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In the context of the Large Binocular Telescope project, we present the results of force actuator calibra-
tions performed on an adaptive secondary prototype called P45, a thin deformable glass with magnets
glued onto its back. Electromagnetic actuators, controlled in a closed loop with a system of internal me-
trology based on capacitive sensors, continuously deform its shape to correct the distortions of the
wavefront. Calibrations of the force actuators are needed because of the differences between driven forces
and measured forces. We describe the calibration procedures and the results, obtained with errors of less
than 1.5%. © 2008 Optical Society of America

OCIS codes: 220.1080, 350.1260, 350.1270.

1. Introduction

Adaptive optics has been developed as a technique to
correct, in ground-based telescopes, the distortions of
wavefront due to atmospheric turbulence [1]. During
the past two decades, several solutions were pro-
posed as wavefront correctors, for example, postfocal
deformable mirrors using piezoelectric actuators and
bimorph piezoelectric mirrors. These kinds of solu-
tions are limited to a maximum stroke of a few mi-
crons; that implies the necessity to correct the tip–
tilt error with a separate mirror.
Techniques based on interactions between coils

and magnets exist in the field of astronomy or opto-
metry for human eye applications. These small
correctors use a thin membrane coated with a mag-
netic layer [2], a special kind of magnetic liquid [3], or
a coated membrane provided with magnets [4]. This
last solution follows in time the innovative technique
based on adaptive secondary mirrors as wavefront
correctors, initially proposed [5] to exceed the limits
of the piezoelectric systems. This solution has several
advantages with respect to the other systems cited

above. A first unique characteristic is that it is a pre-
focal corrector (the telescope’s traditional secondary
mirror is removed and substituted with the adaptive
secondary, which allows having a single deformable
mirror serving all the focal stations of the telescope).
Electromagnetic actuators, after receiving a certain
current, create a magnetic field that acts on an equal
number of magnets glued onto the back of a Zerodur
glass mirror, deforming its shape. As there is no con-
tact between the two components, this wavefront
corrector has less limit in stroke with respect to
the previous techniques, and allows including in a
unique entity both the tip–tilt and high-order correc-
tors. The instrument is supplied with an internal
metrology system based on capacitive sensors. More-
over, with respect to a traditional telescope design
with an adaptive optics system, using the secondary
adaptive prototype means avoiding reflections and
transmissions with an increase of efficiency and
without any hysteresis effect (the piezoelectric actua-
tors are substituted with electromagnetic actua-
tors) [6].

This technique was successfully applied [7]: after
the construction of two smaller prototypes, a 336 ac-
tuatoradaptive secondarymirror calledMMT336was
realized. At present, the instrument is fully working
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on the Multiple Mirror Telescope (MMT) and it is the
first and only adaptive secondarymirror operating on
a telescope.
Furthermore, following the positive experience of

the MMT336 and its prototypes, two 672 actuator
adaptive secondary mirrors for the Large Binocular
Telescope (LBT) are being developed [8]. A first pro-
totype, called P45, which includes new solutions for
themirror shape, the control electronics, and the force
actuators, has recently ended its test study phase [9].
This paper describes the procedure of calibration of

the force actuators of P45. These calibrations, not
performed before on the existing adaptive secondary
mirrors, allow the increase of the determination of
the stiffness modes of the mirror to obtain a base that
can be used in the modal optical loop. A brief descrip-
tion of the P45 prototype is provided in Section 2.
Then, the linear systems used to find the calibration
are treated in Section 3, and Section 4 explains the
proof code. Finally, laboratory results and conclu-
sions are presented in Sections 5 and 6.

2. P45 Prototype

The P45 prototype of the LBT adaptive secondary
mirror consists of a three layer structure (see Fig. 1):
a thin deformable shell, a thick reference plate, and a
third plate that acts as an actuator support and
heat sink.
The thin (1:6mm) deformable shell, realized in

Zerodur glass, is supplied with 45 magnets glued
onto its back with 120° symmetry and arranged in

three concentric rings (see Fig. 2). On the surfaces
of the shell, two thin aluminum films are applied,
one on each side.

A thick Zerodur glass plate, named the “reference
plate,” provides a reference surface for the back side
of the thin shell. This plate is supplied with holes in
which are inserted, from the bottom, the electromag-
netic actuators. Each magnet of the thin shell faces
the coil of the respective actuator, provided with a ca-
pacitive sensor capable of acting as an internal me-
trology system. Currents driven on the coils of the
actuators generate an electromagnetic force pattern
that deforms the mirror acting on the magnets. In-
side each actuator is placed a security magnet, called
the “bias magnet,” which is used to sustain the mir-
ror in case of a current blackout [9]. The bias mag-
nets are a new feature of the P45 with respect to
the previous adaptive secondary mirrors. Finally,
the heat sink of the actuators is assured by a thick
cold plate, to which the actuators are fixed. This sys-
tem requires calibration because of the differences
between the driven force on the actuators and the
measured force by the control electronics.

Force calibrations allow increasing the precision
for the identification of the natural modes (stiffness
modes) of themirror to obtain a base that can be used
in the modal optical loop to build the force patterns
to compensate for the wavefront error. In par-
ticular, they allow determination of the maximum
number of correcting modes for a given dissipation
threshold of the actuators with respect to other
modal bases [10].

3. Linear Systems

The actuators of the P45 deformable glass provide
the currents needed to move the mirror acting on

Fig. 1. Back surface of a thin deformable shell, themagnets glued
onto its back, the reference plate, the actuators, and a cold plate.

Fig. 2. Display of the actuators and the x, y axes. The gravity
vector is along the z axis.
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the magnets by introducing forces orthogonal to its
surface. To obtain the equilibrium at a given distance
from the reference plate (typically 68 μm) the cardinal
equations of statics must be satisfied; the sum of
forces and torques driven to each actuator must be
equal and opposite to the sum of the other forces
and torques acting on the mirror. These last
ones are due to the weight force P ¼ ð�2:920� 5×
10�3ÞN and the total force of bias magnets B, which
is unknown. The intersection between the shell plane
and the optical axis z of the thin shell is chosen as the
center of resolution for torques, while the x and y axes
are chosen as in Fig. 2. In this configuration, and
because forces are introduced orthogonally to the
mirror surface, the torque on the z axis can be disre-
garded. So the considered torques are those through
the x and y axes, named respectively My and Mx (in-
cluding the torque of the bias magnets), and the sign
ofMy will be negative for the right-hand rule. The bal-
ance of the force and the torque must be satisfied in
each position and for each shape that the mirror will
take. If N corresponds to the number of these shapes
(N ≥ 45), i ¼ 1…45 represents the actuator index and
f are the forces

�
X
i

f i1 ¼ Pþ B � � � �
X
i

f iN ¼ Pþ B;

�
X
i

xif i1 ¼ My � � � �
X
i

xif iN ¼ My;

�
X
i

yif i1 ¼ �Mx � � � �
X
i

yif iN ¼ �Mx: ð1Þ

The bias magnet force B will be positive because it is
in the opposite direction with respect to the weight
force of the mirror. To set the forces that are solutions
of the previous equations, we need to supply to the
actuator a certain current multiplied by an adequate
calibration constant α, most likely different for each
actuator:

f iN ¼ αiciN : ð2Þ

This process works in the linear regime with an error
of 7 × 10�4 times the rms of the position of the actua-
tors when the modes are commanded [11]. The ciN are
the forces driven to the actuators by the control elec-
tronics, whichwe call “commanded forces,” and the f iN
are the forces measured by the capacitive sensors,
which we will call “true forces.” The calibration con-
stants αi are dimensionless; the “true Newton/com-
manded Newton” unit of measurement is used. The
αi are unknowns.
The following section will illustrate the method

used to set the calibrations. The requested driven
force sets are obtained as follows: the mirror is de-
formed, driving each actuator into a determined po-
sition, and the shape is applied from the closed loop
system that automatically controls the forces to keep
the mirror stable. Such forces are recorded by the

control electronics and used to build the ci vectors.
Combining Eqs. (1) and (2) to impose the stability
means finding the αi that are solutions of the follow-
ing linear system:
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The system is divided into three blocks of N equa-
tions: the first N equations impose the weight force
balance in each position (on the z axis); the following
2N equations impose the balance of torques along
both the x and y axes. In total, this linear system
has 3N equations and 45 unknowns (αi). To simplify
the notation, let us write the system in Eq. (3)
as Cα ¼ p.

Because of the lack of information about the tor-
ques (My, Mx) and the bias magnet force (B), addi-
tional sets of independent measurements were
introduced. A good method to increase the number
of independent equations in the previous system is
to vary the weight of the mirror by adding a known
amount. Once this operation is completed we obtain
a system similar to the previous, compactly written
as Dα ¼ q. The driven forces will be different and will
be noted with d instead of c; the torques will be dif-
ferent too, and will be noted with Ny and Nx. The to-
tal force amount will not be Pþ B anymore, but
Pþ BþQ, where Q represents the added weight.

The weight variation was achieved with a special
PVC annular support of Q ¼ ð�0:289� 5 × 10�3ÞN
with three little wedges, each having 120° of symme-
try to provide a self-centering mechanism. This tool,
once the mirror is removed, can be introduced from
the top (see Figs. 3 and 4). The weight of the tool
was chosen around 10% of the weight of the shell
to avoid any relevant stress on the glass around
the inner ring. With this value, the weight variation
can be considered homogeneous over the whole shell
surface and we do not expect a less accurate solution
of the linear system for a small weight variation of
the tool.

With these additional sets of measurements per-
formed using the tool, it is possible to find B, My,
Mx, Ny, and Nx and, naturally, the calibration con-
stants αi. Lining up the measurements without and
with weight variation, and modifying the previous
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linear systems in order to add the unknown amounts
to the solution vector, we build the following system:

�

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

c11 ��� c451 1 0 0 0 0

..

. ..
. ..

. ..
. ..
. ..

. ..
. ..

.

c1N ��� c45N 1 0 0 0 0

x1c11 ��� x45c451 0 1 0 0 0

..

. ..
. ..

. ..
. ..
. ..

. ..
. ..

.

x1c1N ��� x45c45N 0 1 0 0 0

y1c11 ��� y45c451 0 0 �1 0 0

..

. ..
. ..

. ..
. ..
. ..

. ..
. ..

.

y1c1N ��� y45c45N 0 0 �1 0 0

d1
1 ��� d45

1 1 0 0 0 0

..

. ..
. ..

. ..
. ..
. ..

. ..
. ..

.

d1
N ��� d45

N 1 0 0 0 0

x1d1
1 ��� x45d45

1 0 0 0 1 0

..

. ..
. ..

. ..
. ..
. ..

. ..
. ..

.

x1d1
N ��� x45d45

N 0 0 0 1 0

y1d1
1 ��� y45d45

1 0 0 0 0 �1

..

. ..
. ..

. ..
. ..
. ..

. ..
. ..

.

y1d1
N ��� y45d45

N 0 0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

·

0
BBBBBBBBBBBBBB@

α1
..
.

..

.

α45

B
My

Mx

Ny

Nx

1
CCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

P
..
.

P

0
..
.

0

0
..
.

0

PþQ
..
.

PþQ

0
..
.

0

0
..
.

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð4Þ
To simplify the notation, let us write the linear sys-
tem of Eq. (4) as Eα0 ¼ r.
So the solution vector will be composed of 50 ele-

ments: 45 calibration constants αi, one for each ac-
tuator; one total force of bias magnets B; two
torques without added weight My and Mx; and
two torques with added weight Ny and Nx. It is im-
portant to understand that if the rank of the system
Eα0 ¼ r is maximum, we are able to find even the
calibration constants, then the torques and the bias
magnet force.

4. Proof Code

The proof code is a simulation to numerically demon-
strate that the previous systems are resolvable, writ-
ten in IDL language (Research Systems, Inc.). The
simulation is composed by several steps: in the first
step, a simulated force pattern and a simulated α set
is built. In the second step, using the previous simu-
lated amounts, we resolve a system analogue to the
Cα ¼ p system. In the last step, we apply the same
procedure on a system analogue to Eα ¼ r. The de-
tails are treated below.
The demonstration was obtained building a simu-

lated force pattern Fs and a simulated set of αs. Di-
viding the lines of Fs by αs, a matrix analogue to
the C matrix, named Cs, was built. The known term
vector, ps, contains P in the weight equations and 0 in

the torque equations. The goal is to demonstrate
that, by resolving the system Csα ¼ ps, we obtain
an α set equal to αs at least at the machine precision.
Since the torques and bias magnets force are im-
posed to be 0, it is permitted to define at most 45�
3 ¼ 42 independent columns for Fs. The last three
columns are calculated directly by the system, which
resolves for each line Eq. (1).

The system was successfully resolved using both
the identity matrix of order 42 and a random 42 ×
42matrix: α and αs were the same at least at the ma-
chine precision. The 45 simulated α vectors were
built using random numbers, supposing a 10% nor-
mal scattering around 1. This confirms that both
Cα ¼ p and Dα ¼ q are resolvable.

The readout noise of the capacitive sensors relates
to a distance error of 3nm rms. As the bigger strokes
on the stiffness modes are typically less than 1 μm
(and reach values around 1 μm only for some actua-
tors in the tip–tiltmodes), this noisewas disregarded.

In analogy with the previous method, the demon-
stration that the simulated α are reproducible were
verified with a system, called Esα ¼ rs, which with
the same procedure resolves numerically the Eα ¼
r system. In this case, to generate the F patterns,
the values of B , M, and N (inserted in the solution
vector) were initially assumed to be 0. Given that
these systems are overdimensioned, a singular value
decomposition method was successfully used to ob-
tain a numerical solution [12].

Fig. 3. Tool used to produce the weight variation.

Fig. 4. Usage of the tool for the weight variation; the tool can be
introduced from the back of the mirror previously removed from
the structure.
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5. Laboratory Results

Laboratory measurements permitted derivation of
the c and d vectors while recording the forces applied
by the closed-loop control system. This was per-
formed after having driven, in sequence, 45 force
linearly independent patterns, equivalent to the ei-
genmodes of the stiffness matrix (stiffness modes
of the mirror).
The results are shown in Figs. 5 and 6: the values

of the force calibrations are between 0.70 and
1:1 true Newton=commanded Newton with errors
between 6:6 × 10�4 and 1:6 × 10�2 true Newton/
commanded Newton. The currents driven on the
45 actuators reproduce the stiffness modes of the
mirror. The forces measured on each actuator for
these 45 shapes, and the respective 45 negative
shapes, constitute a cycle of 90 measurements. Sev-
eral cycles of 90 measurements were performed in or-
der to have homogeneous data sets to calculate the
error. Then, the B, M, and N values previously ob-
tained were used with those groups of measurements
in the Cα ¼ p system, permitting estimation of the
error by the rms of the average on these α at the
3σ level.
The procedure to calculate the calibration con-

stants is solid and fully automatic. However, other
important aspects, such as the variation of the cali-
bration constants with the time and the tempera-
ture, deserve to be investigated. Different runs in
different days and rough temperature measure-
ments were performed, but the amount of these data
is not enough to provide an efficient estimation for
the error or the effects of temperature. Since the
P45 is temporarily dismantled to proceed with differ-
ent laboratory tests, no other measurements are
scheduled in the short term. The aspects relative
to the effect of time and temperature on the cali-
bration constants will be further investigated in
the framework of future work on adaptive mirror de-

velopments. This will bring us to a more complete
characterization of the instrument.

6. Conclusions

In the framework of the LBT, the two secondary
adaptive mirrors play a decisive step. The procedure
described to increase the performances of the adap-
tive P45 prototype help to complete this step. Experi-
mental data on the force calibrations of the P45
suggest that it is possible to calibrate the system
using an IDL code that acquires the current mea-
surements driven to the actuators. Calibrations
are determined with an error smaller than 1.5%.
Furthermore, if an actuator, a magnet, or a coil of
the actuator is substituted, it is possible to obtain
a new calibration using the developed procedure.
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