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Abstract

This article studies disruption tolerant networks (DTNs) where each node knows
the probabilistic distribution of contacts with other nodes. It proposes a framework
that allows one to formalize the behaviour of such a network. It generalizes extreme
cases that have been studied before where (a) either nodes only know their contact
frequency with each other or (b) they have a perfect knowledge of who meets who
and when. This paper then gives an example of how this framework can be used;
it shows how one can find a packet forwarding algorithm optimized to meet the
’delay/bandwidth consumption’ trade-off: packets are duplicated so as to (statisti-
cally) guarantee a given delay or delivery probability, but not too much so as to
reduce the bandwidth, energy, and memory consumption.
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1 Introduction

Disruption (or Delay) Tolerant Networks (DTNs, [1]) have been the subject
of much research activity in the last few years, pushing further the concept
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of Ad Hoc networks. Like Ad Hoc networks, DTNs are infrastructureless,
thus the packets are relayed from one node to the next until they reach their
destination. Moreover, in DTNs node clusters can be completely disconnected
from the rest of the network. In this case, nodes must buffer the packets and
wait until node mobility changes the network’s topology, allowing the packets
to be finally delivered.

A network of Bluetooth-enabled PDAs, a village intermittently connected via
low Earth orbiting satellites, or even an interplanetary Internet ([2]) are ex-
amples of disruption tolerant networks.

The atomic data unit is a group of packets to be delivered together. In DTN
parlance, it is called a message or a bundle; we use the latter in the following.

Routing in such networks is particularly challenging since it requires to take
into account the uncertainty of mobiles movements. The first methods that
have been proposed in the literature are pretty radical and propose to forward
bundles in an “epidemic” way ([3–5]), i.e., to copy them each time a new node
is encountered. This method of course results in optimum delays and delivery
probabilities, at the expense of an extremely high consumption of bandwidth
(and, thus, energy) and memory. To mitigate those shortcomings, the epi-
demic routing has been enhanced using heuristics that allow the propagation
of bundles to a subset of all the nodes ([6–8]).

Since node’s buffer memory is not unlimited, a cache mechanism has been
proposed, where the most interesting bundles are kept (i.e. those that are
likely to reach their destination soon) and the others are discarded when the
cache is full ([9–14]). Those schemes must thus guess when a bundle will
reach its destination, which is most of the time computed thanks to frequency
contact estimation (which reflects the probability that two given nodes meet
in the future; this probability is most of the time considered time-invariant).

Few papers explore how the expected delay could be more precisely estimated
(notable exceptions are [15,16]). It has been proved ([17]) that a perfect knowl-
edge of the future node meetings allows the computation of an optimal bundle
routing.

This short overview emphasizes two shortcomings:

• Certain networks might be highly predictable (e.g. nodes are satellites and
links appear and vanish as they revolve around their planet), others are
much more chaotic. Previous work suppose either that nodes contacts are
perfectly deterministic and known in advance, or that only the contact fre-
quency is known for each pair of nodes. In this paper, we propose to suppose
that each node knows a probability distribution of contacts in the (near)
future. We introduce a framework which generalizes those extreme cases
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and formalizes the nodes contact predictability. It allows one to compute
the expected impact of a particular bundle forwarding strategy.
• [5] underlines the tradeoff between bundle delivery guarantees and band-

width/energy consumption: copying the bundles is costly since, in mobile
networks, those resources are both scarce. Current schemes use a cache
mechanism that ensures each node only receives the most relevant bundles,
which somehow mitigates this problem, but does not provide any rationale,
except the need to cope with mobiles limited memory. We propose to use
the above-mentioned framework to route the bundles according to the deliv-
ery or delay guarantees required by the user, thus only duplicating packets
when it is beneficial.

Most of the ideas presented in this article have been first published in [18];
this article is an extended version of this paper.

This paper is organised as follows. Section 2 presents a way to model the
contacts between the nodes of a predictable network. Sections 2 and 4 show
how the end-to-end delay of bundles can be predicted. Sections 5 and 6 give
a routing algorithm that allows one to deliver bundles so as to meet a given
guarantee. Section 7 concludes.

2 Predictable future contacts

The network is composed of a finite set of wireless nodes N that can move
and thus, from time to time, come into contact.

In the sequel, a contact between two nodes happen when those nodes have
setup a bi-directional wireless link between them. A contact is always consid-
ered long enough to allow all the required data exchanges to take place 2 .

2.1 Contact profiles

We expect the mobiles motion to be, to a certain extent, predictable, yet
obviously the degree of predictability varies from one network to another.
Sometimes nodes motion is known in advance because they must stick to a
given schedule (e.g. a network of buses) or because their trajectory can easily
be modelled (e.g. nodes embedded in a satellite). Other networks are less
predictable, yet not totally random: colleagues could be pretty sure to meet
every day during working hours, without any other time guarantee. Mobile

2 This is a major difference with [17] which does not neglect bundle transmission
times.
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nodes behaviour could also be learnt automatically so as to extract cyclical
contact patterns.

We therefore suppose that each node pair {a, b} ⊂ N can estimate its contact
probability for each time step in the near future. We call it a contact profile
and denote it Cab : N → [0, 1]. The time step duration should be chosen
small compared to the expected network’s end-to-end delay. Figure 1 gives an
hypothetical contact profile. In the following, we suppose the profile known
for each node pair.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

P
ro

b
a
b
ili

ty
 (

%
)

Time (days)

Fig. 1. Contact profile of a node pair over a month: example. The height
of a bar gives the probability that two nodes meet (at least once) during the corre-
sponding 12-hour time period. Here, nodes are supposed to meet at the beginning
of each week, but the exact day is unknown.
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Fig. 2. First contact probability distribution corresponding to the contact
profile figure 1. (Each bar corresponds to a 12-hour period.)

Contact profiles can easily represent situations usually depicted in the litera-
ture:

• A constant profile Cab(t) = k describes a node pair that only knows its
contact frequency. For example, the profile Cab(t) = 1/30 (probability of
contact per day) corresponds to two nodes a and b meeting once a month
on average.
• Perfect knowledge of nodes meeting times results in a profile made of peaks:
∀t ∈ N : Cab(t) ∈ {0, 1}.

In practice, unknown contact profiles could be replaced by a null function to
get a defensive approximation of their behaviour.
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The following sections aim at studying how bundles propagate from one node
to another in a network whose nodes’ contact profiles are known.
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Fig. 3. The contact probability density Dab(9, ·) matching the contact profile
given in figure 1.

2.2 First contact distribution

It is easy to deduce the probability distribution of a (first) contact at time t
between nodes a and b ∈ N given their profile Cab; we denote this distribution
dab. Since the probability of a first contact at time t is the probability of meet-
ing at time step t times the probability not to meet at time steps 0, 1, . . . , t−1,
we have:

dab(t) = Cab(t)
t−1
∏

i=0

(

1− Cab(i)
)

∀a, b ∈ N , ∀t ∈ N (1)

The distributions domain is N since contact profiles have been defined using
discrete time steps. We extend the distributions to R to get rid of this ar-
tifact. Notice that dab is not a well-defined probability distribution since its
integral over its domain is not equal to 1: two nodes might never meet. Those
considerations directly lead to the definition of the first contact distribution
set.
Definition 1. The first contact distribution set, C, is the set of functions 3

f : R
+ → R

+ such that
∫ ∞
0 f(x) dx ≤ 1.

Contact profiles have a shortcoming: they do not allow us to express contact
interdependencies; for example, they cannot model that two nodes are certain
to meet during the weekend without knowing exactly which day. First contact
distributions have no such limitations. Therefore, when it is possible, one could
find preferable to generate them directly without relying on contact profiles.

Figure 2 gives the dab distribution corresponding to the contact profile Cab

depicted in figure 1.

3
R

+ denotes the set of positive reals.
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Notice that if a bundle is delivered directly from a to b, knowing the first con-
tact distribution allows an easy verification of a large spectrum of guarantees,
such as the average delay or the probability of delivery before a certain date.

3 Delivery distributions

3.1 Definition

First contact distributions can be generalized to take into account the knowl-
edge that no contact were made before a certain date.

Let Dab(T, t) be the probability distribution that a and b require a delay of t
time steps to meet for the first time after time step T . Since these distributions
will be the building blocks that allow us to compute when a bundle can be
delivered to its destination, we call them delivery distributions. Dab can directly
be derived from the contact profile Cab:

Dab(T, t) = Cab(T + t)
T+t−1

∏

i=T

(

1− Cab(i)
)

∀a, b ∈ N , ∀T, t ∈ N (2)

As before, the domain of these functions can be extended to R
+2

.
Definition 2. The delivery distribution set, D, holds all the functions
f : R

+2 → R
+ such that ∀T ∈ R

+ :
∫ ∞
0 f(T, x) dx ≤ 1.

Notice the inequality.

The Dab(T, t) distribution corresponding to the contact profile given in figure 1
is plotted in figure 6. Figure 3 plots the function Dab(9, ·) (i.e. a section of
Dab(T, t) in the T = 9 plane); the D(T, ·) functions of course belong to C
(∀T ≥ 0).

Notice that Dab(T, ·) is the expected delivery delay distribution for a bundle
sent directly from a source a to a destination b if a decides to send it at time T .

3.2 Order relation on distributions

We define an order relation between first contact distributions. Intuitively, this
relation allows us to compare two distributions to find which one represents
more frequent or predictable contacts. A rigorous definition is given below.
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Fig. 4. The � relation: example. Definition 3 specifies when two contact distri-
butions d1, d2 are such that d1 � d2 (top). The plots show two distribution examples
and their cumulative function (denoted d∗1 and d∗2, bottom). We have d1 � d2 iff
∀t ≥ 0 : d∗1(t) ≥ d∗2(t). Here, neither d1 � d2 nor d2 � d1 hold.

Definition 3. The first contact distributions d1 ∈ C is greater (or equal) than
d2 ∈ C (denoted d1 � d2) if and only if:

∀x ≥ 0 :
∫ x

0

d1(t) dt ≥
∫ x

0

d2(t) dt (3)

This relation is a partial order (but not a total order as there exist d1, d2 ∈ C
such that neither d1 � d2 nor d1 � d2). Figures 4 and 5 give an example of
incomparable first contact distributions.

It appears difficult to define a total order on C: comparing the distributions
d1 and d2 in figure 4 is a matter of choice and depends on the bundle deliv-
ery guarantees one wants to enforce. The � relation is thus a least common
denominator, and could be replaced in what follows with a more restrictive
order definition.

The worst (smallest) element of C is the ⊥ (bottom) distribution: ⊥(t) = 0
(∀t ≥ 0). The best (greatest) first contact distribution is denoted ⊤ (top):
⊤(t) = δ(t) (∀t ≥ 0); the δ symbol denotes the Dirac distribution.
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Fig. 5. Supremum of two elements: example. The distribution sup{d1, d2}
of the d1 and d2 distributions (see figure 4) is called supremum (or least upper
bound). Its cumulative function is the maximum of the d∗1 and d∗2 functions; its
distribution is the derivative of the cumulative function. By definition of sup{d1, d2},
if d � d1 and d � d2, then d � sup{d1, d2} (∀d ∈ C). The infimum (or greatest lower
bound) is defined in a similar manner. Since every element of C2 has a corresponding
supremum and infimum, the � relation defines a lattice structure on C (and on D).
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Fig. 6. The Dab(T, t) function matching the contact profile given in figure 1.

The � relation can be extended to D. For all D1, D2 ∈ D:

D1 � D2 ⇐⇒ ∀T ≥ 0 : D1(T, ·) � D2(T, ·)

The D⊥ delivery distribution is such that ∀T ≥ 0 : D⊥(T, ·) ≡ ⊥. The defini-
tion of D⊤ follows immediately.
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4 Delivery distribution operators

4.1 The forwarding operator

Let Dsbd be the delivery distribution associated with the delivery of a bundle
from a source node s to a destination d via node b. More precisely, if s decides
to send a bundle at time T , it will reach d after a delay described by the
Dsbd(T, ·) distribution. Dsbd can be computed thanks to Dsb and Dbd:

Dsbd ≡ Dsb ⊗Dbd (4)

The ⊗ (or forwarding) operator is a function defined for all distribution pair.
We have ⊗ : D2 → D:

(

D1 ⊗D2

)

(T, t) =
∫ t

0

D1(T, x) D2(T + x, t− x) dx (5)

It is easy to see that this operator is associative but not commutative.

Equation (5) simply states that since the total delivery delay is equal to t, if
the delay to reach b is equal to x, then the delay from b to d is t− x.

Equation (4) can be generalized: a bundle could be forwarded through several
intermediate hops before reaching its destination. We denote Ds−d (notice the
dash) the delivery delay distribution for a bundle sent from a source s to a
destination d at time T ; from now on, ⊗ will thus be applied to any kind of
delivery distributions.

For example, the graph below depicts a simple delivery path, i.e. a sequence
of forwarding nodes; the corresponding delivery distribution is also given.

s // a // b // d : Ds−d ≡ Dsa ⊗Dab ⊗Dbd

We say that two delivery paths with a common source s and destination d are
disjoint if the intersection of the set of nodes they involve is {s, d}.

4.2 The duplication operator

Let DsCCd
d

be the delivery distribution associated with the delivery of a bundle

from s to d if it is duplicated so as to follow the disjoint delivery paths described
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by the distributions Ds−d and D′
s−d. We have:

DsCCd
d
≡ Ds−d ⊕D′

s−d (6)

The ⊕ (or duplication) operator is a function ⊕ : D2 → D, defined as follows:

(

D1 ⊕D2

)

(T, t) =
(

1−
∫ t

0

D1(T, x) dx
)

D2(T, t) +
(

1−
∫ t

0

D2(T, x) dx
)

D1(T, t) (7)

The expected delay computed is that of the first bundle to reach the destina-
tion d. It is easy to see that ⊕ is associative and commutative. We decide that
⊗ has a higher precedence than ⊕.

Equation (7) is the sum of two terms. Each term is the probability that the
bundle reaches the destination after a delay t using one path and that the
bundle following the other path is not arrived yet.

Notice that we have both D1⊕D2 � D1 and D1⊕D2 � D2 (appendix, corol-
lary 1). This means that, contrary to what happens in deterministic networks,
duplicating a bundle to send it along two paths can improve performance: it
is not the case that the best path always delivers the bundle first.

The definition of this operator allows us to apply it to arbitrary independent
distributions (for example, involving duplication and forwarding). This allows
the computation of the distribution associated with a non trivial way to de-
liver a bundle, such as the one depicted below; the corresponding distribution
formula is given on the right. Two arrows leaving a node depict a duplication.

e // d
s //

##FF
FF b //

;;wwww
f // d

c // d

: Ds−d ≡
(

Dsc ⊗Dcd

)

⊕
(

Dsb ⊗ (Dbe ⊗Ded ⊕Dbf ⊗Dfd)
)

Figure 7 shows examples of the distributions obtained using those operators.
As expected, the “duplication” operator shortens the delays and increases the
delivery probability.
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Fig. 7. Forwarding (⊗) and duplication (⊕) operators: example. We denote
D1 the delivery distribution depicted in figure 6. The top part of this figure depicts
a contact profile (top) and the associated delivery distribution D2 (dark squares
represent a probability equal to 1). The top 3D plot depicts D1 ⊗D2, the bottom
one D1 ⊕D2.
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4.3 The scheduling operator

Let Ds d
d

be the delivery distribution that, every time a bundle has to be

sent, chooses the best delivery strategy out of Ds−d and D′
s−d. We have:

Ds d
d
≡ Ds−d ⊘D′

s−d (8)

The definition of ⊘ is straightforward. It is a function ⊘ : D2 → D such that:

(

D1 ⊘D2

)

(T, t) =







D1(T, t) if D2(T, ·) 6� D1(T, ·)

D2(T, t) otherwise
(9)

If s sends a bundle at time T , it is delivered using D2(T, ·) if and only if
D2(T, ·) � D1(T, ·). This operator is not commutative since � is not a total
order: when D1(T, ·) and D2(T, ·) cannot be compared, D1(T, ·) is chosen. We
decide that ⊘ has a lower precedence than both ⊗ and ⊕.

The following example involves all the operators defined above. Two arrows
leaving a node, one of them dotted, depict a scheduling operation. The dotted
arrow leads to the second argument of ⊘, emphasizing the operator’s non-
commutativity.

e // d
s //

##FF
FF b //

;;

f // d
c // d

: Ds−d ≡
(

Dsc ⊗Dcd

)

⊕
(

Dsb ⊗ (Dbf ⊗Dfd ⊘Dbe ⊗Ded)
)

4.4 Delivery schemes

We have defined a delivery path as a delivery strategy that only involves for-
warding.

A delivery scheme with source s and destination d is a general delivery strategy
that allows a bundle to be delivered from s to d. It can use an arbitrary number
of forwarding, duplication and scheduling operations. A delivery path is thus
a particular delivery scheme.

Two delivery schemes from s to d are disjoint if the intersection of the set of
nodes they involve is {s, d}.
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5 Delivery guarantees

Knowing the delay distribution ds−d ∈ C associated with the delivery of a
bundle allows us to verify a large range of conditions on permissible delays or
on delivery probabilities.

For example, the condition

∫ ∞

0

ds−d(t) t dt ≤ dmax

imposes a maximum expected delay dmax, while

∫ 1h

0

ds−d(t) dt ≥ .9 and
∫ 24h

0

ds−d(t) dt ≥ .99

matches distributions delivering a bundle in less than one hour nine times out
of ten, and in less than a day with a probability of 99%.

We naturally impose that a condition fulfilled for a certain delivery scheme
must be fulfilled for better schemes.
Definition 4. A delivery condition C is a predicate: C : C → {true, false}
with ∀d1, d2 ∈ C such that d1 � d2 : C(d2) =⇒ C(d1).

A condition C can be extended to a delivery distribution D ∈ D: C(D) ⇐⇒

∀T ≥ 0 : C
(

D(T, ·)
)

.

6 Delivering bundles with guarantees

6.1 Probabilistic Bellman-Ford

Algorithm 1 adapts the Bellman-Ford algorithm to predictable disruption tol-
erant networks. In this section, we do not allow bundle duplication. Notice
that, in general, the concept of “shortest path” is meaningless since the �
relation is a partial order.

Similarly to the Bellman-Ford algorithm, algorithm 1 computes, for every node
n ∈ N , the best distribution leading to the destinations found so far (Bn).
This distribution is propagated to its neighbours (i.e. all the other nodes since
the network is infrastructureless).

Once node x receives the best delivery distribution By found by y, it computes
the delivery distribution obtained if it would send the bundle directly to y, and
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Algorithm 1: Probabilistic Bellman-Ford

Data: d is the destination node

∀ x ∈ N \ {d} : Bx ← D⊥;1

Bd ← D⊤;2

repeat3

stabilized ← true;4

forall x ∈ N do5

forall y ∈ N do6

Dxy−d ← Dxy ⊗By;7

if Bx 6= Bx ⊘Dxy−d then8

stabilized ← false;9

Bx ← Bx ⊘Dxy−d;10

end11

end12

end13

until stabilized ;14

if y would forward it according to By. The resulting distribution is denoted
Dxy−d (line 6).

Dxy−d is compared to the best known distribution to the destination (Bx) by
means of the ⊘ operator. If Dxy−d is better than Bx on some time intervals,
Bx is updated (line 9).

The algorithm terminates once no more Bx distribution is updated.

Figures 8 and 9 demonstrate how the algorithm works by means of a small
example.

As mentioned before, this algorithm generalizes both [12] (i.e. converges to
the “shortest expected path”) and [17] 4 (i.e. finds the exact shortest path in
the case of perfectly predictable networks).

The delivery computed by this algorithm depends on the order at which the
elements of N are picked up (lines 5 and 6). In practice, it might be preferable
to rely on a heuristic to choose the preferred elements first.

4 To be fair, this work also deals with message transmission delays, which are not
considered here.
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This graph gives the contact profiles of the nodes a, b, c, d, e ∈ N .
Unconnected nodes never meet each other: they have a null contact
profile (and a corresponding delivery distribution D⊥).
The label connecting the other nodes describes which days they
might have a contact. For example, there is one chance out of four
that b and c meet on Thursday, and one out of two on Friday.

Fig. 8. A predictable network.

1 Ba ≡ Bb ≡ Bc ≡ Bd ≡ D⊥ Be ≡ D⊤

2

Bc ≡ Dc−e
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Fig. 9. Probabilistic Bellman-Ford: example. The opposite table shows how our
probabilistic Bellman-Ford algorithm behaves. This example is based on a simple
network made of 5 nodes. The nodes contact profiles are given in figure 8. In this
example, a is the source node and e is the destination. — At first, all the nodes
(but the destination) have no knowledge of any path to the destination; their best
distribution is thus set to D⊥. The destination’s delivery distribution to itself is
of course D⊤. — Line 2 depicts the results obtained after the first iteration. Since
only c and d have contacts with the destination, only Bc and Bd are modified. They
are set to the direct contact with the destination distribution since, for example,
Dc−e ⊗D⊤ =Dc−e. The delivery distributions are depicted as a square plot; the
x-axis is the bundle sending time, the y-axis is the delay to reach the destination.
Each square represents a 24 hour period, the first column matches bundles sent on
Monday. The next two iterations of the algorithm are explained in figure 10.
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Fig. 10. Probabilistic Bellman-Ford: example (continuation of figure 9). During
the next iteration (line 3), a discovers it might meet with d before d meets e. Ba is
thus changed to Da−d ⊗Dd−e. The bundles received by b can be forwarded to c or
d. The distributions Db−c−e and Db−d−e are thus compared; bundles sent Tuesday
or before are sent via d, those sent after Tuesday are sent via c. — The last iteration
allows a to decide when bundles should be sent to b or d. The distributions Ba and
Da−b⊗Bb are thus compared; the latter is given between parentheses. Neither c nor
d should forward bundles to b, thus Bc and Bd are left untouched. The algorithm
is stabilized since neither b, c, or d should forward bundles via a.

6.2 Guarantees

Our aim is now to find a way to deliver bundles that fulfills a given con-
dition C as specified in definition 4, while trying to minimize the network’s
bandwidth/energy/memory consumption.

Ideally, the DTN is predictable enough to enforce condition C without du-
plicating any bundle. We thus propose to rely on algorithm 1 to find a first
delivery scheme (and, thus, a first delivery distribution D1).

If C is not fulfilled by D1, we search for another fast bundle forwarding scheme
using algorithm 1; let D2 be its delivery distribution. We then duplicate the
bundle on both delivery schemes, yielding a distribution D1 ⊕ D2. We have
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already pointed out that D1⊕D2 � D1, thus C(D1⊕D2) is more likely to be
true then C(D1).

This process is iterated until C is finally fulfilled.

As mentioned in section 4.2, the distribution computed by the “duplication”
(⊕) operator is biased if its operands are not independent distributions. The
simple distribution formula below brings to light the problem caused by de-
pendent distributions:

s //

##HHH b // d

b // d
: (Dsb ⊗Dbd)⊕ (Dsb ⊗Dbd)

To avoid this bias, we ensure that D1 and D2 are independent by forbidding
D2 to rely on the nodes involved in D1 (source and destination nodes excluded,
line 5).

The resulting algorithm is given below.

Algorithm 2: Constrained probabilistic delivery

Data: Network nodes N
Data: Delivery condition C
Data: Bundle source s and destination d

B ← D⊥1

repeat2

Using nodes in N , compute D ∈ D via algorithm 13

B ← B ⊕D4

N ← N \ {nodes involved in D} ∪ {s, d}5

until C(B) or N = {s, d}6

Nothing guarantees of course that there exists a way to deliver bundles that
satisfies C: even an epidemic broadcasting might not suffice.

6.3 More on disjoint delivery schemes

The constrained probabilistic delivery algorithm above computes a delivery
scheme that consists of duplicating the bundle to multiple, independent, non-
duplicating delivery schemes.

To ensure independence, algorithm 2 enforces those non-duplicating delivery
schemes to operate on completely distinct node sets. This might be too strin-
gent if the network is small or sparse. We thus propose to allow such a delivery
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scheme to use nodes that are unlikely to receive a bundle according to the other
schemes. The resulting delivery distributions will thus be almost independent.

Line 5 of algorithm 2 is thus changed: only the nodes involved in D with a
probability higher than a given threshold are removed. The specific value of
this threshold is a function of the network considered.

The rest of this section explains how to compute the probability that a given
node receives a bundle, given a (non-duplicating) delivery scheme computed
by algorithm 1.

We have seen that the proposed modified Bellman-Ford algorithm does not
lead to a simple routing table: if a bundle reaches a given node at time T , its
next hop depends on its destination and on T . Each node n divides time in
intervals In

1 , In
2 , . . . (by means of the ⊘ operator, algorithm 1 line 7), and each

interval I matches a given next hop Hn(I). In the example figure 9, node b has
defined two intervals: Ib

1 = [Monday, Tuesday] and Ib
2 = [Wednesday, Sunday];

Hb(I
b
1) = d and Hb(I

b
2) = c.

D1 ⊕ D2

D1 ⊕ D2 ⊕ D3

⊤

⊥

C

¬C D1 ⊕ D2

D1 ⊕ D2 ⊕ D3

B1

s

B2

s

D1

D2D3

Fig. 11. Finding a fast delivery scheme that fulfills condition C using
algorithms 1 and 2. This figure represents the delivery distribution lattice (in-
troduced in figure 4); it is depicted the usual way (basically, an element is greater
than another one if it is placed above and they are linked by a line). The greyed
area corresponds to elements that satisfy condition C. —,1. The adapted Bellman–
Ford algorithm is used to find a distribution (D1) that characterizes a fast way to
deliver bundles; Bi

s denotes the source node’s best distribution found after i iter-
ations. We have ⊥ � B1

s � B2
s � · · · � D1. —,2. Since ¬C(D1), another disjoint

delivery distribution, D2, is computed using algorithm 1. Combined with D1, it
leads to D1 ⊕ D2 which still does not satisfy C. D3 is thus computed, and com-
bined with D1 and D2, gives a satisfactory delivery scheme D1⊕D2⊕D3. We have
D1 � D1 ⊕D2 � D1 ⊕D2 ⊕D3.
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A bundle crosses a number of nodes on its way to its destination. We compute
the probability Pn that a given node n is one of them.

Let s be the bundle source node and d the destination. If the bundle is ready to
be sent at time T , it should reach n = Hs(I), where I is the time interval of s
such that T ∈ I. The bundle arrival time at n follows the contact distribution
N(x) =Dsn(T, x), thus Pn =

∫ ∞
0 N(x) dx.

Once the bundle has been received by n, each time interval In
i matches a

potential next hop ni = Hn(In
i ). We have:

Nn
i (x) =

∫

{t∈In

i
|t≤x}

N(t) Dnni
(t, x− t) dt (10)

Pni
=

∫ ∞

0

Nn
i (x) dx (11)

Equation (10) gives the bundle time arrival distribution at the next hop ni.
This process can be continued recursively until the probability of receiving the
bundle is known for all nodes.

The bundle forwarding process can be represented by a graph. The children
of a node are the potential next hops. The graph obtained for the example
depicted in figure 9 is given below.

76540123c

5/32

// 76540123e 25/256

76540123a

1

//

""EE
EE

EE
EE

EE
E

?>=<89:;b

1

<<yyyyyyyyyyy
//?>=<89:;d

9/16

// 76540123e 9/16

?>=<89:;d

0

// 76540123e 0

The numbers labelling the nodes are the probabilities of receiving the bundle,
as given by (11). The destination e thus receives the bundle with a probability
of 25

256
+ 9

16
.

7 Conclusion and future works

We propose to model contacts between a disruption tolerant network’s mobile
nodes as a random process, characterized by contact distributions. Such a
description is more general than those generally encountered in the literature,
and allows, for example, to model a perfectly deterministic network.
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We have setup a framework that shows how such contact distributions can be
combined to compute the bundle delivery delay distribution corresponding to
a given delivery strategy (i.e. a description of the nodes forwarding decisions).
This framework is formally defined and quite generic; it can be used to evaluate
quantitatively the performance of new routing protocols.

To demonstrate the applicability of the framework, we have used it to build
a new routing algorithm. It is a generalization of the Bellman-Ford algorithm
adapted to DTNs.

There is a tradeoff between a bundle’s delivery probability/delay and the
consumption of network resources. We propose to mitigate it by duplicating
bundles along disjoint “shortest” paths so as to meet a given delivery guarantee
without consuming too many resources. The corresponding algorithms are
given.

This work can be continued along several lines.

We have proposed a way to route bundles through the network; other routing
strategies should be explored and compared.

Three operators on delivery distributions have been defined. Others could be
added so as to describe more subtle routing decisions. A significant improve-
ment would be to modify the framework so as to deal with bundles transmis-
sion delays.

Real network traces should be analysed so as to quantify their predictability,
to compare delivery strategies, and to measure how predictability impacts
performance.

A Properties of the � operator

Lemma 1. ∀D1, D2, D3 ∈ D, we have D2 � D3 ⇒ D1 ⊕D2 � D1 ⊕D3.

Proof. Given the definition of ⊕ and �, one must prove that, ∀D1, D2 ∈
D, ∀T ≥ 0, t ≥ 0, given D2 � D3:

∫ t

0

[

1−
∫ x

0

D1(T, y) dy
]

D2(T, x) +
[

1−
∫ x

0

D2(T, y) dy
]

D1(T, x) dx

≥
∫ t

0

[

1−
∫ x

0

D1(T, y) dy
]

D3(T, x) +
[

1−
∫ x

0

D3(T, y) dy
]

D1(T, x) dx

(A.1)
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The left-hand part can be written as:

∫ t

0

D1(T, x) dx +
∫ t

0

D2(T, x) dx−
∫ t

0

∫ x

0

[D1(T, x)D2(T, y) + D1(T, y)D2(T, x)] dy dx (A.2)

Changing the double integral’s integration order, the last term of (A.2) is
equal to:

∫ t

0

D1(T, x)
∫ x

0

D2(T, y) dy dx +
∫ t

0

D1(T, x)
∫ t

x
D2(T, y) dy dx

=
∫ t

0

D1(T, x) dx
∫ t

0

D2(T, y) dy (A.3)

The same procedure can be applied to the right-hand part of (A.1). (A.1) is
thus equivalent to:

∫ t

0

D2(T, x) dx ≥
∫ t

0

D3(T, x) dx (A.4)

Which holds by hypothesis.

Corollary 1. ∀D1, D2 ∈ D, we have D1 ⊕D2 � D1.

Proof. From Lemma 1, D1 ⊕D2 � D1 ⊕⊥ = D1.
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