
Towards a proposal for datatypes in E-LOTOS

Source: Belgium∗, France†, Romania‡, United Kingdom§

Output document of ISO/IEC JTC1/SC21/WG7/1.21.20.2.3
‘Enhancements to LOTOS’

Ottawa meeting, July 1995

Abstract

This document makes proposals for the data language of Enhanced LOTOS. It
describes a core language, plus a module system and standard libraries. Possible
approaches to the dynamic and static semantics of the language are sketched out.
The relationship of the model to the behavioural part of LOTOS and the other
E-LOTOS enhancements are discussed.

Contents

1 Summary 3
1.1 Objective . 3
1.2 Coverage . 3
1.3 Application . 3
1.4 Status . 3
1.5 Standards . 3

2 Introduction 3

3 Related work 5
3.1 Overview . 5
3.2 The PhD Thesis of Ed Brinksma . 5
3.3 The LOTOSPHERE proposal . 6
3.4 The work of Charles Pecheur . 7
3.5 The Opal language . 8
3.6 The SML language . 9

4 Rationale 9
4.1 Overview . 9
4.2 Syntax . 9
4.3 Static semantics . 10
∗Represented by Guy Leduc and Charles Pecheur (University of Liège).
†Represented by Hubert Garavel (Inria Rhône-Alpes, Verimag).
‡Represented by Mihaela Sighireanu (RSI).
§Represented by Alan Jeffrey (University of Sussex)

1

5 Base language 11
5.1 Overview . 11
5.2 Language design . 11
5.3 Abstract syntax(es) for the base language 27
5.4 Semantics . 35

6 Shorthand notation 36
6.1 Overview . 36
6.2 Usual abbreviations and rich-term syntax 36
6.3 Infix functions . 37
6.4 Conditional shorthands . 38
6.5 “Let” statements . 39
6.6 “Assert” statements . 40
6.7 If-then-else statements . 41
6.8 Testers, selectors, and updaters . 41
6.9 Other record shorthands . 43
6.10 Tuples . 43
6.11 Pattern-matching function declarations 44

7 Modules 44
7.1 Overview . 44
7.2 Language design . 45
7.3 Outline of an SML-based proposal . 49

8 Base environment 56
8.1 Overview . 56
8.2 Booleans . 56
8.3 Characters . 57
8.4 Character strings . 58
8.5 Binary data . 58
8.6 Integers . 58
8.7 Rationals, floats and reals . 59
8.8 Lists . 59
8.9 Sets and Bags . 60
8.10 Arrays . 60
8.11 Associative arrays . 61
8.12 Other modules . 61

9 Relationship with the behaviour part of LOTOS 61
9.1 Overview . 61
9.2 Symmetry between data and behaviour 61
9.3 Value expressions in behaviour expressions 62
9.4 Variable declarations in behaviour expressions 62
9.5 Communication pattern-matching . 63
9.6 Gates . 66
9.7 Process declarations . 67
9.8 Process functionality and exceptions 67

2

9.9 Static semantics . 68
9.10 Dynamic semantics . 68

10 Relationship with other E-LOTOS proposals 70
10.1 Time . 70
10.2 Termination . 71
10.3 Typed gates . 71
10.4 Modules . 71
10.5 Mobility . 71

1 Summary

1.1 Objective

The work item on enhancements to LOTOS is developing an extension to the exist-
ing LOTOS specification language [10] for data. This paper makes proposals for the
structure of such a language, and discusses the major outstanding design decisions.

1.2 Coverage

This paper discusses the data language and module extensions for E-LOTOS. Relation-
ships are given with the behavioural part of LOTOS, and the other proposed extensions.

1.3 Application

The new data language will make it easier to describe the data part of protocols, and
ease the production of tools for verification and implementation of protocols.

1.4 Status

Output document of the Ottawa meeting of the ISO working group on LOTOS enhance-
ments, held in July 1995.

1.5 Standards

IS.8807 LOTOS standard.

2 Introduction

Experience with using LOTOS as currently standardized by ISO has raised a number
of criticisms from users who have to deal with the data part of LOTOS (based on ACT
ONE) to specify real protocols. The most common problems are:

1. the data part definition is too verbose,

2. Even the most basic data types have to be redefined again and again, and the
standard library is not effective in cutting down this effort.

3

3. Fundamental data type specifications may be “corrupted”; even if taken from the
standard library, types may be extended inconsistently, thus collapsing their mean-
ings (this is known as the “persistency” issue).

4. Equational semantics can be tricky; in practice, most people use rewriting rules,
and a pattern-matching style that is inconsistent when interpreted as equations.

These difficulties affect tool support, as different tools may produce different re-
sults depending on the strategy used to turn equations into rewrite rules. Equiva-
lence for an arbitrary algebra is inherently undecidable, and so it is impossible to
provide sound and complete simulators for existing LOTOS.

5. LOTOS has only a limited form of modules, which encapsulate data types and
operations, but not processes. Moreover, this mechanism does not support ab-
straction: every object declared in a module is exported outside.

These deficiencies make LOTOS is difficult to use, and cause problems for users and
tool implementors alike. A critical evaluation of LOTOS data types from the user point
of view can be found, for instance, in [24]

The decision of the Paris interim meeting (January 1995) was to replace the datatypes
language of full LOTOS with:

1. a pure strict (in the sense of call-by-value) functional language with user-defined
recursive datatypes, and

2. an equational specification language for functions.

This should be considered as a single two-level language rather than two distinct lan-
guages sitting side by side. The first level is a ‘functional’ language suitable for full
execution, while the second level is an ‘equational’ level suitable for abstraction and
much in the spirit of ACT ONE.

The reason for choosing a functional language was that most LOTOS designers
were already using a subset of ACT ONE in a functional style by discriminating the
operations into constructors and functions. There is a large body of work on semantics
for functional languages, stretching back to the λ-calculus. There is also experience of
providing tool support such as type checkers and code generators for such languages.

At the Ottawa meeting (July 1995), the working group decided to break the data
language into four parts:

1. a small functional language, described in Section 5,

2. shorthand notation, described in Section 6,

3. a modules system, described in Section 7 and

4. a base environment, described in Section 8.

In Section 3 we mention research work for improving the data type and module features
of LOTOS, as well as existing functional languages from which ideas could be borrowed
when designing E-LOTOS.

In Section 4 we define guidelines for the syntactic and semantic definition of E-
LOTOS.

In Section 9 we discuss how the data language relates to the LOTOS behavioural
language, and in Section 10 we discuss how the data language relates to the other E-
LOTOS proposed enhancements.

4

The present document does not attempt to design such a language, but lists some of
the design decisions which have to be made, and their implications. An abstract syntax
for the core functional language is provided, together with some possible shorthand
notations. The concrete syntax and semantics of this language is not described in this
document.

3 Related work

3.1 Overview

Since 1988, there have been several proposals for enhancing LOTOS datatypes and
modules. In this section, we briefly present these proposals, and we also introduce some
functional programming languages which can be of interest for the design of E-LOTOS.

3.2 The PhD Thesis of Ed Brinksma

Ed Brinksma served as the Editor of the ISO 8807 standard. In his PhD thesis [5] entitled
“On the design of Extended LOTOS”, he proposes several extensions to LOTOS, both
for the behaviour and data part.

As far as the data part is concerned, Ed Brinskma’s proposal still remains in ACT-
ONE’s initial algebra framework: functions are defined equationally; the domain of a
sort is defined by the set of its ground terms; there is no separation between constructor
and defined functions, etc.

Therefore, it is clear that these proposals regarding datatypes are not aligned with the
recent decisions of the E-LOTOS Committee, who decided to shift towards a functional
language.

Ed Brinksma also introduces a system of modules for E-LOTOS. In his proposal, a
module contains definitions of types and processes. A top-level E-LOTOS specification
is a module itself (with a different keyword: “specification” instead of “module”).

Modules can also be composed together, using “combinators”, to obtain new mod-
ules. The type combinators that exist in LOTOS are extended to modules:

• “synthesis”: modules can be imported in other modules, leading to an hierarchical
organization of specifications;

• “renaming” of types, sorts, operations, and processes;

• “parameterization” and “actualization” of formal sorts, formal operations, and
formal equations.

Two different forms of abstraction are available for modules:

• the objects declared in a part of a module following the “where” or “use” key-
words are local to this module and are not exported outside;

• a “hiding” combinator exists for modules, which allows to remove certain types,
sorts, operations, and processes from the list of objects exported by a module.

Combinators can be applied in arbitrary order, leading to algebraic “module expres-
sions”. This is not possible in LOTOS, because it is necessary to introduce a new module
name each time a combinator (renaming or actualization) is applied.

5

The static semantics of modules is operational: it is defined as a function which
computes, for each modular expression, the list of types, sorts, operations and processes
declared in the module expression. This function is defined by induction on the set of
module combinators.

Ed Brinksma’s proposal seeks upward compatibility with standard LOTOS. How-
ever, it presents some drawbacks, as some “undesirable” features of LOTOS definition
are retained:

• The notion of LOTOS “type” is kept as is, leading to a redundancy with the mod-
ule concept, as there are two different levels of modularity: types and modules.

• Moreover, these two levels are not symmetric: there is no “hiding” combinator for
types; the “synthesis” combinator for modules is called “combination” for types.

• Modules cannot be parameterized by formal processes.

• The possibility of defining types and processes locally to the body of a process
is retained (which is probably unnecessary if modules provide abstraction facili-
ties).

3.3 The LOTOSPHERE proposal

The LOTOSPHERE proposal was produced in the framework of ESPRIT project LO-
TOSPHERE [4, 3] and input to the E-LOTOS Committee during the Yokohama meeting
(November 1993) [29].

As far as datatypes are concerned, this proposal remains in the algebraic framework,
but introduces substantial changes with respect to ACT ONE: it makes a distinction
between constructors and defined functions and it allows functions and constructors to
be defined partially. However, in this proposal, functions are still defined by equations
and the semantics is still based on initial (partial) algebras, which is not compatible with
the functional approach taken by the E-LOTOS Committee.

Regarding modules, the LOTOSPHERE proposal extends Ed Brinksma’s approach
in many ways:

• (ACT-ONE) types and (LOTOSPHERE) modules are merged into a single no-
tion of module. Upward compatibility is ensured in the sense that LOTOS
types can be translated directly into modules (simply be changing the keywords
“type...endtype” into “mod...endmod”).

• The LOTOSPHERE proposal draws a clear separation between interfaces (called
descriptions) and implementations (called modules). This separation, which exists
in many programming languages (e.g., Modula-2, Ada, etc.), was also advocated
by Jose Manas [14].

• Modules can contain definitions of sorts (with or without predefined equality),
operations (constructors, functions, and predicates1), equations, and processes.

• Descriptions can contain declarations of sorts, operations, and processes. For
operations and processes, only the profiles2 are declared.

1A predicate is a special notation for a function returning a boolean result.
2The profile of an operation is the list of sorts of its argument and the sort of its result. The profile of

a process is the list of its gate parameters, the list of the sorts of its value parameters and its functionality.

6

• For simplicity purpose, descriptions and modules cannot be nested: it is not pos-
sible to declare a description or module inside another description or module.

• Descriptions can be combined together using combinators such as: import, union,
removal (i.e., hiding), and renaming.

• Similar combinators also exist for modules: import, union, and renaming. Two
forms of abstraction are available for modules: selective export (the module spec-
ifies which objects are visible outside) and restriction (the contents of a module
are “filtered” through a description: only the objects declared in the description
will be accessible).

• It is possible to attach a description to a given module, and several modules can
implement the same description. But this is not mandatory. If a module has no de-
scription attached, its description will be considered to be implicit and synthesized
automatically. This is useful for programming “in-the-small”. This also allows to
filter a given module through different descriptions, thus providing different levels
of abstraction (“views”) of the same module.

• As regards parameterization, modules can be parameterized by descriptions.
Therefore, they can be parameterized with (formal) sorts, operations, and pro-
cesses. Generic modules can later be instantiated with actual arguments.

As in Ed Brinksma’s proposal, the semantics of modules is operational and based
on functions mapping module expressions and description expressions to to (structured)
collection of sorts, operations, and processes. Renaming morphisms are used to handle
renaming and actualization, and to generate unique names for local objects.

Although the LOTOSPHERE proposal covers many suitable requirements for mod-
ular LOTOS, it could be improved in several ways:

• The distinction between constructors and functions is not explicit in descriptions,
which allows non-persistent specifications to be written, and also creates problems
in pattern-matching expressions (where constructors have to be known by the
compiler). The modification proposed in [26] solves this problem.

• The proposal allows renamings to be explicitly named. This introduces a third
class of objects (apart from descriptions and modules), which has no clear prac-
tical justification. Moreover, the reusability of renamings is weak: it is very un-
likely that the same renaming can be applied to several modules.

In [36, 30], a comprehensive library of predefined datatypes for E-LOTOS, includ-
ing booleans, natural numbers, (generic) sequences, finite sets, arrays, maps, records,
disjoint unions, etc., is proposed.

For all these types, ad hoc syntactic constructs (such as “settype”, “recordtype” and
“uniontype”) are provided. These shorthand notations are nothing but macro-definitions
that expand to the datatype and module language defined in the LOTOSPHERE pro-
posal, according to a mapping function.

3.4 The work of Charles Pecheur

In his proposal for E-LOTOS [26], Charles Pecheur introduces both:

7

• a pure functional model based on a recursively-defined datatypes and recursive
functions (with a distinction between constructors and functions),

• a “rich term syntax”, which allows concise and readable shorthand notations to be
used for numbers, sequences, selectors, modifiers, etc.

Charles Pecheur also developed the APERO 2.0 tool3, which enhances LOTOS with
a collection of language facilities (library types, syntactic extensions and shorthand nota-
tions). These facilities are automatically translated into standard LOTOS, which allows
to take advantage of existing LOTOS tools.

3.5 The Opal language

Opal [27, 8, 38] is a strongly typed, higher order, strict functional language, which
integrates concepts borrowed from functional programming and algebraic specifications.

In Opal, datatypes are defined as recursive types generated by free constructors:
the general concept for defining types is the sum of products. Records, unions, lists,
enumerated types, etc. are obtained as particular cases of this general mechanism. A
standard library exists, which encompasses boolean, natural and integer numbers, real
numbers, characters, products, unions, sequences, strings, sets, bags, maps, arrays, and
graph-like data structure.

In Opal, functions are defined by combining operations such as constant denotations,
variables, pattern-matching case statements, tupling, λ abstraction, function application,
local declarations (“let” statements), etc.

Opal also provides a modules system, which supports both “in the small” and “in the
large” programming. An Opal program is a collection of modules (called “structures”)
connected together by import relations . Modules consist of two parts: a visible signature
and an implementation (with a one-to-one relation between them). The implementation
part of a module can be written in another language.

Various abstraction facilities are available. A module can have local objects, defined
only in its implementation part and not declared in its signature. When importing a
module, one can restrict the list of imported sorts and functions (this allows to define
multiple views of a module). Also, it is possible not to export the free constructors
of exported sorts (in this way, a sort may export only its name or also his implementa-
tion). Unfortunately, it is not possible to have two different implementations of the same
signature.

Opal modules do not support renaming: it is not possible to give different names to
the same sort or function.

Modules can be parameterized with a list of formal sorts and functions. However, it is
not possible to group these formal objects into a signature, possibly leading to very long
lists of formal parameters4. Opal has an algebraic flavour by allowing parameterization
and overloading, rather than the polymorphism found in ML.

Opal combines functional concepts together with a specification language. Mod-
ules can contain algebraic equations expressing properties. These equations are either
exported or hidden.

3APERO is a loose acronym for “Act-one PrE-pROcessor”
4The same problem was identified in Ada 83 and addressed in Ada 95.

8

According to the Opal team, an efficient Opal-to-C compiler has been developed:
the generated code is claimed to be of comparable efficiency than hand-written C code
and “in any case [...] much faster than that of traditional functional languages. There
are orders of magnitudes between the execution times of Opal and e.g. ML or HOPE”
[34, 38].

3.6 The SML language

Standard ML (SML) [20, 21] is a strict, impure functional language, with a strong poly-
morphic type system, and a parameterized typed module system. SML has many compil-
ers, including Edinburgh ML, New Jersey ML (SML/NJ) and Poplog ML (PML). There
are also a number of ML variants in existence, such as Caml and Lazy ML. SML has
a number of textbooks(such as [25, 40]) used for undergraduate teaching. SML is one
of the few ‘real world’ languages to have a formal language definition [20], including a
static and dynamic semantics.

We should not forget that ML and Opal have been designed as a programming lan-
guage whereas E-LOTOS should remain a specification language. This does not only
mean keeping compatibility with ACT ONE (with some form of eqns declaration) but
also that some design choices in the core functional part of E-LOTOS be made carefully.

Note: There is currently a project to develop a revised SML standard, called ‘SML
2000’. This project is covering some material which is relevant to the E-LOTOS project,
in particular subtyping for records. This project should provide a source of ideas which
could be incorporated into the E-LOTOS data language.

4 Rationale

4.1 Overview

In this section, we discuss general requirements which should be satisfied by the def-
inition of the E-LOTOS language. These requirements concern the syntax and static
semantics features. They should apply not only to the data language and modules sys-
tem, but also to the whole language E-LOTOS.

4.2 Syntax

The syntax of LOTOS, as given in [10], is formally defined by a context-free BNF gram-
mar, which can be — possibly with some adaptations — directly passed to compiler-
generators for LALR(1) grammars.

The syntax of E-LOTOS should also be formally defined and have similar “good”
properties, so that the correctness of the grammar can be checked automatically by
compiler tools, and so that compiler front-ends for E-LOTOS can be produced easily.

The decision of which syntax to adopt is largely a matter of taste. However, several
criteria should be followed:

1. Uniformity among all constructs

2. Compatibility with current LOTOS syntax

9

3. Simplicity, which means that redundant constructs should be avoided (Occam’s
razor paradigm) unless really needed, e.g., for software engineering reasons

4. Technical properties of the syntax: the grammar should be context-free and un-
ambiguous (so as to allow deterministic parsing), and even LR(k) or LALR(k) if
possible (to allow efficient parsing).

As regards the integration of the datatype and behaviour parts, two possibilities are
retained:

(A) either the syntaxes for these two parts will be unified,

(B) or these syntaxes will be kept distinct by integrating a functional language in E-
LOTOS (e.g., SML) to allow for easier code reuse from both worlds.

The solution (B) is likely to cause problems. For example, mixing the LOTOS and SML
syntaxes would collide on several aspects:

• Some legal identifiers in LOTOS are keywords in SML and vice-versa

• Some keywords exist in both LOTOS and SML, but at different places and with a
different intended meaning: ‘of’, ‘:’, ‘=>’, etc.

• The definition of a token is different (for example ‘[]’ is two tokens in SML and
one token in LOTOS).

• More importantly, plugging the full grammar of SML expressions as LOTOS
value denotations would make the LOTOS grammar ambiguous. For example,
in the behaviour ‘g !a [b]; B’, the fragment ‘[b]’ can be parsed either as the one-
element list to which function ‘a’ is applied or as a guard over the action.

• SML allows functions to be declared “infix” in declarations, and such declarations
are subject to scope. Precedence and associativity can also be declared. For this
reason, SML cannot be parsed statically.

• Both LOTOS and SML allow complex nestings of operators, and use different
methods (such as explicit ‘end’ keywords or bracketing) to resolve ambiguities.

In order to maintain compatibility with LOTOS syntax, it will not be possible to allow
all valid first-order SML in E-LOTOS.

It seems that solution (A) would be preferable. However, in the event that solution
(B) would be retained, it was agreed during the Ottawa meeting to resolve syntactic
conflicts between LOTOS and the datatype language in favor of LOTOS.

4.3 Static semantics

The role of the static semantics for a language is to analyze decidable properties of
programs. The most common of these is type checking, which (in the case of strongly
typed languages such as LOTOS) ensures that no ‘run-time’ type errors will be found.

The static semantics of LOTOS given in [10] covers the following issues:

Identifier binding: binding of process-identifiers, gate-identifiers in the behaviour
part; binding of type-identifier in the data part; binding of sort-identifiers,
operation-identifiers, and variable-identifier in both the behaviour and data parts.

10

Computation of type signatures, to determine the set of sorts, operations and equa-
tions contained in a type.

Type-checking of value-expressions, together with operation overloading treatment,
in both the behaviour and data parts.

Computation of functionality: to determine (approximately) whether a behaviour-
expression can terminate with an “exit” instruction.

This static semantics is not defined formally, but semi-formally, using a combination of
mathematics (sets, tuples, functions), abstract syntax trees, functions defined by induc-
tion on syntax trees, fixed-points, logical constraints, and natural language.

Therefore, the static semantics of LOTOS is sometimes ambiguous and it was not
possible to check automatically its consistency (using computer tools). Consequently, a
number of errors have been detected (see [23] for a 22-pages report).

We propose to adopt a formally defined static semantics for the E-LOTOS data lan-
guage.

We need to ensure that the static semantics we provide is decidable, and that it is
reasonably efficient in practice, and that it has good formal properties. For instance, the
“subject reduction” property might be a desirable one.

It would also be desirable to have a static semantics specified in such a way that it
can be checked automatically (at least, partially) by computer tools.

There are at least two possible approaches to specify the static semantics of E-
LOTOS:

• The first is to provide a static semantics based on type judgements, on the typed
λ-calculi, and on the Curry-Howard isomorphism. To see in detail how this can
be given for a language similar to that defined here, see the SML language defini-
tion [20].

• The second is to provide a more operational static semantics, for example based
on attribute grammars, which can be efficiently implemented.

Hopefully these two approaches are not contradictory, although we will have to decide
which will be in the E-LOTOS standard.

5 Base language

5.1 Overview

In this section, we discuss the some of the major design choices for the datatypes part of
E-LOTOS. Modules are not discussed, since they will be dealt with in a further section.

We then sketch how this language can be given a formal static and dynamic seman-
tics.

5.2 Language design

The reader interested in the Committee’s discussion about the datatype part of E-LOTOS
may consult the minutes of the ISO E-LOTOS meetings held in Madrid (January 1994),

11

Southampton (July 1994), Paris (January 1995), and Ottawa (July 1995). The minutes
of the COST-247 meeting held in Warsaw (June 1995) are also of interest.

The following subsections list the “high level” design decisions taken by the E-
LOTOS Committee, possibly with explanatory notes. These notes should eventually
grown into a commentary on the E-LOTOS standard.

Open issues are also presented and technical arguments are provided in order to
measure the potential impact of future design decisions.

5.2.1 Scope of the New Work Item

According to the scope of the new work item, the datatype enhancements should provide
“a more user-friendly notation for datatype descriptions”. “This will consider:

• Built-in types (e.g., booleans, characters, bits, integers, enumeration, and possibly
reals),

• Composed types (e.g., records, unions, sets, arrays, strings, character strings, bit
strings),

• Partially defined functions or subtyping,

• Constructive types,

• Interface with data types in other languages, e.g., ASN.1, SDL

All enhancements to be defined shall meet the following requirements:

• They shall maintain the existing LOTOS properties which support design and
engineering procedures, i.e. for refined, behavioural compatibility, executable
specifications, for test derivation and proper tool support.

• The enhancements to LOTOS shall progress the definition of the textual version
of the language together with the graphical version (G-LOTOS).

• The enhancements to LOTOS shall ensure compatibility with the LOTOS base
standard.”

5.2.2 “Impure” features

We agreed that the data language of E-LOTOS should be strongly typed, and that type-
checking should be done statically, i.e., at compile-time.

We agreed not to introduce in E-LOTOS “impure” (non-functional) features that do
not exist in LOTOS, such as explicit assignment to variables or functions with side-
effects.

In LOTOS, the evaluation of a value expression has no effect on the environment: it
does not modify the value of variables stored in memory, nor the observable behaviour
of the process that evaluates the value expression.

Having side-effects in E-LOTOS would introduce all the semantic problems that
arise when a shared memory is accessed by several concurrent processes (race condi-
tions).

There are similar problems with any form of data with side-effects (for example, file
access, database lookup, communication on channels).

12

5.2.3 Pointer types

We agreed not to introduce pointer types (also called “reference types”) in E-LOTOS.
The introduction of pointer types in E-LOTOS would pose severe semantic and prag-

matic problems, such as references to dead objects, concurrent access to the same object
by several parallel processes, and the problems caused by polymorphic pointers.

5.2.4 Distinction between constructors and functions

Users of most specification languages have to specify two different things: data struc-
tures, which define the types of values handled in the specifications, and algorithms,
which express computations involving these values.

In LOTOS, the algorithms are split in two: the sequential algorithms, which are
specified in the data language (currently ACT-ONE), and concurrent algorithms, which
are specified in the behavioural language.

Due to the adoption of ACT-ONE’s semantics based on initial algebras, data struc-
tures and sequential algorithms are not clearly separated, which confuses many users of
the language.

We believe that E-LOTOS should adopt a more pragmatic style, similar to algebraic
specification languages such as PLUSS, LPG, or µCRL, and to functional programming
languages such as SML, Miranda, Haskell, Opal, by distinguishing constructors from
defined functions.

Quoting the rationale of LOTOSPHERE proposal [29]: “A crucial ingredient [...]
is to make a clear distinction between so-called constructors and functions in data type
definitions. Constructors are those operations that are needed to build up data objects,
whereas functions are intended to map them to other objects, e.g., to extract information.
This approach leads to a the identification of a functional sublanguage for the data related
part of LOTOS, which allows a more constructive approach to the specification of data
types. Using the concept of constructors, an automatic generation of operations, such
as equality predicates, discrimination functions, and projections becomes possible, i.e.,
without the user’s obligation to specify them.”

5.2.5 Recursively defined datatypes

When describing protocols, one needs not only basic datatypes (such as bits and integers)
but also sophisticated data structures, such as records, discriminated unions and lists.

Although they are used in the ISO language Estelle [9], we believe that Pascal-like
types (and similarly C-like or Ada-like types) are not appropriate for E-LOTOS since:

1. Without pointer types, Pascal-like languages are unable to express dynamic data
structures such as lists.

2. Discriminated unions in Pascal raise another semantic problem, when one tries to
access a field that does not correspond to the current value of the discriminant.
Such violations are a well-known way to subvert strong typing, thus compromis-
ing the correctness of the whole specification. Clearly, such situations should be
prohibited, since they go against the functional style of the behaviour part of LO-
TOS, which using appropriate syntactic and static semantic restrictions, always

13

ensures that a variable is initialized before it is accessed. Run-time type checking
is not suitable for a specification language such as LOTOS.

The best solution for avoiding these semantic and pragmatic issues whilst still allowing
tool support by type checkers and code generators is to adopt recursive types (or in
algebraic specification terminology sorts generated by free constructors).

There are a variety of syntaxes available for declaring such sorts. However, some
common-sense requirements should be considered:

1. The constructors of a given sort should be declared together with that sort, in-
stead of being distributed through a whole description as is currently permitted
in LOTOS. Providing such scope constructs would improve the readability of E-
LOTOS descriptions, and would forbid the modification of existing or pre-defined
type libraries by adding new constructors or collapsing old ones.

2. It should be possible to name the arguments (i.e. formal parameters) of construc-
tors (in particular, it should be possible to name the fields of records). This is not
the case in existing LOTOS, where the arguments of an operation are only defined
by their sorts. As LOTOS is supposed to be a specification language, this is a clear
drawback. For example, the formal description of the ISO 8072 transport service
specification contains:

(*

The failure probability parameters have the following 4-tuple

structure: Failures = Prob * Prob * Prob * Prob, where the

arguments respectively represent the failure probabilities

termed TC establishment, transfer, TC resilience, and TC release.

*)

type TCFailureProbabilities is Probability

sorts
Failures

opns

Failures : Prob, Prob, Prob, Prob→ Failures

...

endtype

in which the meaning of the four arguments of constructor ‘Failures’ cannot be
explained but with a comment.

Keeping in mind these requirements, we can choose between (at least) two syntaxes.
The first possibility is to use a syntax similar to the syntax of process definitions:

sort BoolList is
nil : BoolList
cons (hd:Bool, tl:BoolList) : BoolList

endsort

14

sort TCFailureProbabilities is
Failures (TCEstablishment, Transfer, TCResilience,

TCRelease : Prob) : TCFailureProbabilities
endsort

Another possibility is to use the ML-like syntax:

datatype BoolList :=
nil
| cons of { hd:Bool, tl:BoolList }

endtype
signature TCFailureProbabilities :=

include Probability
datatype Failures :=

Failures of {
TCEstablishment : Prob,
Transfer : Prob,
TCResilience : Prob,
TCRelease : Prob
}

endtype
...

endsig

5.2.6 Recursively defined functions and non-termination

We agreed to have recursively defined functions.
One of the main differences between algebraic languages (like ACT-ONE) and func-

tional languages (like SML) is that the initial algebra approach is not confronted to the
possibility of non-termination. For example, the specification:

type Loop is
sorts one
opns loop : nat→ one
eqns forall x : int ofsort one

loop(x) = loop(x+1);
endtype

specifies a sort ‘one’ with only one element; its quotient algebra has a single equivalence
class containing all terms of the form: loop (0), loop (succ (0)), loop (succ (succ (0))),
and so on5. This can be compared with the SML function:

fun loop x = loop (x+1);
val loop : int→ ’a

5However, all LOTOS tools that implement equations as rewrite rules are likely to diverge when asked
to evaluate ‘loop(0)’.

15

which has the semantics of never terminating.
It is by no means clear that non-termination is at all desirable in a specification

language, albeit one with implementation very much in view. An alternative to non-
termination is to restrict recursion so that it will always terminate. This could be done
in two ways:

• Either by forcing the specifier to provide a termination proof for each recursive
function definition, e.g., an induction proof on the length(s) of the function argu-
ment(s) and a subsidiary proof that the function does not increase the length of
its argument(s); such an argument is too much to require of a specifier; moreover,
E-LOTOS compiler should be able to verify the correctness of this proof.

• Either by embedding sufficient conditions for termination [6, 7] in the static se-
mantics of E-LOTOS (and, consequently, in the compilers) and rejecting all pro-
grams which do not satisfy these conditions (even if they terminate).

We propose to allow general recursion, unless it can be demonstrated that there is a
language with restricted recursion which is sufficiently powerful and simple to be used
in specifications.

5.2.7 Partial functions and exceptions

In the initial algebra framework used by ACT-ONE, all functions are defined totally.
However, experience indicates that there is a need for partially-defined functions.

Quoting the rationale of LOTOSPHERE proposal [29]: “An [...] important improve-
ment is the possibility to define partial functions [...] on data types, i.e., functions [...]
whose application is not defined for all data objects of a given sort. This relieves the
specifier of the burden from specifying explicit “error-handling” in those cases where
this is not relevant for the object of specification”.

Examples of partial functions are: division by zero, taking the head of an empty
list, etc. More generally, such situations occur in “case” statements, when a given value
cannot be matched against a set of patterns.

As far as the dynamic semantics to partial functions (and expressions) is concerned,
there are (at least) three possibilities:

1. The semantics could be left undefined, and up to implementors: in such case, a
run-time error (with a diagnostic message) is likely to occur. This approach is
used in functional languages such as LISP, Scheme, Opal, etc.

2. The semantics could be said to be equivalent as non-termination, i.e., an infinite
loop. However, there is an essential difference between those two concepts: for
a given (algebraically closed) expression, partiality is semi-decidable, whereas
non-termination is undecidable.

3. An exception mechanism (similar as that of Ada, SML, or Modula-3) could be
introduced. A exception is raised when an expression yields an undefined result.

With the third possibility, one has to introduce a new class of objects (exceptions) as
well as syntactic constructs in the data language to declare, raise, and catch exceptions.
For instance, the function that extracts the head of a list could be defined as follows
(using SML-like syntax):

16

exception EmptyList
function hd (l:NatList) :=

case l in
cons { hd=h:Nat, tl=any:NatList } → h
| nil→ raise EmptyList
endcase

endfun

Exception handlers can be used in expressions, for example:

hd e handle EmptyList→ nil

Exceptions do not have side-effects, they just extend the range of values a term may
terminate with.

There are some difficulties with the SML exception system, notably:

1. the type system does not specify which exceptions a function may raise (in com-
parison with, say, Ada and Modula-3),

2. polymorphic exceptions cause problems,

3. exceptions may propagate outside their scope, for example:

let exception e in raise e end

this presents problems in providing a semantics to exceptions

If exceptions are introduced in E-LOTOS, then they should be given an explicit se-
mantics and they should be related strongly to exception handling in the behavioural
language.

We propose to investigate further whether exceptions are required in describing con-
current systems. If there is a demonstrable need for exceptions, then they should be
provided at both the functional and behavioural level, with a clean semantics for how
exceptions are propagated from one to the other.

5.2.8 Higher-order functions

ACT-ONE only allows first-order functions, i.e., it it does not allow function expressions
in the way that most functional languages do (functions are not “first-class” citizen).

This restriction is quite severe, for example it does not allow a declaration such as:

function filter (p : int→ bool) (l : int list) : int list :=
case l of

nil→ nil
| cons { hd=h, tl=t } [p h]→ cons { hd=h, tl=filter p t }
| cons { hd=h, tl=t } → filter p t
endcase

endfun
function limit (max : int) : int list→ int list :=

filter (fn d→ d < max)

17

endfun
function small : int list→ int list :=

limit 10
endfun

Although introducing higher-order functions in E-LOTOS would give a greater expres-
siveness, it would also present some problems:

1. the semantics of higher-order concurrency is still under development; for exam-
ple some the full abstraction results for first-order languages do not exist yet for
higher-order languages, and

2. implementing tools for higher-order languages is harder than implementing tools
for first-order ones (e.g. requiring closures).

Also, the availability of generic modules parameterized by (formal) functions greatly
reduces the need for higher-order functions at the expense of some extra verbosity, for
example the above higher-order functions become:

signature Prop :=
type data
fun p : data→ bool

and Filt :=
include Prop
fun f : data list→ data list

and Max :=
const max : int

and IntFilt :=
fun f : int list→ int list

endsig
generic Filt (P : Prop) : Filt :=

open P endopen
function f (l : data list) : data list :=

case l of
nil→ nil
| cons { hd=h, tl=t } [p h]→ cons { hd=h, tl=f t }
| cons { hd=h, tl=t } → f t

endcase
endfun

and Less (M : Max) : Prop :=
open M endopen
datatype data == int endtype
function p (x:int) := x < max endfun

endgen
module Ten : Max :=

constant max := 10 endconst
and Small ==

Filt(Less(Ten))
endmod

18

We believe that the semantic problems of modelling higher-order functions outweigh
their practical advantages, so that E-LOTOS should only permit first-order functions.

5.2.9 Overloading

LOTOS currently supports operation overloading: it is possible to declare several func-
tions with the same identifier, provided that these functions differ either by their number
of arguments, the sorts of their arguments or the sort of their results.

Overloading is allowed as long as the sort of each expression can be determined
statically. If necessary, the coercion operator “of” can be used to solve ambiguities.

type T is
sorts A, B
opns F :→ A, F :→ B

endtype
...
G !(F of A); G !(F of B); stop

The E-LOTOS Committee has discussed the issue of keeping or removing over-
loaded functions from E-LOTOS.

The drawbacks of overloading are6:

1. It can decrease the readability of programs, since it is sometimes not obvious for
the reader to figure out which function is invoked (although the compiler ensures
that there is no ambiguity in determining a unique function).

2. Adding a new (overloaded) function definition in an already existing program
may create ambiguities, which have to be solved by introducing “of” coercions at
appropriate places7. This is a problem of compositionality.

3. In the absence of overloaded functions, most functional languages provide a prin-
cipal (or most general) type for every typeable expression. This property is nec-
essary for other features, such as type inference and polymorphism.

If overloaded functions are allowed, this property does not hold, except for ex-
pressions which do not use overloaded functions, or in which all ambiguities are
properly solved using “of” coercions.

4. A module system allows the safe reuse of identifiers without needing overload-
ing. For example, a Real module and an Integer module might both export a
function ‘+’, and any ambiguity is resolved by whether the Real or Integer mod-
ule is imported. It is only if both modules are imported that the ambiguity has to
be resolved (e.g. by decorations such as ‘Real.+’ and ‘Integer.+’).

5. Without overloading, it is possible to determine the scope of a variable syntac-
tically, without knowing any type information. For example, the following pro-
grams are equivalent if overloading is not allowed:

(foo y where function foo (x:int) := x+1 endfun)

(bar y where function bar (x:int) := x+1 endfun)

6Some authors of the present Annex might disagree with some items of the following list.
7which are all places where the compiler signals an ambiguity

19

However, in the presence of overloading, they can be distinguished by the context:

let y:real = 0.0 in ... where
function foo (x:real) := x+2.0 endfun
function bar (x:real) := x+3.0 endfun

For this reason, most existing mathematical theories of type do not support over-
loading, since it breaks the property of α-conversion (which allows renamings
such as the above).

The advantages of overloading are8:

1. Overloading is primarily intended for notational convenience. It is not obvious
that removing overloading from E-LOTOS is the right way to obtain “a more
user-friendly notation for datatype descriptions” (which is the goal defined in the
scope of the new Work Item).

2. Overloading exists in most computer languages. Some languages (like Fortran,
Algol, Pascal, C, and SML) only allow overloading for built-in operators (e.g., +
on integers, and + on reals).

Some other recent languages (such as Ada, C++, Eiffel, Opal, etc.) have made
overloading uniformly available for both built-in and defined functions. This re-
sults in a greater convenience for the programmer to exploit and fewer special
cases to memorize.

3. User-defined, overloaded functions do not prevent type-checking from being done
at compile time (this was done for the first time in 1962 for APL). Overloading
does not add much complexity to languages and compilers, since overloading
treatment is usually isolated in a well-defined part of static semantics, without
impact on dynamic semantics.

4. Well-known, efficient algorithms exist to perform type-checking and solve over-
loading simultaneously [1]. These algorithms use either two passes (as in the case
of Ada) or even a single bottom-up pass [2].

5. The so-called “compositionality problem” mentioned above is not serious. First,
overloading does not prevent widely-spread languages (e.g., Ada) from working
satisfactorily.

Also, this “compositionality problem” exists anyhow, even in absence of over-
loading. For instance, if a program that uses only the ‘Int’ module is modified to
import also the ‘Real’ module, the proposed “decorations” require to replace all
occurrences of ‘+’ with either ‘Int.+’ or ‘Real.+’. This is non-compositional as
well.

Note: the idea of labelling functions with module names explicitly is not very
different from the “of” operator of LOTOS, except the fact that it is applied to
function names rather than expressions.

On the opposite, we can even say that overloading is more compositional, because
it does not require that all functions have different names, thus reducing the risk

8Some authors of the present Annex might disagree with some items of the following list.

20

of name clashes when importing new modules. For instance, if two modules, a
fifo queue module and a stack module, both of them exporting an is empty func-
tion with different profiles, are imported simultaneously in a third module, no
name clash will occur, and both functions will be coexist and be accessible.

6. Overloading fits well with generic modules. Let’s consider a generic FIFO queue
module, exporting a sort queue and a large collection of functions, among which
a function is empty : queue→bool.

With overloading, this module can be instantiated several times by simply actual-
izing the sort queue. Doing so, all the functions exported by the module will be
available by default with the same identifiers (with overloaded profiles).

Without overloading, it is also necessary to actualizing all these functions by
giving them new names (e.g., is empty packet queue, is empty message queue,
etc.), which is rather cumbersome.

7. Overloading is existing practice in LOTOS. Forbidding overloading in E-LOTOS
would raise difficult compatibility issues with the current standard.. In such case,
an algorithm should be provided to translate existing LOTOS descriptions into
ones without overloading.

8. The “rich-term syntax” proposed by Charles Pecheur [26] relies on the existence
of overloading (see Section 6.2 below).

5.2.10 Polymorphism

An extension which makes a large difference to the static semantics of the language is
to allow polymorphic type declarations, such as:

datatype ’a List :=
nil | cons of { hd:’a, tl:’a List }

endtype

This type can then be instantiated with a type, for example:

function sum (x:Nat List):Nat :=
case x in

nil→ zero
cons { hd=h:Nat, tl=t:Nat List } → h + (sum tl)

endcase
endfunc

or used in polymorphic function declarations, for example:

function hd (x:’a List):’a :=
case x in

cons { hd=h:’a, tl=any:’a List } → h
| nil→ raise EmptyList

endfunc

Type constructors can be polymorphic in more than one type variable, for example:

21

datatype (’a,’b) Tree :=
leaf of ’a | node of { root:’a, left:(’a,’b)Tree, right:(’a,’b)Tree }

endtype

Although overloading is sometimes called “ad hoc polymorphism”, it should be un-
derstood that it is not a particular case of (e.g., ML) polymorphism. Overloading and
polymorphism provide distinct functionalities.

For instance, if overloading is forbidden, then specifiers wishing to define common
mathematical operators such as ‘+’ on new datatypes (such as complex numbers, matri-
ces or vectors) would have to do so inside a module, so that the compiler can distinguish
between ‘Complex.+’, ‘Matrix.+’, and so on. A polymorphic + would have to apply to
all types, and perform similar computations on its arguments irrespective of their type.

To quote [39]: “We should be careful not to confuse the distinct concepts of over-
loading and polymorphism. Overloading means that a (small) number of distinct ab-
stractions just happen to have the same identifiers; these abstractions do not necessary
have related types, nor do the necessarily perform similar operations on their arguments.
Polymorphism is a property of a single abstraction that has a (large) family of related
types. The abstraction operates uniformly on its arguments, whatever their types.”

Although overloading and polymorphism can be both useful, it is not suitable to
have them simultaneously included in a computer language. If so, the type-checking al-
gorithm would become more complex, as the possibilities of type-checking ambiguities
would increase. This is one reason why ML does not allow overloading on user-defined
functions. Another reason is that ML also allows type inference, and it is known that
type-checking of expressions is NP-complete if type inference and overloading are com-
bined.

Therefore, for the final standard, we will have to decide whether or not to include
either polymorphism and type inference, or overloading. There are several possible
directions:

1. allow overloading and not introduce polymorphism, as in existing LOTOS,

2. allow polymorphism, but without any overloaded operators, as in existing SML,

3. or have neither polymorphism nor overloading in the base language, and move the
problem to the modules system.

The advantages of polymorphism are9:

1. Polymorphism is one of the most important concepts in functional languages,
allowing for strong typing with much code reuse. Polymorphism has a well-
understood theory and practice.

2. Algorithms for compile-time polymorphic type inference exist, and although in
theory are expensive (EXP-TIME complete) in practice are tractable.

3. Polymorphism has a clean semantics, and logical basis as universal quantification
in the logic of types.

4. SML polymorphism (without overloading) gives every expression a principal
type, thus making specification simpler.

9Some authors of the present Annex might disagree with some items of the following list.

22

5. It supports simple scope rules, and allows specifications to be combined without
worrying about clashes caused by overloading.

6. If a suitably powerful module system is used, there are no problems with reusing
identifiers.

However, introducing polymorphism in E-LOTOS would have the following
drawbacks10:

1. It would imply the suppression of overloading facilities that currently exist in LO-
TOS, leading to to the problems mentioned in Section 5.2.9. It would go against
the goal of compatibility with LOTOS defined in the scope of the New Work Item.

2. The existing type-checking algorithm for polymorphism is significantly more
complex than the one for overloading (12 pages versus 4 pages in [1], 8 pages
versus 3 pages in [41]). This would increase the complexity of both E-LOTOS
static semantics and E-LOTOS type-checkers.

3. Moreover, type-checking for overloading can be performed in linear-time,
whereas type-checking for polymorphism is exponential. There a risk that large,
polymorphism-based protocol descriptions could not be type-checked in a reason-
able amount of time.

4. Apart from the languages of the ML family, polymorphism is not used in any
major programming or specification language. Although interesting ML features
(e.g., union types, pattern-matching) have been reused in recent languages, this is
not the case with polymorphism.

5. Lack of polymorphism has not been a usual complaint heard from people actu-
ally working with LOTOS. In this respect, it is worth noticing that none of the
proposals for E-LOTOS enhancements described in Section 3 suggest to enbody
polymorphism as a desirable feature. The reason for this is explained in the next
items.

6. The genericity features of ACT-ONE already cover most of the functionalities
provided by polymorphism, by allowing the definition of sorts and functions pa-
rameterized by one or several formal sorts. The same approach can be found in
many algebraic languages, as well as in functional languages like Opal.

Although the ACT-ONE syntax for actualization is not very user-friendly, it could
be improved. Such changes would rather affect the module system than the type
system of the core language itself.

7. If polymorphism is included in E-LOTOS, it is feared that it will be largely re-
dundant with genericity features. For instance, a specifier wanting to define a
stack (or a fifo queue) of parameterized items will be offered two possibilities:
either declaring a polymorphic stack type, or declaring a generic stack type (using
ACT-ONE-like generic modules or SML-like functors).

Having two different mechanisms for the same concept will reduce reusability,
as parts of code written with one mechanism might not be reusable in a context
where the other mechanism is chosen.

10Some authors of the present Annex might disagree with some items of the following list.

23

Moreover, in such event, the predefined libraries of the base environment (e.g.,
sets, bags, etc.) might be defined twice: a polymorphic version, or a generic
version, or both, might be available.

8. The generic features provided ACT-ONE go beyond the scope of polymorphism,
by allowing sorts and functions to be parameterized by formal functions. This
is also possible in SML, but not in the polymorphism framework; two different
mechanisms (higher-order functions and functors) are provided instead.

In SML, the redundancy issue mentioned in the previous item is all the more
present, because three different approaches (polymorphism, higher-order func-
tions, and functors) are available for the same purpose (defining objects parame-
terized by other objects).

On the opposite, ACT-ONE and similar languages deal with genericity in a single,
uniform approach. Formal sorts and formal functions are handled symmetrically,
and the type system remains simple.

5.2.11 Records

We agree that E-LOTOS should allow record types to be easily defined and dealt with.
It seems that there is some consensus about having the following features available for
record types:

• It should be possible to declare a record by giving the list of its fields together
with their types. The syntax could be either borrowed from algebraic languages
(e.g., ACT-ONE, Opal, etc.) as in:

type Point is Pt (x:real, y:real) endtype
type Vector is Vec (x:real, y:real) endtype
type Identity is Id (FirstName:string, Name:string) endtype
type Person is Person (Id:Identity, Age:int) endtype

or the ML syntax:

datatype Point = Pt of {x:real, y:real}

datatype Vector = Vec of {x:real, y:real}

datatype Identity = Id of {FirstName:string, Name:string}

datatype Person = Person of {Id:Identity, Age:int}

Whatever the syntax, each record declaration also introduces a constructor decla-
ration. In the above examples ‘Pt’, ‘Vec’, ‘Id’, and ‘Person’ are constructors.

• It should be possible to write record values11 easily, and to nest these values arbi-
trarily. This could be done either with an algebraic syntax:

Pt (1.0, 2.0)

Vec (1.0, 2.0)

Id (“Jane”, “Doe”)

Person (Id (“Jane”, “Doe”), 33)
11called aggregates in Ada

24

or with the ML syntax:

Pt {x=1.0, y=2.0}

Vec {x=1.0, y=2.0}

Id {FirstName=“Jane”, LastName=“Doe”}

Person {Id=Id {FirstName=“Jane”, LastName=“Doe”}, Age=33}

• When writing record values, it should be possible to refer to field names (possibly
with some permutation):

Pt (x := 1.0, y := 2.0)

Vec (y := 2.0, x := 1.0)

or:

Pt {x = 1.0, y = 2.0}

Vec {y = 2.0, x = 1.0}

• Projections should be available for records, either as (overloaded) functions auto-
matically declared from the record declaration, as it is the case in Opal:

x (Pt (1.0, 2.0)) = 1.0

x (Vec (1.0, 2.0)) = 1.0

Name (Id (“Jane”, “Doe”)) = “Jane”

or using the ML notation:

#x {x=1.0, y=2.0} = 1.0

• Besides projections, pattern-matching should be available to access records. It is
not wise to require that patterns should specify every field of the record. This is
often impractical (say when one field out of many is being accessed) so we may
wish to allow a record wild card pattern (noted “...”).

For example, a projection function extracting the x-coordinate of a point could be
defined as follows:

function x coord (p:Point) : real is
let Point (x:real, ...) = p

in x

endfunc

• Also, it could be useful to have (functional) record updaters, i.e., shorthand nota-
tions that allow to make a copy of an already-existing record value together with
a selective modification of the values of some fields:

Pt { x=1.0, y=2.0 }.{ x=0.0 } = Pt { x=0.0, y=2.0 }

25

For example a function to zero the head of a list might be:

function zerohd (l:NatList) : NatList is
case l in

nil→ nil

| cons r→ cons (r.{ hd=zero })

endcase

endfunc

However, some technical points about records are still under discussion:

• Should records be a new type constructor (solution A), or should they simply
appear as a particular case of the general union type mechanism described in
Section 5.2.5 (solution B)?

Solution A was preferred in ML, whereas solution B12 was adopted in algebraic
languages, such as ACT-ONE and Opal.

• If solution A is chosen, there are still two ways to include records in the base lan-
guage. The first is to treat records as ‘first class citizens’ (Solution A1), the second
is to restrict records to the arguments of constructors and functions (Solution A2).

The difference in syntax between A1 and A2 is small, but makes a large difference
to the type system:

– Solution A1 allows “anonymous” records, i.e., records which are not bound
to a given constructor name. For instance, with the above sample definitions,
expression ‘{x=1.0, y=2.0}’ is legal and its type is ‘{x:real, y:real}’; it is
different from expression ‘Pt {1.0, 2.0}’, the type of which is ‘Point’.

Problems occur when Solution A1 is used together with record wildcard (for
pattern-matching), or together with record updating. In a monomorphic type
system, these present no difficulties but in a polymorphic type system it is no
longer obvious what the principal type of a function with record wildcards
or record updating should be.

For example, it is impossible to give a principal type to the following func-
tions:

function getage { age=x, ... } is x endfunc
function updateage { person=p, age=x } := p.{ age=x } endfunc

because there are infinitely many record types having fields ‘age’ and ‘per-
son’. The problem is similar to the one of mixing overloading and polymor-
phism (except that overloading only allows for a finite number of principal
types for an expression).

There are a number of existing solutions to this problem in the literature,
such as bounded polymorphism, row variables, and record extension types.
However, these all add complexity to the type system.

12in which records are simply as sums of products types with a single variant

26

– Solution A2 is more restrictive than Solution A1, in the sense that record
values can only occur as arguments of constructors or functions.
In this respect, Solution A2 and Solution B are almost identical. The main
difference relies in the fact that Solution B allows functions and constructors
with several arguments (as in existing LOTOS), whereas Solution A2 is based
upon the ML approach, in which functions and constructors have a single
argument (this argument can be of type record when it is necessary to pass
several arguments to the function or constructor).
This has a mild consequence on the way of thinking the above notations
(e.g., record aggregates, projections, wildcard patterns, etc.). In Solution A2,
these notations are attached to records themselves, whereas in Solution B
they are rather attached to constructor invocations.

5.3 Abstract syntax(es) for the base language

In this section, we review some features which could form the basis of an abstract syntax
of the data language for E-LOTOS.

In many cases, it is mentioned that (at least) two possible solutions exist and are still
under discussion. These two approaches are respectively numbered 1 and 2. The first
one is motivated by the idea of keeping, as much as possible, some compatibility with
existing LOTOS, whilst turning to a functional approach as advocated in [26] or in the
design of Opal. The second approach is motivated by the idea of being compatible with
SML.

We tried to present these two approaches with similar notations, so as to ease the
comparison by highlighting similarities and differences. We also put the discussion
at the level of abstract syntax, rather than concrete syntax. The keywords and other
notations used in the syntaxes are not firmly decided.

At least six important concepts should appear in the abstract syntax:

• Type expressions

• Data type declarations

• Patterns

• Function declarations

• Constant declarations13

• Expressions (called ‘value expressions’ in the LOTOS standard)

We present them in turn in the following subsections.
In addition, we may wish to allow an exception mechanism. One such is also de-

scribed below.

5.3.1 Notations

In the sequel, we will use the following notations for various classes of identifiers used
in the base languages (these classes correspond to the terminal symbols of the abstract
syntax).

13In the first approach, there is no notion of constants: as it is the case in ACT-ONE, constants are
simply functions of arity zero

27

symbol domain meaning abbreviations

Var variable identifiers X
Fun operations identifiers F
Con constructors identifiers C
Srt sort identifiers S
Pty polymorphic type identifier Y
Lab field identifiers L

We will also define the following classes of non-terminal symbols:

symbol domain meaning abbreviations

Typ type expressions T
Tdec type declarations Dt

Fdec function declarations D f

Cdec constant declarations Dc

Exp expression E
Pat patterns P

Note: Since we are giving an abstract syntax, we will not specify a bracketing conven-
tion. This will be provided in a concrete syntax.

5.3.2 Type expressions

There are two possible approaches for type expressions:

1. In the first approach, a type expression is nothing but a sort identifiers (possibly
an identifier of a predefined sort, such as bool, etc.). In such case, we have:

T ::= S

2. In the second approach, a type expression is either a polymorphic type variable,
or a record type, or an instantiated polymorphic type:

T ::= Y

| {L1 : T1, ...,Ln : Tn}

| T1...Tn S

Note: n is allowed to be 0, so {} and S are types.

Note: in the absence of polymorphism, the rule “T ::=Y” should be removed, and
the rule “T := T1...Tn S” should be replaced by “T ::= S”.

Note: in the presence of polymorphic record update, we should extend the type
system with one of the treatments of polymorphic records discussed in Sec-
tion 5.2.11.

28

5.3.3 Data type declarations

Symmetrically, there are two possible approaches for data type declarations:

1. In the first approach, a data type S is declared to be either synonymous of another
data type S′, or the union of p constructors C1, ...,Cp (each constructor Ci having
ni arguments of respective names Li

j and respective types T i
j , each Ci returning a

result of type S):

Dt ::= sort S is

S′

endsort

| sort S is

C1(L
1
1 : T 1

1 , ...,L
1
n1

: T 1
n1
)

...

Cp(L
p
1 : T p

1 , ...,L
p
np

: T p
np
)

endsort

Note: one shall have p≥ 1 (at least one constructor).

Note: as in LOTOS, a constructor Ci may have zero arguments (i.e., ni = 0). If all
constructors have arity zero, then S is an enumerated type.

Note: as in LOTOS, constructors can be declared to be infixed.

Note: of course, type definition can be recursive, i.e., some T i
j can be equal to S.

Note: in Opal, it is not allowed to declare a data type S identical to another data
type S′.

2. In the second approach, a type constructor S is declared to be either synonymous
of another data type T , or the union of p constructors C1, ...,Cp each with argu-
ment type Ti. Types may be parameterized by m type variables Y1, ...,Ym:

Dt ::= datatype Y1...Ym S ==

T

endtype

| datatype Y1...Ym S :=

C1 of T1

| ...

|Cp of Tp

endtype

Note: m can be equal to zero.

Note: p must be greater or equal than 1.

Note: alternatives of the form “T ′i Ci T ′′i ” could be added to handle infix construc-
tors.

29

Note: in absence of polymorphism, the word “Y1...Ym” should be omitted.

Note: we can elide “of {}”, writing C for C of {}.
Note: we should consider how to “cluster” mutually recursive datatype declara-
tions.

5.3.4 Patterns

Patterns are a restricted form of expressions that are used in the context of pattern-
matching. The structure of patterns must determined at compile-time in order to take
advantage of efficient pattern-matching compiling techniques. Therefore, patterns can
only contain constructors and bound variables14; functions and free variables15 may not
be used in patterns (see also the note below).

The declarations of patterns are similar in both approaches:

1. In the first approach, a pattern is either a named bound variable X of type T , or
an anonymous variable taking any value of type T , or a constructor C applied to
a list of pattern arguments P1, ...,Pn (the labels L1, ...,Ln of the constructor fields
can be explicitly mentioned, possibly with some permutation, and the list of fields
can be incompletely given, which is noted “. . . ”). Finally the “of” notation can
be used to coerce the type of a pattern:

P ::= X : T

| any T

| C(P1, ...,Pn[, . . .])
| C(L1 := P1, ...,Ln := Pn[, . . .])
| P0 of T

Note: As in LOTOS, constructors can have zero arguments (i.e., constants). They
can also be infixed.

Note: For convenience, we could relax the constraints by allowing non-
constructor functions to be used in patterns, provided that the these functions
are defined as finite terms containing only constructors and variables. In a very
simple example, assuming that naturals are defined with ‘0’ and ‘succ’, we could
allow constant functions such as:

function two is succ (succ (0)) endfunc

and simple functions such as:

function plus 2 (x:Nat) is Succ(Succ(x)) endfunc

to be used in patterns.

2. The second approach essentially differs in its treatment of records, which can be
used anonymously, and type annotations, which are optional.

Making type annotations optional can make functions more compact, for example:

14i.e., variables declared inside the pattern
15i.e., variables declared outside of the pattern

30

function sum (x:Nat List) :=

sum’ (x,0)

where function sum’ (x:Nat List, a:Nat) : Nat :=

case x in

nil→ a

| cons (cell : { hd:Nat, tl:Nat List })→ sum’ (cell.tl, a + cell.hd)

endcase

endfun

endfun

compared to:

function sum x :=

sum’ (x,0)

where function sum’ (x,a) :=

case x in
nil→ a

| cons cell→ sum’ (cell.tl, a + cell.hd)

endcase
endfun

endfun

Since module signatures require explicit types, type annotations are only optional
within module bodies (and are hence localized).

On the other hand, it is often seen as good software engineering practice to give
full type annotations to programs for purposes of readability and ensuring program
correctness. For example, in the above, the reader has to be practiced at reading
tail-recursive code before it is ‘obvious’ what the types of ‘x’ and ‘a’ are.

P ::= X

| any

| CP

| {L1 = P1, ...,Ln= Pn[, . . .]}
| P of T

Note: if we allow “X : T” and “any T” as shorthand for “X of T” and “any of T”,
and use the shorthand for tuples described in Section 6.10 then this is an extension
of the previous proposal.

Note: the syntax for record patterns may lead to the problems with type inference
described in Section 5.2.11.

Note: a rule of the form “P ::= P1 C P2” could be added to handle infix construc-
tors.

31

Note: we could add the ability to write C for C{} in patterns. This makes pro-
grams easier to read, but at the cost of adding an ambiguity between variables and
constant constructors. In SML this ambiguity is resolved in favour of constructors
(although this means the semantics of a term is dependent on its context).

Note: Another possible shorthand (that exists in SML) would be to replace “Li =
Pi” in record patterns when Li is syntactically identical to Pi.

Note: the syntax of patterns could be extended by in several ways:

• Boolean guards could be introduced in patterns, in order to have conditional pat-
terns,

• Functions could be allowed in patterns, as well as constructors, provided that the
value expressions defining the results of these functions are themselves patterns.

5.3.5 Function declarations

Symmetrically, there are two possible approaches for function declarations:

1. Either a function F is declared to have n formal parameters with names X1, ...,Xn

and types T1, ...,Tn, and to return a result of type T defined by some expression E:

D f ::= function F(X1 : T1, ...,Xn : Tn) : T is
E

endfunc

2. Or, following the ML approach, a function F can be declared to have arguments
in some pattern P and to return a result of type T defined by some expression E:

D f ::= function FP[: T] is
E

endfun

Note: the type decorations on functions are optional in this version, and should
be inferred.

Note: we should consider how to extend the language with mutually recursive
function declarations.

5.3.6 Constant declarations

Constant declarations allow a way to bind variables to values, which are computed from
expressions. A constant declaration just binds an expression to a pattern, similar to “let”
declarations below:

Dc ::= constant P = E endconst

Note: these are called “value declarations” in SML.
Note: there are two possible dynamic semantics for constant declarations: either

they are evaluated at declaration time, or when they are used. The first possibility fits

32

with the call-by-value semantics, but means that it is possible for constant declarations to
diverge. The second possibility means that constant declarations are just syntactic sugar
for thunks (that is functions with a dummy argument), in the same way that constructor
constants are syntactic sugar for constructor functions with a dummy argument.

5.3.7 Expressions

As regards value expressions, both proposals share a number of common points. A value
expression can be either a constant denotation (i.e., a number, a string...), or a variable,
or a “case” statement, or an “of” coercion:

E ::= constant denotation

| X

| case E0 in
P1[when E1]→E ′1
| ...

| Pn[when En]→E ′n
endcase

| E0 of T

Note: the evaluation of the “case” statement is deterministic. It selects the first pattern
Pi (i.e., the smallest index i) such that E0 matches Pi and the boolean guard Ei is true.
The result returned is E ′i . Variables bound in Pi are visible in Ei and E ′i . If no alternative
matches, the semantics is to be defined according to the discussion in Section 5.2.7
above.

Note: It might be desirable to allow several patterns in the same case alternative,
e.g., “Pi

1|...|P
i
mi
[when Ei]→E ′i ”. This would allow a proper factorization of identical

processings. This is only possible if, for a given i, all the patterns Pi
j declare exactly the

same set of variables, and with the same types.
Note: the “case” construct should have a symmetric counterpart in behaviour ex-

pressions.
However, the approaches differ on the following points:

1. In the first approach, an expression can be also a constructor application or a
function application:

E ::= ...

| C(E1, ...,En)

| C(X1 := E1, ...,Xn := En)

| F(E1, ...,En)

| F(X1 := E1, ...,Xn := En)

33

Note: constructors and functions without arguments, or infixed, are included by
these rules.

Note: also, the tests for equality (and inequality) between two expressions are
included here as a special case of function application.

Note: As in Ada, the names of the formal parameters of function and constructors
can be mentioned in the application.

Note: This syntax can be enriched with shorthand notations such as testers, selec-
tors, and updaters, as explained in Section 6.8.

2. The second approach mainly differs from the first (up to record syntax and syn-
tactic sugar for tuples) by allowing anonymous records:

E ::= ...

| C E

| F E

| {L1 = E1, ...,Ln= En}

| E0.{L1 = E1, ...,Ln= En}

Note: Two rules of the form “E ::= E1 C E2” and “E ::=E1 F E2” should be added
to handle infix constructors and infix functions.

Note: we could add the ability to write C for C{} in expressions. This is in line
with the shorthand in type declarations and patterns, although differs from SML.

5.3.8 Exceptions

Exceptions give a way of flagging run-time errors, and (optionally) handling them. It is
not obvious whether the core language should include exceptions or not.

If we do decide to include them, then we need a new class of terminals ‘Exn’ of
exception identifiers, ranged over by N, and a new class of non-terminals ‘NDec’ of
exception declarations, ranged over by Dn.

Exception declarations just declare a new exception name:

Dn ::= exception N

which can then be raised inside expressions:

E ::= . . .

| raise N

Optionally, they can be handled by exception handlers:

E ::= . . .

| E1 handle N → E2

Note that exception handlers introduce extra semantic complexity to the core language,
and require more complex interaction with the behaviour language.

34

5.4 Semantics

5.4.1 Static semantics

We should provide a static semantics for the core language. This should be formally
defined, and should produce a language which is guaranteed to be free of run-time type
errors.

At present, the form of the type system is not completely determined. This is largely
due to the presence of overloading or polymorphism, which has yet to be decided, and
to the problems of record subtyping.

For instance, the two approaches for the abstract syntaxes of expressions lead to
different definitions of type equivalence:

• In the first approach, type equivalence is based on name equivalence (two type
expressions are equivalent iff they have the same names). This approach is also
found in languages like LOTOS, Pascal, Ada, etc.
• In the second approach, type equivalence follows SML approach and uses a com-

bination of name equivalence and structure equivalence.

5.4.2 Dynamic semantics

We have to define the dynamic semantics of the core language in a closing context, that is
one which contains bindings for all the free variables, function definitions and datatype
definitions.

Also, unless polymorphism is selected, the dynamic semantics should be defined
only for fully-actualized value expressions, i.e., expressions that not contain “generic”
features. This is already the case in ACT-ONE.

As general requirement, the dynamic semantics of the core date language should:

• be formally defined,

• be deterministic, in the sense that the same expression always evaluates the same
way in the same memory context,

• be strict, i.e., based on call-by value: the arguments of a constructor or a function
have to be evaluated first, before the constructor or the function is applied
• ensure that any variable is initialized before it is used (this nice property already

exists in LOTOS),
• and be implementable.

Whatever the approach chosen for the abstract syntax of the data language (see Sec-
tion 5.3), the dynamic semantics should be fairly simple in both cases.

The precise definition of the dynamic semantics will depend upon the decision of
introducing or not exceptions in E-LOTOS (see Section 5.2.7 above), as well as the
semantics chosen for non-termination (see Section 5.2.6 above).

Also the dynamic semantics can be either an operational one, or a denotational one.
In the sequel, let V be a value, i.e., a term containing only constant denotations (e.g.,

numbers, etc.) and constructors. Let C be a context, i.e., a “storage” function mapping
identifiers to their bindings.

In an operational approach, the dynamic semantics of expressions could be possibly
defined by a predicate of the form:

35

• ‘C ` E ⇒ V ’ for ‘in context C, E terminates with value V ’, and

• ‘C ` E ⇒ error’ for ‘in context C, the result of E is undefined’, if exceptions are
not introduced in E-LOTOS,

or,

‘C ` E⇒ raise t’ for ‘in context C, e raises exception t’, if exceptions are included
in E-LOTOS.

For example, the dynamic semantics of an expression E reduced to a variable X should
be defined by the following rule:

C(X) = V
C ` X ⇒ V

which means that, if variable X has value V in context C, then expression X should
evaluate to V in C.

In a denotational approach, the dynamic semantics of expressions is defined as a
fixed-point. The result of the evaluation of an E in a context C is noted “[[E]]C”. It can
be either equal to:

• a value V , if the evaluation terminates normally,

• a special value “error” (or “raise t”) if the evaluation is undefined,

• “⊥” (the bottom value of the domain) if the evaluation does not terminate.

For example, the dynamic semantics of an expression E reduced to a variable X is
defined by:

[[X]]C =C(V)

6 Shorthand notation

6.1 Overview

In this section we present some shorthands which make specifications simpler to read
and write. Some of these shorthands make use of features of the base environment and
the module system.

6.2 Usual abbreviations and rich-term syntax

The most frequent complaint about ACT-ONE is the lack of abbreviated notations for:

1. integer, real and rational notation,

2. characters and strings.

3. list, sets, arrays, bags, etc.

Such abbreviations should be introduced in E-LOTOS. For instance, it should be possi-
ble to write abbreviated lists of character strings as simply as in SML:

[”abc”,”DE”]

instead of ACT ONE verbose notations:

36

cons (a l + (b l + (c l + <>)), cons (d u + (e u + <>), nil))

It is not decided yet whether such notations should be available only for the built-in types
defined in the base environment, or could also be generalized to user-defined types.

Charles Pecheur’s proposal for rich-term syntax [26] allows abbreviated notations to
be used for both built-in and user-defined types. It provides mixfix notations like lists
and strings as general syntax facilities rather than bound to built-in types.

For example, the list notation ‘[a, b, c]’ is nothing but a macro-definition that expands
to conventional prefix notation:

cons (a, cons (b, cons (c, nil)))

This notation is merely syntactic sugar; its expansion is done at a purely syntactic level,
notwithstanding the meaning and type of ‘a’, ‘b’, and ‘c’. Afterwards, type-checking is
applied to the expanded expression.

The notation for empty lists introduces potential type-checking ambiguities. Some
form of coercion (as the “of” clause of LOTOS) is probably needed:

[] of Bool List
[] of Int List
[] of Real List

If operation overloading is allowed, the list notation facility can be extended to any
user-defined type that embodies ‘nil’ and ‘cons’ operations, whatever the meaning of
‘nil’ and ‘cons’ is:

[1, 2, 3] of Int List
[1, 2, 3] of Int Set
[1, 2, 3] of Int Sequence

Generic special notations may also be used for defining different kinds of characters and
strings.

They might be used to define record projections and record updaters.
Rich-term syntax features causes no more penalty for language parsing than if they

were restricted to built-in types.
We propose to investigate whether a rich term syntax is useful and practical.

6.3 Infix functions

Some infix functions are required, at least for the usual arithmetic, logical and compar-
ison operations.

The existence of infix operations causes some syntactic issues, some of which have
already been mentioned in Section 4.2.

For instance, it is not possible to have both user-defined infix operators (e.g., the
binary “−”) and user-defined prefix operators (e.g., the unary “−”) at the same time.
Otherwise, the language becomes ambiguous. For instance, expression “a b c” could be
parsed either as “a (b (c))” or “(a) b (c)”.

In order to allow static parsing of E-LOTOS, several approaches could be taken:

37

• The LOTOS philosophy could be kept as is. ACT-ONE allows only user-defined
infix operators, whereas prefix operators have to be declared as functions with a
single argument. Therefore, “a b c” is parsed as “(a) b (c)”. Furthermore all infix
operations have equal precedence and associate to the left.

• Alternatively we could adopt the Miranda or Haskell approaches of having sepa-
rate lexical classes for infix operators of different precedences and associativities.

We propose to find a syntax for infix operators which is simple and independent of
context.

6.4 Conditional shorthands

We propose to introduce two “pseudo-operators” boolean operators named “andthen”
(or “andalso”) and “orelse”, respectively defined as follows:

X andthen Y =
case X in

true→ Y
| false→ false

endcase

X orelse Y =
case X in

true→ true
| false→ Y
endcase

These shorthands are similar to those that exist in Ada or SML. They differ from the
built-in “and” and “or” operators because they are not strict: the second argument is
not evaluated before applying “andthen” or “orelse” and it might not be evaluated at
all. These shorthands are useful in expressions such as:

(x <> 0) andthen (1 / x < epsilon)
(queue = nil) orelse (tl queue = nil)

We could also consider another shorthand, noted “⇒” and defined as:

X ⇒ Y =
case X in

true→ Y
| false→ true

endcase

38

6.5 “Let” statements

We can introduce a let statement as a particular form of of the case statement:

let P = E in E0 =
case E in

P→ E0
endcase

The semantics is the following: expression E is evaluated and matched against pat-
tern P. The variables declared in P are bound to appropriate values and E0 is evaluated.

The proposed “let” statements generalizes the “let” statement that exists in LOTOS
behaviour expressions: it can be obtained when all pattern Pi have the form “Xi : Ti”.
But the proposed “let” statements also supports pattern-matching, as in:

function norm (v:vector) : real is
let Vec (x:real, y:real) = v
in (x*x + y*y)

endfunc

For example a function to compute the middle of two points might be:

function middle (p1, p2:Point) : Point is
let Point (x1, y1:real) = p1, Point (x2, y2:real) = p2
in Point ((x1 + x2) / 2, (y1 + y2) / 2)

endfunc

The let statement can be extended to support multiple patterns. In such case, it has
to be expanded into nested case statements:

let P1 = E1, ..., Pn = En in E0 =
case E1 in

P1 →
...
case En in

Pn → E0
endcase
...

endcase

However, to remain compatible with existing LOTOS, we should ensure that all the
variables declared in patterns P1, ...,Pn are pairwise distinct (which is not ensured by
the translation into nested case statements, where the innermost declarations hide the
others). Provided that additional verifications are included in the static semantics phase,
it is not needed to include let in the core language.

If the language supports anonymous records (and hence tuples using the shorthand
in Section 6.10) then the translation of multiple patterns can be:

39

let P1 = E1, ..., Pn = En in E0 =
case (E1, ..., En) in

(P1, ..., Pn)→ E0
endcase

Note: In SML, the “let” statements allows to declare many different objects (e.g.,
variables, types, functions, exceptions...), the visibility of which is local to the expression
E0. A “reasonable” subset must be identified for E-LOTOS.

6.6 “Assert” statements

For specification and verification purpose, it might be useful to introduce boolean as-
sertions expressing invariants in E-LOTOS descriptions. This could be done using a
“assert” statement defined as follows:

assert E1, ..., En in E0 =
case E1 ∧ ... ∧ En in

true→ E0
endcase

If all the boolean assertions E1, ...,En are true, then E0 is evaluated. Otherwise, the
result is undefined (because no alternative exists in the case statement), leading either to
a run-time error or to an exception, depending on the semantics chosen.

Note: In the definition of assert, it would be possible to use andthen in place of
“∧”.

For instance, assertions can be used to express pre-conditions on the arguments of a
(partial) function:

function pred (x : Nat) : Nat is
asssert x > 0 in x – 1

endfunc

function modulo (x, y: Int) : Int is
assert y <> 0 in ...

endfunc

or to post-conditions on the result returned by a function:

function sum (x, y : Nat) : Nat is
let result:Nat = x + y
in assert result >= x, result >= y
in result

endfunc

Note: the expression “assert false in E”, where E is any value expression, explicitly
triggers a run-time error or the raise of an exception.

Note: if “assert ... in E” is introduced in the data part of E-LOTOS, then a similar
construct “assert ... in B” might be desirable for the behaviour part.

40

6.7 If-then-else statements

We propose to introduce an “if-then-else” statement of the form:

if E0 then E ′0
elsif E1 then E ′1
...
elsif En then E ′n
else E ′n+1
endif

Note: Keyword “fi” could be used in place of “endif”.
Note: One may have n= 0 if there is no “elsif” parts.
Semantically, the “if-then-else” statement would be defined as syntactic sugar for a

“case” statement:

if E0 then E1 else E2 endif =
case E0 in

true→ E1
| false→ E2

endcase

More complex “if-then-else” statements, with “elsif” parts, are expanded as follows:

if E0 then E ′0
elsif E1 then E ′1
...
elsif En then E ′n
else E ′n+1
endif

=
if E0 then E ′0
else if E1 then E ′1
...
else if En then E ′n
else E ′n+1
endif endif ... endif

Note: A proposal exists to introduce a similar “if-then-else” statement in the behaviour
part of E-LOTOS

6.8 Testers, selectors, and updaters

Tester functions could be defined automatically to check the top-level constructor of a
union type. For instance, we could have for each constructor C of a given type T , a
predicate “test C (E)” to check whether a value E of type T has the form “E =C(...)”.
Using the first approach to abstract syntax, tester functions can be defined as special
forms of case statements:

41

function test C (E:T) : bool is
case E in

C (...)→ true
| any T→ false
endcase

endfunc

Similarly, selector functions (or projections, or lookup functions) can also be derived
automatically from data type definitions. Using the second approach to static semantics,
we can define the projection #LE field L from a record E:

case E of
{ L=E ′, ... } → E ′

endcase

For example:

function append { front, back } :=
case front in

nil→ back
| cons cell→ cons { hd=#hd cell,

tl=append { front=#tl cell, back=back} }
endcase

endfun

Using the first approach to static semantics, the situation is almost identical if we
only only consider record types (i.e., type with a single constructor) or if we assume that
all the constructors of the same type have different names for their formal parameters.
In such case, for each constructor C of type T and for each formal parameter X : T ′ of
C, we can define a selector function:

function select X (E:T) : T’ is
case E in

C (X:T’ ...)→ X
endcase

endfunc

The Opal language is less restrictive and puts no restriction on the names of construc-
tor arguments. The situation is slightly more complex since is leads to selector functions
that can be overloaded and/or may contain case statements with several alternatives.

Similarly, updaters could be defined simply for record types (or even union types).
For a given constructor C, the formal arguments of which are X1 : T1, ...,Xn : Tn, we can
have the following notation:

E.{X j1 := E j1, ...,X jp := E jp}

where { j1, ..., jp} is a subset of {1, ...,n}. The result of this notation is the expression
E in which the fields X j1, ...,X jp have been given values E j1, ...,E jp respectively. This
notation is equivalent to:

42

let C(V1 : T1, ...,Vn : Tn) = E in

let (∀i ∈ {1, ...,n})V ′i : Ti = (if i ∈ { j1, ..., jp} then Ei else Vi)

in C(V ′1, ...,V
′
n)

6.9 Other record shorthands

The remaining shorthand notations in this section are mainly concerned with the SML-
like notation for the core language, as defined in Section 5.3. These shorthand notations
are motivated by the idea of introducing in E-LOTOS some of the convenient features
that exist in SML.

As a shorthand to avoid writing many patterns ‘L = X’, we could adopt the SML
abbreviation of ‘L’ for ‘L= L’. For example an append function can be written:

function append { front, back } :=
case front in

nil→ back
| cons { hd, tl } → cons { hd, tl=append { front=tl, back } }
endcase

endfun

6.10 Tuples

Using the second approach for abstract syntax, we can include tuples as syntactic sugar
for records with integer fields names, for example:

int * bool == { 1:int, 2:bool }
(5, true) == { 1=5, 2=true }

This is the same abbreviation used by SML, although other languages like Caml, Haskell
or Miranda, have tuples as primitive types. Making tuples abbreviations for records
simplifies the core language. The proposed abbreviations are:

(T1 ∗ · · ·∗Tn) =
{ 1:T1, ..., n:Tn }

(E1, ..., En) =
{ 1:E1, ..., n:En }

(P1, ..., Pn) =
{ 1:P1, ..., n:Pn }

For example, the List datatype can be defined as:

datatype ’a List :=
nil
| cons of (’a * ’a List)

endtype

and a function to append two lists is:

43

function append (f,b) :=
case f in

nil→ b
| cons (h,t)→ cons (h, append(t,b))
endcase

end

6.11 Pattern-matching function declarations

As we have seen, it is very common for a function declaration to begin with a case
statement. We can provide an abbreviation for this, similar to the pattern-matching
syntax common to many functional programming languages. For example:

function
append (nil,b) := b
| append (cons (h,t), b) := cons (h, append (t,b))

endfun

The proposed abbreviation is (when X is not free in Ei):

function
F P1 := E1
| ...
| F Pn := En

endfun =
function F X :=

case X in
P1 → E1
| ...
| Pn→ En

endcase
endfun

7 Modules

7.1 Overview

LOTOS has no general module facility, although ACT ONE type declarations can be
seen as modules for datatypes. There is no export hiding (everything defined in the type
is visible) nor import hiding (everything in the inherited types is accessible). Formal
types and actualization provide for parametric modules.

One of the tasks of the E-LOTOS work item is to investigate modularization of
LOTOS specifications.

In Section 7.2, we attempt to list some questions and and approaches relevant to
the design of E-LOTOS modules. The answers to these questions should highlight the
design principles for modules.

In Section 7.3, we present an approach based on SML modules, with some adapta-
tions and extensions to fit E-LOTOS requirements.

44

7.2 Language design

We enumerate here a (possibly incomplete) list of questions which could be a base for
design decisions. This list is divided into thematic sub-lists.

7.2.1 Separation between interfaces and modules

Question Q1.1: ACT ONE types do not have the notion of interface. Do we keep
this approach or do we decide to introduce a separation between “declarations”16 and
“implementations”17? The first approach is convenient for specifying “in the small”
whereas the second one is suitable for specifying “in the large”.

Question Q1.2: If the answer to Question Q1.1 is ‘yes’, do we allow several modules
(i.e., possible implementations) for a given interface?

Question Q1.3: If the answer to Question Q1.1 is ‘yes’, do we allow a given module to
be viewed through different interfaces?

Question Q1.4: If the answer to Question Q1.1 is ‘yes’, do we force the specifier to
write explicitly an interface for each module, or do we provide an (optional) mean to
synthesize the interface from the module’s description automatically?

7.2.2 Contents of modules (and interfaces)

Question Q2.1.a: What kind of objects should be contained in a module: types (or
sorts), constructors, functions, exceptions, processes, channels (or gate types), etc.?

Question Q2.1.b: If the answer to Question Q1.1 is ‘yes’, what kind of objects should
be declared in an interface?

Question Q2.2.a: Do we allow algebraic equations to be declared in modules?

Question Q2.2.b: If the answer to Question Q1.1 is ‘yes’, do we allow algebraic equa-
tions to be declared in interfaces?

Question Q2.3.a: Do we allow a module to contain definitions of other modules (and
possibly interfaces), i.e., do we accept nested modules and interfaces?

Question Q2.3.a: If the answer to Question Q1.1 is ‘yes’, do we allow an interface to
contain definitions of other interfaces (and possibly modules), i.e., do we accept nested
interfaces and modules?

Question Q2.4: If the answer to Question Q1.1 is ‘yes’, and if types may appear in inter-
faces, how are types declared in interfaces? Is it possible to declare the type constructors
together with the type in the interface?

Question Q2.5: If the answer to Question Q1.1 is ‘yes’, and if constructor declara-
tions are allowed in interfaces, which profile informations about the constructors should
appear in an interface?

16hereafter called interfaces or signatures
17hereafter called modules or structures

45

Question Q2.6: If the answer to Question Q1.1 is ‘yes’, and if function declarations are
allowed in interfaces, which profile informations about the function should appear in an
interface?

Question Q2.7: If the answer to Question Q1.1 is ‘yes’, and if process declarations are
allowed in interfaces, which profile informations about the process should appear in an
interface?

Question Q2.8: Where are modules (and interfaces) declared? Is it allowed to declare a
module (or an interface) in a value expression? In a behaviour expression? Alternatively,
should an E-LOTOS description be simply a flat collection of modules (and interfaces)?

7.2.3 Composition of modules (and interfaces)

Question Q3.1.a: It should be possible to reuse existing modules to build new mod-
ules. This determines a dependency relation between modules. Should the graph of this
relation be a collection of DAGs18 (i.e., modules are combined together in a hierarchi-
cal manner) or could this graph contain circuits (i.e., mutually recursive modules are
allowed).

Question Q3.1.b: If the answer to Question Q1.1 is ‘yes’, same question for interfaces.

Question Q3.2.a: In the sequel, we will call “module combinators” those constructs
that allow to build new modules. In ACT-ONE, for instance, module combinators are:
import, renaming, and actualization. The list of desirable module combinators will
discussed in further questions.

In ACT-ONE, applying a combinator can only be done by defining a new module
(i.e., type) and by giving a new name to this module. Should we keep this approach, or
should we also allow combinators to be applied without necessarily giving a name to
the result? This would lead to “module expressions” (as in Ed Brinksma’s thesis and the
LOTOSPHERE proposal, for example), thus giving an “algebraic” flavour to module
combinators.

Question Q3.2.b: If the answer to Question Q1.1 is ‘yes’, same question for interfaces.

Question Q3.3.a: If the answer to Question Q3.2.a is ‘yes’, do we allow module com-
binators to be composed in arbitrary manner, or do we identify some (syntactic or se-
mantic) restrictions?

Question Q3.3.b: If the answer to Question Q3.2.b is ‘yes’, same question for inter-
faces.

7.2.4 Abstraction, hiding

Question Q4.1.a: Should it be possible to declare objects that are local to a module
and not visible outside of the module? If so, should it be an explicit declaration in the
module (e.g., with a “local” keyword) or an implicit one (e.g., all the objects declared
in a module and not declared in the interface are local to the module)?

18Directed Acyclic Graphs

46

Question Q4.1.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.
Would it make sense to have objects local to an interface?

Question Q4.2.a: Should we have an “hiding” combinator that would restrict the list of
objects exported by a module by hiding some of them? If so, what kind of objects could
be hidden (types, functions, processes, etc.)?

If so, how should the hiding be specified? There are at least four possibilities: an
explicit list of objects to be hidden — or not to be hidden — or an interface defining the
objects to be hidden — or not to be hidden.

In particular, do we allow to use an interface in order to “filter” the list of objects
exported by a module: this would allow to have different views of the same module.

Question Q4.2.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

Question Q4.3: Besides hiding, should we have a way to redefine an object exported
by a module, i.e., to replace its implementation by another one (the redefinition feature
is often used in object-oriented languages)?

Question Q4.4: Are the constructors of a given type systematically exported with this
type? Or is it possible to hide some or all of them?

Question Q4.5: Is the the built-in, syntactic equality function for a given type system-
atically exported with this type? Or is it possible to hide it?

7.2.5 Importation, union, enrichment

Question Q5.1.a: We should certainly allow modules to import other modules. Should
we allow multiple imports (i.e., a module can import several other modules)? Should
we allow transitive imports?

Question Q5.1.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

Question Q5.2.a: As a particular case of Question Q3.1.a, should the import depen-
dency graph be a forest (hierarchical module imports), or a collection of DAGs (hier-
archical module imports, but the same module can be imported twice using different
paths), or any graph (possibly with circuits, which would allow mutually recursive im-
ports)?

Question Q5.2.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

Question Q5.3.a: When importing objects from a module, is it possible to specify a
subset of objects to be imported, or not to be imported (selective import)? If so, how
should this subset be specified (by an explicit list, an interface, etc.)?

Question Q5.3.b: If the answer to Question Q1.1 is ‘yes’, same question for interfaces.

Question Q5.4.a: Should it be possible to enrich an existing module with additional
objects? If so, do we ensure persistency, i.e., do we guarantee that the semantics of the
existing module will not be “corrupted” by the objects added?

Question Q5.4.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

Question Q5.5.a: Do we require that all modules are closed, or do we accept that a
module M1 that does not import another module M2 can refer to objects defined in M2?

47

Even if all module definitions are closed, this issue might occur when selective import
is used: for instance if we decide to import a boolean function such as “and”, but not
the bool type itself.

Question Q5.5.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

Question Q5.6.a: When several modules are imported together (directly or transitively),
what are the rules for solving potential name clashes?

Question Q5.6.b: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

7.2.6 Renaming

Question Q6.1.a: Do we keep a renaming functionality for modules, as it exists in
ACT-ONE? If so, what kind of objects should it be possible to rename (types, functions,
processes, etc.)?

Question Q6.1.b: If the answer to Question Q1.1 is ‘yes’, same questions for renaming
interfaces.

7.2.7 Object designation

Question Q7.1: Where several modules are used simultaneously, there is always a risk
of name clashing for the objects exported by these modules. The renaming combinator
of ACT-ONE solves this problem: by renaming objects when needed, name clashes can
be avoided19.

Do we want to keep this approach, or do we want an alternative solution, in which
objects names can be prefixed with the name of the module (or interface) from which
they are exported (qualified notations)? In the latter case, how do qualified notations
support nested modules and transitive imports? Is there a mean to get rid of qualified
notations?

7.2.8 Genericity

Question Q8.1: Do we allow generic modules? What kind of “formal” objects can be
used to parameterize modules (e.g., types, constructors, functions, processes, equations,
etc.)?

Question Q8.2: If the answer to Question Q1.1 is ‘yes’, same questions for interfaces.

Question Q8.3: How are “formal” objects specified? Using explicit lists of formal ob-
jects, as in ACT-ONE and Opal? Or using interfaces, as in the LOTOSPHERE proposal
and SML? Can formal objects be grouped in modules (or interfaces)?

Question Q8.4: Does the actualization mechanism support partial instantiation?

19Renaming is also useful to give abbreviations for imported objects

48

7.2.9 Relationship with the external environment

Question Q9.1: We agree to have externally defined objects. How do we import external
objects? Which objects (modules, interfaces, types, constructors, functions, processes,
etc.) can be external? Do we allow that some objects in a module could be external,
whereas the others not? Can we have external formal (or polymorphic) objects?

Question Q9.2: Do we want to support separate compilation in E-LOTOS? Is the state
of the art sufficiently mature for this? What are the requirements laid by separate com-
pilation on the modules system?

7.2.10 Compatibility with ACT-ONE

Question Q10.1: Which kind of compatibility is provided for LOTOS “type” declara-
tions? In particular, to which extent does the new modules language support ACT-ONE’s
generic type declarations?

Question Q10.2: Which kind of compatibility is provided for LOTOS “specification”
declarations?

Question Q10.3: In the behaviour part of E-LOTOS, do we keep the possibility to
declare processes and types nested in process declarations, or do we only allow “flat”
process definitions and use instead the abstraction facilities provided by the modules
language?

7.2.11 Semantics

Question Q11.1: ACT-ONE’s type declarations are fully handled at the static semantics
level. Do we agree to maintain this property, so that the semantics of E-LOTOS modules
should be a concern of static semantics only, with no implication on dynamic semantics?

Question Q11.2: ACT-ONE type declarations are fully orthogonal with the behaviour
part and, to a large extent, orthogonal to the data part. This is ensured by the so-called
flattening function that translates a LOTOS description structured in types (i.e., modules)
into a “flat” LOTOS description without types. Do we intend to keep the same approach,
so that the module part of E-LOTOS can be orthogonal to the data and behaviour part?

Question Q11.3: The semantics of ACT-ONE types is defined by a function that, for a
given type T , computes the signature of T , i.e., the set of all (formal and non-formal)
objects defined in T . Should we follow a similar approach for E-LOTOS — the signature
function could be defined by induction (or possibly, as a fixed-point) on the combinators
of module expressions and return the set of formal, hidden, and visible objects contained
in a module or an interface — or are there other approaches?

7.3 Outline of an SML-based proposal

SML has a stable and powerful modules facility, and it should be possible to allow
process declarations in structures and signatures. This would provide a flexible, well-
understood module system.

49

One of the goals of E-LOTOS is to develop a modularization system, which should
allow for export and import hiding, and for generic modules. The modules used in the
data part should be the same as those used in the behavioural part, so process declara-
tions should be allowed as well as type and val declarations. For abstraction and code
re-use, signatures and generic modules are very useful.

In this section, we do not propose a precise syntax for modules, but the examples
here give the flavour of what one might look like.

7.3.1 Abstraction and signatures

One of the most important properties of a module system is to provide a mechanism for
abstraction. This should allow both import and export abstraction.

The example system described here is based on the SML modules system (and on
McQueen’s abstraction declarations and Sanella’s EML). This provides separate dec-
larations of module signatures and the module implementation.

The signature of a module describes its exports. For example, the Monoid signature
is:

signature Monoid :=
eqtype M
val 0 : M
fun + : M * M→M
eqns forall (x,y,z)→

(0 + x) = x ;
(x + 0) = x ;
((x + y) + z) = (x + (y + z))

endeqns
endsig

There are a number of modules with this signature. The simplest is the one-point do-
main:

module OnePoint : Monoid :=
datatype M := 0 endtype
function 0 + 0 = 0 endfun

endmod

Another is to coerce the natural numbers type (assuming an appropriate ‘Natural’ mod-
ule):

module NatMonoid : Monoid :=
open Natural
datatype M == Nat endtype

endmod

Even though ‘NatMonoid’ is implemented using the natural numbers, this cannot be
used outside the module definition, for example the following will not type check:

NatMonoid.0 = Natural.0

50

Signatures can be extended using include specifications, for example a simple signature
for monomorphic lists is:

signature List :=
include Monoid
eqtype E
fun inj : E→M

endsig

As well as specifying the exports of a module, signatures are also used to specify the
imports of a generic module. For example, a generic lists module can be implemented
as:

signature EqType :=
eqtype E

endsig
generic GenericList (E : EqType) : List :=

open E
datatype M :=

0 | cons of (E * M)
endtype
function

0 + ys := ys
| (x cons xs) + ys := x cons (xs + ys)
endfun
function inj x :=

x cons 0
endfun

endgen

7.3.2 Equality types

Equality is an important concept in LOTOS, since it is used implicitly by synchroniza-
tion. So far, all types allow equality, but modules can introduce data abstraction, so it
is no longer possible to see the internal representation of a datatype (for example sets
might be represented as binary trees).

In a higher-order functional language, there are two sources of non-equality types:
higher-order types, and abstract datatypes. If the E-LOTOS data language is restricted to
first-order functions, then the only source of non-equality types will be data abstraction.
For example, if we declare:

signature Set :=
type ’a Set
const empty : ’a Set
fun insert : ”a * ”a Set→ ”a Set
fun delete : ”a * ”a Set→ ”a Set
fun member : ”a * ”a Set→ bool

endsig

51

then we may wish to stop sets being compared for syntactic equality with ‘=’, since this
would give away implementation details.

For this reason, it may be desirable to distinguish between types which do or do not
admit equality. In a polymorphic language such as ML, this distinction can be reflected
by a new class of equality type variables, which can range over types which admit
equality. For example, the type of ‘=’ is:

fun = : ”a * ”a→ bool

The advantages of making abstract datatypes equality types are:

1. the type system is simpler, and

2. all datatypes can be used in communications between processes.

The advantages of not making abstract datatypes equality types are:

1. data abstraction, and

2. the dynamic semantics may be simpler.

For some applications (for example, implementing sets using binary trees), it is useful to
provide a built-in ordering on all equality types. All equality types in Caml and Miranda
have a built-in ordering.

We propose to make abstract datatypes non-equality types, and not to include an
ordering on equality types.

7.3.3 Nested modules

The SML module system (on which much of the material in this section is based) is
unusual in that it allows modules to be nested in other modules, for example all of the
standard environment from Section 8 could be wrapped into one module with a signature
including:

signature Standard :=
module Boolean : Boolean
module Character : Character
...

endsig
module Standard : Standard external endmod

The modules can the be accessed using nested module expressions, for example the
‘Bool’ type is ‘Standard.Boolean.Bool’.

This extension makes the module system more complex (as described below) and it
is not obvious whether the extra complexity is necessary.

7.3.4 Sharing

Sometimes in building complex specifications it is necessary to build module heirachies
which are graphs rather than trees. When doing this, generic modules often need to
contain sharing information about their parameters. For example, a generic module for
function composition can be defined:

52

signature Morphism :=
type Source
type Target
fun f : Source→ Target

endsig
generic Compose (

F : Morphism, G : Morphism,
sharing F.Target = G.Source

) :=
datatype Source == F.Source endtype
datatype Target == G.Target endtype
function f (x:Source) : Target :=

G.f (F.f x)
endfun

endgen

How to specify sharing between modules is a tricky problem, and one which we will
postpone for the moment. It is not discussed below.

7.3.5 External declarations

One of the decisions of the Paris meeting was to support external declarations, interfac-
ing to other specification or implementation languages. In the language described below,
there is only a very simple external syntax allowing modules and generic modules to
be implemented externally.

module ExtMonoid : Monoid external endmod

We may wish to extend this to allow arbitrary declarations to be external, or to have
a richer pragma language. The syntax for pragmas should be as compatible as possible
with existing annotations used by LOTOS tools such as CAESAR and TOPO.

Any module declared to be external has no formal dynamic semantics. In the
E-LOTOS standard, we should give the dynamic semantics for most of the externally
declared modules in the base environment (the exceptions are modules such as ‘Float’
which is too system-specific to model formally).

7.3.6 Equational specifications

Another decision taken at the Paris meeting was to allow equational specifications in
signatures, for example in the ‘Monoid’ signature:

eqns forall (x,y,z)→
(x + 0) = x ;
x = (x + 0) ;
(x + (y + z)) = ((x + y) + z) ;

endeqns

53

Many tools will treat these specifications just as (type checked) comments, so we should
ensure that (as with Extended ML) the equations can be commented out without effect-
ing the semantics of the module.

We have to provide a formal semantics for when equations are valid (although this is
obviously not computable, so we cannot expect automatic tools for checking validity).

7.3.7 Processes and modules

One of the requirements of the E-LOTOS work is to develop a module system for process
declarations. This should be compatible with the module system used for data.

As a example of the power of generic modules, we can define generic modules to
build a language of dataflow processes. A dataflow module is one with the signature:

signature Dataflow :=
eqtype In
eqtype Out
proc Flow : { in : In Channel, out : Out Channel } → noexit

endsig

For example, a dataflow module for addition is:

module Add :=
open Integer
datatype In == Int*Int endtype
datatype Out == Int endtype
process Flow { in, out } :=

in?(x,y) ; out!(x+y) ; Flow { in, out }
endproc

endsig

Such dataflow modules can then be combined using generic modules, for example two
modules can be composed in sequence as:

generic Sequence (A : Dataflow, B : Dataflow, sharing A.Out = B.In) :=
datatype In == A.In endtype
datatype Out == B.Out endtype
process Flow { in, out } :=

hide mid in
A.Flow { in, mid } |[mid]| B.Flow { mid, out }

endproc
endgen

and in parallel as:

generic Sync (A : Dataflow, B : Dataflow, sharing A.In = B.In, A.Out = B.Out) :=
datatype In == A.In endtype
datatype Out == B.Out endtype
process Flow { in, out } :=

A.Flow { in, out } |[in,out]| B.Flow { in, out }
endproc

endgen

54

Generic modules such as these allow standard libraries of components to be built up,
and supports code reuse of both components and ‘glue’.

7.3.8 Relationship with existing ACT ONE specifications

The functional part of E-LOTOS will include algebraic specifications in signatures, as
discussed in Section 7.3.6

For example, we can compare the LOTOS specification:

type Monoid is
sort M
opns 0 :→M

+ : M, M→M
eqns forall x,y,z : M ofsort M

x + 0 = x;
0 + x = x;
(x + y) + z = x + (y + z)

endtype

with the declaration from the example data language:

signature Monoid :=
eqtype M
const 0 : M
fun + : M * M→M
eqns forall (x,y,z)→

(x + 0) = x ;
(0 + x) = x ;
((x + y) + z) = (x + (y + z))

endeqns
endsig
module Monoid : Monoid external endmod
open Monoid

There is a strong resemblance between such specifications and ACT ONE datatype dec-
larations. There are, however, a number of differences, which need to be resolved:

1. module Monoid is specified to be any structure which satisfies the axioms, not
just the initial one (in particular we may wish to introduce an initial declaration
similar to the current external),

2. the relationship between include and open declarations and ACT ONE extended
type specifications is not obvious,

3. the relationship between generic modules and ACT ONE parameterized types and
type renaming is not obvious.

It seems that the module system provides a good starting place for supporting equation-
ally specified datatypes in a strict functional language, but it requires careful investiga-
tion to see if it is suitable for use with LOTOS.

We propose to provide a formal correspondence between ACT ONE specifications
and modules.

55

8 Base environment

8.1 Overview

The modules language for E-LOTOS has not been decided yet. However, for clarity, it
will be necessary to give concrete examples of modules. For this purpose, we will often
the syntax, vocabulary, concepts of SML modules in this section.

The base environment is a collection of signatures (i.e., interfaces) and (possibly
generic) modules which are predefined, and can be used in any E-LOTOS specification.
They play the same role for E-LOTOS as the standard libraries do for LOTOS, and
should be upwardly compatible with them.

For each module:

• We should give a signature, a module, and (where necessary) the dynamic seman-
tics for the module.

• We should specify if the module is pervasive or not. A module is pervasive if it
is available everywhere without explicit import reference. The identification of
pervasive modules will be the subject of further discussions.

• If we allow polymorphism, we should specify whether the module will be defined
using polymorphism, genericity or both.

• We should specify whether the types and functions contained in the module will
be defined using the data language, or if they will be implemented externally (e.g.,
real or floating-point numbers).

In the following presentation, the built-in data types are not described in detail.
In the given examples, the implementation part are often omitted and only signatures
(interfaces) are provided.

8.2 Booleans

As an example standard module, we will give a possible module for booleans. The other
standard modules will be similar, but probably more complex. Note that some of the
Boolean module (e.g. defining ‘eq’ and ‘ne’) is purely for compatibility with the existing
standard library.

signature Boolean :=
datatype Bool := true | false endtype
fun not : Bool→ Bool
fun and : Bool * Bool→ Bool
fun or : Bool * Bool→ Bool
fun xor : Bool * Bool→ Bool
fun implies : Bool * Bool→ Bool
fun iff : Bool * Bool→ Bool
fun eq : Bool * Bool→ Bool
fun ne : Bool * Bool→ Bool
eqns forall (x,y)→

not false ;
not true⇒ false ;

56

(not true) = false ;
(not false) = true ;
(x and true) = x ;
(x and false) = false ;
(x or true) = true ;
(x or false) = x ;
(x xor y) = ((x and not y) or (y and not x)) ;
(x implies y) = (y or not x) ;
(x iff y) = ((x implies y) and (y implies x)) ;
(x eq y) = (x iff y) ;
(x ne y) = (x nor y)

endeqns
endsig

The module body can be given by:

module Boolean : Boolean :=
function not x := x⇒ false endfun
function x and y := x andthen y endfun
function x or y := x orelse y endfun
function x xor y := not (x = y) endfun
function x implies y := x⇒ y endfun
function x iff y := x = y endfun
function x eq y := x = y endfun
function x ne y := not(x = y) endfun

endmod

Booleans must be pervasive because they are used in the definition of shorthand
notations (e.g., andthen, orelse, if-then-else, etc.).

8.3 Characters

For efficiency reasons, there is a demand for pragmatic ASCII-like characters and char-
acter strings, that can be implemented as bytes and byte strings. One solution would
be to add a predefined ‘Char’ type. This should represent characters in an encoding-
independent fashion. Such a solution is limited to one particular character set but allows
for optimized implementations.

User-defined character sets can be declared as enumerated types. For instance, the
LOTOSPHERE proposal suggested the following interface for characters:

signature Character is
datatype Char := ‘a’ | ‘b’ | ... | ‘z’ | ... endtype
fun tolower : Char→ Char
fun toupper : Char→ Char
fun isalpha : Char→ Bool
fun isdigit : Char→ Bool
fun islower : Char→ Bool
fun isupper : Char→ Bool

57

fun > : Char, Char→ Bool
...

endsig

However, since LOTOS is a specification language, it should remain as open-ended
as possible, so it is questionable to tie it to a given character set.

A more general solution is to define an open character syntax and support user-
definable character sets and strings. This would allow for choosing a representation for
any new characters and using it in compact string denotations. It should be also possible
to map these new characters onto externally-defined character implementations.

We propose to include a standard module for characters. The precise syntax for
expressions of this type, and the support for user-defined character sets is left as a subject
for further investigation. We will investigate existing models of strings, such as Z.

8.4 Character strings

For pragmatic reasons, we wish to include a module containing a datatype for character
strings. Semantically, this should be isomorphic to ‘Char List’, but will probably be
treated differently by tools.

We propose to include a standard module for character strings, with explicit type
conversion between strings and char lists. The syntax and semantics for expressions of
these types are left as a subject for further investigation.

8.5 Binary data

Many protocols require the transmission and computation of binary data, and so E-
LOTOS should provide a means for binary data to be easily manipulated.

We should keep the binary types that already exist in LOTOS standard library: Bit,
Octet, HexadecimalNumber, DecimalNumber, BitStrings, OctetStrings, etc. We might
also introduce 16-bit words, 32-bit words, n-bits words, etc., together with the usual
arithmetical and logical operations.

We propose to include a standard module for binary data, with explicit type conver-
sion between binary data and boolean lists, numbers, etc. The syntax and semantics for
expressions of these types are left as a subject for further investigation.

8.6 Integers

E-LOTOS requires a datatype for integers. For compatibility with the ‘Nat’ existing
type, we may require a datatype for natural numbers.

We propose to include a standard module for integers, with the semantics Z. We
propose to investigate whether a standard module for naturals is required, with the se-
mantics N. We will investigate existing models of integers, such as ACT ONE, SML
and Scheme.

58

8.7 Rationals, floats and reals

This is an obvious need for types representing non-integer arithmetic, especially for
real-time applications, but it is system-dependent and difficult to reason about. It is also
an equality type which cannot be easily translated into an ACT-ONE specification.

The semantics of the ‘real’ datatype can be specified in three main flavours:

1. as finite floats (i.e. floating point approximations), as in most programming lan-
guages,

2. as mathematically pure real numbers, or

3. as mathematically pure rational numbers.

Solution 1 has the drawback that its semantics is tortuous and system-dependent. Even
if floats are used in implementations, any resulting inaccuracy or overflow should be
considered as irrelevant to the specification itself. Note that this vision requires that a
distinction be made between division by zero (an error in the model) and division by a
too small number (an error in the implementation). It also has problems with equational
proofs about specifications (e.g. addition might not form a commutative monoid).

The difference between solutions 2 and 3 is that real numbers are not countable,
cannot be fully represented by any term algebra and cannot be specified with equations.
This is no major obstacle for incorporating them as a new built-in type (in replacement
of ML’s reals). However, by doing this we introduce non-countable infinity in the se-
mantic model, and this might have subtle consequences on its mathematical soundness
(e.g. non-countably infinite branching processes).

On the other hand, rational numbers are countable, term-generated and specifiable
by equations. They may also be implemented with exact representations, though most
implementors might prefer to approximate them with floats. However it can be frustrat-
ing not to have the uniformity of reals, and the formal definition of irrational functions
(exp, log, sqrt) becomes problematic with rationals.

We propose to include two standard modules: one for floats and one for rationals,
and not to include a module for reals. The module for rationals will be given a formal
semantics, but the float module will only be specified informally (since it is so system-
dependent).

8.8 Lists

Lists are a heavily used built-in data type, and a standard module can be provided for
them. If we are allowing polymorphism, then the datatype is:

datatype ’a List :=
nil | ’a :: ’a list

endtype

If we are not allowing polymorphism, then the lists module will have to be generic. We
should support syntactic sugar such as the list notation [a,b,c].

We propose to include a standard module for lists.

59

8.9 Sets and Bags

Sets are a very common data abstraction in specifications (the standard library of LOTOS
contains a generic set type). Bags (or multisets) are also useful though less common.
Sets can be provided in a simple way as a structure whose signature might include (if
we are allowing polymorphism):

signature Set :=
type ”a Set
const empty : ”a Set
fun insert : ”a * ”a Set→ ”a Set
fun delete : ”a * ”a Set→ ”a Set
fun member : ”a * ”a Set→ Bool
...

endsig;

and similarly for bags. If we are not allowed polymorphism, the Set and Bag modules
should be generic.

We propose to provide standard modules for sets and bags.

8.10 Arrays

Arrays are a very common feature of imperative programming, but they are a classic
problem with functional programming, due to the need to avoid copying the whole array
every time an array update is performed. However, for a specification language such as
E-LOTOS, such implementation issues are less important.

Several approaches may be considered:

1. The solution adopted in SML/NJ (and inherited in PML) is to support updatable
arrays using side-effects (arrays are similar to reference types). This implementa-
tion therefore has the same semantic problems as ref types (see Section 5.2.2).

2. Another option is to provide a datatype for arrays with functional update. This can
be given a clean semantics treating arrays as any other data. It is also possible to
simulate functional arrays using non-functional arrays and linked lists of updates,
thus making code generation possible. This is similar to SML/NJ’s vector type
constructor, but allows vectors to be updated functionally. SML/NJ has a special
syntax for vectors, for example:

const v := #[1,2,3] : int vector endconst

3. A third option is to use Wadler’s adaptation of Moggi’s computational monads,
and to provide a monad for arrays. This may require higher-order functions, and
monadic specification requires some sophistication on the part of the specifier.

4. A fourth option is to investigate whether a linear type system could be used, which
would only allow expressions where arrays were not copied except by an explicit
copying function.

60

The form of arrays given in SML/NJ assume that arrays are indexed by integers
starting at 0. Trying to generalize this to any ‘index type’ is difficult, since it is not
obvious what the definition of ‘index type’ should be, and this opens up the issue of
subtyping.

We propose to provide a standard module for functional arrays, since these allow for
simple specifications and semantics, although at a cost for code generation.

8.11 Associative arrays

One solution to the problem of only allowing integer array indices is to introduce a type
constructor for associative arrays, as used, for example, in Perl. These are implemented
as hash tables, but can be viewed as arrays where the index type is allowed to be any
equality type. A suitable signature might include (if we are allowed polymorphism):

signature AssArray :=
type (”a,’b) assarray
const empty : (”a,’b) assarray
fun update : (”a,’b) assarray * ”a * ’b→ (”a,’b) assarray
fun lookup : (”a,’b) assarray * ”a→ ’b
exception NotFound
...

endsig

Associative arrays have the same problems with copying as arrays do, and if associative
arrays are to be allowed, they should have a similar semantics to arrays. Associative
arrays are normally implemented by tools as hash tables.

We propose to provide a standard module for functional associative arrays.

8.12 Other modules

The base environment may wish to contain other modules for commonly used data and
program structures, for compatibility with the existing LOTOS predefined types, and for
standard mathematical structures such as partial orders, monoids, groups and so on.

9 Relationship with the behaviour part of LOTOS

9.1 Overview

This section describes the syntactic and semantic relationship between the datatypes
language and LOTOS.

9.2 Symmetry between data and behaviour

We propose to establish a nice symmetry between the data and behaviour parts of E-
LOTOS by having similar operators and shorthand notations in both of them.

For instance, case statements, let statements, and if-then-else statements should be
available for data and behaviours as well, with the similar syntaxes and semantics.

61

If assert statements are introduced in the data part of E-LOTOS, then a similar
construct assert should exist in the behaviour part.

If the pattern-matching function declarations presented in Section 6.11 are adopted
in E-LOTOS, then pattern-matching process declarations should be available as well.

9.3 Value expressions in behaviour expressions

Data expressions can be used in many places in LOTOS specification:

1. in communications,

2. in guarding and selection predicates,

3. in instantiating parametric processes,

4. in let expressions, and

5. in exit.

We propose to replace all existing uses of ACT-ONE value expressions in LOTOS
with value expressions from the data language.

9.4 Variable declarations in behaviour expressions

In the behaviour part of LOTOS, variables are bound to data expressions in:

1. in communications,

2. in declaring parametric processes and specifications,

3. in let expressions,

4. in accept, and

5. in choice.

As shown in Section 6.5, the usual let statement can be extended by allowing patterns
in place of variable declarations, i.e., with syntax “let P in E” instead of “let X : S in
E”.

It is naturally tempting to replace other occurrences of variable declarations with
patterns. The examples given below make use of features such as pattern-matching
process declarations, polymorphic processes, type elision in variable declarations, and
accept statements with pattern-matching:

process stack [in,out] (nil) :=
in?x ; stack [in,out] ([x])

| stack [in,out] (x::xs) :=
in?y ; stack [in,out] (y::x::xs) []
out!x ; stack [in,out] (xs)

endproc
process query [db] :=

search [db]� accept
SOME result⇒ inspect (result) |
NONE⇒ complain

endproc

62

We propose to investigate whether some (or all) occurrences of variable declarations
in the behaviour part of LOTOS could be replaced with patterns from the data language.

In the next section, we investigate the consequences of replacing variable declara-
tions in experiment offers with patterns.

9.5 Communication pattern-matching

In LOTOS, two different forms of pattern-matching exist:

• Pattern-matching is used to define the semantics of functions. This form of pattern
matching, which is more or less implicit in ACT ONE equations, will become
fully explicit in E-LOTOS as case statements and patterns are introduced.

• Pattern-matching is also used in rendez-vous communications, especially when
several !-offers are to be synchronized (this is called value matching in LOTOS).

However, both forms of pattern-matching are incompatible, resulting in awkward
description style and inefficient implementations. For instance, let’s consider a packet
type defined as follows (using the first approach to abstract syntax):

type pdu is
conreq (a:address)
condis (a:address, r:reason)

endtype

In LOTOS, a process that receives a packet and performs different actions depending
on the packet contents can be described as follows:

g ?p:pdu;
(
[discriminant (p) = conreq]→ ...
[]
[discriminant (p) = condis]→ ...
)

This approach does not involve pattern-matching at all. Packet discriminant and
fields have to be extracted using projection functions. It is cumbersome and leads to
inefficient implementations, since the same packet is accessed many times.

Therefore, another approach taking advantage of communication pattern-matching
is often preferred:

g !conreq ?a:address; ...
[]
g !condis ?a:address ?r:reason; ...

However, this approach is not compatible with the previous one, because it requires
that the packet has to be broken into its fields. Both specification styles can be used
together only at the expense of auxiliary conversion processes in charge of breaking
packets into fields and vice-versa. This is awkward and increases the whole complexity

63

of the labelled transition system by adding interleaved actions, which are not pertinent
for the actual system to be described.

Practically, the decision of choosing one particular specification style must be taken
very early in the formal description process, and cannot be reversed easily.

It would be desirable to solve these issues in E-LOTOS by ensuring compatibility
and symmetry between the pattern-matching facilities available in the data part and those
available in communications.

In current LOTOS, experiment offers have the following syntax:

O ::= ?X : S

| !E

We foresee at least two possible approaches:

• A first possibility is to replace query-experiment offers with patterns. The new
syntax would become:

O ::= ?P

| !E

Using this new syntax, traditional query-offers are available as particular cases
in which the pattern P is equal to “X : S”. Also, “anonymous” query-offers are
obtained as “? any T”.

Although this extension would increase the possibilities for pattern-matching in
communication, it should not change much the static and dynamic semantics of
LOTOS rendez-vous. The only difference is that the notion of pattern-matching
should be generalized to structured patterns instead of single variables.

• As LOTOS allows several experiment offer to be presented simultaneously on
the same gate, one may wish to merge LOTOS ?- and !-experiment offers into
a single “data structure”. This would introduce a class of extended patterns in
which !-offers and ?-offers can be combined.

Therefore, a second possibility is to provide a new syntactic class of extended
patterns, which extend data language patterns with input and output:

O ::= any

| CO

| {L1 = O1, ...,Ln= On[, . . .]}
| O of T

| ?P

| !E

In this approach, we can replace any LOTOS experiment offer list with an ex-
tended pattern. For instance, assuming that the language has ML-like tuples, the
following replacements could be performed:

64

LOTOS action prefix Using an extended pattern
g ?x:int ?y:int; B g (?x:int, ?y:int) ; B
g ?x:int !(y+z); B g (?x:int, !(y+z)) ; B

Such an approach might lead to a semantics similar to that of the FP2 language
[35]. In FP2, concurrent processes can synchronize and communicate using a
rendez-vous mechanism, which generalizes LOTOS rendez-vous. In FP2, ex-
periment offers are simply algebraic terms, possibly with bound variables. Two
processes offering terms T1 and T2 respectively will synchronize if and if only
T1 and T2 can be unified; in such event, both processes will agree on a common
value, which is the most general unifier of T1 and T2

For instance, consider the synchronization of the processes:

process P1 [G] is
G ! cons (1, cons (X1:int, cons (2, L1:int list)))

endproc
process P2 [G] is

G ! cons (X2:int, cons (3, L2:int list))

endproc

The synchronization is possible and, after synchronizing, the local variables of P1
and P2 will have the following values (where L is any value of sort ‘int list’):

X1 = 3 L1 = L X2 = 1 L2 = cons (2, L)

It is clear that LOTOS communication mechanisms (namely value matching,
value transfer, and value generation) are special cases of the FP2 mechanism.

On the opposite, the FP2 approach is more complex, because it requires unifi-
cation where LOTOS only requires value equality. However, in FP2, there are
syntactical restrictions on the form of terms, to ensure that synchronizations can
be determined at compile-time and to avoid performing unification at run-time
(which would have a high penalty in terms of performances). For instance, (non-
constructor) functions are not allowed in communication patterns, except in out-
puts and free variables are only allowed in inputs.

In both existing proposals for introducing gate typing in E-LOTOS, experiment of-
fers are labelled with “tags”. These tags could be either replaced with the names of
constructor arguments or record field labels (depending on which abstract syntax is se-
lected for expressions).

For instance, assuming that the data language has SML-like records, this would
allow named fields, for example:

g { name = !”fred”, age = ?x } ; B1 |[g]| g { age = !27, name = ?y } ; B2

This would provide a clean semantics for tagged gates, whilst keeping compatibility
with the datatypes language. If the datatypes language is extended with subtyping on
records, this would provides a mechanism for partially constraining the values of a
communicated record, for example:

65

g { name = !”fred”, title = !”Dr”, ... } ; B1 |[g]| g { age = !27, name = ?y ... } ; B2

Note that communication requires synchronization, and so any experiment offers
have to be of equality type.

Also, pattern-matching requires the constructors are visible.
We propose to seek for compatibility between forms of pattern-matching in the data

and behaviour parts. We propose to investigate whether LOTOS experiment offer lists
can be extended to include more powerful forms of pattern-matching, taking in account
the motivations for introducing gate typing in E-LOTOS.

9.6 Gates

So far, we have not mentioned how gates should be treated as data. There are (at least)
four possibilities:

1. treat gates as first class citizens, by adding a gate module into the base environ-
ment, and making gates an equality type constructor,

2. as above, but making gates a non-equality type constructor,

3. making gates a separate kind (in the same way that exceptions are), or

4. having gates totally separated from the data language (as is the case currently).

If we were to allow gates as first-class citizens, then we could allow gate expressions not
just gate identifiers. For example, a simple router might be (N.B., this is not currently
legal LOTOS):

process Router (
input : (string * int) Gate,
table : (string, int gate) assarray

) :=
input?(s,x) ;
(lookup (table,s))!x ;
Router (input,table)

endproc

This is a very powerful facility, and allows a simple coding of processes such as some
ODP systems. However, allowing gate expressions rather than just gate identifiers into
LOTOS is a major change, and should not be taken lightly.

If a gate type constructor is introduced, we should consider whether to allow it as
an equality type or not. Since terms of equality type are allowed to be communicated
between processes, we are effectively allowing the power of the π-calculus [18, 19, 16,
17] into LOTOS by making gates equality types. The π-calculus is very powerful, and
can express some systems (such as some ODP systems) more easily than current LOTOS
can. However, its semantics is more complex than that of LOTOS, and Pitts and Stark
have shown that (in the presence of higher-order functions) finding denotational models
for unique name generation is non-trivial [28].

By making gates a different ‘kind’ (in the same way that exceptions are a different
‘kind’ than expressions), we lose the power to treat gates as data, and we return to the
more usual treatment of gates in LOTOS.

66

By making gates part of the datatypes language, whether by a gate type constructor,
or a gate declaration, gate declarations can be combined with other declarations, for
example in where clauses, or in modules and signatures.

We propose to investigate whether there are systems (such as some ODP systems,
perhaps) which are easier to specify using gates as first-class citizens. If there are, then
we will include a type constructor for gates. If there are not, then gate declarations will
be separate declarations.

9.7 Process declarations

The same arguments hold for process declarations as for gate declarations, except that
behaviours should definitely not be equality types.

We could introduce an ‘Behaviour’ type constructor, and view process declarations
as declarations of values of Behaviour type. For example:

function buffer (in : ”a Gate, out : ”a Gate, contents : ”a List) : ”b Behaviour :=
case contents in

[]→ in?y ; buffer (in, out, [y])
| (x::xs)→ in?y ; buffer (in, out, y::x::xs)

[] out!x ; buffer (in, out, xs)
endfun

The ‘Behaviour’ type constructor is similar to the ‘event’ type constructor of Reppy’s
CML [31, 32], or the computation type constructor of Moggi’s monadic metalanguage
[22] and Jeffrey’s CMML [13]. There has recently been much work on the semantics
of higher-order processes, such as [11, 13, 37]. These processes provide new means to
describe object-oriented or ODP applications.

However, such languages are still the subject of research, and the semantics of
higher-order processes is much more complex than that of first-order. For example,
in the presence of higher-order processes and unique name generation, the obvious def-
inition of bisimulation is no longer satisfactory, and one has to use the more complex
context bisimulation.

We propose not to allow higher-order processes, and to keep the distinction between
constant, function and process declarations.

9.8 Process functionality and exceptions

The static semantics of LOTOS defines the notion of process functionality. If exceptions
are introduced in the data language of E-LOTOS, it might be nice to unify the notions
of functionality for processes and exceptions for functions into a single concept.

By doing so, it should be possible to present the static semantics of the behaviour
language in a similar style to the data language. This would give users a uniform type
system for data expressions and processes, and (if implicit typing is allowed) would
allow users to leave the types of some variables to be deduced by the type system.

For example, using a style similar to the SML static semantics, the type of choice is
given by:

C ` p⇒ (VE,σ) C+VE ` B⇒ exit τ
C ` choice p [] B ` exit τ

67

This type system should be compatible with the ‘func’ function for determining func-
tionality.

However, we should also consider that process functionality is the only form of gate
typing that exists in LOTOS (process functionality types the offers emitted on δ gates).
Therefore, process functionality could be related not only to exceptions, but also to
rendez-vous and gate typing.

9.9 Static semantics

LOTOS allows for constraint-based programming, which requires that any data com-
municated on any channel be comparable for equality. Fortunately, we already has the
concept of an ‘equality type’, so we just have to restrict communications to being of
equality type.

There may, however, be issues about ensuring the type system is sound, for the same
reason as for references: polymorphic processes may create problems.

We propose to find a static semantics for the behaviour part of LOTOS which is
compatible with existing specifications, and with the data language.

9.10 Dynamic semantics

We propose to define an operational semantics for the behaviour part of E-LOTOS.
There should be a formal definition of the relationship between the dynamic seman-

tics of the data and behaviour parts of E-LOTOS.
Also, unless polymorphism is selected, the dynamic semantics should be de-

fined only for fully-actualized behaviour expressions, i.e., expressions that not contain
“generic” features. This is already the case in LOTOS.

9.10.1 Layers in the dynamic semantics

The dynamic semantics of LOTOS has two layers. An axiomatic semantics is provided
for the data part of the language, on top of which an operational semantics is provided
for the behaviour part.

If the dynamic semantics of the E-LOTOS data language is denotational, two layers
will also be necessary, since the dynamic semantics of the behaviour part will be defined
operationally.

If the dynamic semantics of the E-LOTOS data language is operational, we may have
one or two layers, depending whether both sets of derivation rules are merged or not. In
any case, we should not allow the derivations for the data part to be freely interleaved
with those of the behaviour part, since this would result in semantic problems such as
exponential state space explosion (this would be “small step semantics”). Derivations
for the data part should be performed in priority, so that value expressions are completely
evaluated before considering the possible derivations for the behaviour part (this is “big
step semantics”).

9.10.2 A possible dynamic semantics for exceptions

If exceptions are introduced in E-LOTOS, the semantics for expressions should be of
the form E ⇒ V (successful termination) or E ⇒ raise N (raising an exception). Then,

68

the semantics of exit can be:

E ⇒ V
exit V δ〈V〉−−→ stop

E ⇒ raise N
exit E χ〈N〉−−→ stop

This uses an operational semantics for raising exceptions based on the proposed seman-
tics of generalized termination. For example:

exit(1+2) δ〈3〉−−→ stop exit (1 div 0) χ〈Zdiv〉−−−−→ stop

where ‘Zdiv’ is the exception raised by division by zero.
Similarly, the semantics of guards is:

E ⇒ true B a−→ B′

[E]→ B a−→ B′
E ⇒ raise N

[E]→ B χ〈N〉−−→ stop

For example:

[1+1 = 2]→ exit(1+2) δ〈3〉−−→ stop [1 div 0 = 2]→ exit(1+2) χ〈Zdiv〉−−−−→ stop

Note that this semantics means that any expression which raises an exception will have
that exception propagated to the process level. The process construct this affects most
is choice, since selection predicates can now raise exceptions. For example:

choice x [] [1 div x = 2]→ exit(1+2) χ〈Zdiv〉−−−−→ stop

This requires a syntax for exception handling in LOTOS processes, compatible with the
exceptions used in the data language.

This semantics does mean that data evaluation can cause behaviour transitions, and
in particular resolve some choices. This may have undesirable effects on the semantics
of LOTOS. We have to decide whether the programming power of exception handling
is worth the nastier semantics.

9.10.3 Possible dynamic semantics for non-termination

One problem with this treatment of the interaction between the dynamic semantics of the
functional and behavioural parts is divergence (i.e., non-terminating functions). There
are several possible ways of taking divergence into account in the dynamic semantics:

• In a first approach, we might consider that a divergence in the data part does not
lead to any observable transition in the behaviour part. In this approach, diver-
gence is treated similarly in the behavioural part and the functional part: by a
term with no reductions. For example if we define:

function loop () = loop () endfun

process Loop := Loop endproc

then the following behaviours are strongly bisimilar:

69

[loop ()]→ exit
Loop

stop

Although this semantics gives the same treatment to divergence in the functional
and behavioural parts, it presents problems for simulators, which may produce
different results from simulating the following:

([loop ()]→ exit) [] a;stop
Loop [] a;stop
a;stop

since the first two might diverge while the last communicates.

• For this reason, we might wish to distinguish between divergence (considered as
a run-time error) and deadlock. This could be done by using some technology
from divergence-sensitive bisimulation, and extending the operational semantics
of LOTOS with a ‘can terminate’ predicate which can distinguish between dead-
lock and divergence. This predicate, noted “B⇓” is true iff it can be proven in a
finite number of steps that B terminates. It is defined by induction on the abstract
syntax of behaviour expressions. For example:

E ⇒ true B⇓
([E]→ B)⇓

E ⇒ false
([E]→ B)⇓

B1⇓ B2⇓

(B1 [] B2)⇓

B⇓
P⇓
[P := B]

Using this semantics, we can distinguish between Loop and stop, since stop ter-
minates, whereas Loop does not.

One problem with this semantics is that there is no obvious treatment of choice,
since (in order to keep the correspondence between choice and []) we would have
to adopt the rule:

∀ ` V ⇒ T .B[V/X]⇓
(choice X : T [] B)⇓

This requires a universal quantification over all values, and may present in seman-
tic problems.

Divergence-sensitive bisimulation is slightly more complex than bisimulation, so
it may be appropriate to present divergence-insensitive bisimulation as the stan-
dard semantics, and provide divergence-sensitive bisimulation as an annex (simi-
lar to the treatment of testing equivalence in the existing standard).

We propose to provide a formal link between the dynamic semantics of the functional
and behavioural parts of E-LOTOS. The precise treatment of divergence is a topic for
further work.

10 Relationship with other E-LOTOS proposals

10.1 Time

The ET-LOTOS proposal uses a datatype of time, using time expressions with free vari-
ables. To combine time and data, the time datatype should be part of the data language.

70

It should be possible to treat the time extensions to LOTOS as a module containing
a ‘time’ datatype, and some operations on time and processes.

10.2 Termination

The outline of the dynamic semantics in Section 9.10 makes use of generalized termi-
nation to give a semantics for exceptions.

If exceptions are used in the data language of E-LOTOS, the syntax used for rais-
ing and handling exceptions should be compatible with the syntax in the behavioural
language.

10.3 Typed gates

There is a strong link between the data language and the two proposals for typed gates.
The concept of communication pattern-matching suggested in Section 9.5 — although it
has to be worked out — might extend (possibly replace) gate typing proposals, provided
that all the practical motivations behind gate typing are satisfied.

10.4 Modules

One of the tasks of the E-LOTOS work item is to investigate modularization of LOTOS
specifications.

We have proposed adding a module system for data, which could be extended to
include processes.

10.5 Mobility

There is a link between the notion of gate as first-class citizen, and the proposal for
mobile LOTOS.

Acknowledgements

Thanks to Simon Thompson, for comments on the Paris output document, some of which
have been incorporated into this text.

Thanks to Philippe Schnoebelen for his insightful comments about FP2.
This work was discussed at the June 1995 Warsaw meeting of COST 247, and we

would like to thank the organizers of COST 247 for giving us a meeting place, and to the
WG1 participants for providing constructive remarks and participating in the discussion.

This work has been carried out in the context of ISC-CAN-65 EUCALYPTUS 2,
COST 247, and EC BRA 7166 CONCUR 2.

When used as the name of a programming language, Miranda is a trademark of
Research Software Limited.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

71

[2] T. P. Baker. A one-pass algorithm for overload resolution in Ada. ACM Transac-
tions on Programming Languages and Systems, (4):601–614, April 1982.

[3] E. Brinksma and G. Leih. Enhancements of LOTOS. In T. Bolognesi, J. van
de Lagemaat, and C. Vissers, editors, LOTOSphere: Software Development with
LOTOS, pages 453–466. Kluwer Academic Publishers, 1995.

[4] T. Bolognesi, J. van de Lagemaat, and C. Vissers, editors. LOTOSphere: Software
Development with LOTOS. Kluwer Academic Publishers, 1995.

[5] Ed Brinksma. On the Design of Extended LOTOS, a Specification Language for
Open Distributed Systems. PhD thesis, University of Twente, November 1988.

[6] Nachum Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,
3(1):69–115, February 1987.

[7] Nachum Dershowitz. 33 Examples of Termination. In Term rewriting, Hubert
Comon and Jean-Pierre Jouannaud, editors. Volume 909 of Lecture Notes in Com-
puter Science, Berlin, 1995. Springer Verlag.

[8] A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. Algebraic programming in OPAL.
Bulletin EATCS, (50):171–181, June 1993.

[9] ISO. ESTELLE — A Formal Description Technique Based on an Extended State
Transition Model. International Standard 9074, International Organization for
Standardization — Information Processing Systems — Open Systems Intercon-
nection, Genève, September 1988.

[10] ISO 8807. LOTOS—A formal description technique based on the temporal order-
ing of observational behaviour, 1989.

[11] M. Hennessy. A fully abstract denotational model for higher-order processes. In-
formation and Computation, 112(1):55–95, 1994.

[12] P. Hudak, S. L. Peyton Jones, P. Wadler, et al. A report on the functional language
Haskell. SIGPLAN Notices, 1992.

[13] Alan Jeffrey. A fully abstract semantics for a concurrent functional language with
monadic types. In Proc. LICS 95, pages 255–264, 1995.

[14] José A. Manas. Modular LOTOS. Annex G of ISO/IEC JTC1/SC21/WG1 N1349
Working Draft on Enhancements to LOTOS, October 1994.

[15] David McQueen. Modules in standard ML. LFCS Report ECS-LFCS-86-2, De-
partment of Computer Science, Edinburgh University, 1986.

[16] Robin Milner. The polyadic π-calculus: a tutorial. In Proc. International Summer
School on Logic and Algebra of Specification, Marktoberdorf, 1991.

[17] Robin Milner. Functions as processes. Math. Struct. in Comput. Science, 2:119–
141, 1992.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes I. Information
and Computation, 100(1):1–40, September 1992.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes II. Information
and Computation, 100(1):41–77, September 1992.

[20] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

72

[21] Robin Milner, Mads Tofte, and Robert Harper. Commentary on Standard ML. MIT
Press, 1991.

[22] Eugenio Moggi. Notions of computation and monad. Inform. and Computing,
93:55–92, 1991.

[23] Harold B. Munster. Comments on the LOTOS Standard. NPL Technical Memo-
randum DITC 52/91, National Physical Laboratory, Teddington, Middlesex, UK,
September 1991.

[24] Harold B. Munster. LOTOS Specification of the MAA Standard, with an Evalu-
ation of LOTOS. NPL Report DITC 191/91, National Physical Laboratory, Ted-
dington, Middlesex, UK, September 1991.

[25] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

[26] Charles Pecheur. A proposal for data types for E-LOTOS. Technical Report,
University of Liège, October 1994. Annex H of ISO/IEC JTC1/SC21/WG1 N1349
Working Draft on Enhancements to LOTOS.

[27] P. Pepper. The Programming Language Opal — Implementation Language. Tech-
nical Report, Fachbereich Informatik, Technische Universität Berlin, February
1994.

[28] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions
that dynamically create local names, or: What’s new? In Proc. MFCS 93, pages
122–141. Springer-Verlag, 1993. LNCS 711.

[29] Juan Quemada, editor. Initial Draft on Enhancements to LOTOS. ISO/IEC
JTC1/SC21/WG1 N8023 Project 1.21 Q1/48.6, November 1993.

[30] R. Roth, J. de Meer, and S. Storp. Data specifications in modular LOTOS. In
T. Bolognesi, J. van de Lagemaat, and C. Vissers, editors, LOTOSphere: Software
Development with LOTOS, pages 467–479. Kluwer Academic Publishers, 1995.

[31] J. H. Reppy. A higher-order concurrent language. In Proc. SIGPLAN 91, pages
294–305, 1991.

[32] J. H. Reppy. Higher-Order Concurrency. Ph.D thesis, Cornell University, 1992.

[33] Don Sanella. Formal program development in extended ML for the working pro-
grammer. LFCS Report ECS-LFCS-89-102, Department of Computer Science,
University of Edinburgh, 1989.

[34] W. Schulte and W. Grieskamp. Generating efficient portable code for a strict ap-
plicative language. In J. Darlington and R. Dietrich, editors, Declarative Program-
ming. Springer Verlag, 1992.

[35] Ph. Schnoebelen and Ph. Jorrand. Principles of FP2. Term Algebras for Specifi-
cation of Parallel Machines. In J. W. de Bakker, editor, Languages for Parallel
Architectures: Design, Semantics, Implementation Models, chapter 5, pages 223–
273. Wiley and sons, 1989.

[36] Silke Storp. Integration of Standard Data Types into LOTOS. Master’s thesis,
Offene Kommunikations Systeme (OKS), Berlin, June 1991.

[37] Bent Thomsen. Calculi for Higher-Order Communicating Systems. Ph.D thesis,
Imperial College, 1990.

73

[38] The OPAL Tutorial. Jürgen Exner. Technical Report 94-9, Technische Universität
Berlin, May 1994.

[39] David A. Watt. Programming Language Concepts and Paradigms. International
Series in Computer Science. Prentice-Hall, New-York, 1990.

[40] Åke Wikström. Functional Programming using Standard ML. Prentice Hall, 1987.

[41] R. Wilhelm and D. Maurer. Les compilateurs, théorie, construction, génération.
Manuels informatiques Masson. Masson, Paris, 1994.

74

