
To appear in S. Vuong, S. Chanson, eds., Protocol Specification, Testing and Verification, XIV, Chapman & Hall, 1994.

1

Failure-based Congruences, Unfair Divergences and New Testing Theory
Guy Leduc
Research Associate of the National Fund for Scientific Research (Belgium)
Université de Liège, Institut d’Electricité Montefiore, B 28, B-4000 Liège 1, Belgium
The testing equivalence te that is used as a reference in verification and testing theory in
LOTOS is not a congruence, and no explicit definition of the least congruence stronger than
te has been found. The critical LOTOS context in which congruence is lost is the hiding
context that creates divergence. In this paper we first survey this problem and present three
known variants of te that are congruences. Each of them, as well as te, is then related to a
particular interpretation of divergences in terms of (un)fairness of divergences. The associ-
ated preorders that generate these equivalences are also presented. Based on these results, we
propose a new testing theory based on unfair divergences. It defines new equivalence and
conformance relations, as well as the associated canonical tester. We also prove that the least
congruence stronger than this new testing equivalence is one of three presented failure-based
congruences, which thus also deserves the label of testing congruence.
Keyword Codes: F.4.3; D.2.5
Keywords: Formal Languages; Testing and Debugging.

1. Introduction
There exist many variants of testing (or failures) equivalences in the literature. We will re-
view some of them in the sequel. In LOTOS [ISO 8807, BoB 87], the testing equivalence that
is used as reference in verification and testing theory was proposed in [BSS 87] and denoted
te. Contrary to most other testing equivalences, te is a failures equivalence that does not refer
explicitly to divergences in its definition. This does not mean that divergences have no clear
interpretation. Indeed, divergences are interpreted as harmless (or fair) in the sense that re-
moving (or adding) a divergence keeps the system unchanged modulo te.
The problem with te is that it is not a congruence in abstraction contexts, i.e. the LOTOS
hiding contexts. This means that if one hides some actions in two Labelled Transition
Systems (LTS) that are equivalent modulo te, we can get two LTS that are no more equiva-
lent modulo te. As hiding and parallel composition contexts are the most important contexts
in complex system design, we consider this non-congruence as a major drawback. For exam-
ple, let us consider a LOTOS specification in which several processes are interconnected and
some interfaces are hidden from the external environment. Replacing one process by another
te-equivalent process may have as consequence that the global specification is no more te-
equivalent to the initial one. This precludes any form of modular design based on te. The sit-
uation is also critical for the red and ext preorders of te. Note that this lack of congruence
only appears in hiding contexts that create divergence. This would not be too critical if it was
possible to give an explicit definition to the weakest congruence stronger than te and to its
associated preorder. However, this does not seem to be feasible.

Failure-based Congruences, Unfair Divergences and New Testing Theory

2

There exist other variants of testing (or failures) equivalences that are congruences. However,
their interpretation of divergence is not intuitively adequate. For example, in the denotational
semantics of TCSP [Hoa 85, BrR 85], the divergences are considered catastrophic. This
means that when a process starts diverging, its behaviour is considered chaotic in the sense
that no information about it is recorded in the model (the process may execute all traces and,
after each one, will diverge and may accept or refuse any action). This interpretation is not
really adequate w.r.t. the operational interpretation of this phenomenon in terms of infinite in-
ternal sequences. The same interpretation applies in the “must” version of the acceptance
model of [dNH 84]. To a lesser extent, the catastrophic view is also used in the “may+must”
version of the testing theory of CCS [dNH 84, Hen 85, Hen 88, ClH89]. Basically, in this
model, only a limited information (viz. the traces) is recorded when a process starts diverg-
ing. Moreover, in these models, any trace that passes through a state where an unbounded
sequence of successive internal steps is enabled is called a divergence. We will refer to this
notion as a subdivergence, rather than as a divergence. In this paper, a divergence is a trace
leading to a state where an infinite sequence of successive internal steps is enabled. In the
readiness model of TCSP [OlH 86] the catastrophic view is also used. Finally, in the failures
model with explicit divergences of [BKO 87], more information (e.g. on stable failures, see
later) is recorded when a process starts diverging but again subdivergences are used instead
of divergences.
If we focus on failures equivalences that either refer explicitly to divergences (i.e. not to
subdivergences), or do not refer explicitly to any form of divergence in their definition (like
te), then we know of three proposals that are congruences: the failures equivalence with
abstraction of unstable divergences of [BKO 87] and the CFFD (Chaos-Free Failures
Divergences) and NDFD (NonDivergent Failures Divergences) equivalences of [KaV 92].
In this paper, we will first present in our notations these three failure-based congruences, de-
noted =FAUD, =CFFD and =NDFD. It is also shown that =CFFD is the intersection of =FAUD and =NDFD

and thus the strongest equivalence among the three. Also, none of these equivalences are
comparable to te, but =NDFD (and thus also =CFFD) is stronger than the testing equivalences of
[dNH 84]. We also examine their preorders and explain that some or all divergences are con-
sidered unfair modulo these congruences.
The testing theory of LOTOS is based on te with its fair interpretation of divergences. In the
last part of this paper, we propose a new testing theory based on unfair divergences. It in-
cludes a new conformance relation, a new canonical tester and a new testing equivalence. We
also prove that the least congruence stronger than this new testing equivalence is =NDFD which
is thus our new testing congruence.

2. On the non-congruence of the testing equivalence
Labelled Transition Systems (LTS) are used as models for LOTOS processes. We let the
alphabet of actions be A = L ! {i} and L = G ! {"} where G is a countable set of observable
gates (ranged over by a, b, c, g …), L denotes the alphabet of observable actions, " is the
special action denoting successful termination. The symbol i is reserved for the unobservable
internal action, and does not belong to L. Capital Greek letters such as # will be used to de-
note subsets of L. L* denotes the set of strings over L (ranged over by $, $’, …), and % the
empty string. Note that depending on the context, b may denote the action b or the string

Failure-based Congruences, Unfair Divergences and New Testing Theory

3

composed of the single action b. & (L) is the power set of L, i.e. the set of subsets of L.
Capital letters P, P’, P1, Q, … are used to represent states (that is LOTOS processes or be-
haviour expressions).
P 'a P’ means that process P may engage in action a and, after doing so, behave like P’.
P 'a / means (P’. ¬ (P 'a P’)

P'i
k

 P’ means that process P may engage in the sequence of k internal actions and, after do-
ing so, behave like process P’.

P 'a.b P’ means) P”. P 'a P” * P” 'b P’.

P +a P’ where a , L, means) k0, k1 , N. P --'ik0.a.ik1 P’
P +a where a , L, means that) P’. P +a P’, i.e. P may accept the action a.
P +a / where a , L, means ¬ (P +a), i.e. P cannot accept (or must refuse) the action a.
P +$ P’ means that process P may engage in the sequence of observable actions $ and, after

doing so, behave like process P’. More precisely, if $ = a1…an where a1, … an , L:

) k0, … kn , N. P ------'ik0.a1.ik1a2…an.ikn P’
P +$ means that) P’. P +$ P’, whereas P +$ / means ¬ (P +$)

Definitions 2.1
Tr (P) = {$. P +$ } i.e. the trace set of P. This set is prefix-closed.
Ref (P) = {X / L .) P’. P +% P’* (a , X. P’ +a / } i.e. Ref (P) is the refusal set of P.

Ref (P) is a set of sets and a subset of & (L). A set X / L belongs to Ref (P) iff P may
refuse initially every event of the set X. Ref (P) is subset-closed.

Fail (P) = {($,X) , L* × & (L) .) P’. P +$ P’* X , Ref (P’)} i.e. the set of failures of P
Stable (P) iff P 'i /

The testing equivalence te and the associated relations proposed in [BSS 87] may be ex-
pressed in these notations as follows.
Definitions 2.2
P1 te P2 iff Fail (P1) = Fail (P2)
P1 conf P2 iff Fail (P1) 0 (Tr (P2) × & (L)) / Fail (P2)
Informally, P1 conf P2 iff, placed in any environment whose traces are limited to those of P2,
P1 cannot deadlock when P2 cannot deadlock.
P1 red P2 iff Fail (P1) / Fail (P2) or equivalently iff Tr (P1) / Tr (P2) * P1 conf P2
P1 ext P2 iff Tr (P1) 1 Tr (P2) * P1 conf P2

Definitions 2.3
A context C [.] is a behaviour expression with a formal parameter ‘.’, called a hole.

C [P] is C [.] where all occurrences of ‘.’ have been replaced by P.
For example, C [.] = hide a in (P || .) and C [Q] = hide a in (P || Q).

An equivalence eq is a congruence iff (P, Q. P eq Q 2 C[P] eq C[Q] for every context C[.].
A preorder 3 is a congruent preorder (or precongruence) iff
(P, Q. P 3 Q 2 C [P] 3 C [Q] for every context C [.]

Failure-based Congruences, Unfair Divergences and New Testing Theory

4

Unfortunately, te is not a congruence and red is not a precongruence. In [BrS 86], te and red
have been strengthened to get closer to such congruence and precongruence. These relations
are denoted tc1 and cred2 in [BrS 86]. They are (pre)congruent in choice and disabling con-
texts thanks to the condition on the stabilities, but they still failed to be (pre)congruent in hid-
ing contexts. We illustrate hereafter the problem of the hiding operator [Led 91].
Consider processes P and Q defined recursively as (depicted on figure 1)

P := a; (b; stop [] i; P)
Q := P [] R where R := a; R

It can be shown easily that they have exactly the same failures and are thus te-equivalent.
However, hide a in P and hide a in Q have different refusal sets, thereby showing that hiding
does not preserve te (nor tc).
Namely, Ref (hide a in P) = {4, {a}} but Ref (hide a in Q) = {4, {a}, {b}, {a, b}}.

P te Q but ¬ (hide a in P te hide a in Q).

P

b; stop [] i; P
ia

b
stop

Q

a

b; stop [] i; P

stop P

Raa

i
b a

i

hide a in P

i

b
stop

hide a in Q

stop
i

i

i

i
i

b

Figure 1 : Non congruence of te in hiding contexts
We are interested in variants of the testing equivalence which are congruences in every
LOTOS context, including hiding. Therefore, strengthening the te-equivalence such that, for
example, the processes P and Q above are discriminated is not what we are looking for. In
this respect however, note that neither the readiness equivalence [OlH 86], nor the failure
trace equivalence3 [Phi 87, Lan 90], which are stronger than te, are strong enough. By con-
trast, we are looking for variants of the te-equivalence that accept hide a in P and hide a in Q
in the same equivalence class.
A closer look at this problem shows that it is essentially due to the presence of divergences4.
For convergent processes, te (or more precisely tc) is adequate, but when hiding creates di-
vergence the congruent character disappears. This problem was first studied in [BKO 87]
where it was proved that failure semantics is inconsistent with fair abstraction of divergences.
The reader may think that the creation of divergences in hiding contexts is an academic con-
cern. On the contrary, hiding contexts that create divergences (sometimes also referred to as
livelocks) are quite usual as illustrated on the simple example hereafter (shown on fig. 2).
Behaviour
hide message, ack, nack in Sender |[message, ack, nack]| Receiver where
Sender := send; S where S := message; (nack; S [] ack; Sender)
Receiver := message; (nack; Receiver [] receive; ack; Receiver)

1 P1 tc P2 iff Fail (P1) = Fail (P2) * (Stable (P1) 2 Stable (P2)) in our notations
2 P1 cred P2 iff Fail (P1) / Fail (P2) * (Stable (P1) 5 Stable (P2)) in our notations
3 This fact has been first communicated to me by Rom Langerak when I sent him this example.
4 A precise definition of a divergence will be given later. Let us just consider that a divergence is a trace leading
to a state where an infinite sequence of internal actions is enabled.

Failure-based Congruences, Unfair Divergences and New Testing Theory

5

acksend
nack

message

ack

receive

nack
message

message

ack

nack

receivesend

v v

=
i

send
i

i

v

receive

send receive

Figure 2: Classical example of a hiding context that creates divergence

3. Failure-based congruences
As mentioned in the introduction, we disregard the failure-based congruences that consider
divergences as catastrophic or that refer to subdivergences, because these definitions do not
match the operational intuition in terms of infinite sequences of internal actions.

3.1. Stable failure-based congruence with fair abstraction of unstable divergence 1

In this section we will present a variant of te which is a congruence. The basic idea is to re-
place the failures by stable failures in te.
Definitions 3.1
SRef (P) = {X / L .) P’. P +% P’ * Stable (P’) * (a , X. P’ +a / }

= {X / L .) P’. P +% P’ * (a , X ! {i}. P’ 'a / };
i.e. the stable refusal set of P. SRef is subset-closed and SRef / Ref.

SFail (P) = {($,X) , L* × & (L) .) P’. P +$ P’ * X , SRef (P’)}
i.e. the set of stable failures of P. SFail / Fail
Stable failures have been first used in [BKO 87], but the concept of a stable acceptance set
(which is the dual of SRef) was already used in [OlH 86] to define the readiness equiva-
lence. Stable failures have also been used in [ClH89, VaT 91, KaV 92].

STr (P) = Domain (SFail (P)) = {$, L* . ($,4) , SFail (P)}
i.e. the set of traces leading to stable states, or stable traces for short.

Definitions 3.2
(i) P1 =FAUD P2 iff Tr (P1) = Tr (P2) * SFail (P1) = SFail (P2) * (Stable (P1) 2 Stable (P2))
(ii) P1 3FAUD P2 iff Tr (P1) / Tr (P2) * SFail (P1) / SFail (P2) * (Stable (P1) 5 Stable (P2))

Note that traces (and not stable traces) are used in this definition. The conditions on the sta-
bilities are needed to get congruence in choice and disabling contexts, and the replacement of
Fail by SFail solves the non congruence in hiding contexts (see below). This =FAUD equiva-
lence is a translation is our setting of the failure semantics with Fair Abstraction of Unstable
Divergence (FAUD) presented in [BKO 87]. This terminology will be explained later.
Propositions 3.3
(i) 3FAUD is a preorder (i.e. a reflexive and transitive relation)

1 The ‘(un)fair’ or ‘(un)stable’ attributes of divergences will be defined and explained later.

Failure-based Congruences, Unfair Divergences and New Testing Theory

6

(ii) P1 =FAUD P2 iff P1 3FAUD P2 * P2 3FAUD P1
(iii) All LOTOS operators are monotonic w.r.t. 3FAUD, i.e. 3FAUD is a precongruence.
(iv) =FAUD is a congruence
The proofs of (i) and (ii) are obvious. The proof of (iii) can found in [VaT 91], and (iv) is de-
rived directly from (iii).
The next propositions will clearly indicate that the differences between 3FAUD and cred, =FAUD

and tc only appear on divergent processes.
Propositions 3.4
For convergent processes, 3FAUD = cred, =FAUD = tc. Note that for divergent processes these re-
lations are not comparable (see figure 3 for an illustration of =FAUD 6 tc).

ia ia

i

i
a

tc
tc/

P1 P2 P36
=

Figure 3: Relation between tc and =FAUD.
At this stage we have presented the =FAUD equivalence (which is a congruence) and that satis-
fies our initial requirements. Coming back to our example of figure 1, we have P =FAUD Q and
(hide a in P) =FAUD (hide a in Q). The reason is that the trace % cannot lead to a stable state,
neither in hide a in P, nor in hide a in Q, so that (%,Ø) 7 SFail (hide a in P) and (%,Ø) 7 SFail
(hide a in Q).

3.2. Stable failure-based congruence with unfair interpretation of divergence
In this section, =FAUD will be changed to take account explicitly of divergences. To get this
new equivalence, we strengthen =FAUD by requiring that the sets of divergent traces of two
processes should also be equal. However, to get congruence on infinite-state systems, the
equality of infinite traces is also required.
Definitions 3.5
Div (P) = {$, L* .) P’. P +$ P’ 'i

8
} i.e. the set of strong divergences of P

InfTr (P) = {$, L8 . P +$ } i.e. the set of infinite traces of P
Note that in finite-state LTSs, the infinite traces can always be derived from the finite traces.
However, this is not true in infinite-state LTSs. Consider the following example: P := a; P’
where P’ := a; P’ [] i; stop, and Q := choice n:nat [] Q’(n) where Q’(n) := [n>0] -> a; Q’(n-1).
P and Q have the same finite traces (viz. any finite sequence of a’s), but P has the infinite
trace a8 whereas Q has not.
Definitions 3.6
(a) P1 =CFFD P2 iff P1 =FAUD P2 * Div (P1) = Div (P2) * InfTr (P1) = InfTr (P2)
or stated otherwise iff SFail (P1) = SFail (P2) * Div (P1) = Div (P2) *

(Stable (P1) 2 Stable (P2)) * InfTr (P1) = InfTr (P2)
(b) P1 3CFFD P2 iff P1 3FAUD P2 * Div (P1) / Div (P2) * InfTr (P1) / InfTr (P2)

Failure-based Congruences, Unfair Divergences and New Testing Theory

7

This equivalence is the CFFD equivalence of [KaV 92]. To see why equality of infinite traces
is needed when equality of divergence sets is, we simply hide a in both processes P and Q
defined above, and get a divergence in hide a in P, but no divergence in hide a in Q.
Propositions 3.7 [KaV 92]
(i) P1 =CFFD P2 iff (P1 3CFFD P2 * P2 3CFFD P1)
(ii) 3CFFD is a precongruence
(iii) =CFFD is a congruence
A version of =CFFD without equality of infinite traces, denoted =FinCFFD, was presented in [VaT
91]. =FinCFFD is a congruence on finite-state LTSs only.
The examples of figure 4 show the discriminative power of =CFFD. On the other hand, pro-
cesses P2 and P3 (figure 2) are =CFFD-equivalent, which illustrates the limit of this discrimina-
tive power.

i

i P5
i

P4
=
6

tc

i

a

i

i a

i
P7

P6 =

tc/
6

Figure 4: Non =CFFD-equivalent processes

3.3. Convergent failure-based congruence with unfair interpretation of divergence
We introduce a third failure-based congruence, denoted =NDFD. In this semantics two pro-
cesses are equivalent if they have the same finite and infinite traces, divergences, stabilities
and the same refusals after their convergent traces. In this case, stable refusals may also be
used because SRef = Ref after convergent traces.
Definitions 3.8
Conv (P) = Tr (P) 9 Div (P)
CFail (P) = Fail (P) 0 (Conv (P) × & (L)) = SFail (P) 0 (Conv (P) × & (L))

Definitions 3.9
P1 =NDFD P2 iff CFail (P1) = CFail (P2) * Div (P1) = Div (P2) * (Stable (P1) 2 Stable (P2))

* InfTr (P1) = InfTr (P2)
P1 3NDFD P2 iff CFail (P1) / CFail (P2) ! (Div (P2) × & (L)) * Div (P1) / Div (P2) *

(Stable (P1) 5 Stable (P2)) * InfTr (P1) / InfTr (P2)
The first condition in =NDFD means that refusal sets are required to be identical after conver-
gent traces only. No information on the refusals after divergence traces is considered. This
equivalence is the NDFD equivalence of [KaV 92].
Propositions 3.10 [KaV 92]
(i) P1 =NDFD P2 2 (P1 3NDFD P2 * P1 3NDFD P2)
(ii) 3NDFD is a precongruence
(iii) =NDFD is a congruence

Failure-based Congruences, Unfair Divergences and New Testing Theory

8

Note that the condition on ‘Div’ in =NDFD can be replaced by Tr (P1) = Tr (P2), but the condi-
tion on ‘Div’ in 3NDFD cannot be replaced by Tr (P1) / Tr (P2) because this would falsify
proposition 3.10 (i). Note also that the first condition in 3NDFD could be replaced by CFail (P1)
/ CFail (P2) but this would add an unnecessary constraint.

Figure 5 shows pairs of =NDFD-equivalent processes that are not =FAUD-equivalent. Processes
P2 and P3 (figure 3) are =NDFD-equivalent and =FAUD-equivalent.

i a

i

a
P9

P8
6

tc/

=
i

i P10
i

i

P116
tc

=i

Figure 5: =NDFD-equivalent processes

3.4. Comparison of failure-based congruences
Propositions 3.11
(i) P1 3CFFD P2 iff P1 3FAUD P2 * P1 3NDFD P2
(ii) P1 =CFFD P2 iff P1 =FAUD P2 * P1 =NDFD P2
Proof. Item (ii) derives directly from (i). For item (i), the (5) direction is obvious from the
definitions of the preorders. For the (+) direction, the non trivial part to prove is P1 3CFFD P2
+ CFail (P1) / CFail (P2) ! (Div (P2) × & (L)). So, let ($, X) , CFail (P1) and $, Conv
(P2), otherwise the proof is obvious. Then ($, X) , CFail (P1) is equivalent to ($, X) , SFail
(P1), which implies ($, X) , SFail (P2) by P1 3CFFD P2, which is equivalent to ($, X) , CFail
(P2), which proves the proposition. !

Figure 6 shows that none of these three equivalences are comparable with tc. In this figure,
each relation is represented as a set (of pairs of behaviours), =CFFD is the intersection of =FAUD

and =NDFD, and the arrows show some effects of hiding. An arrow originates from a pair of
behaviours and leads (when hiding actions) to a new pair of behaviours. When an arrow
leaves an equivalence, this means that this equivalence is not a congruence in hiding con-
texts.

 tc

= = =

Figure 6: Relative strengths of failure-based equivalences
Other well-known similar equivalences exist but have not been added on figure 6. A survey
can be found in [dNi 87]. A first example is the original (chaotic) failures semantics [Hoa 85,
BrR 85] and the equivalent “must” testing equivalence of [dNH 84], denoted here =must.
Another example is the “may+must” testing equivalence of [dNH 84], denoted here =t. We

Failure-based Congruences, Unfair Divergences and New Testing Theory

9

have that =NDFD is stronger than =t which is known to be stronger than =must. However, =t and
=must are not comparable to tc, nor to =FAUD.

In [BKO 87] a failure semantics with explicit divergence, called FS:, is proposed, which is
similar to the =CFFD equivalence. The differences are: in FS: subdivergences1 are used instead
of divergences, but the equality of infinite traces is not required.
4. Interpretation of divergences
In this section we define the concepts of (un)stable and (un)fair divergence and give the in-
terpretations of divergences induced by te and the three presented congruences.

Proposition 4.1 (P. Tr (P) = STr (P) ! Div (P).
i.e. the traces of P are either stable traces of P or (not exclusive) divergences of P.

The proof is straightforward.

Definitions 4.2 (Stability and unstability of a divergence)
SDiv (P) = Div (P) 0 { $, L* . (P’. (P +$ P’ + SRef (P’) = 4)}

= Div (P) 9 STr (P) = Tr (P) 9 STr (P)
UnsDiv (P) = Div (P) 9 SDiv (P) = Div (P) 0 STr (P)
Conv (P) = Tr (P) 9 Div (P) = STr (P) 9 UnsDiv (P)

STr Div
SDivUnsDivConv

Figure 7: Classification of the traces

SDiv (P) is the set of stable divergences of P. A trace $ is a stable divergence of P if any pro-
cess (or state) P’ reachable from P by executing $, is divergent (after %). This means that
reaching a divergent state is unavoidable after $.
UnsDiv (P) is the set of unstable divergences of P. A trace $ is an unstable2 divergence of P
if it is a divergence and if there exists a stable process (or state) P’ reachable from P by exe-
cuting $. This means that reaching a divergent state is possible but not certain after $.
Conv (P) is the set of convergent traces of P.
Fairness and unfairness of divergences
Propositions 4.3
(i) P1 =FAUD P2 + SDiv (P1) = SDiv (P2)
(ii) P1 =CFFD P2 + (SDiv (P1)=SDiv (P2) * UnsDiv (P1)=UnsDiv (P2)) + Div (P1)=Div (P2)
(iii) P1 =NDFD P2 + Div (P1) = Div (P2)

1 $ is a subdivergence if a prefix of $ is a divergence
2 The expression ‘unstable divergence’ comes from [BKO 87]. It tends to indicate the possibility of exiting a
divergent node silently like in P5 in fig. 4. However, P12 in fig. 8 shows an example of an unstable divergence
where there is no explicit silent exit. The same intuition remains however if we consider that P12 is equivalent to
P13 that has a silent exit.

Failure-based Congruences, Unfair Divergences and New Testing Theory

10

The proofs are straightforward. (i) is derived from def. 4.2 (viz. SDiv (P) = Tr (P) 9 STr (P))
by noting that the traces and stable traces (derived from the stable failures) are equal if =FAUD

holds. (ii) is derived from UnsDiv (P) = STr (P) 0 Div (P), and the divergences and stable
traces (derived from the stable failures) are equal if =CFFD holds. (iii) is directly derived from
the definition of =NDFD. !

It is interesting to note that unstable divergences are not determined modulo =FAUD. By con-
trast, modulo =CFFD, not only stable divergences are required to be equal, but also unstable di-
vergences. Finally, modulo =NDFD, the divergence sets are required to be equal, but their sta-
bility does not matter.
Now we discuss how this can be related to the (un)fairness of divergences. Informally, when
a divergence may be removed while preserving an equivalence, we will say that this diver-
gence is (considered) fair (or harmless) w.r.t. this equivalence. On the other hand, when a di-
vergence cannot be removed while preserving the equivalence, we will say that this diver-
gence is unfair w.r.t. this equivalence. We will see for example that all divergences are fair
w.r.t. te, whereas only unstable divergences are fair w.r.t. =FAUD, and all divergences are un-
fair w.r.t. =CFFD and =NDFD.
Definitions 4.4
((Un)stable) divergences are fair or harmless w.r.t. an equivalence eq iff

(P.) P’. P’ eq P * ((Un)S)Div (P’) = 4.
((Un)stable) divergences are unfair w.r.t. an equivalence eq iff

(P.)/ P’. P’ eq P * ((Un)S)Div (P’) ; ((Un)S)Div (P)

Propositions 4.5
(i) Divergences are fair w.r.t. te.
(ii) Unstable divergences are fair w.r.t. =FAUD (Figure 8) [BKO 87]
(iii) Stable divergences are unfair w.r.t. =FAUD (Figure 9)
(iv) Divergences are unfair w.r.t. =CFFD and =NDFD (Figures 9 and 10)
Proof of (i): removing a divergence (i.e. merging all the states which belong to a cycle of in-
ternal events, and removing the local internal loops) does not change the failures of a process.
Proof of (ii): removing an unstable divergence does not change the stable failures of a pro-
cess. Removing an unstable divergence means merging all the states which belong to an un-
stable cycle of internal events, and removing the local unstable internal loops. An unstable
cycle is a cycle from which it is possible to escape by way of a non empty finite sequence of
internal steps to reach a stable state.
(iii) is an obvious consequence of proposition 4.3 (i).
(iv) is an obvious consequence of propositions 4.3 (ii) and 4.3 (iii). !

c

a

b

a

ic

a

b

a

i
c

a

b

a

ii

P12 P13 P14

= 6
= 6
= =

Figure 8: Unstable divergences are fair w.r.t. =FAUD

Failure-based Congruences, Unfair Divergences and New Testing Theory

11

Intuitively, when divergences are fair, the divergent process will eventually exit the internal
loop if another action is possible, whereas, when divergences are unfair, the divergent pro-
cess may also stay in the internal loop forever, which is externally indistinguishable from a
potential deadlock (or more precisely a livelock). An illustration of this is given in figures 9
and 10: a process is unaffected modulo =CFFD or =NDFD by the attachment, after a divergent
trace, of the process i; Loop where Loop := i; Loop.

a
i P15 a

i
i

i

P16
a i

i

P17

=
=
=

=
=
=

Figure 9: Stable divergences are unfair w.r.t. =FAUD, =CFFD and =NDFD.

i
i

ia

i

a

i
i
P18

=
=

P19
i

ia

i
=
=

P20
i

i

a
=
6

P21

Figure 10: Unstable divergences are unfair w.r.t. =CFFD and =NDFD.

5. New testing theory taking divergence into account
In the LOTOS testing theory, which is based on te, the conformance relation, denoted conf,
that should hold (and thus be tested) between implementations and specifications is given in
def. 2.2. and can be defined equivalently as:
I conf S iff ($, Tr (S). (X / L. ($, X) , Fail (I) + ($, X) , Fail (S)

This definition of conformance does not refer explicitly to divergence and leads to the inter-
pretation that divergences (in specifications as well as in implementations) are harmless. In
other words, implementations that diverge are always supposed to eventually exit any inter-
nal loop if another action is possible. By contrast, in this paper we consider that divergences
in implementations are not necessarily harmless. For example, we admit that a divergent im-
plementation may not be able to respond in a finite amount of time. This is an unfair interpre-
tation of divergences which the existing testing theory is not adequate to cope with. In the
light of the preceding sections, we propose here a new testing theory that circumvent this lim-
itation.

5.1. New conformance relations
We first define a family of conformance relations as follows.
I conf S iff ($, Conv (S). (X / L.

(i) $, Conv (I) + (($, X) , Fail (I) + ($, X) , Fail (S)), and
(ii) $, Div (I) + a certain condition

The first idea is to restrict conformance to convergent traces of S. This is motivated by the
fact that specifying divergences in the specification S allows the worst (i.e. divergence and/or
deadlock) to be expected in implementations. This hypothesis is aligned with the testing the-
ory of [dNH 84]. Then, we still consider that the inclusion of failures is the relevant criterion

Failure-based Congruences, Unfair Divergences and New Testing Theory

12

for conformance when there is no divergence, but we consider that, in presence of diver-
gence, this is less obvious. For this reason, we propose and discuss hereafter three confor-
mance relations based on three instantiations of the “certain condition” mentioned in the def-
inition above.
First definition of conformance: “a certain condition” = true
This definition, which is the coarsest of the family and not very interesting, considers, like
the usual conf, that an implementation I may diverge anywhere without compromising con-
formance. So we have:
Definition 5.1
I conf1 S iff ($, Conv (I) 0 Conv (S). (X / L. ($, X) , Fail (I) + ($, X) , Fail (S)

Proposition 5.2 I conf S + I conf1 S

Conf1 is not a preorder.

Second definition of conformance: “a certain condition” = ($, L) , Fail (S)

This definition is an interesting one. It considers that if I diverges, it may not react after a fi-
nite amount of time, and therefore be indistinguishable from a deadlock of I. In other words,
the condition expresses that I is only allowed to diverge where it is allowed to deadlock. This
definition does not discriminate livelocks from deadlocks in implementations.

Definition 5.3 I conf2 S iff ($, Conv (S). (X / L.
 (i) $, Conv (I) * ($, X) , Fail (I) + ($, X) , Fail (S), and

(ii) $, Div (I) + ($, L) , Fail (S)
or equivalently, iff (CFail (I) ! (Div (I) × & (L))) 0 (Tr (S) × & (L))

/ CFail (S) ! (Div (S) × & (L))

Propositions 5.4 I conf2 S + I conf1 S

However, conf2 and conf are not comparable. Conf2 is not a preorder.
Third definition of conformance: “a certain condition” = false
This definition does not allow an implementation I to diverge when S does not diverge. It is
in spirit the idea of the must-preorder of [dNH 84] but with divergences instead of subdiver-
gences. The following definition is indeed similar to the definition in [dNH 84] (with accep-
tance sets replaced by failures and with a different definition of ‘Conv’). However, unlike the
must-preorder in [dNH 84], the conf3 relation is not a preorder.

Definition 5.5 I conf3 S iff ($, Tr (I) 0 Conv (S). (X / L.
$, Conv (I) * (($, X) , Fail (I) + ($, X) , Fail (S))

Proposition 5.6 I conf3 S + I conf2 S

However, conf3 and conf are not comparable. Conf3 is not a preorder.

5.2. New testing preorders and equivalences
From now on, we only consider the conf2 and conf3 relations, because conf1 does not lead to
interesting results. If we also require, like in [dNH 84], that an implementation I may pass all

Failure-based Congruences, Unfair Divergences and New Testing Theory

13

the tests that S may pass, i.e. Tr (I) 1 Tr (S), then we get two testing preorders, denoted ext2
and ext3.
Definitions 5.8
I ext2 S iff Tr (I) 1 Tr (S) * I conf2 S
I ext3 S iff Tr (I) 1 Tr (S) * I conf3 S

Proposition 5.9 ext2 and ext3 are preorders
The proofs are omitted by lack of place.
The testing equivalences that are generated by these two preorders are as follows.
Definitions 5.10
(i) P te2 Q iff Tr (P) = Tr (Q) * CFail (P) ! (Div(P) × &(L)) = CFail (Q) ! (Div(Q) × &(L))
(ii) P te3 Q iff Tr (P) = Tr (Q) * Div (P) = Div (Q) * CFail (P) = CFail (Q)
In [Led 91] te2 was denoted ute: the unfair testing equivalence.
Propositions 5.11
(i) P te2 Q iff P ext2 Q * Q ext2 P
(ii) P te3 Q iff P ext3 Q * Q ext3 P

The corresponding reduction preorders are as follows.
Definition 5.12
(i) I red2 S iff Tr (I) / Tr (S) * I conf2 S
(ii) I red3 S iff Tr (I) / Tr (S) * I conf3 S

Propositions 5.13
(i) red2 and red3 are preorders
(ii) P te2 Q iff P red2 Q * Q red2 P
(iii) P te3 Q iff P red3 Q * Q red3 P
(iv) I red2 S iff Tr (I) / Tr (S) * CFail (I) ! (Div (I) × &(L)) / CFail(S) ! (Div (S) × &(L))
(v) I red3 S iff Tr (I) / Tr (S) * Div (I) / Div (S) * CFail (I) / CFail (S) ! (Div (S) × &(L))
(vi) I red3 S iff I red2 S * Div (I) / Div (S)
The proofs are straightforward.
None of these preorders are precongruences, but the least precongruences stronger than these
preorders are easy to find according to the results presented in section 3.
Propositions 5.14
(i) The least precongruence stronger than red3 is 3NDFD.
(ii) The least precongruence stronger than ext3 is 3NDFD 0 Tr-eq

where P Tr-eq Q iff Tr (P) = Tr (Q)
(iii) The least congruence stronger than te3 is =NDFD

Proofs: (i) It is well-known that monotonicity of the choice (and also disabling) operator re-
quires the condition on the stabilities. The inclusion of infinite traces is needed in infinite-
state systems as shown in [KaV 92]. (ii) The inclusion of finite traces is required in the paral-
lel + hiding + disable contexts: by contradiction, let $, Tr (P) 0 Tr (Q) and $.a , Tr (P) 9
Tr (Q), and the context C [.] = hide a in ((. [> b; stop) |[a,b]| an; (a; b; stop [] b; c; stop))

Failure-based Congruences, Unfair Divergences and New Testing Theory

14

where b, c are not in $, an is a sequence of n a’s where n is the number of occurrences of a in
$. We have immediately that ¬ (C[P] ext3 C[Q]) because (($.b)\a, L) , CFail (C[P]) whereas
($.b)\a , Conv (C [Q]) and (($.b)\a, L) 7 CFail (C [Q]). The reason is that C[Q] cannot
refuse action c. Together with ext3 this leads to equality of finite traces. (iii) is derived from
any of (i) or (ii). !

It is very interesting to note that a weaker condition than equality of traces in proposition
5.14 (ii) would be possible if the disable operator would not be part of LOTOS. This disable
operator is indeed necessary in the proof of 5.14 (ii) to have ($.b)\a , Conv (C [Q]) when $
, Div (Q).

Proposition 5.15
(i) The least precongruence stronger than red2 is 3NDFD.
(ii) The least precongruence stronger than ext2 is 3NDFD 0 Tr-eq
(iii) The least congruence stronger than te2 is =NDFD

Proofs: (i) red2 is weaker than red3, and thus there may exist a precongruence stronger than
red2 that is weaker than 3NDFD. To prove that this is not possible, it suffices (due to proposi-
tions 5.13 (vi) and 5.14 (i)) to prove that inclusion of divergence sets is necessary. Let P red2
Q, and suppose there is a trace $, Div (P) 9 Div (Q) such that ($, L) , CFail (Q). Consider
the interleaving context C[.] = (. ||| a; stop) with a not in $. We have immediately that ¬ (C[P]
red2 C[Q]) because $, Div (C[P]), $, Conv (C[Q]) and ($, L) 7 CFail (C [Q]). The reason
is that C[Q] cannot refuse action a. The proof of (ii) and (iii) are like in proposition 5.14 !

5.3. New canonical testers
The conf2 relation leads to a new canonical tester that we propose hereafter. The canonical
tester associated with conf3 can be derived from the canonical tester associated with conf2 but
requires additional testing power with respect to the detection of divergences in implementa-
tions.
First let us recall the usual definition of the canonical tester associated with conf [BSS 87]. It
is denoted T (S) and is defined modulo te by its failures as follows:
($, Tr (S). (X / L. ($, X) , Fail (T (S)) iff (($, L 9 X) 7 Fail (S) < ($, L) , Fail (S))

This tester has the property that, when synchronized with an implementation I, it deadlocks
with I iff ¬ (I conf S). In other words the tester reaches a final state (i.e. a state where ($, L)
, Fail (T(S))) iff the implementation is conformant. Every final state of T (S) has thus an
implicit “pass” verdict associated with it.
We give now the definition modulo te3 of the canonical tester T2 (S) associated with conf2.
Definition 5.16
(i) Tr (T2 (S)) = Tr (S) * Div (T2 (S)) = 4
(ii) ($, Tr (S). (X / L.

($,X) , CFail (T2(S)) iff (($, L9X) 7 CFail (S) < ($, L) , CFail(S))
Intuitively if there is no divergence in the specification S, then T2 (S) is identical to T (S).
But if $ is a divergence in S, then T2 has an additional correct final state after $.

Failure-based Congruences, Unfair Divergences and New Testing Theory

15

The next proposition ensures that T2 (S) is the canonical tester of S according to conf2. It says
first that T2 (S) can test all the traces of S. It also says that, if synchronized with an imple-
mentation I, not conforming to S, then I || T2 (S) may engage in a sequence $ and then dead-
lock or diverge after $ whereas the tester is still offering interactions. Conversely, if the
canonical tester is synchronized with an implementation conforming to S, then a deadlock or
a divergence is only possible if the tester has reached a correct final state.
Propositions 5.17
(I. I conf2 S iff ($, L*.

(($, L) , CFail (I || T2 (S)) < $, Div (I || T2 (S))) + ($, L) , CFail (T2 (S)).
We omit the proof by lack of place.
Now we look at the canonical tester associated with conf3. Since the conf3 relation is stronger
than the conf2 relation, we may expect that the canonical tester associated with conf3 will re-
quire more testing power. This is indeed the case. To test the conformance of implementa-
tions in the conf3 sense, the implementation under test (IUT) must be equipped with a
“divergence light” that is ‘on’ when the IUT diverges, so that the canonical tester be able to
discriminate between livelocks and deadlocks of the IUT under some circumstances. This
was not needed to test according to conf2. The following definition of T3 (S) shows how a
canonical tester based on conf3 can be obtained from the canonical tester T2 (S).
Definition 5.18
T3 (S) is defined like T2 (S), but in every final state of T3 (S), the implicit verdict is not nec-
essarily “pass”. Here the verdict has to be defined explicitly as follows: if $, Div (S) then
“pass”, else “pass if the divergence light is off”.
This additional discrimination when the tester reaches a final state allows testing according to
the finer notion of conformance conf3. However, considering that the presence of some
“divergence light” on the IUT is unlikely, we do not investigate further in this direction.

7. Conclusion
Divergences are often considered as undesirable. The best and most extreme example of this
interpretation is certainly the catastrophic interpretation of divergences of TCSP [BrR 85]. At
the opposite side, we find the fair interpretation of divergences of te in which all divergences
are simply considered harmless. The catastrophic interpretation of divergences leads to nice
mathematical properties, but has a poor operational interpretation. The opposite is true for te.
Between these two extreme cases, there are however some other failure-based congruences.
In this paper, three of them, denoted =FAUD, =CFFD and =NDFD have been presented and com-
pared. We have shown that some or all divergences are considered unfair modulo these con-
gruences. Intuitively, when divergences are fair, the divergent process will eventually exit the
internal loop if another action is possible, whereas, when divergences are unfair, the diver-
gent process may also stay in the internal loop forever even if another action is enabled,
which is externally indistinguishable from a potential deadlock.
In the second part of this paper, we have reconsidered the existing LOTOS testing theory
with a different point of view on divergences. The fair interpretation of divergences leads to
the well-known te-equivalence and conf relation [BSS 87]. With an unfair interpretation of
divergences, a new testing equivalence te2 and a new conformance relation conf2 have been

Failure-based Congruences, Unfair Divergences and New Testing Theory

16

derived. Conf2 considers divergences as potential livelocks. The testing equivalence te2
clearly shows that deadlocks and divergences (or livelocks) are not discriminated. Finally, a
canonical tester T2 has been associated with conf2 and the weakest congruence stronger than
te2 has an easy and explicit definition: =NDFD. For this reason the failure-based =NDFD-equiva-
lence can be considered as a testing congruence. Furthermore, from [KaV 92] we know that
=NDFD is the weakest congruence that has the following property: no nexttime-less linear tem-
poral logic formula can distinguish two =NDFD-equivalent LTSs. These two properties position
=NDFD as an important equivalence.

References
[BKO 87] J.A. Bergstra, J. W. Klop, E.-R. Olderog, Failures without chaos : a new process

semantics for fair abstraction, in: M. Wirsing, ed., Formal Description of Programming
Concepts, III (North-Holland, Amsterdam, 1987) 77-103.

[BoB 87] T. Bolognesi, E. Brinksma, Introduction to the ISO Specification Language
LOTOS, Computer Networks and ISDN Systems 14 (1) 25-59 (1987).

[BrR 85] S.D. Brookes, A.W.Roscoe, An Improved Failures Model for Communicating
Sequential Processes, in: S.D. Brookes, A.W. Roscoe, G. Winskel, eds., Seminar on
Concurrency, LNCS 197 (Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985) 281-305.

[BrS 86] E. Brinksma, G. Scollo, Formal notions of implementation and conformance in
LOTOS, Rept. INF-86-13, Twente Univ., Dept. of Inform., Enschede, The Netherl., Dec. 86.

[BSS 87] E. Brinksma, G. Scollo, C. Steenbergen, Process specification, their implementa-
tions and their tests, in: G.v. Bochmann, B. Sarikaya, eds., Protocol Specification, Testing
and Verification, VI (North-Holland, Amsterdam, 1987) 349-360.

[ClH 89] R. Cleaveland, M. Hennessy,Testing Equivalence as a Bisimulation Equivalence,
in: J. Sifakis, ed., Automatic Verification Methods for Finite State Systems, LNCS 407 (Springer
- Verlag, Berlin Heidelberg New York, 1990) 11-23.

[dNH 84] R. De Nicola, M.C.B. Hennessy, Testing equivalences for processes, Theoretical
Computer Science 34 (1984) 83-133 (North-Holland, Amsterdam).

[dNi 87] R. De Nicola, Extensional Equivalences for Transition Systems, Acta Informatica 24
(1987) 211-237 (Springer - Verlag, Berlin Heidelberg).

[Hen 85] M. Hennessy, Acceptance Trees, Journal of the ACM, Vol. 32, No. 4, Oct. 85, 896 - 928.
[Hen 88] M. Hennessy, Algebraic Theory of Processes, (MIT Press, Cambridge, London, 1988).
[Hoa 85] C.A.R. Hoare, Communicating Sequential Processes, (Prentice-Hall Int., London, 85).
[ISO 8807] ISO/IEC-JTC1/SC21/WG1/FDT/C, Information Processing Systems - Open

Systems Interconnection - LOTOS, a Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour, IS 8807, February 1989.

[KaV 92] R. Kaivola, A. Valmari, The Weakest Compositional Semantic Equivalence
Preserving Nexttime-less Linear Time Temporal Logic, in: R. Cleaveland, ed.,
CONCUR ’92 (LNCS 630, Springer-Verlag, Berlin Heidelberg New York, 1992) 207-221.

[Lan 90] R. Langerak, A Testing Theory for LOTOS using Deadlock Detection, in:
E. Brinksma, G. Scollo, C. A. Vissers, eds., Protocol Specification, Testing, and Verification, IX
(North-Holland, Amsterdam, 1990, ISBN 0-444-88343-6), 87-98.

[Led 91] G. Leduc, On the role of implementation relations in the design of distributed
systems, in: Collection des Publications de la Faculté des Sciences Appliquées de l’Université
de Liège, n° 130 (ISSN 0075-9333, Liège, 1991), Thèse d’agrégat. de l’enseign. supérieur, 283 p.

[OlH 86] E.-R. Olderog and C.A.R. Hoare, Specification-Oriented Semantics for
Communicating Processes, Acta Informatica 23 (1986) 9-66 (Springer - Verlag, Berlin).

[Phi 87] I. Phillips, Refusal Testing, Theoretical Computer Science 50 (1987) 241 - 284
[VaT 91] A. Valmari, M. Tienari, An Improved Failures Equivalence for Finite-State

Systems with a reduction algorithm, in: B. Jonsson, J. Parrow, B. Pehrson, eds., Protocol
Specification, Testing and Verification, XI (North-Holland, Amsterdam, 1991) 3-18.

