Motivation

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Modeling

Contribution

Experimentation Modeling

Conclusion

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

M. Glesser¹, A. Billon¹, V. Valeau², and A. Sakout¹ mglesser@univ-lr.fr

> ¹LEPTAB La Rochelle University, France

²LEA Poitiers University, France

12th AIAA/CEAS Aeroacoustics Conference, May 2006

Outline

Motivation

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Modeling

Contribution

Experimentation Modeling

Conclusion

1 Motivation

- Flow-induced acoustic resonances
- Background on Flow-Acoustic interactions Modeling

2 Contribution

- Experimentation
- Modeling

Basic principle

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct

Two Feedback Paths for a Jet-Slot Oscillator Journal of Fluids and Structures, 21:121–132, 2005.

An expression for the flow-acoustic interactions modeling

Motivation

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Modeling

Contribution

Experimentation Modeling

Conclusion

- Flow-induced acoustic resonances = acoustic resonance + flow-acoustic interactions
- Acoustic power generated or absorbed by flow-acoustic interactions:

$$\mathcal{P} = -\left\langle
ho_0 \iiint_V \left(\boldsymbol{\omega} \wedge \boldsymbol{v}
ight) . \boldsymbol{u_a} dV \right\rangle_{T_0}$$

- ω: vorticity field
- v: vortices convection speed
- *u_a*: acoustic velocity field

Emitted frequency => maximization of \mathcal{P}

Vorticity Field Modeling replacements^{Vortex-point model} [Nelson, 1983 & Bruggeman, 1987]

- Vortices convected in a straigth path
- Vorticity only concentrated on vortex cores
- Linear growth of the vortex circulation
- Saturation of the vortex circulation

Acoustic Field Modeling

Motivation

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Modeling

Contribution

Experimentation Modeling

Conclusion

 $\boldsymbol{u_{a}} = \boldsymbol{\nabla}\varphi'(\boldsymbol{x},t) = \boldsymbol{cos(2\pi f_{0}t + \theta)} \boldsymbol{\nabla}\left(\varphi'_{pot}(\boldsymbol{x})\right)$

Missing Parameters

- Shape of the potential flow ?
- Acoustic field / vortex shedding synchronization ?
- Jet mode & Vortices convection speed

Experimental Set-up

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Modelin

Contribution

Experimentation Modeling

Conclusion

Jet Oscillation Mode

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Modeling

Contribution

Experimentation Modeling

Conclusion

Symmetric jet mode

Rather constant vortices convection speed

Vortices Convection Speed

Fields Modeling 1 Vorticity Field

replacements

Fields Modeling 2 Acoustic Field

κ

Motivation

Flow-induced acoustic resonances

Background on Flow-Acoustic interactions Model

Contribution

Experimentation Modeling

Conclusion

Acoustic/Vorticity Fields Synchronisation 1 Principle

Motivation

Flow-induced acoustic resonances

replacements

Contribution

Experimentation

Modeling

Conclusion

Validation

Summary

Motivation

Flow-induced acoustic resonance

Background on Flow-Acoustic interactions Modeling

Contribution

Experimentation Modeling

Conclusion

Development of a model for the flow-acoustic interactions involved in the coupling of a self-sustained oscillator with the flow-supply duct's resonance

Frequency predictions

Outlook

- Better understanding of the optimal lock-in conditions
- Emitted level prediction