisely because of these non linearities in the constraints. This would result
in a much more complex maximization of the Lagrangian. But more funda-
mentally, problem (2) is not separable anymore. The max functions indeed
couple several variables together, making it impossible to reduce the global
Lagrangian maximization to a set of local optimizations.

One way to circumvent this difficulty is to replace each max term by a set of
linear constraints, which can always be carried out. A direct replacement would
however lead to an exponential number of (linear) constraints. Obtaining a
decentralized solution to problem (2) by means of duality theory requires
in fact a reformulation of the problem. One simple way to achieve this is to
replace each max term appearing in the link constraints by a separate variable
representing the rate on the corresponding branch of the multicast tree. The
choice variables are now the cumulated rates of the various multicast groups
on each link. In the previous formulation, the receiver rates were considered.
It is therefore necessary to introduce additional constraints on the feasible set
of branch rates to ensure that the latter are coherent with a layered scheme,
i.e. the rate on a branch cannot be greater than the rate on the parent branch
but can possibly be lower if a layer is not subscribed anymore on that branch.

Before giving the alternate formulation, we introduce some more notation. We
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partition the set of nodes in the network in junction nodes and non junction
nodes. A junction node is a node where one of the multicast trees branches
off in two or more children. We denote R̂ the set of all junction nodes over all
multicast groups and by R̃ = R∪R̂ the union of all junction and receiver nodes
(which are assumed with no loss of generality to be logically different). We call
a branch the set of links joining two junction nodes in a given tree and note Ĵ
and J the set of branches ending respectively at a junction or receiver node.
We also use J̃ = J ∪ Ĵ . We associate a rate variable yj with each branch j ∈ J̃
and denote by r(j) the receiver or junction node associated with branch j ∈ J̃ .
The alternate problem formulation used to solve the optimization problem in
the multilayer multicast case is then

max
yj∈Yj

∑
j∈J

Uj(yj) (8)

subject to
∑
j∈Kl

yj ≤ cl, ∀l ∈ L (9)

yj ≤ yπ(j), ∀j ∈ J̃ s.t. π(j) 6= φ (10)

where Kl ⊆ J̃ is the set of branches that share link l ∈ L and π(j) is the
parent branch of branch j and where

Yj =

Ir(j) = [br(j), Br(j)] if j ∈ J

[0, B] if j ∈ Ĵ

with B being any number satisfying B > max
r∈R

Br. This reformulated problem

has grown in size, since we consider one choice variable per branch and not
only per receiver and since we have added branch constraints to the usual link
constraints.

The problem (8) is now separable, enabling us to use duality theory to obtain
a decentralized solution. We note pl, l ∈ L, the dual variables associated
with the link constraints (9) and qj, j ∈ {j′ : π(j′) 6= ∅}, the dual variables
associated with the branch constraints (10), the latter variables being assumed
to be identically zero for branches starting from source nodes, i.e. for branches
j such that π(j) = ∅. We will directly give the expression of the objective
function, to avoid the notational burden of its derivation, which is anyway
similar to the unicast case. The dual objective function D is

D(p, q) = max
y∈Y

L(y, p, q) (11)

=
∑
j∈J

D̃j(p, q) +
∑
l∈L

plcl (12)
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with

D̃j(p, q) =


max
yj∈Yj

{Uj(yj)− yj(p̃j + qj)} if j ∈ J

max
yj∈Yj

{
−yj(p̃j + qj −

∑
k∈Cj

qk)
}

if j ∈ Ĵ
(13)

where p̃j =
∑

l∈Lj
pl, Lj is the set of links constituting branch j and Cj =

{k ∈ Ĵ | π(k) = j} the set of children branches of branch j. As in the
unicast case, we see that the evaluation of the dual objective function can be
reduced to a set a distinct branch optimization problems for which the only
knowledge required are the p and q prices for that branch and the q prices for
the children branch. This will enable the derivation of decentralized algorithm
solving indirectly the global optimization problem (2).

The interpretation of the link prices pl is similar to the unicast case, as they
are associated with the link capacity constraints: they represent the price to
be paid per unit bandwidth when the associated link is congested, and remain
zero while the constraint is inactive. The cumulated prices p̃j are then the
corresponding branch prices.

The interpretation of the q prices gives us an important insight into prob-
lem (8). If we look at the first piece of expression (13) relative to branches
ending at receiver nodes, we see that at optimality each receiver is again max-
imizing its individual profit, but this time the price per unit bandwidth is the
sum of the price p̃j of the branch ending at that receiver and of the price qj

associated with that branch. This latter price can be seen as the price this
receiver has to pay for its usage of branches located in the tree upwards branch
j. In the unicast case, the price was related to the whole path to the source.
This is no longer the case here, as the path has been subdivided into a set of
branches describing the multicast tree.

Note however that complementary slackness conditions imply at optimality
that the price qj paid for the usage of upwards branches is zero when yj < yπ(j),
i.e. when the considered branch doesn’t carry all the layers which are carried
by its parent. A branch has to pay for its usage of the path from the source
to itself only when it actually wants to receive the cumulated rate of all layers
carried by its parent. A receiver is thus not charged for an upper branch if it
doesn’t use the maximum bandwidth carried.

Equation (13) relative to branches ending at junction nodes can also be viewed
as profit maximization, or more precisely, a cost minimization, as these nodes
don’t have a utility function and therefore any profit. A junction node can
be thought of as being in charge of conveying to its children the layers they
have subscribed to. It therefore has to pay for the resulting usage of the branch
ending locally but also above in the tree. The price thus still includes the price
p̃j for the branch ending at that node and the price qj of the upper branches
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in the tree. But the children nodes are also charged for their usage of the tree
from the source down to them, so that the price in (13) can be diminished by
the corresponding amount. This is again only true for children using all the
layers conveyed by their parent node, since otherwise the price for the use of
the tree is zero, as a result of the slackness conditions.

We can also calculate the total profit Pm realized by a given multicast group m
by summing for the receiver and junction branches the profit terms appearing
in (13) inside the max terms. We have

Pm =
∑

j∈Jm

Uj(yj)−
∑

j∈J̃m

p̃jyj −
∑

j∈J̃m

yjqj +
∑

j∈Ĵm

yj

∑
k∈Cj

qk (14)

or, the variables qj being identically zero for branches starting at the source,

=
∑

j∈Jm

Uj(yj)−
∑

j∈J̃m

p̃jyj −
∑

j∈J̃m

qj

(
yj − yπ(j)

)
︸ ︷︷ ︸

=0 (complementary slackness conditions)

(15)

At the optimality point, each group maximizes its profit, which is the sum
of its receiver utilities diminished by the amount that the group has to pay
for its branch usage in the multicast tree. Again, the price of a branch is zero
when all the links constituting that branch are not saturated.

4 Duality theory based algorithms and implementations

The theoretical developments of the previous sections have pointed out the
possibility to obtain decentralized solutions for global network optimization
problem. We will now review actual algorithms solving these problems and
how they can be implemented in a distributed way in a real network. This
section focuses on the duality theory derived algorithms.

4.1 A generic algorithm for the unicast case

We saw in section 3.1 that it was possible to solve problem (1) by having
each receiver calculating the maximizer of its associated Bs function — see
(4)–(7) — provided the solution p∗ to the dual problem (3) is known. The dual
problem can be easily solved using classical gradient projection method, where
the gradient of the dual objective function D is used as an update direction
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in the iterative calculation of each of the dual variables pl

pl(t + 1) =

[
pl(t)− γ

∂D

∂pl

(p(t))

]+

where γ > 0 is a step size and [z]+ = max(z, 0). If we denote by xs(p) the
unique maximizer of the Bs function, i.e.

xs(p) = arg max
xs∈Is

(Us(xs)− xsp) (16)

and use it in (4), we have

∂D

∂pl

(p) = cl − xl(p)

where xl(p) =
∑

s∈Sl
xs(p) denotes the aggregate source rate at link l. We thus

have finally

pl(t + 1) =
[
pl(t) + γ(xl(p(t))− cl)

]+
(17)

Two important observations can be made on the update rule (17):

(1) the rule admits an immediate economical interpretation: if at time t the
demand xl(p) for bandwidth at link l exceeds that link’s capacity, then
raise the price pl at that link, and otherwise, decrease it

(2) the rule allows again an immediate decentralized implementation at each
link, as the only information needed for the update (17) is the aggregate
bandwidth at the link. And this even if the dual problem (3) was not
separable in p.

This last observation suggests to involve the links in the network, together
with the receivers, in the development of a completely decentralized solution.
Indeed, each receiver needs to know the aggregate price ps on its path to the
source s (see (17)) in order to find the bandwidth x∗s maximizing the primal,
and each link needs to know its aggregate bandwidth xl (in order to compute
its price). The following iterative algorithm could definitely be used to solve
the primal problem (1):

• for source s:
(1) receive from the network the path price ps(t) to its receiver
(2) update its transmission rate xs(t+1) by solving (16), now that the current

price is known
• for link l:
(1) receive the rates from all sources going through it
(2) use the aggregate bandwidth xl(t) to update the link price pl using (17)

It can be proved that the above algorithm generates a sequence of (x, p) pairs
converging to the primal-dual optimal pair (x∗, p∗) and this under mild as-
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sumptions, i.e.

(1) the utility functions Us are increasing, strictly concave and twice contin-
uously differentiable on the Is interval

(2) the curvature of Us satisfies 0 < 1
ᾱs
≤ −U ′′

s (xs),∀xs ∈ Is and some ᾱs

The original proof and an amendment to it can be found respectively in [2]
and [5].

A variation of the price update rule (17) is proposed in [6]. The authors propose
there to use the Newton’s method, where the gradient in the update rule is
scaled by the inverse of the Hessian matrix, leading to

pl(t + 1) =
[
pl(t)− γ

[
∇2D(p(t))

]−1
∇D(p(t))

]+
This scaled algorithm is known to give much faster convergence, but the Hes-
sian computation cannot be distributed to individual links, as it can be cal-
culated to depend on rates or utilities second derivatives at other links. The
authors propose to compute an approximation of the Hessian using only lo-
cal information. With this approximation, the modified update rule still con-
verges under the same assumptions and also to give much faster convergence,
although at the price of larger fluctuations in the converging rate-price se-
quence.

Note also that this basic algorithm still converge in the asynchronous case, i.e.
when the update time t differs for all the entities involved in the various calcu-
lations. Furthermore, experiments tend to prove that convergence properties
remain unchanged in a slowly time varying environment.

4.2 A possible implementation

This section consider the problem of implementing the above algorithms in a
real network. Each of them indeed requires explicit communication between
sources and links : the sources have to communicate their rates to links on
their path and the links have to communicate their prices to the sources flow-
ing through them. These explicit communications in both directions — from
sources to links and from links to sources — prevent these algorithms from
being implemented directly in a real network.

Regarding the communication from sources to links, one can easily imagine
that it can be in some way suppressed and the price calculation based only on
local link information: the measured aggregate rate on link is a local parameter
that is an obvious candidate to estimate the aggregate rate xl at the link, which
is the information needed by the algorithm.
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This idea has been investigated in [7]. Let xls(t) denote the input rate of
source s at link l at time t and x̂l(t) =

∑
s∈Sl

xls(t) the aggregate input rate
at link l. Due to packet losses and delays between the source and the link,
the aggregate input rate x̂l(t) is in general different from the aggregate source
rate xl(t) =

∑
s∈Sl

xs(t) used in the link algorithm of section 4.1. We could
however try to use x̂l(t) in the price update rule and, as the (aggregate) buffer
backlog bl(t) at link l at time t evolves according to

bl(t + 1) =
[
bl(t) + x̂l(t)− cl

]+
we would then obtain the following modified price update rule at link l

pl(t) = γbl(t) (18)

where the price is simply set as a fraction of the buffer occupancy at that link.
The price is derived directly from the local buffer process without involving any
explicit rate communication from sources to the link. Provided the step size γ
is smaller, the modified algorithm using the update rule (18) can be shown to
converge under the same assumptions about utility functions. Links can thus
indirectly estimate their gradient using only local on-line measurements.

The update rule (18) does however not scale with the number of sources:
the equilibrium price vector will increase and then the (proportional) buffer
occupancy, leading to large feedback delays. This motivates in [8] and [9] the
use of the following price update rule

pl(t + 1) =
[
pl(t) + γ(αlbl(t) + x̂l(t)− cl)

]+
(19)

where αl > 0 is a small constant possibly different at each link. At equilibrium,
when pl(t + 1) = pl(t), a non bottleneck link will have p∗l = 0, b∗l = 0 and
x̂l∗ ≤ cl. A bottleneck link will have its price p∗l > 0 and then αlb

∗
l + x̂l∗ = cl

must hold. If b∗l > 0, then we must have x̂l∗ < cl, so that the buffer could
not have been in equilibrium. This contradiction allows us to conclude that
the update rule (19) will lead at equilibrium to empty buffers and full link
utilization. The convergence of (19) to the optimal prices and rates is proved
in [10] under mild assumptions. There, the algorithm is reformulated in terms
of a continuous time system, whose dynamics are studied on the basis of a
Lyapunov function, and for which global stability is proved.

We have seen it was possible to eliminate the need for explicit communica-
tions from sources to links. Communications in the reverse direction can also
be suppressed by using a probabilistic packet marking mechanism at the links.
Together with the update rule (19), this will lead to the Random Early Mark-
ing algorithm (REM). The probabilistic marking acts as follows. At period t, a
link will mark a packet using the ECN bit in the IP header with a probability
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ml(t) reflecting its current link price, i.e.

ml(t) = 1− φ−pl(t)

where φ is a constant. This mark is then carried out to the source through the
acknowledgment of the packet. As the marking probability at a link is based
on a exponential function, the overall probability ms(t) for a whole path in
the network will keep the same analytical form, as it is expressed by a product
of probabilities

ms(t) = 1−
∏
l∈Ls

(1−ml(t)) = 1−
∏
l∈Ls

φ−pl(t) = 1− φ−ps(t)

An estimate p̂s(t) of the aggregate price ps(t) for that path can then easily be
obtained by a source using the fraction m̂s(t) of marked packets

p̂s(t) = − logφ(1− m̂s(t)) (20)

Experiments in [9] show that the REM algorithm quickly converges to a neigh-
borhood of the optimum and then fluctuates around it, due to various approx-
imations used.

Note that the price and rate update rules used respectively in the links and
sources algorithms both assume zero feedback delay, in the sense that for in-
stance a price at time t + 1 is updated with rates values that are supposed to
be the values at time t, although these are in fact values at time t− τ , where
τ is a propagation delay. This issue has been investigated in [11] using con-
trol system theory. The considered state equations for the (discrete) system
are equations (16) and (17), the system states being the link prices. Con-
stant propagation delays are introduced in these equations. An approximate
controller is then designed in order to place the poles of the system close to
the origin, therefore ensuring faster convergence to the equilibrium operating
point. The mathematical developments result in a modified price update rule
that averages over past prices in order to stabilize the transient behavior of
the system. But it requires links to know the round trip delays of sources.

4.3 Extension to the multicast case

We will consider in this section the derivation of algorithms solving the opti-
mization problem (2) for the multirate multicast case. Further implementation
considerations will not be covered, as the techniques of the unicast case for
aggregate price estimation on a path or aggregate bandwidth calculation on
a link can be used immediately.

Gradient-based methods cannot be applied to the minimization of dual ob-
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jective function (11) in the layered multicast case. The function is indeed non
differentiable, so that its gradient may not always exists. Two approaches are
then possible ([4]): either use subgradient techniques, or obtain an approxima-
tion of the original problem where the classical gradient based methods used
in the unicast case can also be applied.

A subgradient is the generalization of gradient, details can be found in [12].
The gradient projection algorithm used in the unicast case can also be used if
we now use the subgradient of the dual objective function as update directions
for the iterative price calculation. The subgradients ∂D(p, q) of function (11)
are

∂D |pl
= cl −

∑
j∈Kl

yj(p, q)

∂D |qj
= yπ(j)(p, q)− yj(p, q)

The price update rules in this case become

pl(t + 1) =

pl(t) + γ(t)

∑
j∈Kl

ȳj(t)− cl

+

(21)

qj(t + 1) =
[
qj(t) + γ(t)

(
ȳj(t)− ȳπ(j)(t)

)]+
(22)

where ȳ(t) attains the maximum in (13) with prices pl(t) and qj(t) and where
the step size γ(t) has to satisfy

lim
t→∞

γ(t) = 0
∞∑

t=1

γ(t) = ∞ (23)

Note again that the ȳ(t) can be straight calculated by each individual node
through a simple one variable function maximization.

The utility functions being strictly concave, under assumption (23) and the
feasibility of the initial prices, the subgradient algorithm will converge to the
unique optimal solution of the primal problem.

Another way to solve the dual problem is to use a proximal approximation
algorithm. A gradient projection algorithm cannot be used to solve (8) because
the primal objective function is not strictly concave in the variable yj, j ∈ Ĵ ,
as the function does not even depend on these variables. So we could add a
strictly concave term for each variable to the primal objective function, solve
the problem by dual minimization using a gradient algorithm, and iterate in
some way in order to make the modified primal function closer to the original.

In practice, for all j ∈ Ĵ , we add to the objective function in (8) a strictly
concave term Uj(yj) = − 1

2κ
(yj − zj)

2, where κ > 0 is a constant and the zj
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are additional variables. The new primal problem considered has the same
constraints but the objective is to solve

max
yj

∑
j∈J̃

Uj(yj) = max
yj

∑
j∈J

Uj(yj)−
1

2κ

∑
j∈Ĵ

(yj − zj)
2

 (24)

The proximal approximation algorithm consists of a converging sequence of
iterations. Each iteration starts by solving problem (24) using a gradient pro-
jection algorithm for the dual minimization. Then, for each j ∈ Ĵ , zj is set to
yj and a new iteration is started. Intuitively, the modification of the variables
zj will progressively allow to reach a greater value in (24), so that the solution
will get closer to the solution of the non modified primal problem.

In terms now of algorithms, if we consider for instance the subgradient method,
the following iterative calculations are performed in the multirate multicast
case:

• at a link l : local update of the link price pl according to (21)
• at a junction node j: update of the pseudo rate yj by solving the bottom

maximization in (13) and of the branch price qj using (22)
• at a receiver : calculation of the receiver rate by solving the top maximization

in (13)

As the various calculations are similar to the unicast case, we will just point
out the main difference, which is the need to consider specific updates for the
junction nodes between branches, and not only the links.

5 Alternate derivations of decentralized algorithms

The key challenge for the optimization-based formulations reviewed so far is
the ability to derive decentralized algorithms. As we have seen, the classical
way to fulfill this requirement in the optimization framework is to use duality
theory. This section focuses on alternate methods which have been presented
in the litterature.

5.1 Direct solving of the primal problem

A decentralized solution to the optimal congestion control problem can be
directly derived from the primal problem. But as we will see, the resulting al-
gorithm is a close variation on the corresponding solution obtained by applying
duality.

16



Consider again the primal problem (1) for the unicast case. The following al-
gorithm solves this optimization problem without considering the dual prob-
lem [13]:

xs(t + 1) =

[xs(t) + αtU
′(xs(t))]Is

if ẽs(t) = 0

[xs(t)− βtẽs(t)]Is
if ẽs(t) > 0

(25)

where [z]I = min(B, max(b, z)) denotes the projection of scalar z on the in-
terval I = [b, B] and where

ẽs(t) =
∑
l∈Ls

ẽl(t)

ẽl(t) = 1

∑
s∈Sl

xs(t) > cl


=

0 if
∑

s∈Sl
xs(t) ≤ cl

1 if
∑

s∈Sl
xs(t) > cl

(26)

The function ẽl(t) is thus a congestion indicator for link l and ẽs(t) represents
the number of congested links on a particular source-receiver path. The update
procedure (25) acts as before, the rate xs of a receiver being increased in the
absence of congestion and decreased otherwise, the rate of decrease being
proportional to the number of congested links on the path. But this time, as
the dual problem has not been considered, no dual price variables are present
in the problem. The update procedure can however still be implemented in
a decentralized way, each receiver updating its own rate xs. Local optimality
is still aligned with global optimality through the ẽs(t) functions, that act as
synchronization signal between the receivers, replacing the dual variables of
the previous approach. In this sense, the update procedure (25) remains similar
to the previous one, especially in the sense that both of them use some form
of synchronization signal to be able to solve the global optimization problem
in a decentralized way.

The convergence of (25) is guaranteed ([13]) under mild assumptions provided
the step size sequences satisfy

lim
t→∞

αt = 0
∞∑

t=1

αt= ∞

lim
t→∞

βt = 0
∞∑

t=1

βt= ∞

lim
t→∞

αt

βt

= 0

The increment rate in the absence of congestion has to be asymptotically
smaller than the decrement rate in the presence of congestion. If the step sizes
are chosen constant, it is still possible to guarantee convergence to a given
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neighborhood of the optimum by appropriately choosing the step sizes ratio.

As for the REM algorithm, the links have to participate in the decentralized
implementation through the evaluation of the ẽl(t) function. Although this
would require for a link to know the actual rates of the flows going through, it
is again possible to estimate this information locally based on measurements,
though no proof of convergence exists. Practical experiments ([13]) show that
convergence is however not affected. Based on the value of ẽl(t), the links also
have to increment some field — for instance in acknowledgment packets — in
order to communicate to the source the value of ẽs(t), so that it can update
the transmission rate according to (25). The algorithm for the direction of
communication between links and sources cannot be thus directly implemented
using a single bit. A randomized version is however still possible and the
ECN bit used with REM can still be used to convey this time the number of
congested links on a path.

Compared to the solution of section 4.1 that uses the dual approach, we see
that links need in each case to communicate some information to sources. In
the dual approach, this information, the link price, is a real-valued variable,
while here the information is simply a natural number indicating the number
of congested links on a path. The latter is of course easier to encode in a
header field, but this is no true advantage if probabilistic mechanism are used
through packet marking. The maximization involved in (7) might however be
more costly than the simple derivative evaluation of (25).

Note finally that this algorithm has also been extended in [14] to the multirate
multicast problem (2). The resulting algorithm is similar to the one presented
in section 4.3, with update rules based on a development similar to the one
presented in this section.

5.2 Use of an approximate problem

The primal problem (1) in the unicast case has also been solved in [15] using
a decomposition of the problem into two simpler optimization subproblems,
one for each receiver and one for the network.

Consider that each receiver (or equivalently source in the unicast case) s ac-
cepts to pay an amount ws per unit time, receiving in return a proportional
flow xs = ws

λs
, where λs is a charge per unit flow. The receiver optimization

problem is then a profit maximization problem

max
ws≥0

(
Us

(
ws

λs

)
− ws

)
(27)
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The network optimization problem is then formulated as

max
xs≥0

∑
s∈S

ws log xs

s.t.
∑
s∈Sl

xs ≤ cl, l = 1, . . . , L
(28)

where the ws solving the receiver problem are supposed to be known. Solving
the network problem does not require knowledge of the users utility functions.
The choice of logarithm functions gives to the optimal solution some appealing
properties in terms of fairness and stability conditions.

If the utility functions are increasing, strictly concave, and continuously differ-
entiable, then there always exists vectors λ = (λs, s ∈ S), w = (ws, s ∈ S) and
x = (xs, s ∈ S) solving the above problems (27) and (28) and such that the x
vector is the unique solution of (1). Moreover, a vector x solves the network
problem (28) if and only if the rates xs are proportionally fair, i.e. if for any
other feasible vector x̄, we have

∑
s∈S

ws
x̄s − xs

xs

≤ 0

In other words, if we deviate from the optimal solution xs to another feasible
solution x̄s, then the weighted sum of proportional changes in each user’s rate
is less than or equal to zero. Hence the solution is called (weighted) propor-
tionally fair. This property is a direct consequence of the use of logarithm
functions in the problem formulation.

Two different algorithms are proposed in [15] to solve the network and user
optimization problems, the first by solving the primal network problem and
the second by solving the dual network problem. In each case, the algorithms
are presented in terms of differential equations which are considered as the
description of a dynamical system. A Lyapunov function is then constructed
for the system in such a way that the vector x maximizing the function is a
stable point of the system to which all trajectories converge. The Lyapunov
function itself can then be constructed such that maximizing the Lyapunov
function can closely approximate the solution of the original network problem,
and so give an approximate solution of the global optimization problem (1).
The w vector is supposed to be known and at most slowly varying at the time
scale considered in the solving of (28)

6 Utility functions

The optimization framework described so far is based on general utility func-
tions for which certain properties are required in order to be able to derive
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convergence proofs. A complementary problem that arises when one wishes
to apply this framework is the choice of particular utility functions. We will
present in this section utility functions that could be used in order to mimic
stationary TCP behavior, for instance to ensure fairness towards TCP flows
inside the optimization framework. We will also give an example of the deriva-
tion of a general utility function based only on general requirements for the
resulting congestion control algorithm.

Note that choosing different utility functions for the receivers is also a way to
implement some form of traffic discrimination and to favour some receivers,
provided all of them are compliant to the general algorithm.

6.1 Utility functions and resulting resource allocation

We have already seen in 5.2 that if the utility function is ws log xs, leading to
the objective function

∑
s∈S ws log xs, then the rate allocation is proportionally

fair ([1]). This objective maximizes rate allocations assuming each flow has a
weighted logarithmic utility function (law of diminishing return).

If we choose −ws

xs
as utility function, it is shown in [16,17] that the rate allo-

cation is minimum potential-delay fair. This objective can indeed be thought
of as minimizing the sum of the file transfer delays ws

xs
, where the file sizes are

ws.

In [18], a general class of utility functions which subsumes proportional fair-
ness, minimum potential-delay fairness and max-min fairness is given by

Us(xs) = ws
x1−αs

s

1− αs

When αs = 2 for all s, we get minimum potential-delay fairness. When αs

tends to 1, we get proportional fairness. Finally, when all αs are equal and
tend to ∞ with ws = 1, we get max-min fairness.

6.2 TCP-like utility functions

In the unicast case, we know from section 4.1 that each source (or receiver)
calculates an optimal rate by solving

arg max
xs∈Is

(Us(xs)− xsp
s) (29)

Consider now a TCP Reno congestion algorithm in congestion avoidance phase
for a given source s. If the round trip time τs is constant, we can approximate
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the source rate xs by

xs(t) =
ws(t)

τs

(30)

where the window ws(t) is expressed in Maximum Segment Size units. If we
take the link loss probabilities as price pl for link l, we have for the path loss
probability qs of source s

qs = 1−
∏
l∈Ls

(1− pl(t)) ≈
∑
l∈Ls

pl(t) = ps for small pl’s

We can model the AIMD algorithm of TCP as follow ([19]). At time t, a
fraction (1− qs(t)) of acknowledgments are positive, so that the window ws(t)
is each time incremented by an amount of 1

ws(t)
, giving a window increase rate

of xs(t)
(1−qs(t))

ws(t)
. The other acknowledgments each half the window, giving a

window decrease rate of xs(t)qs(t)
ws(t)

2
. Using (30), we can model the Reno

dynamics with the following equation

ẋs =
1− qs(t)

τ 2
s

− 1

2
qs(t)x

2
s(t)

which at equilibrium reduces to

q∗s =
2

2 + τ 2
s (x∗s)

2
(31)

But, in the context of our optimization framework, the equilibrium rate x∗s
also satisfies (29), so that we have

∂

∂x
(Us(x)− xps)

∣∣∣∣∣
x∗s

= 0

=
∂

∂x
(Us(x)− xqs)

∣∣∣∣∣
x∗s

and thus we have U ′
s(x

∗
s) = q∗s . Using (31), we can infer the following utility

function for a TCP Reno source

Us(xs) =

√
2

τs

arctan

(
τsxs√

2

)
(32)

Note that it is also possible to model the dynamics of a RED queue in a form
similar to the link price update rule (17).

Analog developments can be found in [20] for the case of the TCP Vegas
algorithm. The resulting utility function is

Us(xs) = αsτs log xs
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where αs is a protocol parameter.

The possible use of such a utility function in our optimization framework is
straightforward, i.e. it allows us to give fairness guarantees to competing TCP
flows.

6.3 Derivation of a general utility function

A very appealing process can be found in [21] where the authors specify some
generic requirements for a congestion control law in terms of control theory,
derive system equations and finally a utility function for the optimization
framework presented here.

Consider the network as closed loop system with the following attributes:

• the reference input signal is for each source the optimal rate x∗s solving (1)
• the feedback signal is the aggregate link price p∗s fed back by the links with

a round trip delay of τs

Our purpose here is to use this simple model to build a control law for this sys-
tem using standard control theory objectives and then to relate the resulting
law to our optimization framework in order to derive a utility function.

The main requirements for our control law are the following:

(1) at equilibirum, the (sum of) input rate signals should match the link
capacities

(2) system stability should be ensured for arbitrary network delays

The first objective can be achieved introducing an integrator component in
our control system: such a component indeed ensures a zero static error for a
stable system. Thinking in terms of the Laplace domain, we thus introduce a
1
s

factor in the loop transfer function.

Delays introduce exponential terms in the system transfer function and thus
can easily lead to instabilities as network delay increases. Invariance to delay
can be obtained by scaling the loop gain by the round trip delay, leading thus
to a 1

τ
factor in the transfer function, where τ is the round trip delay.

The resulting loop transfer function has thus the general form

K
e−τs

τs

where K is a proportional constant part of the loop gain. This function is scale
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invariant and an appropriate choice for K can ensure stability for all τ .

Now the overall loop again, taking all links on a path into account, must be
ensured to scale down as the number of links increase. To ensure this and still
be able to derive a decentralized implementation of the control law, we must
restrict ourselves to local information such as the capacity cl of each link and
the equilibrium rate x0s at each source. If we sum the gains at link l, denoting
by τ f

s,l the forward delay between source s and link l, we obtain the following
bound ∣∣∣∣∣∣ 1cl

∑
s∈Sl

x0se
−τf

s,l
s

∣∣∣∣∣∣ ≤ 1

cl

∑
s∈Sl

x0s = 1

at equilibrium. Finally, the loop gain for source s should also obviously be
scaled down by the number Ms of bottleneck on the source’s path.

In summary, based on simple control requirements, we have derived depen-
dencies for the loop gain, which can be distributed as follows between source
and links:

• for source s: the gain should be αsx0s

Msτs
, where αs ∈ (0, 1) is a parameter

• for link l: the gain should be 1
cl

The closed loop system described above is provably linearly stable ([21]).

The actual implementation of this control scheme is straightforward for links,
which just need to integrate their excess capacity for their price calculation

ṗl =


∑

s∈Sl
xs−cl

cl
if pl > 0

max
(
0,

∑
s∈Sl

xs−cl

cl

)
if pl = 0

At equilibrium, links with non zero price will be saturated while non saturated
links will have zero price.

For the source, we need to find a relation between the source rate xs and the
feedback signal, which is the aggregate price ps. Consider the general relation
xs = fs(p

s), where fs is a decreasing function of ps. Linearizing this equation
around an equilibrium point (x0s, p0s), we obtain

xs =
∂fs

∂ps

∣∣∣∣∣
p0s

ps

if we denote variations around the equilibrium point by the variables them-
selves. Identifying the above proportional constant with the expression of the
source gain, we obtain

∂fs

∂ps
= −αsfs(p

s)

Msτs
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where the minus sign ensures we have a negative first derivative. Solving this
differential equation gives the source law

xs = fs(p
s) = xmax,se

− αsps

Msτs (33)

where xmax,s is the maximum source rate. Thus we obtain the desired control
objectives using an exponential backoff for the source as a function of the
aggregate price, together with the link integrators.

We are now able to establish a bridge between the derived control law and the
utility functions of our generic optimization problem. We know that we have
U ′

s(x
∗
s) = p∗s at equilibrium. We also know from (33) that

ps = −Msτs

αs

ln

(
xs

xmax,s

)

giving

Us(xs) = −Msτs

αs

∫
ln

(
xs

xmax,s

)
dxs

and finally

Us(xs) =
Msτs

αs

xs

[
1− ln

(
xs

xmax,s

)]
(34)

Used in conjunction with the appropriate integrator equation at the links, we
have an example of utility function derived only on the basis of high level
requirements for the congestion control law.

6.4 Multicast utility functions

Our discussion of utility functions so far concerns unicast utility functions.
Any utility function can of course be used in a multicast context, but fairness
between unicast and multicast flows can be impacted by the utility functions
used, as pointed out in [22]. Consider the single-rate multicast case, for which
the formulation (1) applies. A typical multicast session will use many more
links than would a unicast flow between the (unique) source and any given
receiver. The aggregated link price for the multicast session will thus typically
be higher and the resulting session rate lower at the optimum. Unicast flows
will tend to be unfair to multicast sessions inside the optimization framework,
so that it is reasonable to contemplate the use of a bias in the utility function
in order to compensate for this.

Contrarily to the unicast case, the problem is then to define a convenient
multicast session utility function, because it is not obvious to associate the
session utility either with the source or the receivers. In the former case, the
session function Us in (1) can be chosen as it would be for a unicast flow. In the
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latter, if we suppose for simplicity that each receiver in the multicast session
has the same utility function u(x), then the resulting session utility function
Us will naturally be expressed in terms of the sum of utilities of receivers and
then will depend on the group size R, Us(xs) = Ru(xs).

Having a dependency of the utility function on the group size offers a pos-
sibility to bias the optimal rate repartition in favour of the multicast flows.
Indeed, the optimal rate x∗s for session s maximizes the profit Us(xs) − xsp

s∗

and thus satisfies
∂Us

∂xs

∣∣∣∣∣
xs∗

= R
∂u

∂xs

∣∣∣∣∣
xs∗

= ps∗

and so we have x∗s = u′−1(ps∗

R
). As u is concave, u′ is a strictly decreasing

function and so is its inverse. Thus, for a fixed session price, a larger number
of receivers in the multicast group leads to a higher equilibrium session rate.

The point now is to compare in this case the two opposite bias, which are the
natural bias in favour of unicast flows due to higher session prices for multicast
sessions and the bias in favour of multicast sessions resulting from the use of
session utility function depending on the group size. Stated otherwise, we
must compare the effects of the bias associated with the higher price faced
by a bigger multicast tree and of the opposite bias associated with a bigger
multicast group. The unfairness will always favour multicast sessions with a
larger number of receivers, and so in particular, those sessions will be unfair to
unicast flows. It is however pointed out in [22] that the choice of appropriate
utility functions can bound this unfairness.

7 Conclusions

We have presented an overview of current state of the art optimal conges-
tion control in communication networks. We followed a constructive approach
starting with the introduction and formal definition of the basic problem. A
rigorous mathematical framework was then used to derive adequate solutions,
for which a strong accent was put on the practical implementation possibil-
ities, among others through decentralization. This reasoning was concluded
with the presentation of actual algorithms calculating the optimal solutions
to the original problems. At each step the unicast case was first considered and
then used as a starting point for the more complex and general multilayered
multicast case.

It should be emphasized that the developments presented in this article result
from continuous iterations between abstract mathematical theories and con-
crete networking considerations. This also led us to present complementary
— but essential though — works aiming at the construction of specific utility
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functions, in order to be able to instantiate and use in a motivated way the
optimization algorithms in a real environment.

The result of these processes is a complete and rigorous framework which can
be used in two complementary ways. The first one is the specification of con-
gestion control algorithms and protocols, which differ from existing solutions
in that they are essentially self contained and rely on no empirical rules for
their rate regulation. The second way one can use the presented framework
is to analyze existing protocols in order to get a better insight in their per-
formance and dynamics. We illustrated this approach with the derivation of
TCP-like utility functions.

Most works referred to in this paper include simulation results for the various
presented algorithms. Although theoretical refinements could be investigated,
the most immediate extension to these works should now be real network
implementations of some optimal solutions. Measurements could then be per-
formed in order to investigate and validate issues such as network utilization,
protocol dynamics, inter and extra fairness and also traffic discrimination on
the basis of specific utility functions. These real world experiments would be
the ideal complement to the theoretical material which has been exposed in
this article.
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A A reminder of optimization theory

This appendix gives some theoretical background on optimization theory. It is
not meant to be exhaustive but rather to be a reminder for the most important
results used throughout this article. The interested reader is refered to [12],
on which this appendix is based.

A.1 Convex sets and functions

Many interesting theorems of optimization theory are derived in the context
of convex sets and functions, that are the topic of this section. We first begin
with a reminder on closed and open sets.

Definition A.1 (Closed and open sets) A set A ⊂ Rn is called closed if
it contains all of its limit points. It is called open if its complement is closed.
It is called bounded if there exists some c ∈ R such that the magnitude of any
coordinate of any element of A is less than c. The subset A is called compact
if every sequence of elements of A has a subsequence that converges to an
element of A. A neighbourhood of a vector x is an open set containing x. If
A ⊂ Rn and x ∈ A, we say that x is an interior point of A if there exists a
neighbourhood of x that is contained in A. A vector x ∈ A which is not an
interior point of A is said to be a boundary point of A. �

Definition A.2 (Convex set) Let C be a subset of Rn. We say that C is
convex if

αx + (1− α)y ∈ C,∀x, y ∈ C,∀α ∈ [0, 1]

�

So, for a set to be convex, the linear interpolation between any two points in
the set must yield a point within the set. Graphically, a line joining any two
points must be enclosed in the set.

Here are some characterizations of convex sets:

Proposition A.1
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(i) The intersection of convex sets is convex
(ii) The vector sum of two convex sets is a convex set
(iii) The image of a convex set under a linear transformation is convex

�

Convex functions can now be defined:

Definition A.3 (Convex function) Let C be a convex subset of Rn.
A function f : C → R is called convex if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y),∀x, y ∈ C,∀α ∈ [0, 1]

The function f is called concave if −f is convex. �

Convex functions can easily be recognized in the following cases:

Proposition A.2

(i) A linear function is convex
(ii) Any vector norm is convex
(iii) The weighted sum of convex functions (with positive weights) is convex

�

The Weierstrass theorem states that a function f has at least one global
minimum if it is continuous over a compact set. Stronger existence and unicity
theorems exist for optimization problems involving convex sets and functions:

Proposition A.3 (Characterization of convex function extrema)
Let f : X → R be a convex function over the convex set X.

(i) A local minimum of f over X is also a global minimum over X. If f is
strictly convex, then there exists at most one global minimum of f .

(ii) If f is convex and the set X is open, then ∇f(x∗) = 0 is a necessary and
sufficient condition for a vector x∗ ∈ X to be a global minimum of f over
X.

�

The above theorem of course also guarantees the existence and unicity of a
global maximizer for a concave function over a convex set.
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A.2 Constrained optimization

A.2.1 Equality constraints

The basic problem of constrained optimization is the minimization of a func-
tion under equality constraints:

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m
(A.1)

The function f is called the objective (or cost) function and the functions
hi are called the constraint functions. We assume that f : Rn → R and
hi : Rn → R are continuously differentiable functions. The set of points
verifying the constraint is called the feasible set.

The most fundamental result on the above problem is the Lagrange multiplier
theorem:

Proposition A.4 (Lagrange theorem - Necessary conditions)
Let x∗ be a local minimum of f subject to hi(x) = 0, i = 1, . . . ,m, and assume
that the constraint gradients ∇hi(x

∗) are linearly independent. Then there ex-
ists a unique vector λ∗ = (λ∗1, . . . , λ

∗
m) such that

∇f(x∗) +
m∑

i=1

λ∗i∇h∗i (x
∗) = 0 (A.2)

�

The scalars λi are called the Lagrange multipliers, while the function L :
Rn+m → R defined by

L(x, λ) = f(x) +
m∑

i=1

λihi(x)

is called the Lagrangian function. The Lagrange multipliers can be shown to
be the rate of change of the optimal cost as the level of constraint changes.

Equation (A.2) can be written as

∇xL(x∗, λ∗) = 0,∇λL(x∗, λ∗) = 0

which represents a system of n + m equations with n + m unknowns. Every
local minimum x∗, together with its associated Lagrange multiplier vector,
will be a solution of this system. However, a solution of the system need
not correspond to a local minimum; the following theorem gives sufficient
conditions for a solution of the system to be a solution of the associated
optimization problem.
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Proposition A.5 (Second order sufficiency conditions) Assume that f
and hi are twice continuously differentiable and let x∗ ∈ Rn and λ∗ ∈ Rm

satisfy

∇xL(x∗, λ∗) = 0,∇λL(x∗, λ∗) = 0

and y′ ∇2
xxL(x∗, λ∗) y > 0,∀y 6= 0 with ∇h(x∗)′ y = 0.

Then x∗ is a strict local minimum of f subject to hi(x) = 0, i = 1, . . . ,m �

The resolution of the traditional unconstrained optimization problem — the
simple maximization of a function — by the annulation of its first derivative
can thus be transposed for the equality constrained case in the annulation of
its Lagrangian. Equation (A.2) can be interpreted in the following ways:

(1) the cost gradient ∇f(x∗) belongs to the subspace spanned by the con-
straint gradients at x∗

(2) the cost gradient ∇f(x∗) is orthogonal to the subspace of first order
feasible variations

V (x∗) = {∆x|∇hi(x
∗)′∆x = 0, i = 1, . . . ,m}

This is the subspace of variations ∆x for which the vector x = x∗ + ∆x
satisfies the constraints hi(x) = 0 up to the first order.

A.2.2 Inequality constraints

The problem (A.1) can be generalized to include inequality constraints, as
stated below:

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . r

(A.3)

where again f , hi, gj are continuously differentiable functions from Rn to R.
The above inequality constraints can be further categorized as follows:

Definition A.4 (Active inequality constraints) For any feasible point x,
the set of active inequality constraints is denoted by

A(x) = {j|gj(x) = 0}

If j 6∈ A(x), we say that the jth constraint is inactive at x. �

One approach to solve problem (A.3) is to reduce it to problem (A.1). Indeed,
if x∗ is a local minimum of (A.3), then x∗ is also a local minimum for an
identical problem where the inactive constraints at x∗ have been discarded.
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Treating active constraints as equalities, x∗ is also a local minimum for the
following equality constrained problem:

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m

gj(x) = 0, ∀j ∈ A(x∗)

Applying the Lagrange theorem to the above problem enables the derivation
of necessary conditions for problem (A.3):

Proposition A.6 (Karush-Kuhn-Tucker necessary conditions) Let x∗

be a local minimum of problem (A.3). Assume that the equality and active
inequality constraint gradients ∇hi(x

∗) and ∇gj(x
∗), j ∈ A(x∗), are linearly

independent at x∗. Then there exist unique Lagrange multiplier vectors λ∗ =
(λ∗1, . . . , λ

∗
m), µ∗ = (µ∗1, . . . , µ

∗
r) such that

∇xL(x∗, λ∗, µ∗) = 0

µ∗j ≥ 0, j = 1, . . . , r

µ∗j = 0 ∀j 6∈ A(x∗)

where A(x∗) is the set of active constraints at x∗ and the Lagrangian L(x, λ, µ)
is

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x)

�

The above conditions on Lagrange multipliers for inactive constraints can also
be written as follows:

Proposition A.7 (Complementary slackness condition)
Under the conditions of proposition (A.6), the optimal point x∗ satisifies

µ∗jgj(x
∗) = 0, j = i, . . . , r

�

As in the equality constrained case, sufficiency conditions can also be stated
as follows:

Proposition A.8 (Second order sufficiency conditions)
Assume that f , hi and gj are twice continuously differentiable and let x∗ ∈ Rn,
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λ∗ ∈ Rm and µ∗ ∈ Rr satisfy

∇xL(x∗, λ∗, µ∗) = 0, hi(x
∗) = 0, gj(x

∗) ≤ 0,

µ∗j ≥ 0, j = 1, . . . , r,

µ∗j = 0 ∀j 6∈ A(x∗),

y′ ∇2
xxL(x∗, λ∗, µ∗) y > 0,

for all y 6= 0 such that

∇hi(x
∗)′ y = 0 ∀i = 1, . . . ,m ∇gj(x

∗)′ y = 0 ∀j ∈ A(x∗).

Also assume that

µ∗j > 0 ∀j ∈ A(x∗)

Then x∗ is a strict local minimum of f subject to hi(x) = 0, i = 1, . . . ,m,
gj(x) ≤ 0, j = 1, . . . , r �

A.3 Duality theory

We define the primal problem as the following constrained optimization prob-
lem:

minimize f(x)

subject to x ∈ X,

gj(x) ≤ 0, j = 1, . . . r

(A.4)

where f : Rn → R, gj : Rn → R and X is a subset of Rn. We denote by f ∗

the optimal value of this problem

f ∗ = inf
x∈X

gj(x)≤0, j=1,...,r

f(x)

Note that an equality constraint can easily be formulated as a pair of inequality
constraints.

We now define the dual function q(µ) for µ ∈ Rr as

q(µ) = inf
x∈X

L(x, µ)

where L(x, µ) is the Lagrangian function L(x, µ) = f(x) +
∑r

j=1 µjgj(x). The
dual problem is

maximize q(µ)

subject to µ ≥ 0
(A.5)
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The dual optimal value is denoted by

q∗ = sup
µ≥0

q(µ)

The object of duality theory is the study of the relations between the primal
and dual solutions. The following fundamental result shows the optimal dual
value is always an underestimate of the primal value.

Proposition A.9 (Weak duality theorem) We have

q∗ ≤ f ∗

�

The above relation between primal and dual optimal value leads to the fol-
lowing definition of the duality gap

Definition A.5 (Duality gap) If q∗ = f ∗, we say there is no duality gap
and if q∗ < f ∗ we say that there is a duality gap. �

For the reminder of this section, we will use the following formal definition of
the Lagrange multipliers:

Definition A.6 A vector µ∗ = (µ∗1, . . . , µ
∗
r) is said to be a Lagrange multiplier

vector for the primal problem if

µ∗j ≥ 0, j = 1, . . . , r

and

f ∗ = inf
x∈X

L(x, µ∗)

�

The following proposition demonstrate a strong connection between the La-
grange multipliers and the dual solution:

Proposition A.10

(i) If there is no duality gap, the set of Lagrange multipliers is equal to the
set of optimal dual solutions

(ii) If there is a duality gap, the set of Lagrange multipliers is empty

�

Note that the dual problem can admit an optimal solution even in the presence
of a duality gap.
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As already stated, duality theory is concerned with the relation between primal
and dual solutions. The most important results are stated below:

Proposition A.11 (Primal-dual characterization)
(x∗, µ∗) is an optimal solution-Lagrange multiplier pair if and only if

x∗ ∈ X, gj(x
∗) ≤ 0, j = 1, . . . , r (Primal feasability)

µ∗ ≥ 0 (Dual feasability)

x∗ = arg min
x∈X

L(x, µ∗) (Lagrangian optimality)

µ∗jgj(x
∗) = 0, j = 1, . . . , r (Complementary slackness)

�

Proposition A.12 (Saddle point theorem)
(x∗, µ∗) is an optimal solution-Lagrange multiplier pair if and only if x∗ ∈ X,
µ∗ ≥ 0 and (x∗, µ∗) is a saddle point of the Lagrangian, i.e.

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗) ∀x ∈ X,µ ≥ 0

�

We conclude this section demonstrating two important cases where existence
of a dual solution:

Proposition A.13 (Strong duality theorem) There is no duality gap and
there exists at least one Lagrange multiplier in the following cases:

(i) the primal problem is feasible, the cost function f is convex over Rn, the
constraint functions are linear, the optimal value f ∗ is finite and X is
polyhedral

(ii) the primal problem is feasible, the cost function f and constraint function
gj are convex over X, X being a convex subset of Rn, the optimal value
f ∗ is finite and there exists x̄ ∈ X such that gj(x̄) < 0 ∀j = 1, . . . , r
(interior point)

�

If the constraint set is bounded, the Weierstrass theorem shows that the pri-
mal problem also admits an optimal solution, since a convex function is also
continuous.
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