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Abstract

We propose a theoretical study of Marangoni driven convection in an

evaporating liquid layer surmounted by an inert gas-vapor mixture. After

reduction of the full two layer problem to a one-sided model we use a

Galerkin-Eckhaus method leading to a finite set of amplitude equations for

the weakly nonlinear analysis of the problem. We analyse the stability of

the roll, square and hexagonal patterns emerging above the linear stability

threshold for a water-air and for an ethanol-air system.

keywords: Marangoni convection; evaporation; pattern formation; amplitude
equations

1 Introduction

It is well known that the evaporation of a liquid layer is an endothermic trans-
formation, induces a cooling of the liquid surface and gives rise to a vertical
temperature gradient across the liquid layer. As the density and surface tension
of the liquid are temperature dependent, this gradient can destabilize the liquid
layer: these instabilities are respectively called Rayleigh-Bénard or Marangoni-
Bénard instabilities if the temperature dependence of the density or the surface
tension is responsible for the onset of convection. The word "Bénard-Marangoni
instabilities" is used when both effects combine. Thus, contrary to the classical
studies of the Bénard-Marangoni problem (see for example [1]-[6]), in the case of
an evaporating liquid layer it is not necessary to impose an external temperature
gradient to obtain a destabilization of the system leading to pattern formation.
Evaporative convection plays an important role in numerous domains, as for
example during drying of paint films, distillation and in heat exchangers. It can
also be observed in nature, when the evaporation of a thin layer of water leaves
the marks of the convective cells in the clay, or after a salty lake has dried out.

Experimental results on evaporative convection can be found in [7] or in
more recent works as [8] and [9].
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Most of the theoretical studies on evaporative convection ([6], [10]-[12]) as-
sume that the liquid layer is in contact only with its own vapor. In this pa-
per we consider in addition the presence of an inert gas in the vapor phase,
not only because in most experimental setups the liquid evaporates in a gas
(air for example), but also because the presence of a gas strongly stimulates
Marangoni-Bénard instabilities, as shown in [13] and [14] (In this case indeed,
the temperature perturbations at the interface are related to the variations of
the vapor partial pressure instead of being related to the variations of the total
gas pressure). A linear stability analysis of the full two layer system for a liquid
evaporating in an inert gas has been carried out in [13] and a deformable free
surface was taken into account in [15].

Under certain conditions it is possible to reduce the full two-phase problem
to a one-sided model which accounts for the effect of evaporation through a
generalized heat transfer condition at the liquid surface, as done in [12], [16],
[8], [13] and [14]. A 3D-numerical integration of such a one-sided model was
also performed in [17].

The aim of this paper is to perform a weakly nonlinear analysis of the
Marangoni instabilities appearing in an evaporating liquid layer surmounted by
a vapor-gas mixture on the basis of the one-sided model. This model permits
a not too cumbersome derivation of the amplitude equations by a Galerkin-
Eckhaus method.

The paper is organized as follows. In section 2 we introduce the physical
system, define some dimensionless parameters and establish the basic equations.
The reference state and the linear instability threshold of the full two layer
problem are determined in sections 3 and 4 respectively. In section 5 we establish
the one-sided model and in section 6 we derive the weakly nonlinear amplitude
equations from the one-sided problem and we study the stability of the patterns
appearing above the linear stability threshold. Conclusions are drawn in section
7.

2 Problem Formulation

We consider an evaporating liquid layer of infinite horizontal extent and depth
dl, surmounted by a gas layer of thickness dg at a time t0 (Fig.1). The gas layer
is a mixture of the vapor of the liquid and an inert gas.

The lower, rigid and perfectly heat conducting plate is maintained at the
temperature Te. The gas layer is bounded by a perfectly heat conducting upper
plate maintained at the same temperature Te and at constant pressure and
concentration. We assume that Boussinesq approximation is valid and that
the gas may be taken as perfect. Buoyancy effects are neglected because we
assume not too large liquid depths or microgravity conditions. The interface is
assumed non deformable so that the moving horizontal liquid-gas interface is
described by equation z = h(t). The surface tension σ decreases linearly with
the temperature T , i.e.,

σ = σ0 − σT (T − Te)

where σT is a constant coefficient and Te the temperature of the bottom and
top plates. All other physical properties of the fluids are considered constant
and are evaluated at the temperature Te. The fluid properties were found in
[22] and [23].
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Figure 1: system under study.

The physical properties of the gas mixture are supposed to be those of the
inert gas (this is possible provided the mass fraction Yv of the vapor in the mix-
ture remains sufficiently small). We also suppose that fluctuations in the system
evolve much faster than the interface moves i.e. during the stability analysis,
the liquid layer thickness does not change. The variables are expressed in di-
mensionless form: lengths (coordinates (x, y, z)) are scaled by the liquid layer
thickness dl, time t by d2l /κl, with κl the heat diffusivity of the liquid, velocity
V = (U, V,W ) by κl/dl (vectors are written in bold characters), pressure P by
ρlκ

2
l /d

2
l , with ρl the mass density of the liquid, the mass flux J at the interface

by ρlκl/dl, temperature T by L/p,l where L is the latent heat of vaporization
and p,l the liquid heat capacity per unit mass and the mass fraction of vapor
in the gas Yv by 1 (Yv is already dimensionless). The dimensionless equations
governing the system are standard and given by (subscripts l and g refer to the
liquid and gas phases respectively and subscript i refers to the interface):

in the liquid layer:

∇.V∗

l = 0 (continuity) (1)

∂tV
∗

l + V
∗

l .∇V
∗

l +∇P ∗

l − Prl∇
2
V

∗

l = 0 (momentum) (2)

∂tT
∗

l + V
∗

l .∇T ∗

l −∇2T ∗

l = 0 (energy) (3)

in the gas layer:

∇.V∗

g = 0 (continuity) (4)

∂tV
∗

g + V
∗

g.∇V
∗

g +
1

ρ
∇P ∗

g − κPrg∇
2
V

∗

g = 0 (momentum) (5)

∂tT
∗

g + V
∗

g.∇T ∗

g − κ∇2T ∗

g = 0 (energy) (6)

∂tY
∗

v + V
∗

g.∇Y ∗

v −
κ

Le
∇2Y ∗

v = 0 (mass diffusion) (7)
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where V
∗, T ∗, P ∗ and Y ∗

v are respectively the dimensionless velocity, tempera-
ture, pressure and mass fraction of vapor in the gas. The following definitions
are also introduced:

Prl =
νl
κl

(8)

and
Prg =

νg
κg

(9)

are the dimensionless Prandtl numbers in the liquid and in the gas phases re-
spectively and νl and νg are the cinematic viscosities of the liquid and the gas
respectively;

Le =
κg

Dg

(10)

is the Lewis number, where Dg is the mass diffusivity of the liquid vapor in the
gas, ρ = ρg/ρl and κ = κg/κl.

The boundary conditions at the bottom plate (z = 0) express the no-slip
condition and the continuity of temperature. These write as:

U∗

l = V ∗

l = W ∗

l = 0; T ∗

l = T ∗

e (11)

At the top (z = H∗), one has :

V
∗

g = (0, 0, C); T ∗

g = T ∗

e ; Y ∗

v = Y ∗

v,t; P ∗

g = P ∗

t , (12)

where C is a constant with respect to space. Eqs. (12) express that the temper-
ature, pressure and vapor concentration are fixed at the top of the system and
that a constant flux of the gas mixture is extracted from the system at z = H∗.

At the interface (z = h∗(t)):

J∗ = W ∗

l −W ∗

i = ρ(W ∗

g −W ∗

i ) (mass conservation) (13)

U∗

l = U∗

g ; V ∗

l = V ∗

g (no slip condition) (14)

−µ(∂xW
∗

g + ∂zU
∗

g ) + ∂xW
∗

l + ∂zU
∗

l + Ma∂xT
∗

l = 0

−µ(∂yW
∗

g + ∂zV
∗

g ) + ∂yW
∗

l + ∂zV
∗

l + Ma∂yT
∗

l = 0

(conservation of tangential momentum) (15)

T ∗

l = T ∗

g = T ∗

i (temperature continuity) (16)

J∗ − λ∂zT
∗

g + ∂z∗T ∗

l = 0 (energy conservation) (17)

J∗ = β
dl
ρlκl

√

Ml

2ΠR(T ∗

i
L

p,l
)
(psat(T

∗

i

L

p,l

)−
Pt

1 + Ml

Mg

1−Y ∗

v

Y ∗

v

)

(Hertz-Knudsen law) (18)

κ

Le
∂zY

∗

v + (1− Y ∗

v )(W
∗

g −W ∗

i ) = 0

(non solubility of the gas in the liquid) (19)
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where H∗ = 1 +
dg

dl
, Wi = ∂th is the interface velocity, Y ∗

v,t and P ∗

t are respec-
tively the vapor mass fraction and the pressure at the top plate,

Ma =
σT dlL

cp,lκlµl

(20)

is the Marangoni number, µ =
µg

µl
is the ratio of the dynamic viscosity of the

gas and the liquid, λ = λg
λl

is the ratio of the thermal conductivity of the gas
and the liquid, β is the accomodation coefficient, Ml and Mg are the molecular
masses of the liquid and the gas respectively, R is the universal gas constant and
psat(T

∗

i
L
cp,l

) is the saturation pressure at temperature Ti. Concerning equation

(16) we must point out that, strictly speaking, a temperature jump across the
interface exists, but it can be neglected as shown in [14]. Recall also that the
Hertz-Knudsen law is a phenomenological equation (see for example [6] and [13])
relating the evaporation rate to the difference of the saturation pressure at the
interface and the partial pressure of liquid vapor. β represents the probability
that a molecule arriving at the interface goes through the interface. In the limit
β → ∞, equation (18) is equivalent to the Clausius-Clapeyron relation and the
liquid-gas interface is at thermodynamic equilibrium (i.e. there is no resistance
to phase transition at the interface).

3 Reference state

We work in the quasi-steady assumption [12] which means that close to the
time t0, the time scale of the interface displacement is much larger than the
time scale of heat and mass diffusion. This assumption is possible thanks to
the large value of the latent heat of vaporization L leading to low evaporation
rates (this can be seen through the dimensional form of equation (17) which
writes as: JL − λg∂zTg + λl∂zTl = 0) and thus slow interface displacements.
Within this assumption the above system admits a solution without horizontal
flow, where the velocity, thermal and concentration fields depend only on the
vertical coordinate and where the time derivatives can be neglected in the partial
differential equations. This is our reference state. It is given by (subscript ref
refers to the reference state):

V
∗

ref, l = (0, 0, 0) (21)

V
∗

ref, g = (0, 0, J∗

ref (
1

ρ
− 1)) ≃ (0, 0,

J∗

ref

ρ
) (22)

T ∗

ref, l = (T ∗

ref, i − T ∗

e )z + T ∗

e (23)

T ∗

ref, g =
(T ∗

ref, i − T ∗

e )e
J∗

ref
(z−1)

ρκ + T ∗

e − T ∗

ref, ie
J∗

ref
(H∗

−1)

ρκ

1− e
J∗

ref
(H∗

−1)

ρκ

(24)

Y ∗

v,ref = −(1− Y ∗

v,t)e
J∗

ref
Le(z−H∗)

ρκ + 1 (25)

where J∗

ref and T ∗

ref, i must be determined numerically by solving the following
system of equations involving the three unknown quantities J∗

ref , T ∗

ref, i and
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Yv,ref,i :

J∗

ref =
λ(T ∗

ref, i − T ∗

e )J
∗

ref

(1− e
J∗

ref
(H∗

−1)

ρκ )ρκ

− T ∗

ref, i + T ∗

e (26)

J∗

ref =
βdl
ρlκl

√

Ml

2πR(T ∗

ref, i
L
cp,l

)
(psat(T

∗

ref, i

L

cp,l
)−

Pt

1 + Ml

Mg

1−Y ∗

v,ref,i

Y ∗

v,ref,i

) (27)

J∗

ref =
ρκ

Le(1−H∗)
ln(

Y ∗

v,ref,i − 1

Y ∗

v,t − 1
) (28)

Some reference temperature, mass fraction of vapor in the gas and velocity
profiles are given in figures (2-5).

0 0.0005 0.001 0.0015
280

290

300

310

320

330

z (m)

Tref(K)

Te

= 330 K

= 290 K

= 310 K

Te

Te

Figure 2: reference temperature profiles for water(β = 0.01, Yv,t = 0, Pt =
1 atm, dl = dg = 0.001 m).

In the next section we will analyse the stability of this reference state.

4 Linear stability analysis

To determine the stability of the reference state at time t0, we introduce small
perturbations for velocity, temperature, pressure and vapor mass fraction:

V
∗ = V

∗

ref + v
′ (29)

T ∗ = T ∗

ref + θ′ (30)

P ∗ = P ∗

ref + π′ (31)

in the liquid and gas phase and

Y ∗

v = Y ∗

v,ref + y′v (32)
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0.001 0.0015 0.002
0

0.02

0.04

0.06

z (m)

Yv,ref

Te

= 330 K

= 290 K

= 310 K

Te

Te

Wg

= 8.5 10-4 m/s

= 2.6 10-4 m/s

= 2.2 10-3 m/s

Wg

Wg

Figure 3: reference mass fraction of vapor in the gas and vertical velocity for
water(β = 0.01, Yv,t = 0, Pt = 1 atm, dl = dg = 0.001 m).

After linearization of the equations governing the perturbations, the pressure
field π′ is eliminated by applying ∇ × ∇× to the momentum equation. Then,
the velocity, temperature and vapor mass fraction perturbations are written as
plane waves (normal modes) of the form:

(w′, θ′, y′v) = (w(z), θ(z), yv(z))e
i(kxx+kyy)eσt (33)

where σ is the complex growth rate of the perturbations and kx and ky are the
components of the horizontal wave vector k. After standard algebraic calcula-
tions, we find the following equations:

for 0 ≤ z ≤ 1:

σ(D2 − k2)wl − Prl(D
4 − 2k2D2 + k4)wl = 0 (34)

σθ − (D2 − k2)θl + (T ∗

ref,i − T ∗

e )wl = 0 (35)

for 1 ≤ z ≤ H∗:

σ(D2 − k2)wg + (−Prgκ(D
4 − k2D2 + k4) +

J∗

ref

ρ
(D3 − k2D))wg = 0 (36)

σθg + (−D2 +
J∗

ref

ρ
D + κk2)θg +

(T ∗

ref,i − T ∗

e )J
∗

refe
J∗

ref
(z−1)

ρκ

ρκ(1− e
J∗

ref
(H∗

−1)

ρκ )

wg = 0 (37)

σ yv +(−
κ

Le
D2+

J∗

ref

ρ
D+

κk2

Le
)yv − (1−Y ∗

v,t)
J∗

refLe

ρκ
e

J∗

ref
Le(z−H∗)

ρκ wg = 0 (38)

at z = 0:
wl = Dwl = θl = 0 (39)
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Figure 4: reference temperature profiles for water (β = 0.01, Yv,t = 0, Pt =
1 atm, Te = 310 K).

at z = H∗:
wg = Dwg = θg = yv = 0 (40)

at z = 1:
wl = ρwg = 0 (41)

Dwl −Dwg = 0 (42)

µ(D2 + k2)wg − (D2 + k2)wl − k2Maθl = 0 (43)

θl − θg = 0 (44)

wl − λDθg +Dθl = 0 (45)

wl −
∂f

∂T ∗

l

|ref θl −
∂f

∂Y ∗

v

|ref yv = 0 (46)

(
κ

Le
D − J∗

ref ((1 +
1

ρ
))yv + (1− Y ∗

v,t)e
J∗

ref
Le(1−H∗)

ρκ wg = 0 (47)

where D = ∂z and

f(T ∗

l , Y
∗

v ) = β
dl
ρlκl

√

Ml

2ΠR(T ∗

l
L
cp,l

)
(psat(T

∗

l

L

cp,l
)−

Pt

1 + Ml

Mg

1−Y ∗

v

Y ∗

v

) (48)

To solve the problem, we decompose w(z), θ(z) and yv(z) in series of Cheby-
shev polynomials (spectral Tau-Chebyshev method). Then after projection of
the equations on the Chebyshev polynomials and taking their orthogonality
properties into account the final set of equations and boundary conditions (34-
48) can be written in the general form of an algebraic eigenvalue problem:

AX = σBX (49)
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Figure 5: reference mass fraction of vapor in the gas and vertical velocity for
water(β = 0.01, Yv,t = 0, Pt = 1 atm, Te = 310 K).

where A and B are two matrices depending on the parameters of the problem
and X is the vector of the unknown coefficients of the series. The marginal
stability curve is defined by Re(σ) = 0. For given liquid and gas and for fixed
values of parameters Pt, Yv,t, Te, dg and dl we can calculate the value of one of
these parameters, for which Re(σ) = 0, as a function of the others and of the
wave number k. For the linear stability results we choose dl as the bifurcation
parameter (as in most of the studies on evaporative convection).

Figs 6 and 7 (full curves) represent the marginal stability curves obtained
in the case where the liquid is water and the gas is air and for different values
of Te and dg. Note that the liquid depth is given in dimensional units because
lengths have been scaled by dl. The results in the case of an ethanol-air system
are represented in Fig. 8.

Note also that we checked that the exchange of stability (Re(σ) = 0 ⇒
Im(σ) = 0) is verified in the cases studied here (we did not impose Im(σ) = 0 a
priori, as it is often done).

The results are independent of β for values of β ≥ 0.01 and change very little
for lower values of β (contrary to the case of a liquid-vapor system without
gas, [18]), i.e. the gas-liquid interface is very close to local thermodynamic
equilibrium.

The critical value of the parameter dl is defined by:

dl, c = min
k

dl (50)

The wave number corresponding to dl,c is the critical wave number kc. Some
critical values can be found in table 1.

Note that for standard temperatures, the critical liquid depth is very low,
which means that "usual" liquid layers are always unstable.
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0.0012
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= 320 K
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= 290 K

= 0.0001 m

(m)

k

Te

dg

Te

dg

Te

dg

dl

Figure 6: Marginal stability curves for water (β = 0.01, Yv,t = 0, Pt = 1 atm).
Full lines: exact two layer problem, dashed lines: one-sided model.

0 2 4 60.002

0.003

0.004

0.005

(m)

k

dl

Figure 7: Marginal stability curves for water (β = 0.01, Yv,t = 0, Pt =
1 atm, Te = 290 K, dg = 0.1 m). Full lines: exact two layer problem, dashed
lines: one-sided model.

5 One-sided model

As a basis for the nonlinear stability analysis of the next section, we first reduce
the system to a one-sided model, which allows to solve the equations in the
liquid phase only, but takes into account relevant effects in the gas phase through
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0.001
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Figure 8: Marginal stability curves for ethanol (β = 0.01, Yv,t = 0, Pt =
1 atm, dg = 0.01 m). Full lines: exact two layer problem, dashed lines: one-
sided model.

Table 1: dl,c, kc, J and relative errors ǫdl,c
=

dl,c,one−sided−dl,c

dl,c
and ǫkc

=
kc,one−sided−kc

kc

liquid Te(m) dg(m) dl,c(m) kc J(kg/m2s) ǫdl,c
ǫkc

water 290 0.0001 8.74E-05 2.006 2.8E-03 -1.24E-02 -2.28E-04
water 290 0.01 7.97E-04 1.995 3.0E-5 -1.47E-02 -2.80E-03
water 290 0.1 2.51E-03 1.995 3.5E-6 -1.44E-02 -4.07E-03
water 320 0.01 2.75E-04 1.992 2.1E-4 -3.34E-02 3.99E-05

ethanol 260 0.01 1.40E-03 2.013 2.1E-5 -1.63E-02 -1.01E-02
ethanol 290 0.01 4.21E-04 1.988 1.5E-4 -3.77E-02 -5.54E-03
ethanol 320 0.01 1.87E-04 2.038 1.1E-3 -1.54E-01 1.51E-02

boundary conditions (details on the derivation of the one-sided model can be
found for example in [8], [13] and [14]). This reduction is possible, provided the
depth of the gas is not too large and transport effects in the gas are negligible
(1/κ << 1 and Le/κ << 1) so that equations (6-7) reduce to:

(1 ≤ z ≤ H∗),
∇2T ∗

g = 0 (51)

∇2Y ∗

v = 0 (52)

Assuming furthermore that the evaporation rate is not too high, the reference
state is given by:

V
∗

ref,l = (0, 0, 0) (53)
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V
∗

ref,g = (0, 0,
J∗

ref

ρ
) (54)

T ∗

ref, l = (T ∗

ref,i − T ∗

e )z + T ∗

e (55)

T ∗

ref, g =
(T ∗

ref,i − T ∗

e )

1−H∗
z + T ∗

e −
T ∗

ref, i − T ∗

e

1−H∗
H∗ (56)

Y ∗

v,ref =
J∗

ref (−1 + Y ∗

v,t)
ρκ
Le

− d∗l J
∗

ref +H∗J∗

ref

(z −H∗) + Y ∗

v,t (57)

As J∗

ref , T ∗

ref, i and Y ∗

v,ref, i are rather complicated expressions, they are
given herebelow in the case where Y ∗

v,t = 0.

J∗

ref =
dl
ρlκl

psat(Te)
∂psat

∂T
|Te

Ldl

λl
+ 1

β

√

Mlcp,l

2ΠRLT∗

e

(1 + λ
d∗

g
) +

RdgLT∗

e

MlDgcp,l

(58)

T ∗

ref, i = T ∗

e −
J∗

ref

1 + λ
d∗

g

(59)

Y ∗

v,ref, i =
d∗gLe

ρκ
J∗

ref (60)

The expression for J∗

ref shows clearly the three possible limitating mecha-
nisms of the evaporation process: the first term of the denominator is the re-
sistance to heat supply to the interface, the second one the resistance to phase
transition and the third one is resistance to vapor removal by diffusion. For a
detailed discussion of the relative importance of these mechanisms see the paper
[13]. In general the second term is much smaller than the other two ones; this
means that the interface is very close to local thermodynamic equilibrium.

After introduction of the perturbed quantities, as in section 4, in eqs. (1-3)
and in eqs. (51- 52), we obtain the following linear equations governing the
system (in the following we drop the subscript l of the variables): for ≤ z ≤ 1:

σ(D2 − k2)w − Prl(D
4 − 2k2D2 + k4)w = 0, (61)

σθ − (D2 − k2)θ + (T ∗

ref, i − T ∗

e )w = 0, (62)

and at z = 0:

w = Dw = θ = 0, (63)

w = (D2 + k2)w + Mak2θ = Dθ + (Biev + λkcoth((1−H∗)k))θ = 0. (64)

where Biev, that takes account for the effect of evaporation, is a rather compli-
cated expression depending on the wave number k, the liquid and gas properties
and the reference state. The expression of Biev when Y ∗

v,t = 0 is given herebelow:

Biev =

L
cp,l

∂psat

∂T
|Ti,ref

−
J∗

refρlκl

2βdlT
∗

ref,i

√

Mlcp,l

2ΠRLT∗

ref,i

ρlκl

βdl

√

Mlcp,l

2ΠRLT∗

ref,i

+
Ml
Mg

(1−Y ∗

v,ref,i
)Pt

(
Ml
Mg

+(1−
Ml
Mg

)Y ∗

v,ref,i
)2( ρκ

Le
kcoth(k(H∗

−1))+J∗

ref
)

(65)
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Figure 9: Biot number Bi=Biev + λkcoth((1−H∗)k) for water as a function of
temperature Te (β = 0.01, Yv,t = 0, Pt = 1 atm).

In figures (9-11), we plotted the Biot number (evaluated at k = 2) as a
function of Te, dl and dg respectively.

Contrary to ([17], eq. (18)), the equivalent Biot number depends on the
wavenumber k because the evaporation rate is obtained here by the resolution of
the diffusion equation (52) associated with the saturation equation (19) instead
of being given by a measured function of the interface temperature.

We have thus transformed the initial two-layer problem (34-48) in a one-sided
model (61-64), that is similar to the classical Pearson problem [3]. The marginal
stability curves corresponding to this problem, are obtained by a linear stability
analysis as in section 4. In Figs. 6, 7 and 8 we compare these curves to those
obtained from the exact two layer problem. One can see that there is a very
good agreement between the two approaches and that it is best when Te and
dg are low. This is due to the fact that when Te increases, the evaporation rate
increases and the one-sided model was established under the hypothesis of low
evaporation rates. We assumed in the one-sided model that transport effects in
the gas are negligible, which is valid only for low values of dg. Nevertheless we
see in Fig. 7 that even for values of dg as high as 0.1 m (compared to the liquid
layer thickness), there is a rather good agreement between the two approaches.
In table 1 we see the relative error for some critical values.

6 Nonlinear stability analysis

The linear analysis allowed us to determine the critical liquid depth dl,c above
which the reference state becomes unstable, as well as the characteristic wave
number kc of the flow pattern. But the actual shape of this pattern can be
obtained only via a nonlinear analysis. For this purpose, we use a Galerkin-
Eckhaus method, which consists in expanding the unknown perturbation fields
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Figure 10: Biot number Bi=Biev + λkcoth((1−H∗)k) as a function of dl (β =
0.01, Yv,t = 0, Pt = 1 atm, Te = 310 K, dg = 0.001 m).

in series of the eigenfunctions of the linear problem, then to introduce these ex-
pansions in the nonlinear equations and to project them onto the eigenfunctions
of the adjoint linear problem. The infinite set of equations is then reduced to a
finite number of ordinary differential equations by using a slaving principle.

In order to avoid too complicated calculations, we consider the one-sided
model derived in section 5 (with a constant Biot number evaluated at the critical
liquid depth). The nonlinear perturbed equations for this one-sided model are
given by:

for 0 ≤ z ≤ 1:

∇∗.v′ = 0 (66)

∂tv
′ + v

′.∇v
′ +∇∗π′ − Prl∇

2
v
′ = 0 (67)

∂tθ
′ + v

′.∇θ′ + (T ∗

ref, i − T ∗

e )w
′ −∇2θ′ = 0 (68)

(69)

at z = 0:
v
′ = θ′ = 0 (70)

at z = 1:

w′ = 0 (71)

∂xw
′ + ∂zu

′ = −Ma∂xθ
′

∂yw
′ + ∂zv

′ = −Ma∂yθ
′ (72)

∂zθ
′ = −(Biev + λkccoth(d

∗

gkc))θ
′ (73)

For conciseness the derivation of the amplitude equations is described only
briefly in the present paper. For further details see for instance [19] or [20].
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Figure 11: Biot number Bi=Biev + λkcoth((1−H∗)k) as a function of dg (β =
0.01, Yv,t = 0, Pt = 1 atm, Te = 310 K, dl = 0.01 m).

First we solve the linear equations (61)-(64) using the growth rate σ of the
perturbations as eigenvalue parameter. For each value of the wave number k
there exists an infinite set of eigenvalues σk

p , with p being an integer running
from one to infinity. The unknowns of the nonlinear problem (66)-(73) are then

expanded as a series of the eigenfunctions (vk
p (z), θ

k
p (z)) of the linear eigenvalue

problem:

(v′, θ′) =

∞
∑

p=1

∑

k

Ak
p (t)(v

k
p (z), θ

k
p (z))e

i(kxx+kyy) (74)

Ak
p are the time-dependent amplitudes and k can take all possible directions

and moduli. After inserting equation (74) in the nonlinear equations, projection
onto the eigenfunctions of the adjoint problem, integration by parts and noticing
that the eigenfuctions are biorthogonal we obtain an infinite set of amplitude
equations. This set is then reduced to a finite number by using a slaving method.
The principle of this method consists in separating the set of eigenmodes in a
first set Kc, containing the most unstable (critical) modes, and a second set Ks,
containing the stable (slaved) modes. The final amplitude equations are then
given by:

∂∗

t Ak
p = σk

p A
k
p + ε

∑

q

Ak
q ∈ Kc

Mk
q,pA

k
q −

∑

q, l,k1,k2

Ak1
q , Ak2

l ∈ Kc

Nk1,k2,k
q,l,p Ak1

q Ak2

l

−
∑

q,m, n,k1,k3,k4

Ak1
q , Ak3

m , Ak4
n ∈ Kc

Zk1,k3,k4,k
q,m,n,p Ak1

q Ak3
m Ak4

n (75)
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where

Mk
q,p = −Te,c

〈

v
k⋆
p v

k
p + θk⋆

p θkp

〉

−1 (∂(T ∗

ref,i − T ∗

e )

∂Te

|Te,c

〈

wk
p , θ

k⋆
q

〉

−
∂Prl
∂Te

|Te,c

〈

∇2
v
k
p ,v

k⋆
q

〉

+ Prl
∂Ma

∂Te

|Te,c

〈

∇hθ
k
p ,v

k⋆
q

〉

z=1

+(
∂Biev
∂Te

|Te,c
+

∂λ

∂Te

|Te,c
kccoth(d

∗

gkc))
〈

θkp , θ
k⋆
q

〉

z=1

)

Nk1,k2,k
q,l,p =

〈

v
k1
q .∇v

k2

l ,vk⋆
p

〉

+
〈

v
k1
q .∇θk2

l , θk⋆
p

〉

〈

vk
p vk⋆

p + θkp θ
k⋆
p

〉

Zk1,k3,k4,k
q,m,n,p = −

∑

r,k5

Ak5
r ∈ Kc

(Nk1,k5,k
q,r,p +Nk5,k1,k

r,q,p )Nk3,k4,k5
m,n,r

×
1

iIm(σk3
m + σk4

n )− σk5
r

ε = (Te−Te, c)/(Te, c) is the relative distance to the linear stability threshold.
Note that we choose this definition for ε (and not (dl − dl,c)/dl,c) because the

expression of Mk
q,p is less complicated in this case. The final stability diagrams

are the same in both cases. The scalar products 〈 , 〉 are defined by:

〈a, b〉 = lim
L→∞

1

4L2

∫ L

−L

∫ L

−L

∫ 1

0

a(x, y, z) b̄(x, y, z) dz dx dy (76)

and

〈a, b〉z=1 = lim
L→∞

1

4L2

∫ L

−L

∫ L

−L

a(x, y, 1) b̄(x, y, 1) dx dy (77)

Note that in equation (75), contrary to what is usually done, we take into
account the variation of the physical parameters and of the Biot number with
Te,ref (but in agreement with Boussinesq approximation the variation of the
physical parameters with the small temperature perturbations θ are neglected).

In order to describe the interactions of roll, square and hexagonal patterns,
we choose 12 critical wave vectors with an angle of 30◦ between them (see figure
12).

In this case the final amplitude equations are of the form (to simplify notation

we note Ak1
1 = A1, A

k2
1 = A2...):

τ∂tA1 = εA1 + aA2A3 − b(|A2|
2 + |A3|

2)A1 − c|A1|
2A1

−d(|A5|
2 + |A6|

2)A1 − e|A4|
2A1 (78)

and similar equations for A2...A12 (see [21]). The coefficients τ , a, b, c, d and e
are given by:

τ =
1

Mk1
1,1

,
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Figure 12: critical wave vectors

a = τ N−k2,−k3,k1

1,1,1 ,

b = τ Zk1,k2,−k2,k1

1,1,1,1 = τ Zk1,k3,−k3,k1

1,1,1,1 ,

c = τ Zk1,k1,−k1,k1

1,1,1,1 ,

d = τ Zk1,k5,−k5,k1

1,1,1,1 = τ Zk1,k6,−k6,k1

1,1,1,1 ,

e = τ Zk1,k4,−k4,k1

1,1,1,1

A standard stability analysis of the solutions of these amplitude equations
shows that:

• the conductive solution is stable when ε < 0

• rolls are stable when c > 0 and c < b and c < d and c < e and ε > εR

• hexagons are stable when ε > εHc and 2b+ c > 0 and

(

c > b or
(−b < c < b and ε < εH1)

)

and

(

2d+ e > 2b+ c or
(−(2b+ c) < 2d+ e < 2b+ c and ε < εH2)

)

• squares are stable when c + e > 0 and c > e and c + e − b − d < 0 and
ε > εS

where

εR =
c a2

(b− c)2
, εHc =

−a2

4(2b+ c)
, εH1 =

a2(b+ 2c)

(b− c)2
,
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εH2 =
a2(2d+ e)

(2d+ e− 2b− c)2
, εS =

a2(c+ e)

(b+ d− c− e)

In Figs. 13 and 14 we see the results of this stability analysis in the case
of a water-air system and for two different values of the gas layer thickness
(respectively 0.01 m and 0.0001 m); C means that the conductive state is stable,
R means that rolls are a stable pattern, H means that hexagons are a stable
pattern and S means that squares are a stable pattern.

0 0.0005 0.001 0.0015

280

300

320

340

360

H

R + H
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dl,S
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320

325

330

335

340
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R + H

c

dl,S

Te,S

H + S

Figure 13: weakly nonlinear stability diagram for water (β = 0.01, Yv,t =
0, Pt = 1 atm, dg = 0.01 m).

Fig. 14 shows that for a very thin gas layer square structures will not be
observed. In figure 15 we present the liquid depth dl,S below which squares
are possible as a function of dg. Corresponding temperatures Te,S above which
squares are stable are also indicated. For a better comprehension of the defini-
tion of dl,S and Te,S , they are indicated in figure 13.

In figure 16 we see the results of the stability analysis for an ethanol-air sys-
tem. This liquid was analysed because it is the fluid used in the ITEL-MASER
9 experiment (see [8]). The results of this experiment are not comparable to our
theoretical results because they observed only transient effects due to the short
experiment duration, but experiments with longer experiment times (and thus
pattern formation) are foreseen in the CIMEX-1 experiment ([8]).

We thus see that the details of the nonlinear stability diagrams depend on
the fluid and the experimental conditions (through dg for instance), but as a
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Figure 14: weakly nonlinear stability diagram for water (β = 0.01, Yv,t =
0, Pt = 1 atm, dg = 0.0001 m).

general tendency we note that squares are stable only below a critical value of dl
and rolls above this same value. As this critical depth is usually very small, we
conclude that in the cases studied here and after the primary bifurcation to a
hexagonal pattern, rolls are more easily observed than squares. Eventually note
that in figures (13), (14) and (16) the Biot number not only changes along the
neutral stability curves (as can be seen in table (2)), but also with the distance
to threshold. We can see in figure (9), that for a given value of dl, the Biot
number increases with Te. Table (2) shows that the Biot number is largely
increased by the evaporation process, compared to the purely conductive case.
Squares appear for values of the Biot number above approximately 1, which is
in agreement with the results in [21].

Eventually note that these results, as the linear ones, are independent of β
for values of β ≥ 0.01 and change very little for lower values of β.

7 Summary

We have presented in this paper a linear and weakly nonlinear stability analysis
of an evaporating liquid layer surmounted by an inert-gas vapor mixture. After
reduction of the full two layer problem to a one-sided model, we performed a
nonlinear stability analysis leading to a finite set of amplitude equations. A

19



0.05 0.1 0.15

0.0002

0.0004

0.0006

0.0008

0.001

330

335

340

345

dg (m)

dl,S(m) Te,S(K)Te,STe,S

Te,S

dl,S

0.0004 0.00045 0.0005 0.00055

1.5E-05

2E-05

2.5E-05

3E-05

3.5E-05

0.0004 0.00045 0.0005 0.00055

350

355

360

365

370

Figure 15: dl,S (full line, left axis) and Te,S (dashed line, right axis) as function
of dg (β = 0.01, Yv,t = 0, Pt = 1 atm).

stability analysis of these amplitude equations permitted to draw a stability
diagram of the roll, square and hexagonal pattern appearing above the linear
stability threshold as a function of the liquid layer depth and the temperature.
Both a water-air system and an ethanol-air system were considered. We found
that squares are stable only below a critical value of the liquid depth and rolls
above this same value. This critical depth is higher for an ethanol-air system
than for a water-air system. Furthermore, we found that hexagons are the first
pattern appearing past the linear stability threshold.

Note that the validity of our amplitude method is strictly speaking limited
to the close neighborhood of the linear stability analysis, but it has been shown
[24] that it can be extended to rather large values of ε.
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Table 2: dl,c, Te,c, Bi=Biev+λkccoth(d
∗

gkc) and λkccoth(d
∗

gkc) along the neutral
stability curves of figures 13, 14 and 16

dl,c(m) Te,c(K) Bi λkccoth(d
∗

gkc)

figure 13
0.0001 355.6 2.648 0.0957
0.0002 329.6 1.065 0.0873
0.0005 301.3 0.375 0.0852
0.0010 284.5 0.208 0.0855
0.0015 276.0 0.161 0.0860

figure 14
0.00001 353.7 0.574 0.0953
0.00005 303.7 0.283 0.0866
0.0001 286.6 0.196 0.0893

0.00020 272.3 0.180 0.1138
figure 16

0.0001 332.3 9.023 0.4135
0.0002 312.1 3.095 0.3307

0.01 224.1 0.241 0.2294
0.03 208.0 0.350 0.3460
0.05 201.3 0.512 0.5091
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