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Abstract

We first motivate the use of ad hoc overlays. In particular, we argue
that overlay routing could play a role in the spreading of ad hoc networks.

We then define a simple criterion for neighbourhood: two overlay nodes
are neighbours if and only if there exists a path between them of at most
R hops, and R is called the (overlay) neighbourhood range. A small
R may result in a disconnected overlay, while an unnecessarily large R
would generate extra control traffic. We are interested in the minimum R
ensuring overlay connectivity, the so-called critical R.

We study conditions on R to achieve asymptotic connectivity of the
overlay almost surely, i.e. connectivity with probability 1 when the num-
ber of nodes in the underlying ad hoc network tends to infinity (so-called
dense networks) or when the size of the field tends to infinity (so-called
sparse networks), under the hypothesis that the underlying ad hoc net-
work is itself asymptotically almost surely connected.

For dense networks, we derive a necessary and sufficient condition on
R, and for sparse networks we derive distinct necessary and sufficient
conditions that are however asymptotically tight.

These conditions, though asymptotic, shed some light on the relation
linking the critical R to the number of nodes n, the field size `, the radio
transmission range r and the overlay density D (i.e., the proportion of
overlay nodes). These conditions can be considered as approximations
when the number of nodes (resp. the field) is large enough. Since r is
considered as a function of n or `, we are able to study the impact of
topology control mechanisms, by showing how the shape of this function
impacts the critical R.

Keywords: ad hoc networks, connectivity, overlay, topology control.

1 Introduction

Early wireless overlay propositions consisted of unified systems which incorpo-
rated a variety of different transmission technologies, exploiting the advantages
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of every involved media, in order to improve the global performance [1,2]. Then,
overlay multicasting was broadly studied by the wired community, followed by
the ad hoc one [3–8]. Similarly, with the increasing popularity of peer-to-peer
networks, some studies recently appeared to build them in ad hoc networks.

However, the potential of overlaying in ad hoc networks or in hetereogeneous
wireless environments including ad hoc networks, greatly surpasses the mere
transposition of their advantages from the wired to the ad hoc world.

Unlike typical Internet applications, most applications of MANETs [9] in-
volve one-to-many and many-to-many communication patterns [10]. Moreover,
the grouping behaviour of the mobile users has been observed in actual field
trials of local area wireless networks [11, 12]. We can thus consider ad hoc
networks as made of one or several communities, many of them in a pervasive
ad hoc environment, sharing at least one application over a common physical
medium. As individuals have limited battery, and as the shared medium has
a limited capacity, the use of a power control algorithm is highly recommand-
able [13]. This one however imposes to the member of a group to communicate
with each other in a multi-hop fashion, through nodes that are not part of their
community.

As the most appropriate routing protocol for a given community highly
depends on the application it is running and on the network conditions, we
cannot assume in spontaneous networks that every node has chosen the same
routing solution, or knows a set of protocols that would meet everyone’s needs
[14].

Our proposition is to copy the layered approach of Internet [15]: agree only
on a few unspecialized protocols at the physical, data link and routing layers,
imposed by their proved qualities or de facto, and over this basic architecture,
develop plenty of more specialized solutions, from routing to application. Any
ad hoc network would provide a minimum network service, allowing a wide va-
riety of communities to be incorporated into various realization of the complete
protocols stack.

Overlay routing could promote the deployment of ad hoc networks, offering
a very flexible ground for a variety of applications and underlying customized
network protocols.

Overlay routing advantages come however at the expense of the overlays
creation, usage and maintenance, that must be kept moderate. Consequently, a
full mesh is probably not the most adapted overlay topology. A natural rule of
thumb is to admit as overlay neighbours a set of close overlay nodes, the distance
measure employed being the number of hops. Two approaches are possible. One
can fix the cardinality of the set of neighbours or the maximum number of hops
admitted between overlay neighbours. We adopt the latter one. In this case,
the maximum distance between two neighbours is an integer value that must be
sufficiently high to obtain a connected overlay but as low as possible to limit the
amount of messages generated in the network by overlay nodes communication.

The parallel with topology control in ad hoc networks is obvious. To achieve
connectivity, each ad hoc node could use its maximum transmission range, in
order to reach many neighbours. However, mobile devices have a limited amount
of battery power. Moreover, this would create a lot of interferences, reducing
the overall capacity of the network. With a homogeneous topology control
algorithm, all nodes adopt the same transmission range value. The critical
transmission range problem consists of determining the minimum value that
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generates a connected network.
We have adopted a similar terminology for our problem: the maximum num-

ber of hops allowed between overlay neighbours is called the neighbourhood
range and the determination of its best value the critical neighbourhood range
problem.

This paper focuses on the necessary and/or sufficient conditions on the neigh-
bourhood range to achieve asymptotic connectivity of the overlay almost surely,
i.e. connectivity when the number of nodes in the basic graph tends to infinity
(so-called dense networks) or when the size of the field tends to infinity (so-called
sparse graphs).

We first demonstrate that in connected networks, as the network gets denser
or larger, the shortest path between any pair of nodes draws close to the straight
line. Thanks to this property, that we call the asymptotic path length theorem,
we are able to derive an analytical solution to the critical neighbourhood range
problem for dense networks. For a large class of sparse networks, we are also
able to determine asymptotically tight bounds.

The main reason for addressing asymptotic connectivity is its mathematical
tractability. We build on several asymptotic results on basic geometric graphs
to derive properties of the overlays. Our asymptotic results can be seen as
approximations of finite (real) networks either when the number of nodes (resp.
the field) is large enough. Nevertheless our mathematical conditions already
shed some light on the relation linking the number of nodes, the field size, the
radio transmission range, the overlay density (i.e., the proportion of overlay
nodes) and the overlay neighbourhood range to get a connected overlay.

We do take into account the potential use of a homogeneous topology control
algorithm at the underlay level and allow the overlay density to evolve with
the network size. In particular, if the overlay density diminishes, our results
show how a compensation in neighbourhood range can keep the overlay still
connected. They also point out that a more efficient topology control algorithm
of an ad hoc network will require more traffic for the use and maintenance of
overlays built on it.

This paper is structured as follows. In Sect. 2, we give an overview on pre-
vious related work over the critical transmission range. In Sect. 3, we precisely
define the problem studied. In Sect. 4 and 5, we present analytical results,
respectively for dense and sparse networks, and discuss some of their practical
implications. We then conclude.

2 Related Work

In many realistic scenarios, node positions are not known in advance. Hence a
probabilistic approach is used in every analytical study of the critical transmis-
sion range problem.

First studies of graph connectivity were developed in the context of the
random graphs theory. A random graph is a graph generated by some random
procedure [16]. In 1960, Erdos and Rényi [17] showed that for many monotone-
increasing properties of random graphs, like connectivity, graphs of a size slightly
less than a certain threshold are very unlikely to have the property, whereas
graphs with a few more graph edges are almost certain to have it. This is
known as a phase transition phenomenon.
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In classical random graph models, there is no a priori structure. All vertices
are equivalent and there is no correlation between different edges existence. In
ad hoc and sensor networks, nodes are more likely to be direct neighbours if they
are located close to each other. Therefore random geometric graphs are more
suited to model them. Random geometric graphs are constructed by placing
points at random according to some arbitrary specified density function on a
d-dimensional Euclidean space and connecting nearby points [18]. Some of the
geometric random graphs results can be applied in the study of connectivity
in ad hoc and sensor networks [19]. Various transition phenomena can also be
observed in geometric random graphs [20]. Monotone properties for this class of
graphs have sharp treshold [21]. Asymptotically, as the network density tends to
infinity, a critical value transmission range can thus be established [22], [23], [24].

In [25], the fixed radius model used in the geometric random graphs theory is
extended by adding a new geometric parameter: the network deployment region
size. The authors then use the occupancy theory [26] to obtain an asymptotic
formula, when this parameter tends to infinity, for the critical transmission
range in sparse as well as in dense networks.

In [27], the authors exploit the same model and, using a bin-covery technique,
derive tighter bounds for the asymptotic connectivity.

We are not aware of any work related to the critical neighbourhood range
problem for asymptotic overlay connectivity. In the following sections, we define
it in more details, and we solve it using known results on the critical transmission
range problem cited above.

3 Problem Definition, Notations and Discussion

We are interested in the asymptotic connectivity of overlay graphs built over
asymptotically almost surely (a.a.s.) connected basic graphs.

These notions are defined in the following paragraphs. We then close this
section with a discussion on the implicit assumptions we make in the problem
and model specification.

3.1 Basic and Overlay Graphs

Consider an ad hoc network of n nodes, deployed over a square field of length
`, and where each node is assigned a transmission range of length r, the unit
used for measuring r and ` being identical. This network is modelled by a
random geometric graph denoted g(n, r, `) which has the following properties.
The vertices of g are uniformly and independently distributed on a square of size
`×`. They can either have been disseminated following the uniform distribution
of n points or by a spatial homogeneous Poisson point process of mean n. There
exists an edge between each pair of vertices if and only if the Euclidean distance
between them is not greater than r.

Let then g(n, r, `) be a connected graph, D be a real number with 0 ≤ D ≤ 1
and R be an integer with R ≥ 1. An overlay graph G(n, r, `, D, R) denotes a
graph with the following properties. The D parameter represents the overlay
nodes density. The number of vertices of G equals a proportion D of the number
of vertices of g. These are randomly and uniformly selected in the vertices set of
g, which is called its basic graph. The parameter R is called the neighbourhood

4



range. There exists an edge between a pair of vertices (v1, v2) if and only if the
shortest path in g from v1 to v2 contains less than or exactly R hops.

In the following, in conjunction with the ad hoc and sensor networks termi-
nology, the vertices of an overlay graph will be referred to as overlay nodes and
the vertices of its basic graph as nodes.

3.2 Asymptotic Connectivity

We use two models for studying the asymptotic connectivity of random geomet-
ric graphs, that we qualify as dense and sparse.

3.2.1 Dense Model

Definition The field length ` is a constant. All other parameters are func-
tions of the number of nodes. For example, r(n) can be decreasing when n

increases, which is a desired behaviour for minimizing the capacity loss due to
interferences.

Notations In this context, the ` parameter is assumed to be set to one and
can be omitted in the notations. A basic graph can be denoted by g(n, r(n))
and an overlay graph by G(n, r(n), D(n), R(n)) or G(g, D(n), R(n)). We may
generally simply write g(n, r), G(n, r, D, R) or, if g(n, r) is given, G(g, D, R).

Asymptotic Connectivity A dense graph is connected asymptotically al-
most surely if and only if the probability that it is connected tends to one as its
number of vertices tends to infinity.

Dense graph G is connected a.a.s.
⇐⇒

limn→∞ P[G is connected]=1.
Note that for overlay graphs, the vertices are the overlay nodes. This means

that D(n) must be such that limn→∞ D(n)n = +∞.

Use This model is only suited for studying the asymptotic behaviour of dense
networks because the vertices density n

`2
tends to infinity as n does.

3.2.2 Sparse Model

Definition All parameters are functions of the field length `. This was the
model used in [25] to study the critical transmission range in sparse networks.

Notations A basic graph should be denoted by g(n(`), r(`), `) and an overlay
graph by G(n(`), r(`), `, D(`), R(`)) or G(g, D(`), R(`)). We may also simply
write g(n, r, `), G(n, r, `, D, R) or, if g(n, r, `) is given, G(g, D, R).

Asymptotic Connectivity A sparse graph is connected asymptotically al-
most surely if and only if the probability that it is connected tends to one as
the field length tends to infinity.

Sparse graph G is connected a.a.s.
⇐⇒

lim`→∞ P[G is connected]=1.
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Use In this context, the node density n
l2

might either converge to 0, or to a
constant c > 0, or diverge as the size of the deployment region grows to infinity,
depending on the relative values of r, n, and l. This model is thus more general
than the dense one and suited for studying the asymptotic behaviour of sparse
as well as of dense networks.

Notice that the sparse appellation, which was used to present this model
in [25], could be a little confusing. However, as exposed in the following, the
theorems based on the dense model are more convenient than the ones based
on the sparse one. For this reason, the latter should only be used to analyze
sparse networks. This justifies the model denomination.

3.3 Problem and model discussion

3.3.1 Connected basic graph

We consider only connected basic graphs. This seems reasonable to us as a dis-
connected basic graph will not provide connected overlays, whatever the neigh-
bourhood range is, unless all the overlay nodes are concentrated in a connected
part of it.

3.3.2 Asympotics

Many asymptotic properties of random geometric graphs have been demon-
strated [18]. In particular, we mentioned in Sect. 2 several studies of the
asymptotic connectivity of ad hoc networks, while the connectivity probability
of a finite network, because of its complexity, has been the subject of very few
analytical studies [28].

3.3.3 Homogeneous transmission range assignment

The transmission range is represented as a function of the number of nodes,
directly in the dense case and indirectly, via its dependence to `, in the sparse
case. This allows us to model a possible topology control protocol running on
the ad hoc network, which would reasonably reduce the transmission range as
the number of nodes increases, in order to conserve energy and global network
capacity. We however implicitly limit ourselves to homogeneous topology control
protocols, i.e. protocols which assign the same transmission range to all nodes.

This assumption greatly simplifies further mathematical developments and
seems realistic in the context of our study. A common transmission range at
each node provides some appealing features, that can be consulted in [29], such
as the creation of bidirectional links only. Moreover, it is shown in [13] that, un-
der a homogeneous spatial distribution, choosing a common transmission range
can decrease capacity at most by a factor of

√
ln n, where n is the number of

nodes, in comparison to allowing the flexibility of a different power level for each
packet at each node [29]. This means that asymptotically a common power is
nearly optimal in terms of network capacity [30]. Finally, as we use a uniform
distribution of nodes and study an asymptotic property, more sophisticated
topology control algorithms would intuitively lead to transmission range values
converging in probability to a common function r(n). All these reasons make
us believe that a homogeneous transmission range assignment is both general
and adapted.
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4 Dense Networks

4.1 Known Results on Basic Graphs

Consider a basic graph g(n, r). Let us build a graph g′(n, r′) that has the same
nodes set as g and such that there is an edge between every pair of nodes. Let
Mn denote the longest edge length of the minimal spanning tree built on g′.
In [31], Penrose demonstrated that the graph g(n, r) is connected if and only if
r ≥ Mn and 1

∀α ∈ R : lim
n→+∞

P [nπMn
2 − ln n ≤ α] = exp(−e−α) (1)

This implies directly the following theorem.

Theorem 4.1 (Asymptotic connectivity of dense basic graphs)
A graph g(n, r) with

πr2 =
ln n + k(n)

n

is connected a.a.s. if and only if limn→+∞ k(n) = +∞.

The same result was demonstrated by Gupta and Kumar for a uniform distri-
bution of nodes over the unit disk [22].

Note that for dense networks, a unique condition has been demonstrated
to be both sufficient (when it is fulfilled, the graph is a.a.s. connected) and
necessary (when it is not fulfilled, the graph is not a.a.s. connected).

4.2 Minimal Neighbourhood Range

Theorem 4.2 (Necessary condition for the asymptotic connectivity of dense
overlay graphs)
An overlay graph G(n, r, D, R) with

π(Rr)2 =
ln(dDne) + K(n)

dDne (2)

is not a.a.s. connected if limn→+∞ K(n) 6= +∞.

Proof: Let G(n, r, D, R) be an overlay graph. Consider a graph g′(dDne, Rr)
such that the vertices sets of G and g′ are identical. By definition, if there exists
an edge in G between two vertices v1 and v2 then the shortest path between
them contains less than or exactly R hops. As the distance between two con-
secutive nodes on a path cannot be longer than the transmission range r, the
maximal distance between v1 and v2 is thus Rr and this edge also exists in g′.
Consequently, the edges set of G is included in the edges set of g′. If g′ is not
connected, then G neither is.

Applying Theorem 4.1 to a graph g′(dDne, Rr) , we obtain a necessary
condition for the asymptotic connectivity of an overlay graph G(n, r, D, R).

1Note that the theorem in [31] is more general. We isolated here the results that are of
direct interest to us.
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4.3 Sufficient Neighbourhood Range

We start with the following lemma, whose proof is given in annex.

Lemma 4.3 Let XS be a random variable designating the number of nodes on
a surface S with 0 ≤ S ≤ 1. For the uniform distribution of n nodes, as for the
Poisson two-dimensional spatial distribution of mean n on the unitary square,
P [XS = 0] ≤ exp(−nS).

Exploiting this lemma, we can derive the following theorem on the asymp-
totic path length.

Theorem 4.4 (Asymptotic path length)
Let g be an a.a.s. connected graph and m be a strictly positive integer. Let n1

and n2 be two nodes of g. If the Euclidean distance between n1 and n2 is strictly
less than mr, then there exists a.a.s. a path between them composed of less than
or exactly m hops.

Proof: (the asymptotic path length theorem in the context of dense graphs)

We adopt an inductive approach. Assume that n1 is located at point S and
n2 at D. If m = 1, then the Euclidean distance between S and D, denoted by
|SD|, is strictly less than r. The nodes n1 and n2 are thus neighbours and there
exists a path of one hop between them; the property is valid.

Let us now prove that if the property is valid for an integer m, then it is
also valid for the integer m + 1.

Assume that |SD| = (m + 1 − ε)r with m > 0 and 0 < ε ≤ 1.
Let us draw a disk D1 centered on S and of radius (m− ε

2 )r and another disk
D2 centered on D and of radius r, as in Fig. 1. The disks have a non-empty
intersection, that we denote I.

If the three following conditions are all satisfied, then there is a path of at
most m + 1 hops between n1 and n2 :
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1. there is a node ni in I,

2. there is a path of at most m hops between n1 and ni,

3. there is a path of length 1 between ni and n2.

In terms of probabilities, this can be written:
P [path len(n1, n2) ≤ m + 1]

≥ P [some ni in I]
×P [path len(n1, ni) ≤ m | some ni in I]
×P [path len(ni, n2) = 1 | some ni in I]

By geometric construction, if there is a node in I then this node is a neighbour
of n2.
Thus the third probability equals one and, asymptotically, we have:

limn→∞ P [path len(n1, n2) ≤ m + 1]

≥ limn→∞ P [some ni in I] × P [path len(n1, ni) ≤ m | some ni in I] . (3)

Figure 1 reveals that the value of r is only a scaling factor; the area of I, A(I),
is proportional to r2, the proportional factor being a function of m and ε only.
This can also be checked by using the circle-circle intersection area formula,
that we can for example find in [32].
Let A(I) = C(m, ε)r2.
As g(n, r) is by hypothesis an a.a.s. connected graph, we know by Theo-
rem 4.1 that there exists a function k(n) such that πr2n = ln n + k(n) and
limn→+∞ k(n) = +∞.

Thus A(I) = C(m, ε)r2 = C(m, ε) ln n+k(n)
πn

Lemma 4.3 ⇒
limn→+∞ P [no node in I]

≤ limn→+∞ exp(−nA(I))

≤ limn→+∞ exp(−C(m,ε)
π

(ln n + k(n))) = 0
Hence, whatever the value of m and ε,

limn→∞ P [some ni in I] = 1 . (4)

Moreover, as the Euclidean distance between n1 and ni is strictly less than mr,
by inductive hypothesis we have:

limn→∞ P [path len(n1, ni) ≤ m | some ni in I] = 1 . (5)

Equations 3, 4 and 5 ⇒

limn→∞ P [path len(n1, n2) ≤ m + 1] = 1

The property is thus verified for m + 1.
By induction, the property is valid for any integer.

Using this theorem, we can derive the main result of this section.
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Theorem 4.5 (Sufficient condition for the asymptotic connectivity of dense
overlay graphs)
Consider an overlay graph G(g, D(n), R(n)). Assume g(n, r(n)) is a.a.s. con-

nected and limn→+∞ Dn = +∞. If

π(Rr)2 =
ln(dDne) + K(n)

dDne (6)

with limn→+∞ K(n) = +∞ then G is a.a.s. connected.

Proof: Let us build a graph g′(dDne, Rr) such that the vertices set of g′
and G are the same.
Consider an edge of g′ linking two nodes n1 and n2.
By definition, the distance between n1 and n2, denoted |n1n2|, is less than or
equal to Rr.
Let us first assume that |n1n2| < Rr. By Theorem 4.4, as g is a.a.s. connected,
the maximum number of hops between n1 and n2 is a.a.s. less than or equal
to R. Hence, asymptotically, any edge of g′ of length strictly less than Rr also
exists in G.
Let us now assume that |n1n2| = Rr. We can draw two disks of radius Rr

respectively centered on n1 and n2. Let I denote the disks intersection and
A(I) its area. As shown in Fig. 2, A(I) is minimal when n1 and n2 are both
located on a border of the field.

Using the circle-circle intersection area formula [32], we obtain A(I) ≥
C(Rr)2 with C = 1

12 (4π − 3
√

3), wherever n1 and n2 are located. By lemma
4.3, the probability that there is no overlay node in I is less than or equal to
exp(−C(dDne − 2)(rR)2).

Assume that π(Rr)2 = ln(dDne)+K(n)
dDne with limn→+∞ K(n) = +∞.

Asymptotically, there exists almost surely an intermediary overlay node ni ∈
I.

The distances |n1ni| and |nin2| are strictly less than Rr thus, by Theorem
4.4 with m = R, there exists a.a.s. two edges (n1, ni) and (ni, n2) in G.

Thus, for any edge (n1, n2) of g′, there exists a path between the correspond-
ing nodes in G.
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As their vertices sets are the same, the asymptotic connectivity probability
of G is greater than or equal to the asymptotic connectivity probability of g′.

We assumed that π(Rr)2 = ln(dDne)+K(n)
dDne with limn→+∞ K(n) = +∞. Con-

sequently, by Theorem 4.1, g′ is a.a.s. connected.
Thus G is also a.a.s. connected.

4.4 Discussion

The first observation we can make about Theorems 4.2 and 4.5 is that, as for
basic graphs, the necessary condition for the asymptotic connectivity of overlay
graphs is also sufficient.

The following corollaries are meant to give an insight about the relationship
between the neighbourhood range and the overlay density. For both of them,
we consider an overlay graph G(g, D, R) and make the assumptions that g is
a.a.s. connected and that limn→+∞ Dn = +∞.

As we will extensively use the notations for the asymptotic behaviour of
functions in the following, we recall them in appendix 7.1.

Corollary 4.6 If DR2 ≥ 1 then G is a.a.s. connected.

Proof: If basic graph g is a.a.s. connected then there exists a funtion k(n)
such that πr2n = ln n + k(n) and that limn→+∞ k(n) = +∞.

Thus DR2πr2n ≥ πr2n = ln n + k(n) ≥ ln(Dn) + k(n). By Theorem 4.5,
the overlay graph is a.a.s. connected.
The sufficient condition R > 1√

D
shows that a decreasing overlay density does

not necessarily make the overlay graph a.a.s. disconnected. We can for example
have D = 1

ln n
and R =

√
ln n. It also confirms the intuitive idea that the lower

D is, the larger R must be.
The advantage of the previous corollary is that we do not need any informa-

tion about the basic graph, except that it is a.a.s. connected. However, lower
values for the neighbourhood range could be obtained if the relationship existing
between n and r is known.

Corollary 4.7 Let πr2n = ln n + k(n) with k(n) � 1. Assume D is constant
and R is an integer with R ≥ 1.

1. If k(n) � ln n then G is a.a.s. connected for any R.

2. If k(n) ≥ a ln n with a > 0 then G is a.a.s connected for any R > 1√
D(1+a)

.

3. If k(n) � ln n, G is a.a.s. connected if and only if R ≥ 1√
D

.

Proof: Let K(n) = πr2nDR2 − ln(Dn). G is connected if and only if
K(n) � 1.

1. By definition, if k(n) � ln n then for every M > 0 and n sufficiently
large, k(n) ≥ M ln n. By hypothesis, R ≥ 1 thus K(n) ≥ [D(1 + M) −
1] lnn− ln D ≥ [D(1 + M) − 1] ln n. Let M = 1

D
. For n sufficiently large,

K(n) ≥ D ln n. By definition, D > 0 thus K(n) � 1.

2. If there exists a > 0 such that k(n) ≥ a lnn, then K(n) ≥ [DR2(1 + a) −
1] lnn. If R > 1√

D(1+a)
then K(n) � 1.
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3. For k(n) � ln n, we know by Corollary 4.6 that DR2 ≥ 1 assures the
asymptotic connectivity of G. Assume DR2 < 1. By definition, if k(n) �
ln n then for any ε > 0 and n sufficiently large, k(n) < ε ln n. This gives

K(n) < [(1 + ε)DR2 − 1] lnn − ln D. Let ε = 1−DR2

DR2 . By hypothesis,
DR2 < 1 thus ε > 0. For DR2 < 1, there exists ε > 0 such that for n

sufficiently large, we have K(n) < − lnD ⇒ limn→+∞ K(n) 6= +∞.

Concerning a basic graph, a function k(n) that grows quickly just accelerates the
convergence of the connectivity probability [25]. This function has a stronger
impact on the neighbourhood range needed for connectivity. For example, for a
constant overlay density D, it decides if R can take any value or must be greater
than a fixed threshold.

In particular, if the transmission range r is kept constant while the number of
nodes grows, we have k(n) � ln n which implies that R = 1 is sufficient to obtain
an a.a.s. connected overlay. The overlay nodes do not need other intermediary
nodes to forward their packet for communicating. The subnetwork composed of
the overlay nodes only is a.a.s. connected. In fact, there is no need for building
an overlay in this case. The overlay nodes can directly use their own routing
protocol, with customized packet format.

Oppositely, if a topology control protocol is used for optimizing the transmis-
sion range, R = 1 can be too small to make the overlay a.a.s. connected. In this
case, the subnetwork composed of the overlay nodes only is a.a.s. disconnected.
It is necessary for some overlay nodes to communicate through intermediary
non overlay nodes. Overlay techniques are required; the overlay nodes control
and data packets must be encapsulated in packets that can be routed by all
nodes.

5 Sparse Networks

5.1 Known Results on Basic Graphs

Combining results from [25] and [27], we can state the following conditions on
the connectivity of a basic graph g(n, r, `). Refer to Sect. 3 for notations.

Theorem 5.1 (Necessary condition for the asymptotic connectivity of sparse
basic graphs)
Let r be strictly less than

√
2`. If r2n = O(`2) then g(n, r, `) is not a.a.s.

connected. If r = O(`εf(`)) with 0 ≤ ε < 1 and f(`) a function that grows
strictly slower than any function of type `γ where γ > 0 and if r2n < 1

2 (1 −
ε)`2 ln ` then g(n, r, `) is a.a.s. not connected.

Theorem 5.2 (Sufficient condition for the asymptotic connectivity of sparse
basic graphs)
If r ≥

√
2`, then g(n, r, `) is a.a.s. connected. If r = Ω(`) and r2n = Ω(`2 ln `),

then g(n, r, `) is a.a.s. connected. If r = Ω(`εf(`)) with 0 ≤ ε < 1 and f(`) a
function that grows strictly slower than any function of type `γ where γ > 0 and
if r2n ≥ 4(1 − ε)`2 ln ` then g(n, r, `) is a.a.s. connected.
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5.2 Minimal Neighbourhood Range

Theorem 5.3 (Necessary condition for the asymptotic connectivity of sparse
overlay graphs)
Let Rr be strictly less than

√
2`. If (Rr)2dDne = O(`2) then G(g, D, R) is

not a.a.s. connected. If Rr = O(`εf(`)) with f(`) a function that grows strictly
slower than any function of type `γ where γ > 0 and if (Rr)2dDne < 1

2 (1 −
ε)`2 ln ` then G(g, D, R) is a.a.s. not connected.

Proof: As for dense networks, if a graph g′(dDne, Rr, `) is not connected
a.a.s., G(n, r, `, D, R) cannot be connected a.a.s. Applying Theorem 5.1 to a
graph g′(dDne, Rr, `), we obtain the above conditions on the asymptotic con-
nectivity of G.

5.3 Sufficient Neighbourhood Range

We use the same techniques as for dense graphs, the only difference being that
the probability for a node to be located on a surface S equals S

`2
, instead of S.

We first demonstrate that Theorem 4.4, called the asymptotic path length
theorem and stated in Sect. 4, still holds for sparse graphs.

Proof: (the asymptotic path length theorem in the context of sparse graphs)
If r ≥

√
2`, every overlay node can reach any other overlay node in one hop.

Assume r <
√

2` and let PS denote the probability that there is no node on
a surface S = cπr2. For any constant c > 0, by lemma 4.3, lim`→+∞ PS ≤
lim`→+∞ exp(−n cπr2

`2
). Graph g is a.a.s. connected, thus, by Theorem 5.1,

r2n � `2. This implies that lim`→+∞ PS = 0 and, using the same technique
as for dense graphs (see proof of Theorem 4.4 in Sect. 4), we can demonstrate
that if |n1n2| < mr then there exists a path between n1 and n2 composed of at
most m hops.
Using this theorem, we can derive the main result of this section.

Theorem 5.4 (Sufficient condition for the asymptotic connectivity of sparse
overlay graphs)
Let g(n, r, `) be a.a.s. connected. If r ≥

√
2`, then G(g, D, R) is a.a.s.

connected. If Rr = Ω(`) and (Rr)2dDne = Ω(`2 ln `), then G(g, D, R) is
a.a.s. connected. If Rr = Ω(`εf(`)) with 0 ≤ ε < 1 and f(`) a function
that grows strictly slower than any function of type `γ where γ > 0 and if
(Rr)2dDne ≥ 4(1− ε)`2 ln ` then G(g, D, R) is a.a.s. connected.

Proof: If r ≥
√

2`, every overlay node can reach any other overlay node in
one hop and G is connected whatever parameters D and R are. The hypotheses
imply, by Theorem 5.2, that a graph g′(dDne, rR, `) is a.a.s. connected.

As for dense graphs, exploiting Theorem 4.4, we can prove that if a graph
g′(dDne, rR, `) is a.a.s. connected then G is a.a.s. connected.

Consequently, the hypotheses imply that G is a.a.s. connected.

5.4 Discussion

For sparse networks, no condition for the asymptotic connectivity has been
demonstrated to be both necessary and sufficient. Note however that the bounds
for basic graphs given by Theorems 5.1 and 5.2 are asymptotically tight and that
they have remained close for overlay graphs.
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As for dense graphs, values for the neighbourhood range can be obtained if
the relationship existing between n and r is known. For example, if r =

√
a` ln `

with a > 0 and n = 2`, a sufficient condition for the overlay graph to be
a.a.s. connected is: R ≥ 1 and (Rr)2Dn ≥ 4(1 − 1

2 )`2 ln `, which is fulfilled if
R ≥ d 1√

aD
e.

Corollary 5.5 Let g(n, r, `) be an a.a.s. connected graph. Assume D is con-
stant. If r2n � `2 ln ` then G is a.a.s. connected for any R ≥ 1.

Proof: If D is constant, R ≥ 1 and r2n � `2 ln ` then (Rr)2Dn � `2 ln `

and, by Theorem 5.4, G is a.a.s. connected.
In particular, if the node density is kept constant while the field length

grows, and if the transmission range is such that r �
√

ln `, R = 1 is sufficient
to obtain an a.a.s. connected overlay. As explained in Sect. 4.4, there is no
need for building an overlay in this case.

Oppositely, if a topology control protocol is used for optimizing the trans-
mission range, the basic graph can be a.a.s. connected with a transmission range
only proportional to

√
ln `, while the subnet composed of the overlay nodes only

can be a.a.s. disconnected. As also explained in Sect. 4.4, overlay techniques
are then required.

6 Conclusions

We first motivated the study of overlays built over ad hoc networks.
We then presented and analyzed the critical neighbourhood range problem.
We demonstrated that in connected networks, as the network gets denser

(n → +∞) or larger (` → +∞), the shortest path between any pair of nodes
draws close to the straight line. This sets an upper bound on the number of
hops between any pair of nodes, knowing the distance between them and the
nodes transmission range r.

Thanks to this property, that we called the asymptotic path length theorem,
and known works on the critical transmission range problem, we were able to
derive an analytical solution to the critical neighbourhood range problem for
dense networks. For a large class of sparse networks, we were able to determine
asymptotically tight bounds.

The mathematical conditions obtained do take into account the potential
use of a homogeneous topology control algorithm and allow the overlay density
D to evolve with the network size (n or `). In particular, if D diminishes, they
show how a compensation in R can keep the overlay still connected.

The analysis of these results provides, among others, the following properties
for overlays built on ad hoc networks.

Whatever the characteristics of the underlying network are, an overlay built
on a dense connected network with DR2 ≥ 1 is asymptotically almost surely
connected. We conjecture that this still holds in sparse networks.

In many cases, if the relationship between n and r is known, one can set R

to a lower value than d 1√
D
e and still obtain asymptotic overlay connectivity.

For constant D, depending on the network degree of connectivity, the mini-
mal value of R for asymptotic overlay connectivity can either be equal to one,
or to a higher fixed threshold, or be an unbounded function of the network size.
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In particular, in dense networks, if D and r are kept constant while the
number of nodes increases, the overlay nodes can asymptotically use their own
routing protocol, bypassing the network routing protocol common to all nodes.
This is also the case in sparse networks if the node density is kept constant and
r increases with the field length ` so that r �

√
ln `.

Oppositely, if the transmission range value is optimized, using a topology
control protocol, the network composed only of the overlay nodes can be asymp-
totically disconnected.
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7 Appendix

7.1 Mathematical Notations

Let f and g be functions of the same parameter x.

1. f(x) = O(g(x)) iff

∃x0, C > 0 : x ≥ x0 ⇒ |f(x)| ≤ Cg(x)

2. f(x) = Ω(g(x)) iff g(x) = O(f(x))

3. f(x) = Θ(g(x)) iff

f(x) = O(g(x)) and g(x) = O(f(x))

4. f(x) � g(x) iff limx→+∞
f(x)
g(x) = 0

5. f(x) � g(x) iff g(x) � f(x)
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7.2 Proof of Lemma 4.3

Proof: [Lemma 4.3] We start with the uniform distribution.
If n nodes are distributed uniformly and independently on the unitary square,

then the probability that a node lies on a surface S ≤ 1 equals S.
Let XS be a random variable designating the number of nodes on a surface

S with 0 ≤ S ≤ 1.
P [XS = k] = Sk(1 − S)(n−k)

Thus the probability that there is no node on S is

P [XS = 0] = (1 − S)n

= exp(n ln(1 − S))

with

ln(1 − x) = −x(1 +
x

2
+

x2

3
+

x3

4
+ ...)

⇒ P [XS = 0] = exp(−nS(1 + O(S))) ≤ exp(−nS)

Let us now focus on the Poisson distribution The spatial Poisson point process
has mean n.

The probability of having k nodes on a surface S is

P (XS = k) =
(nS)k

k!
exp(−nS)

⇒ P (XS = 0) = exp(−nS)

Thus, for both distributions

P [XS = 0] ≤ exp(−nS) (7)
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