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Abstract—In this paper we propose a new method
to approach optimal Traffic Engineering routing. The
method consists of dividing the traffic matrix into N

sub-matrices, called strata, and route each of these
independently. We propose two different implementa-
tions of our method in routers. Our method can also
be used to compute a very precise approximation of
the optimal value of a given objective function for
comparison to heuristic Traffic Engineering algorithms.
For this application, our algorithm is very efficient on
large topologies compared to an LP formulation.

Index Terms— Traffic Engineering, IP, MPLS, Opti-
mal Routing

I. Introduction

W
E consider the traffic engineering routing prob-
lem. Given the topology of the network to be

engineered and an estimate of the traffic matrix to be
routed on it, the problem is to find a routing scheme that
optimises the network, with the joint goal of good user
performance and efficient use of network resources ([1]). A
good routing scheme is usually defined as a routing scheme
that minimises a predefined objective function.

The goal of the Traffic Engineering (TE) algorithm is to
approximate the optimal routing scheme, i.e. the optimal
set of paths. In MPLS networks ([2]), each path (LSP)
is established independently. A TE algorithm for such
network has to find a path for each (aggregated) traffic
flow passing in the network. In OSPF or ISIS networks,
it is a set of link metrics that defines the routes used
by IP packets. In this case routes are computed using
Dijkstra’s Shortest Path First (SPF) algorithm possibly
using ECMP (Equal Cost MultiPath). A TE algorithm
for such networks has to find a good set of link metrics
such that corresponding routing scheme is good. We can
notice that the set of feasible routing schemes in OSPF
or ISIS networks is a subset of the one available for
MPLS networks. To find the optimal routing scheme is
a complex problem. Usually heuristic algorithms are used.
Papers [3], [4], [5], [6], [7], [8] present some heuristic TE
algorithms for both MPLS and OSPF/ISIS networks. Most
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of these algorithms are dedicated to specific TE objective
functions.

In this paper we propose to divide the traffic matrix
into N equal sub-matrices, called strata, for which the
routing scheme can be independently chosen. The sum
of the N strata is obviously equal to the original traffic
matrix. We compute the routing scheme of each stratum
considering the network state resulting of the routing of
lower strata. In section II, we present the objective func-
tions we consider in this paper, while our method can be
used with other of objective functions. Section III presents
the first derivative of the objective functions we consider.
In section IV, we propose an algorithm to compute one
routing scheme per strata using the derivatives computed
in section III. Section VI shows that the total resulting
routing scheme is close to the optimum when N →∞. We
have noticed that in practice, a low value of N is sufficient
to obtain a routing scheme very close to the optimal one.
In section VII we evaluate the efficiency of our algorithm
compared to LP formulation. Finally, in section VIII we
propose two methods to implement our routing scheme in
routers. The first one is to establish N MPLS full-meshes
in the network. The second one is to use the IGP Multi-
Topology functionality ([9]). Our algorithm provides the
paths of all the LSPs for the MPLS solution and the N
sets of metrics for the Multi-Topology Routing solution.

II. Objective functions

A. Notations

A network is modeled by a directed graph, G = (N, A)
whose nodes and arcs represent routers and links. Each
arc has a capacity ca. Traffic on the network is represented
by a traffic matrix D that with every pair (s, t) of nodes
associates the value of the traffic demand, i.e. the traffic
that flows from node s to node t.

Basically, the graph G and the traffic matrix D are
the inputs of the problem. A traffic engineering algorithm
has to find good paths between each pair of source and
destination nodes to route corresponding traffic flows. A
good set of paths will be a set of paths that optimises a
pre-defined objective function.



Once the paths are chosen, we can associate with each
arc (a) a load la which is the total load on the arc, i.e. the
sum over all demands of the amount of traffic sent over a.
The utilisation of link a is ua = la/ca.

B. Presented objective functions

In this paper, we consider the objective functions pre-
sented in table I. These functions must be minimised
by TE algorithms. All these objective functions can be
written under the form of

∑

a∈A fa(la) and fa(x) are
convex. MinHop is the objective function minimised by
a minimum hop routing. A minimum hop route is a route
with minimal number of links. InvCap objective function
is minimised by a shortest path routing considering a
metric of 1

ca
for each link a1. WMeanDelay minimises the

weighted mean delay2 and is a good TE objective function,
according to [10]. MeanDelay is the (unweighted) mean
delay. Finally, NonLinearFortz is a non linear function
whose linear approximation is introduced in [7] by Fortz
and Thorup3.

Objective Function

MinHop
∑

a∈A
la

InvCap
∑

a∈A
ua

WMeanDelay
∑

a∈A

la
ca−la

=
∑

a∈A

ua

1−ua

MeanDelay
∑

a∈A
1

ca−la

NonLinearFortz
∑

a∈A

la
1−ua

TABLE I

Objective functions

III. The first derivative of objective functions

The goal of the TE algorithm is to find good paths
between each pair of nodes. The idea of our algorithm is
that a good path minimises the increase of the score func-
tion due to the routing of some traffic on this path. The
increment of the cost function of using one particular link
on the path of an OD pair is

∑

a∈A fa(l′a)−
∑

a∈A fa(la),
if la and l′a are the loads of link a before and after routing
some traffic on it. Let x be the load of the link a∗ we
consider and dx the increment of traffic on this link. The
increment is 0 for all other links. Thus

∑

a∈A fa(l′a) −
∑

a∈A fa(la) = fa∗(x+dx)−fa∗(x). The increment is thus
fa∗ (x+dx)−fa∗(x)

dx
per unit of traffic flowing on this link a∗.

If we suppose that the traffic increment on this link is
sufficiently small, we can assume that the increment of

the cost function is limdx→0
fa∗ (x+dx)−fa∗(x)

dx
=

∂fa∗(x)

∂x
.

Hereunder we compute this first derivative for all the
presented objective functions.

1This is proven in section IV.
2If we take the delay to be the average delay of an M/M/1 queue,

the mean queuing + transmission delay of link a is given by Delaya =
mean packet size

ca−la
. For a M/M/1 queue, all the percentiles/quantiles

are also proportional to this value.
3In [10] we explain why we consider this non-linear function.

MinHop
∂fa(x)

∂x
=

∂x

∂x
= 1

InvCap
∂fa(x)

∂x
=

1

ca

WMeanDelay
∂fa(x)

∂x
=

ca

(ca − x)2

MeanDelay
∂fa(x)

∂x
=

1

(ca − x)2

NonLinearFortz
∂fa(x)

∂x
=

c2
a

(ca − x)2

We notice that for MinHop and InvCap objective
functions, the first derivative does not depend on x, while
it is the case for all the other functions.

IV. Algorithm

We claim that for MinHop and InvCap objective
functions, if we use Dijkstra’s Shortest Path First (SPF)
algorithm taking as link metric the first derivative of the
objective function then we obtain the optimal routing
scheme, i.e. we find for this routing the minimal value of
the objective function.

Theorem 1: A SPF algorithm where link metrics are
equal to 1

ca
(resp. 1) leads to the minimal value of the

InvCap objective =
∑

a∈A ua (resp. MinHop objective =
∑

a∈A la) independently of the traffic matrix.

Proof: We want to minimise the InvCap objective
function:

∑

a∈A ua. We have

∑

a∈A

ua =
∑

a∈A

∑

(s,t) δa∈Pst
D(s,t)

ca

=
∑

(s,t)

D(s,t)

∑

a∈Pst

1

ca

if Pst is the path from node s to node t and δa∈Pst
=

1 if link a is on the path from s to t and 0 otherwise4.
∑

(s,t) D(s,t) is constant and so to minimise
∑

a∈A ua, we

have to minimise
∑

a∈Pst

1
ca
∀s, t which is minimised by

SPF algorithm taking 1
ca

as link metrics.

For the InvCap objective function, we thus find the
CISCO recommendation for IGP metric setting ( 1

ca
). The

proof can be easily adapted for the MinHop function. In
this case 1

ca
is replaced by 1, which justifies its name. We

see that the MinHop routing thus minimises the total load
of the network, as expressed by the MinHop objective
function.

Theorem 1 cannot be applied directly with the last three
objective functions of table I because they are non linear
with respect to the link loads.

4If we consider ECMP, δa∈Pst
is the fraction of traffic sent on a.



A. Dividing the traffic matrix

To approximate infinitesimal increments of traffic for
the last three objective functions, we propose to divide
the traffic matrix into N equal traffic sub-matrices called
strata. The algorithm first computes the paths of the
first stratum. Then the algorithm takes into account the
link loads induced by the routing of this first stratum to
compute the paths of the second stratum, and so on, until
the N th stratum. Let OBJn be the value of the objective
function at step n and OBJN its value at the end of the
process.

Lemma 1: For large N ,

OBJn −OBJn−1 ≈
∑

(s,t)

D(s,t)

N

∑

a∈Pn
(s,t)

f ′
a(ln−1

a )

Proof:

OBJn = OBJn−1 +
∑

a∈A

[

fa(lna )− fa(ln−1
a )

]

= OBJn−1

+
∑

a∈A

[

fa(ln−1
a +

∑

(s,t)
D(s,t)δa∈Pn

(s,t)
N

) − fa(ln−1
a )

]

As

limε→0fa(ln−1
a + ε) = fa(ln−1

a ) + ε× f ′
a(ln−1

a )

we have for large N :

OBJn ≈ OBJn−1 +
∑

a∈A

∑

(s,t)

D(s,t)

N
δa∈Pn

(s,t)
f ′

a(ln−1
a )

Theorem 2: For large N , the routing paths of the nth

stratum that minimize OBJn − OBJn−1 are the short-
est paths according to the following link metrics: wn

a =
f ′

a(ln−1
a ).
Proof: This result is derived directly from Lemma

1 with Pn
(s,t) being the shortest paths with wn

a as link
metrics.

From this theorem we can conclude that if the traffic
matrix is split into a large number of strata, each new
stratum can be routed so as to minimize the increase of
the objective function, simply by routing the nth stratum
along the shortest paths with link metrics wn

a . The succes-
sion of n such steps, all minimizing the increase of OBJ , is
thus expected not to depart too much from the optimum.

The algorithm we propose to implement this method
is thus the following (see Algorithm 1). First compute
the paths using SPF algorithm with metrics equal to

w1
a =

∂fa(x)

∂x

∣

∣

∣

∣

x=0

. Route the first stratum using these

paths and recompute the new metrics considering the load
introduced by this routing. Compute the paths for the
second stratum using these updated metrics, and so on,

Algorithm 1: Divide TM into N sub-matrices

l0a ← 0 ∀a ∈ A;1

n← 1;2

while n ≤ N do3

wn
a ←

∂fa(x)

∂x

∣

∣

∣

∣

x=l
n−1
a

∀a ∈ A;
4

lna ← ln−1
a +

∑

(s,t) δa∈SPF n
(s,t)

D(s,t)

N
∀a ∈ A;5

n← n + 1;6

end7

la ← lNa ∀a ∈ A;8

until the N th partial traffic matrix. δa∈SPF n
(s,t)

is equal to

1 if a belongs to the shortest path from s to t considering
the set of metrics wn

a and 0 otherwise5.

V. Simple example

In this section, we present an example of our algorithm
running on a simple topology and its limit when N →∞.
We highlight why it is not optimal and when this non-
optimality occurs. In this example we use the MeanDelay
objective function but the other functions would lead to
the same kind of results.

PSfrag replacements

P1

P2

P3

P4

S1 S2

D1 D2

l1

l3
l2

l4

l5

l9

l6l11

l1 l3 l7

Fig. 1. Simple Example Topology

Consider the topology of figure 1. cl1 = 11 Mbps,
cl3 = 10 Mbps and cl7 = 9 Mbps. cl2 = ∞, cl4 = ∞,
cl5 =∞, cl6 =∞6. D(S1,D1) = 10 Mbps and D(S2,D2) = 1
Mbps. The traffic matrix is empty for all other (source,
destination) pairs of nodes. There are two possible paths
for traffic from node S1 to node D1, the left-hand path
l1 and the right-hand path l2l3l4. For the traffic from
node S2 to node D2, the two possible paths are the left-
hand path l5l3l6 and the right-hand path l7. We can easily
compute that the optimal routing scheme occurs if S1

sends 5.5 Mbps of traffic on its left-hand path and 4.5
Mbps of traffic on its right-hand path while S2 sends all its

5If we consider ECMP, δa∈SPF n
(s,t)

is the fraction of traffic sent on

a considering wn
a as link metrics.

6Instead of infinite capacities, we can also use capacities �
{cl1 , cl3 , cl7}



traffic on its right-hand path. In this case the value of the
objective function is equal to 1

cl1
−ll1

+ 1
cl3

−ll3
+ 1

cl7
−ll7

=
1

5.5 + 1
5.5 + 1

8 ≈ 0.489.
If we apply our algorithm with N = 1, both S1 and S2

will send the whole traffic on their left-hand path, because
1

112 < 1
102 and 1

102 < 1
92 (as we consider the MeanDelay

objective function, link metrics are f ′
a(la) = 1

(ca−la)2 ).

Thus OBJN=1 = 1
1 + 1

9 + 1
9 ≈ 1.222. If N = 2, the

first stratum will be routed on the left-hand path for both
commodities and the second one on the left-hand path for
(S1, D1) and on the right-hand path for (S2, D2), because
1
62 > 1

9.52 and 1
9.52 < 1

92 . Thus OBJN=2 = 1
6 + 1

4 + 1
9 ≈

0.528, which is already far better than OBJN=1.
When N becomes sufficiently large the strata become

infinitesimal. Thus the traffic is routed on the left-hand
path for both commodities until the portion of traffic
routed for both commodities (α) is such that the left-
hand path and the right-hand path for (S1, D1) have
the same cost, i.e. 1

(11−10α)2 = 1
(10−α)2 . This occurs when

α = 1
9 . It is already clear that this routing is not optimal

because the optimal routing requires S2 to send all its
traffic on the right-hand path. Now the loads on all the
links are such that cl1 − ll1 = 9.889, cl3 − ll3 = 9.889
and cl7 − ll7 = 9. If we continue this reasoning until
the whole traffic matrix is routed, we can compute that
limN→∞OBJN = OBJ∞ ≈

1
5.364 + 1

5.364 + 1
8.273 ≈ 0.494

which is at 1% from the optimum.
From this example, we can see why our method is not

optimal. Our method would be asymptotically optimal
if there were only one commodity in the network, i.e.
limN→∞OBJN = OBJopt in this case. This is not the
case if there are multiple commodities in the network, as
we have seen in our example. The non-optimality is due
to the non-reevaluation of the paths that were computed
in previous steps of the algorithm and whose costs have
been increased due to other commodities. Indeed, in our
example, if we could change the paths of the first α portion
of traffic from S2 to D2 when we realize that it is not
optimal anymore, we could reach the optimum. Anyway,
as we see in our simulations, our algorithm behaves very
well in practice.

VI. Simulations

We have tried our algorithm on two real networks. The
first topology is the US research network (Abilene). It
is composed of 11 nodes and 14 bidirectional links of 10
Gbps each. The second topology is the topology of another
operational network which is composed of about 20 nodes
and 40 full-duplex links. To build a realistic traffic matrix,
we have collected netflow data on each ingress interface
of the network and aggregated this information to build a
traffic matrix. We have run our simulation on two traffic
matrices per topology: one “low” traffic matrix measured
during the night and one “high” traffic matrix measured
during peak hours. The method used to generate traffic
matrices from netflow traces is described in [11].

Figures 2 to 5 present the values of the objective func-
tions when N goes from 1 to 20 ( OBJN

OBJOP T
). The values

are relative to the optimal value of the objective function
computed with an LP solver. Be aware that the vertical
scale is not the same for all the graphs. MinHop and
InvCap are not on the figures because obviously these
have a value of 1 ∀N . Results are presented on figures
2 and 3 for Abilene network and on figures 4 and 5 for the
other operational network. We see that in many cases, we
do not have to divide the traffic matrix into many strata
to obtain a routing scheme close to the optimum.

Please note that the optimal routing for each objective
function is different. So it is impossible to compare two
points of two different objective functions on the figures
presented in this section. Only two points of the same
objective function can be compared. In [10] we can find
an analysis and comparison of all our objective functions.
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Fig. 2. Abilene Topology (“low” TM)
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Fig. 3. Abilene Topology (“high” TM)

If we agree to have a precision ε of 1.8%, we can use
only N = 1 for Abilene network. On the other operational
network, we have to use at most N = 3 to achieve this
precision, depending on the chosen objective function.

On Abilene Topology, WMeanDelay and
NonLinearFortz provide exactly the same relative
values because all the links of this topology have the
same capacities. Thus NonLinearFortz =

∑

a∈A
la

1− la
ca

=
∑

a∈A
ca.la
ca−la

= c×
∑

a∈A
la

c−la
= c×WMeanDelay



On figures 2 and 3 (Abilene network), we can see that
there is a gap of about 1% between our solution and the
optimum value for WMeanDelay and NonLinearFortz7,
while there is almost no gap for MeanDelay objective
function. On figures 4 and 5 (operational network), there
is almost no gap for any objective function. This high-
lights that the gap that may be observed depends on the
topology and the traffic matrix. For information, the gap
is also at most 1% on the other topologies of section VII.
We think this is a quite low value.
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Fig. 5. Operational network Topology (“high” TM)

VII. Efficiency

We have used an LP formulation of the routing problem
(as in [7]) to find the optimal routing scheme so that it was
possible to measure the gap between our algorithm and the
optimum in preceding section. In this LP formulation, we
had to linearize our non linear objective functions. As our
objective functions are convex and we have a minimiza-
tion problem, it is possible to replace these functions by
piecewise linear approximations. Indeed we just have to
add one constraint for each linear piece. These constraints
force the objective variable to be greater than or equal to
all the linear pieces. Now we have to choose the number of
linear pieces of the approximation. Increasing the number
of linear pieces in the approximation will increase the

7This means that in this case our algorithm converges to a solution
which is at about 1 % of the optimum.
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quality of the solution found, but it will also increase
the running time. Figure 6 shows the precision of LP
formulation when we increase the number of lines in the
piecewise approximation. We present on this figure relative
values to the minimum observed over all tests (in this case
the minimum occurs when 51 linear pieces are used). We
can see that when more than 30 pieces are used the error
is at most 0.02%, which is considered as very good. On
figure 7 we can see the computation time when the number
of pieces increase. We can notice that the computation
time does not increase that much when we increase the
number of linear pieces in the approximation. In fact the
big problem of LP formulations is the size of the network.
Table II shows the computation time of the LP solver
compared to our method on Abilene and the operational
network, but also on two other generated networks. The
two additional networks are generated using the BRITE
topology generator ([12]) and the traffic matrix using the
TOTEM toolbox ([13]). The results are presented for 20
linear pieces in the approximation for the LP method
and when dividing the Traffic Matrix in 20 strata for
our method. All the simulation times of this paper are
measured on an IBM computer eServer 325 with 2 AMD
opteron 2GHz 64 bits processors and 2GB of memory. As
LP solver, we have used CPLEX 9.1 (version 64 bits). We
can see on the table that our algorithm can be used for
large topologies where LP is not usable due to the high
running time, although CPLEX is the most powerful solver



Size of the network Computation time (in sec)
Nb Nodes Nb Links Our method LP method

11 14 0.549 0.248
∼ 20 ∼ 40 6.563 23.251
30 60 15.475 634.64
35 70 27.410 1322.586

TABLE II

Computation time of our method compared to LP

formulation

among those we have tested.

VIII. Implementation on routers

The routing scheme which is found by our method can
be implemented on routers using either Multiple Topology
Routing ([9]) or multiple MPLS LSP full-mesh.

A. Multiple Topology Routing

In this case, there are two sub-problems. The first
problem is to divide the traffic matrix into N sub-matrices.
Each router of the network has to map each packet to
one of the N topologies. Usually, load balancing is done
using a hash function which is based on an identifier of
the flow so that all the packets of a flow are forwarded
along the same path, thus avoiding packet reordering.
The flow id is usually composed of five fields: source and
destination addresses, source and destination ports and
protocol number.

In our case, the hash function has to be the same in
all the routers of the network to avoid cycles. Indeed
cycles could appear if one node associates one packet
with one topology and the following node associates this
same packet with another one. The hash function can be
mod(flow id, N), for example.

The second problem is to find the N sets of metrics. In
our case it is simple. The N sets of metrics are the values
of the first derivatives at each step of our algorithm.

B. MPLS full-mesh

It is simpler with MPLS. The paths of the multiple full-
mesh are the paths computed at each step when running
SPF algorithm on updated metrics. We also have to use a
hash function to associate a packet with one of the multiple
LSPs available, but in this case, the hash function can be
different in each router.

With a triple full-mesh, large backbones with 200-300
egress points would require 600-900 LSP heads at an
ingress router. Core routers may need an order of mag-
nitude more transit LSPs. These numbers are far below
the thousands of LSP heads and tens-of-thousands transit
LSPs that equipment vendors can support today.

IX. Conclusion

Our algorithm provides a good way to approach the
optimal routing scheme for an objective function which is
on the form of

∑

a∈A fa(la) and for which fa(x) is convex.

To approach the optimal routing scheme, we divide the
traffic matrix into N equal strata. For any chosen N , we
have proposed two methods to implement corresponding
routing scheme in the routers: Multi-Topology Routing or
MPLS multiple full-mesh. We have highlighted the com-
promise between low N and good precision. Furthermore,
our algorithm can be used on large topologies to compute
a near-optimal solution where LP solvers are inefficient.
The near-optimal value found by our algorithm can also
be used to estimate the quality of a heuristic routing
scheme. Moreover, the source code of this algorithm is
freely available in the TOTEM Toolbox[13], so using it
does not require any expensive license as it is the case for
professional LP solvers like CPLEX.
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