
Model-based Design and Veri�cation of Security Protocolsusing LOTOSF. Germeau, G. Leduc1Research Unit in Networking (RUN)Institut d'�electricit�e Monte�ore B.28, Universit�e de Li�ege, B-4000 Li�ege, Belgiumfgermeau,leducg@monte�ore.ulg.ac.beAbstractWe explain how the formal language LOTOS can be used to specify security protocols andcryptographic operations. We describe how to model security properties as safety propertiesand how a model-based veri�cation method can be used to verify the robustness of a protocolagainst attacks of an intruder. We illustrate our technique on a concrete registration protocol.We �nd a simpler protocol that remains secure, and a more sophisticated protocol that allowsa better distinction between intruder's attacks and ordinary errors.1 IntroductionFormal description techniques gain increased consideration due to signi�cant advances and re-sults recently obtained. A lot of computer systems achieve mission-critical tasks and thus requirean absolute proof that they are working without any errors. Such a proof can be deduced withformal veri�cations. The ever growing power of computers and the increasing knowledge ofveri�cation techniques allow one to perform validations on real problems. With the develop-ment of the Internet and specially with the birth of the electronic commerce, the security ofcommunications between computers becomes a crucial point. All these new applications requirereliable protocols able to perform secure transactions. The environment of these operations isvery hostile because no transmission channel can be considered safe. Formal descriptions andveri�cations can be used to obtain the assurance that a protocol cannot be threatened by anintruder.Special modal logics have been designed to verify authentication protocols. The most well-knownsuch logic is the BAN logic [BAN90], but some others have been proposed to overcome some ofits limitations. Such logics have been used successfully to verify several protocols, but have notproved very e�ective in some other circumstances. Another approach consists of using generalpurpose formal methods usually applied to more conventional protocols. They are supportedby veri�cation tools, such as theorem provers or model-checkers, which makes it possible toautomate the proof process. Approaches based on theorem proving applicable to a large classof protocols and to general authentication properties have been proposed [Mea92][Bol96].Until recently among the di�erent formal methods, the model-checking approach was not feltadequate to tackle the veri�cation of security protocols. Recent results prove the contrary, thisapproach can in fact be very e�cient to achieve a real computer aided design of security protocols.To our knowledge, its �rst application to the veri�cation of security protocols was achieved in[Low96] where the Needham-Schroeder protocol [Sch96] was speci�ed in CSP [Hoa85] and model-checked by the FDR tool. Independently of this work, we speci�ed the Equicrypt protocol1Mâ�tre de recherches (Senior Research Associate) F.N.R.S. (National Fund for Scienti�c Research, Belgium)1



[LBQ96] in LOTOS and used the Eucalyptus toolbox [Gar96] to verify it [LBK96][GL97]. Thepresent paper will focus on the method we used to model and verify a security protocol usingLOTOS.The paper is organized as follow. In section 2, we will show that the LOTOS language is avery good performer to handle the speci�cation of security protocols. With its 
exibility, awide range of cryptographic operations can be modelled. We will describe the establishment ofsecurity properties and the associated veri�cation process in section 3. The veri�cation is quiteautomatic and allows one to certify that an intruder cannot break a cryptographic protocol withdi�erent kinds of attacks. An application of our method on a concrete protocol will be presentedin section 4. We will also point out that it is possible to tune a protocol in order to obtain newproperties and improve its behaviour.2 LOTOS speci�cationThe formal speci�cation of a security protocol is written in LOTOS [BB87][ISO89] which is astandardized language suitable for the description of distributed systems. It is made up of twocomponents :� A process algebra, moslty inspired by CCS [Mil89] and CSP [Hoa85], with a structuredoperational semantics. It describes the behaviour of processes and their interactions. LO-TOS has a rich set of operators (multiway synchronization and abstraction like in CSP,disabling, ...), and an explicit internal action like in CCS.� An abstract datatype language. ACT ONE [EM85], with an initial semantics. A typeis de�ned by its signature (sorts + operation on the sorts) and by equations to give ameaning to the operations.The revision of the LOTOS standard is under study in ISO/IEC since 1991. The design of thisenhanced version called E-LOTOS is based on the feedback obtained from practical applicationsof LOTOS and will certainly improve its expressive power.A LOTOS speci�cation is composed of two di�erents parts. The �rst one is dedicated to thedescription of the abstract data types and the cryptographic operations in particular. Thesecond part describes the behaviour of the di�erent entities involved in the protocol. We will�rstly deal with this description2.1 BehaviourEvery security protocol involves several entities called principals. A principal can be any objectthat plays a role in the evolution of the protocol. Example of principals are users, hosts orprocesses. When we address the veri�cation of the security of the protocol, we must make someassumptions on the behaviour of the principals. Thus principals are quali�ed trusted or not. Atrusted principal will always react according to the expected behaviour. A non-trusted principalcan try and break the protocol with an unexpected behaviour though is considered genuine bythe other entities. 2
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B_send_AA_receive_BFigure 2 : Principals with intruder and environmentPrincipals are linked together with communication channels to exhange messages. These com-munication channels are generally considered insecure, that is an intruder can act passively oractively on the transferred information. He can eavesdrop on messages, intercept them, replayold ones, or create new ones. The goal followed by the intruder ranges from a simple denial ofservice to the access to prohibited rights.The behaviour section of a LOTOS speci�cation is composed of several processes which interactwith each other through interaction points called gates. Each principal involved in the protocolis modelled by a process that describes its exact behaviour. LOTOS allows the synchronisationof two or more processes via interactions that can occur at each gate. A one way communicationchannel between two principals is modelled by the synchronisation of the transmission gate ofone principal with the reception gate of the other principal. A second synchronisation handlesthe other way of the communication channel.For instance, �gure 1 depicts a system with two principals where the communication channelis modelled by the synchronisation of the gate A_to_B of principal A with the gate A_to_B ofprincipal B and with the synchronisation of the gate B_to_A of principal A with the accordinggate of principal B.To introduce the intruder that will try to threat the protocol we replace the simple commu-nication channels by one central process that will act as the intruder. Thus the intruder canintercept all messages and transmit them or not, with or without modi�cation. We will enterinto the details of the intruder's behaviour in section 2.3. Back to our example, the principalsare not interacting directly with each others but indirectly through the intruder process (�gure2). The intruder is the only principal considered untrusted. All other principals are trusted.We model cases where a principal is not trusted by giving enough power to the intruder to actas a genuine principal.Finally, we use an environment to monitor the progress of the protocol. When a principalreaches a sensitive point, he informs the environment by sending him a message through the3



System_State gate. These messages are called special events and will be developed further insection 3.2. They will be of a great help to perform the formal veri�cation. The environment isalso responsible for the reception of error messages. Figure 2 presents the complete structure ofa typical LOTOS speci�cation that models a security protocol between two principals.Each process that represents a principal is parameterized with an initial knowledge. This knowl-edge includes identi�ers, keys or whatever information a principal must know before runs of theprococol can occur. As we will see later, the knowledge is the core of the intruder's modelling.2.2 Abstract data types2.2.1 PrinciplesThe speci�cation of the behaviour only describes the exchange of messages. It does not considerthe data transferred by these messages. Abstract data types de�ne the elements that are handledby the behavioural part. They de�ne which kind of data are used by the protocol but alsowhich operations are allowed on these data. Only the de�ned operations are permitted. Withthis restriction, complex cryptographic operations can be abstracted away from mathematicaldetails. We will see that only a simple description of their characteristics is needed.With LOTOS, abstract data types are written in ACT ONE. Each LOTOS variable can onlyhave values of a particular sort de�ned during the declaration. A LOTOS type is a modulecomposed of one or several sorts, operations and equations. A sort is the name given to a set ofvalues that belong to the same domain. Speci�c operations are de�ned on the values of each sortand the semantics of these operations is provided by speci�c equations. This structure allowsfor a great 
exibility in the handling of data in LOTOS.A lot of mechanisms exist in modern cryptography [Sch96], but only a few of them are actuallyused in security protocols. We do not intend to make an exhaustive translation of cryptographicoperations in ACT ONE. We just want to show the level of abstraction provided by LOTOS andthe relative simplicity in the de�nition. Thus we will focus on two examples that represent themost widely used operations : encryption and signature in public-key cryptography. More subtleand complex cryptographic operations can be modelled. In section 4 we present a registrationprotocol we have speci�ed that uses a zero-knowledge identi�cation scheme.ACT ONE is not only used to de�ne the data transferred in messages, it is also used to de�nethe internal database of information of each principal. For instance, a registration principal needto manage a registration database that will also be de�ned in ACT ONE as a table of recordswith multiple �elds. This application is quite common and will not be developed further in thispaper.De�nition of abstract data types can rapidly become very cumbersome to design. Thus our spe-ci�cation are written using data type language extensions, as o�ered by the APERO tool [Pec96]included in the Eucalyptus toolbox. The original text has to be preprocessed by the APEROtranslator to get a valid LOTOS speci�cation. This provides for a smaller and more readablespeci�cation and for some level of immunity w.r.t. underlying processing tools. However, sometypes were written from scratch, hence, it was necessary to take tools restrictions explicilty intoaccount. The other parts of the toolset will be explained in section 3.3.
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2.2.2 Public-key encryption and signatureThe following ACT ONE de�nition models the public-key encryption operation. It does not relyon any particular implementation (e.g. RSA) nor on any particular mathematical concept. Forsimplicity, we assume the previous de�nition of the public and the private keys as base valuesand the existence of an operation match(public key, private key) that returns true if thepublic key corresponds to the private key.type EncryptedMessage is Message, PublicKey, PrivateKeysorts EncryptedMessageopnsE (*! constructor *) : PublicKey, Message -> EncryptedMessageD : PrivateKey, EncryptedMessage -> Messageeqnsforall msg : Message,pubkey : PublicKeyprvkey : PrivateKeyofsort MessageMatch(pubkey,prvkey) => D(prvkey,E(pubkey,msg)) = msg;not(Match(pubkey,prvkey)) => D(prvkey,E(pubkey,msg)) = Message_Junk;endtypeThe encryption function E and the decryption function D are de�ned as abstract operations thatare the reverse of each other. Decryption with a bad key is handled explicitly and produces adistinguished value Message_Junk without any meaning. Once encrypted, the only way to accessthe message is through the decryption function called with the right private key. Obviously, nooperation allows to read the private key.The signature operation is de�ned in the same way with a veri�cation function V that returnstrue if the signature is correct (i.e. the veri�cation is performed with the right public key). Weconsider that a signed message is the message in clear and an encrypted hash of it. Thus ourmodel needs the GetMessage operation to access the message without any key.type SignedMessage is Message, PublicKey, PrivateKeysorts SignedMessageopnsS (*! constructor *) : PrivateKey, Message -> SignedMessageV : PublicKey, SignedMessage -> MessageGetMessage : SignedMessage -> Messageeqnsforall msg : Message,pubkey : PublicKeyprvkey : PrivateKeyofsort MessageV(pubkey,S(prvkey,msg)) = Match(pubkey,prvkey);GetMessage(S(prvkey,msg)) = msg;endtypeWe assume with these de�nitions that no one can break the public key cryptosystem by gettingthe message in clear from the encryted message and the public key, or forging a signed messagefrom the message in clear and the public key. Note that LOTOS easily provides processes thattransgress this rule, and thus break any cryptosystem. Great care must be taken to avoid thiskind of unrealistic behaviours. 5



2.3 The intruder2.3.1 ModelWe want to model an intruder as a process that can mimic any attack a real-world intruder canperform. Thus our intruder process shall be able to :� Eavesdrop on and/or intercept any message exchanged among the entities.� Decrypt parts of messages that are encrypted with his own public key and store them.� Introduce fake messages in the system. A fake message is an old message replayed or anew one built up from components of old messages including components the intruder wasunable to decrypt.The intruder merely replaces communication channels linking principals involved in the protocol.He behaves in such a way that neither the receiver of a fake message, nor the sender of anintercepted message can notice the intrusion.The LOTOS process that models the intruder manages a knowledge base. Each time the intrudercatches a message, he tries to decrypt its encrypted parts. Then he stores each part of themessage in separate sets of values. These sets constitute the intruder's knowledge base thatincreases each time a message is received. The intruder tries to collect as much informationas he can with the intercepted messages. His behaviour is simple and repetitive. He does notdeduce anything from his knowledge base. He just stores information for future use.When one of the trusted principals is ready to receive a message, the intruder analyze hisknowledge base to determine the messages he can create. He builds them with values stored inhis sets. As he tries every combination of these values, the intruder tries to send every messagehe can create with his knowledge.The intruder is parameterized with some initial knowledge which gives him a certain amountof power. Remember that all principals except the intruder are considered trusted. Thus aswe want to cover cases where regular principals are untrusted, the intruder must be able to actas these principals. So his initial knowledge must comprise enough information to allow thisbehaviour. For instance, in a protocol where a user must register with a trusted authority. Theintruder must be able to act as a valid user from the point of view of the trusted autority. Buthe must also be able to act as a valid trusted autority from the point of view of the user. Thisexample will be explained in more details with the example of section 4.The key point is the power given to the intruder. Security protocols are based on some assump-tions provided by the mathematical background of cryptographic operations. As we want to berealistic, our intruder will not be powerful enough to break a cryptosystem. As LOTOS providesprocesses that trangress this rule, it would be easy to de�ne an intruder that tries a brute forceattack to guess a private key or a random number. The intruder's behaviour is thus deliberatelylimited in this respect.2.3.2 Speci�cation of the intruderThe following LOTOS code describes a 3-way exchange between two principals. Its purpose isto show the intruder's interactions with trusted principals, and thus data types are simpli�ed.6



Principal A interacts through gates A_Send_B and A_Receive_B and principal B uses gatesB_Send_A and B_Receive_A. The intruder is synchronized with each gate. His behaviour isa loop composed of six possible actions : three actions to receive the three messages and threeactions to send them. Each time a message is received, it is inserted in the intruder's knowledge.For clarity of this example, the Insert function hides all the analysis of the message. Thechoice operator commands the generation of all the possible distinct actions where the messagesent is in the intruder's knowledge. The structure of the intruder is quite simple and thus canbe guaranteed error free.behaviourPrincipal_A[A_Send_B,A_Receive_B](Initial_Knowledge_of_A)|[A_Send_B,A_Receive_B]|Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Initial_Knowledge_of_I)|[B_Send_A,B_Receive_A]|Principal_B[B_Send_A,B_Receive_A](Initial_Knowledge_of_B)whereprocess Principal_A[A_Send_B,A_Receive_B](Knowledge_of_A :Knowledge) : noexit :=A_Send_B!Message_1;A_Receive_B?Message_2 :Type_2;A_Send_B!Message_3;stopendprocprocess Principal_B[A_Send_B,A_Receive_B](Knowledge_of_B :Knowledge) : noexit :=B_Receive_A?Message_1 :Type_1;B_Send_A!Message_2;B_Receive_A?Message_3 :Type_3;stopendprocprocess Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I :Knowledge) : noexit :=(A_Send_B?Message_1 : Type_1;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Insert(Message_1,Knowledge_of_I)))[](B_Send_A?Message_2 : Type_2;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Insert(Message_2,Knowledge_of_I)))[](A_Send_B?Message_3 : Type_3;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Insert(Message_3,Knowledge_of_I)))[](choice Message_1 : Type_1 [] [Message_1 is_in Knowledge_of_I] ->B_Receive_A!Message_1;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I))[](choice Message_2 : Type_2 [] [Message_2 is_in Knowledge_of_I] ->A_Receive_B!Message_2;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I)) 7



[](choice Message_3 : Type_3 [] [Message_3 is_in Knowledge_of_I] ->B_Receive_A!Message_3;Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A](Knowledge_of_I))endproc2.4 Finite modelThe LOTOS speci�cation will be translated into a labelled transition system (a graph) where thenodes are the state of the LOTOS speci�cation and the transitions are labelled by the LOTOSactions. This labelled transition system (LTS) must comprise all the possible executions of theprotocol. But this graph must be kept �nite to be generated.Some elements like random numbers or time stamps are speci�c to one run of the protocolleading to an in�nite number of possible messages. This in�nity must be controlled by givingsome well chosen properties to these speci�c elements. Trusted principals will use one speci�celement for each run they perform, so we give them a limited set of elements that will be usedduring their executions. We also give the intruder one element but which is di�erent from thoseof the trusted principals. When the intruder will use his element in a particular message, thiswill, in fact, model all the possible messages where the speci�c elements is not the one expectedby a trusted principal.Messages with a speci�c element can be split into messages with a correct speci�c element andmessages with a wrong speci�c element. The �rst ones are limited in number but not the secondones. With our abstraction we can keep our model �nite because a simple message is enough torepresent all the incorrect ones.In some protocols, we may need to consider an in�nity or a big number of possible principals.As the LTS must be kept �nite and also of reasonable size to be managed, the number of trustedprincipals must sometimes be drastically limited. The intruder's knowledge allows him to act asany other principal in a trusted or untrusted way, but it may not be su�cient to cover all cases.There exist other ways to prevent the exponential growth of states. An in�nite loop in thebehaviour of a principal can be replaced by a limited number of runs adjusted to still coverall the possible intruder's attacks. Multiple con�gurations with multiple speci�cations can beplanned to address several independant aspects of the protocol.Great care must be taken with the restrictions imposed by the assumptions we are forced tomake. We do not prove formally the correctness of our abstract �nite model with respect tothese assumptions. It would be interesting to consider such proof on the case studies we derivefrom this method. Some work in this direction is proposed in [Low96] where the veri�cationwith a limited number of principals is generalized or in [Bol97] where an abstraction functionautomates the computation of a correct abstract model. The main di�culty comes from thecomplexity of the protocols we want to verify.Now that we have presented the complete speci�cation, we will enter deeply into the veri�cationprocess.
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3 Validation process3.1 Properties to verifyMost security properties rely on the fact that the intruder does not know some secret informationor is not able to construct the expected message. They can be characterize as safety properties.Informally, safety properties are properties stating \nothing bad will happen". Authentication,access control, con�dentiality, integrity and non-repudiation are safety properties. Each of thesesecurity services require that a particular situation cannot occur.The only liveness property is the non-denial of service, which current cryptographic protocolsdo not guarantee. Intuitively, liveness properties are properties stating \something good willhappen". A denial of service happens if an intruder succeeds to get a protocol stuck or makeit fail. Thus when a denial of service arises, the liveness property stating that the protocol willsucceed is not satis�ed.In order to provide these security services, protocols implement particular mechanisms. TheLOTOS speci�cation of trusted principals apply them while the intruder process tries to defeatthem. A way to verify the robustness against intruder's attacks during the execution of thespeci�cation is needed. Thus a formal translation of the properties to be achieved by securityservices is required in order to perform the veri�cation.3.2 Formalizing the propertiesDuring message exchanges of security protocols, critical points are reached where certain securityservices are assured. The reception of a well-formed message can trigger a principal into a statewhere he trusts some facts. This behaviour needs to be formalized. We must translate thehuman idea that the required security service is satis�ed into a precise de�nition of principalsstate.In order to determine these critical points in the speci�cation, we introduce some special events.Each time a critical point is reached by a trusted principal, he informs the environment bysending a speci�c message that gives information about its internal state. The environmentof the LOTOS speci�cation is responsible for the reception of these messages. By executing aspecial event, a principal declares that he is con�dent in a fact.If we consider an authentication protocol between two principals. The prover must be au-thenticated by the veri�er. There are two critical points in this protocol. The �rst one iswhen the prover starts his authentication and the second one is when the veri�er is sure ofthe prover's identity. Thus we introduce two special events PROVER_START_AUTHENTICATIONand VERIFIER_AUTHENTICATION_SUCCESSFUL. A common property required is that \the provermust have started an authentication with the veri�er before the veri�er successfully authenti-cates the prover". Otherwise, an intruder has been able to be authenticated with the prover'sidentity. This property will be captured by our special events regardless of the particular au-thentication mechanisms used. We just state that \No VERIFIER_AUTHENTICATION_SUCCESSFULevent must occur before a PROVER_START_AUTHENTICATION".This technique can be applied to a wide range of security properties. Some re�nements aresometimes needed to de�ne more precisely critical points. A special event can be expressed withparameters that determine the context where the associated critical point occurs. A parameter9
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Figure 3 : The Eucalyptus toolboxcan be a principal's identity, an authentication token, a particular key or any other relevantdata.This method allows one to abstract away from all the details of security mechanisms. We canonly focus on the security services achieved. One of the major di�culties is to gain the assurancethat the critical points are well de�ned and the security properties are translated correctly intoproperties on special events. So we need to �nd the right abstraction level between the simplicityof the global view of the security services and the complexity of the underlying protocols. Methodto automate the process would be desirable. Some researchs in this direction can be found in[AG97].3.3 The veri�cation toolboxWhen the LOTOS speci�cation is written and the properties are formalized, we can performthe veri�cation itself. We use the CADP package [FGK96] included in the Eucalyptus toolboxto carry out the veri�cation of the protocol. As �gure 3 shows, the LOTOS speci�cation withdatatype language extensions is converted into ISO LOTOS with the APERO tool. The nextstep consists of applying the Caesar tool to generate a graph called Labelled Transition System(LTS) from the LOTOS speci�cation. This graph contains all the possible execution sequencesof the protocol studied. Section 2.4 has addressed the feasibility of the generation. To gaincon�dence into the speci�cation, it is simulated with the XSimulator in step-by-step executionmode.The Aldebaran tool is the last stage of the processing. It performs the comparison of two labelledtransition systems. The veri�cation requires the comparison of the LTS of the protocol as createdby the Caesar tool with the graphs of our properties. Thus a �nal step in the formalization isneeded. The properties based on special events must appear like a �nite-state graph. The10
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Our security properties being all safety properties, the minimization can be further improvedmodulo the safety equivalence [BFG91], which preserves all the properties expressible in Branch-ing time Safety Logic (BSL).Not all the observable actions are relevant to verify the properties. In particular, our propertiesonly rely on special events, so that other actions can be hidden. The minimized LTS of ourprotocol can be checked against the LTS of a property be verifying the safety preorder relation[BFG91] between them. Formally, the safety preorder (�s) is the preorder that generates thesafety equivalence (�s), and is nothing else than the weak simulation preorder.Consider again a LTS = <S;A; T; s0> and let's de�ne L = A� fig, a relation R � S � S is aweak simulation i� :If <P;Q> 2 R then, 8 a 2 L,if P i�a) P 0, then 9 Q0 : Q i�a) Q0 and <P 0; Q0> 2 RA LTS Sys1 = <S1; A; T1; s01> can be simulated by Sys2 = <S2; A; T2; s02>, denoted Sys1 �sSys2, i� there exists a weak simulation relation R � S1 � S2 such that <s01; s02> 2 R. TwoLTS Sys1 and Sys2 are safety equivalent i� Sys1 �s Sys2 and Sys2 �s Sys1.Informally, \behaviour �s property" means that the behaviour (exhibited by the protocol) isallowed (i.e. can be simulated) by the (safety) property.When a property is not veri�ed, meaning that Aldebaran has not found a safety preorder betweenthe LTS of protocol and the LTS of the property, it produces a diagnostic sequence of actions.However, this sequence is usually of little help as such, because it only refers to the few nonhidden actions that were kept for their relevance to express the properties. We call it the abtractdiagnostic sequence.To circumvent this di�culty and get a detailed sequence with all actions visible, we have toencode this abstract diagnostic sequence in a format suitable for input to the Exhibitor tool.This tool is then instructed to �nd the shortest detailed sequence allowed by the speci�cationand matching the abstract one. We are then able to clearly identify the scenario that leads tothe undesirable state where the property is not veri�ed. Intruder's attacks can then be pointedout very easily. The complete diagnostic sequence shows the order of actions performed by theintruder and how he was able to acquire enough knowledge to succeed.The veri�cation process of the properties is then complete. If one or more of them are notsatis�ed, our method gives diagnostics of a greatful help to redesign the protocol.4 An example of veri�cationTo illustrate our method, this section presents an example of veri�cation. We have chosen theregistration part of the Equicrypt protocol, a conditional access protocol under design in theEuropean ACTS OKAPI project [GBM96]. It allows a user to subscribe to multimedia servicessuch as video on demand. The user must �rst register with a Trusted Third Party (TTP) usinga challenge-response exchange. After a successful registration, this TTP issues a public-keycerti�cate which allows the user to subscribe to a service o�ered by a service provider.We concentrate on the veri�cation of the registration protocol. This paper only presents anoverview of the process. Complete details can be found in [GL97] for more interested readers.12



4.1 The registration protocolThe registration protocol involves a user who wants to access a multimedia service and a TTPthat acts as a notary. The mutual authentication of the user and the TTP must be achieved bythe protocol. The TTP must be sure that the claimed identity of the user is the right one andthe user must be sure that he registers with the right TTP. The TTP must also receive the gooduser's public-key during the procotol to issue a corresponding public-key certi�cate needed forthe subcription phase.The authentication of the user by the TTP uses the Guillou-Quisquater (GQ) zero-knowledgeidenti�cation scheme [GQ88]. Before registering, the user has received secret personal credentialsderived from its real-life identity. These credentials will help him to prove who he is to the TTPbut without revealing them. The authentication of the TTP by the user uses a challenge basedon a nonce (i.e. a number used once). The user has also received the TTP's public-key toperform the required checks on the messages and to authenticate the TTP. The transmissionof the user's public-key to the TTP is possible with an improved version of the GQ algorithm[LBQ96]. The registration protocol presented in this paper is, in fact, an enhanced version ofthe original one found in [LBQ96].The GQ identi�cation scheme is based on complex mathematical relations derived from theuser's identity, the user's public-key and the secret credentials. It uses a random number issuedby the TTP to challenge the user and a second random number issued by the user to scramble thepublic-key and protect the credentials. To specify the algorithm, we have designed an abstractmodel which is particulary simple while still capturing the essence of it. The key point of theauthentication are the secret credentials. If we consider them as a secret encryption key andthe user's identity together with its public key as a corresponding public decryption key, theGQ algorithm looks like an authentication scheme based on a nonce and works as follows. Theuser sends his public decryption key to the TTP and receives back a nonce as a challenge. Thenhe returns to the TTP the nonce encrypted by his encryption key. The TTP can then checkthat the nonce has been encrypted as expected. This scheme resists to the \man-in-the-middle"attack because the decryption key is mathematically linked to the user's identity.In the remaining of this paper, we will present all the messages with the following structure :Number : Source! Destination :Message Identifier < Message F ields >A couple (KSA;KPA ) will denote the pair of private/public keys of the principal A. Encryption ofdata will be written fdatagKPA while signature will be written fdatagKSA. F (B; d) will representthe special encryption of the GQ model where B are the credentials.The protocol works as follows :The user generates a random nonce n and sends the message 1.1 : User ! TTP : Register Request < UserID;KPU ; fngKPTTP >When the TTP receives message 1, he decrypts the nonce n and signs it, generates a randomnumber d and sends them to the user. The TTP can handle several registrations at a time. Sohe maintains an internal table with one entry for each user who has a registration in progressand he records the tuple < UserID;KPU ; n; d >.2 : TTP ! User : Register Challenge < d; fngKSTTP >13



When the user receives message 2, he checks the signature. If the signature is correct, heperforms the GQ calculation and sends the result to the TTP.3 : User ! TTP : Register Response < F (B; d) >When the TTP receives message 3, he checks the GQ authentication using this message and thedata found in his internal table. Then, he sends a response according to the result. The responseis signed and includes both the user's identity and the nonce n. The user's entry in the internaltable is deleted. If the response is positive, the TTP registers the tuple < UserID;KPU >4+ : TTP ! User : Register Acknowledgement < fY es; UserID; ngKSTTP >4� : TTP ! User : Register Acknowledgement < fNo;UserID; ngKSTTP >4.2 Procotol speci�cationUsing the framework presented in previous sections, we have speci�ed the protocol in LOTOS.Abstract data types were designed for all the cryptographic operations involved including theabstract model of the GQ algorithm. The user and the TTP are two trusted principals andthe intruder is the untrusted one. The user always tries to perform a valid registration. Theintruder's initial knowledge is adjusted to allow him to act as a second untrusted user andsimultaneously as a second untrusted TTP. It includes :� An identity : IntruderID� Valid credentials : BI� A pair of private/public keys : KSI et KPI� The public key of the user KPU and the public key of the TTP KPTTP� The identity of the user : UserID� Nonces and random numbers di�erent from those of trusted principals.After the step-by-step simulation stage, the labelled transition system (LTS) of the protocol hasbeen generated. It is composed of 487446 states and 2944856 transitions and has required onehour of computation on a SUN Ultra-2 workstation running Solaris 2.5.1 with 2 CPUs and 832Mb of RAM. The reduction factor of the minimization modulo the strong bisimulation was veryimportant. The minimized LTS of the protocol is made of 3968 states and 37161 transitions.The reduction modulo the safety equivalence was not mandatory because the graph was smallenough to carry out the veri�cation.4.3 Formalizing the propertiesAmong the �ve safety properties we have veri�ed, we only present one of a particular interest.This property is necessary (but not su�cient) to the authentication of the TTP by the user andwe will see later that the current protocol does not satisfy it.� P4 : The verdict of the registration given by the TTP (i.e. registered or failed) must alwaysbe correct and consistent with the acknowledgement received by the user.14
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Figure 5 : Labelled transition system modelling property P4Four special events are required to formalize this property. Two events are related to the verdictgiven by the TTP and two other events to the verdict received by the user. A critical pointis reached when the TTP decides whether or not the registration is successful. This decisiondepends on the correctness of message 3. Before the TTP sends his positive or negative ac-knowledgement, he generates a special event. The TTP_REG_SUCCEEDED event corresponds tothe positive acknowledgement and the TTP_REG_FAILED event corresponds to the negative ac-knowledgement. When the user receives the TTP's response, he also reaches a critical point.Thus, he generates a USER_REG_SUCCEEDED event or a USER_REG_FAILED according to the re-sponse received.Property P4 can be expressed by the graph shown on �gure 5. It shows the temporal orderingsthat we authorize among the TTP_REG_SUCCEEDED, TTP_REG_FAILED, USER_REG_SUCCEEDED andUSER_REG_FAILED events. In particular, a USER_REG_SUCCEEDED must always be preceded byone TTP_REG_SUCCEEDED because, when the user learns that he has successfully registered, theTTP must have successfully registered him. A USER_REG_FAILED must always be precededby at least one TTP_REG_FAILED and no TTP_REG_SUCCEEDED because, when the user learnsthat his registration failed, the TTP must have refused to register him at least once and theTTP must not have registered that user successfully. A USER_REG_FAILED must never follow aTTP_REG_SUCCEEDED.4.4 A 
awAldebaran has discovered that the property P4 was not satis�ed. The behaviour of the registra-tion protocol cannot be simulated by the graph of the property regarding the relevant specialevents. It has found a sequence where a USER_REG_FAILED occurs before a TTP_REG_SUCCEEDED.The TTP successfully registers the user after the user has learned that his registration failed.15
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1 : User ! TTP : Register Request < UserID;KPU ; fngKPTTP >2 : TTP ! User : Register Challenge < d; fngKSTTP >3 : User ! TTP : Register Response < F (B; d) >4+ : TTP ! User : Register Acknowledgement < fY es; UserID; n; dgKSTTP >4� : TTP ! User : Register Acknowledgement < fNo;UserID; n; dgKSTTP >Aldebaran states that all the properties, including P4, are ful�lled with this version. Hence, themutual authentication and the transmission of the public key succeed despite the attempts ofthe intruder.4.6 Enhancements of the protocolThis section deals with two improvements of the protocol. Firstly, we will try to obtain thesimplest protocol. Encryptions and signatures were used to have the assurance that the intrudercould not alter messages or parts of them. The formal description we made will help us toestablish which cryptographic operations are really essential. Our guideline is to minimizecryptographic operations because public key cryptography has a very high computational cost.Secondly, we will modify the protocol to help the entities to make the distinction between afailure and an error. When an entity receives a message, it performs several checks. If one ofthem fails, a message indicating the reason of the error is sent to the environment. It is veryimportant to understand the di�erence between the two kinds of interruptions a registrationcan encounter. The registration can fail because the TTP has decided that the user does notown good credentials. That is what we will call a failure. The other cases are errors. An erroroccurs when the registration protocol stops due to a badly formed message: wrong signature,wrong nonce, ... We obviously focus on failures because we want to defeat the intruder whenhe generates good messages. An intruder can always create errors by sending garbage in thetransmission channel. This separation between failures and errors helps to determine whetheran intruder is disturbing the registration or not.4.6.1 The simplest protocolWe have found that the addition of the random number d in the signature of the fourth messagemakes the nonce n useless. It was used at �rst for the user to authenticate the TTP. TheTTP's signature of the acknowledgement is su�cient to perform this authentication. The userknows the TTP's public key so that he can verify that this message originates from the TTP.The random number d ensures that it belongs to the current registration and has not beenreplayed by the intruder. Thus, the user has the guarantee that he is talking to the TTP forthe registration presently in progress.Section 4.5 demonstrates that the signature of the registration acknowledgement message isvery important. It can certainly not be removed as it performs the authentication of the wholeregistration. The message 4 is composed of the TTP's response, the user's identity and therandom number d. So the authentication of d with a signature in the registration challengemessage is not necessary. Only the �nal check of the acknowledgement is mandatory.
17
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the intruder does not own credentials the TTP is waiting for and thus, a failure is declared andthe TTP sends a negative acknowledgement. The user also declares a failure upon its reception.This scenario is not related to the authentication properties of safety we have previously veri�ed.The TTP refuses to authenticate the user due to an intruder's action but is not authenticating theuser incorrectly. The reason of the failure is linked to the integrity of the messages transmittedduring the protocol. In this particular case, the register response message has been changed bythe intruder.To achieve the user's distinction of errors from failures, we will strengthen the requirements onthe protocol and add a new property.� P6 : The user must never learn that his registration has been refused by the TTP.or expressed with special events :� P6 : No USER_REG_FAILED event is allowed in the LTS of the system.From the point of view of the TTP, he would also make a complete distinction between failuresand errors if he never declares a failure of the user because the user always tries to perform avalid registration. All disturbing elements must come from the intruder and must lead to errors(or possibly to a TTP_REG_FAILEDwith the intruder's identity). We model this case with anothernew property called P7 that does not allow the TTP to refuse to register the user. Formally,no TTP_REG_FAILED event with the user's identity (TTP_REG_FAILED !USERID_A) is permittedin the LTS of the system.We check for the presence of USER_REG_FAILED and TTP_REG_FAILED !USERID_A events usingthe Exhibitor tool. If the veri�cation does not �nd any of these events, our new properties aresatis�ed. The simplest protocol cannot guarantee P6 nor P7 because the parameters used inthe GQ algorithm are not checked before the GQ veri�cation (see the previous scenario). So wepropose a new solution with two new signatures.1 : User ! TTP : Register Request < UserID;KPU >2 : TTP ! User : Register Challenge < fUserID;KPU ; dgKSTTP >3 : User ! TTP : Register Response < fUserID; F (B; d)gKSU >4+ : TTP ! User : Register Acknowledgement < fY es; UserID; dgKSTTP >4� : TTP ! User : Register Acknowledgement < fNo;UserID; dgKSTTP >The main di�culty to solve comes from the GQ veri�cation. The protocol must provide a wayto �nd why the GQ calculation is not correct. If the problem is due to the use of bad credentials,the TTP must declare a failure, otherwise he must declare an error.The signature of the register challenge message allows the user to verify that the data transmittedin the �rst message were correctly received. This could not be achieved by signing the registerrequest because the TTP does not know the user's public key yet. If and only if the user agreeswith the register challenge, he generates a response F (B; d), signed with his private key. Whenthe TTP receives this third message, he can use the recently received public key to check thesignature. If the signature is incorrect, the TTP declares an error. Otherwise, if the result ofthe GQ computation is correct, that means that the user has received a valid register challengemessage and thus agrees with the public key used in this message. Hence the TTP owns the19
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We have explained the validation process and the formalization of security properties. They canbe modelled as safety properties with the help of special events triggered when crucial states arereached. The veri�cation is based on the safety preorder which should hold between the systemand the property.Our method is illustrated with a registration protocol where we have found a subtle 
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