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Abstract

Several TCP-Friendly algorithms have been recently
proposed to support multimedia applications. These
algorithms try to mimic the congestion control behav-
ior of TCP. However, the oscillatory (bursty) nature of
TCP traffic is widely known to be unsuitable for most
typical real-time applications. Adopting such behavior
would result in annoying QoS oscillations for the users
of such real-time applications. In the present paper we
describe a new TCP-Friendly algorithm based on the
TCP cycle estimation. We show through simulations
that the proposed algorithm is able to smooth the os-
cillations while keeping fairness towards TCP.

1 Introduction

Adaptive mechanisms for congestion control have a cen-
tral role in the efficient sharing of the network resources
among a large number of users. These mechanisms also
have the role of preventing congestion in the network
[3]. The fact, however, that the control is performed by
the sources (that are not policed by the network), and
not by the network, makes it hard to protect the net-
work from applications that might not use such mecha-
nisms (e.g. from video conferences that use UDP with
no rate adaptation). Hence, not only applications that
adapt their rates suffer from congestion, but also those
that do not adapt their rates, since they experience high
loss rate, and therefore a poor QoS.

Considerable research is being carried out in order to
add rate control to real-time multimedia applications,
in such a way to make them cooperative with TCP. This
kind of rate control schemes are referred to as TCP-
Friendly (8].

In this paper we propose an algorithm that dynamically
adapts its rate based on an estimation of the TCP cy-
cle duration. Indeed, by observing the average rate and
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round-trip time, it is possible for a real-time application
to estimate the duration of an ideal cycle, and there-
fore the loss ratio that an equivalent TCP source would
experience under the same network conditions. The cy-
cle estimation, the computed loss, the observed cycle,
and the observed loss can then be used to calculate a
smoothed TCP-Friendly rate.

The paper is structured as follows: In section 2 some
theoretical background is shown, including a refinement
of the \/LE formula [8, 10]. In section 3, the cycle-based
TCP-Friendly algorithm is described. Simulation re-
sults can be found in section 4. We conclude by some
remarks and future work in section 5.

2 TCP-Friendly: Mathis’s for-
mula and its refinement

An equation for computing the rate of an equivalent
TCP connection is given in [8, 10]:

_C-MTU
R-\/p

where B is the computed rate, p is the loss rate, C is
a constant given as C' = 1.30 in [10] and C = 1.22 in
[8], MTU is the mean segment size and R is the aver-
age round trip time. Hereafter, using previous results
on the average round trip time of an ideal TCP Reno
[1], a constant C' = 1.27 is computed. Indeed, it is well
known that the average round trip time over a given
window size, is approximately Ry = %, where B is
the available bandwidth for the TCP connection. With-
out loss of generality, we consider that B is given in
segment per unit of time, and the MTU size is one seg-
ment. A cycle in TCP begins by a window size of W'g”
and ends when the window reaches its maximum size
namely Wy,,.. Hence, given that the total number of
segments sent during a cycle is N = ngaz(Wmaz +2),

(1)
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the average round trip time over a cycle (i) can be then
approximated by [1]
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Since in an ideal behavior of TCP Reno, only one loss
occurs during a cycle, then the loss ratio is given by

N Wiee 3\9) W
1.2701

= B~ = (2)
R-\/p

Our algorithm (see section 3) uses Equation (1) with
C = 1.27, with the loss rate calculated over the dura-
tion of a TCP cycle, in order to estimate the (smoothed)
rate that an equivalent TCP connection would use.
Equation (1) taken as it is, does not apply for loss rates
larger than 0.16 [8], nor does it apply for connections
with a large round trip time, since TCP in the latter
case cannot fully use the available bandwidth and equa-
tion (1) is based on the assumption that the full utiliza-
tion is achieved. Therefore, using this equation in this
context would result in underestimating the available
bandwidth.

3 Proposed algorithm

3.1 Cycle estimation for an ideal TCP
Reno

The main motivation of our work comes from the fact
that in none of the previous works on TCP-Friendly
schemes, the duration of a TCP cycle seems to be taken
into account. Indeed, it is well known [1, 7] that the
ideal window behavior in TCP is cyclic. The cycle is
delimited by two consecutive losses, and its duration is
proportional to the bandwidth delay product. Hence,
in the case of large cycles (e.g. due to large buffers), al-
gorithms which do not take this duration into account,
will see a zero loss in many reports, before a report
carrying a high loss ratio arrives (since losses occur at

1 Average window should be interpreted here as the size of
the window of an equivalent connection that sends with a fixed
window size.
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the end of a cycle). This ratio, in fact does not reflect
an equivalent ideal TCP loss ratio, namely one packet
every cycle.

In order to have a valid estimation of the loss ratio, the
latter should be estimated over the duration of a cycle
(Cycle). The algorithm we propose below is based on
this observation. We first compute the duration of an
ideal cycle, and measure the experienced loss over the
last cycle. If the source has experienced a loss rate not
closer to the ideal loss rate (one loss per cycle), then
a target sending rate is computed using the ideal loss
rate, such that we get closer to the ideal situation of
one loss per cycle.

The loss of one segment over a cycle can be written as:

1 1 1
P=N ~ %Wmaz(Wmax +2)  B-Cycle
e = Vst
B
~ 0.62-R*-B+09-R. (3)

Hence, if the sending rate in the present cycle is B, then
the loss ratio for an ideal TCP Reno would be

Loss_th = ! = 161 4)

B-Cycle  p2R’+154-B-F

Using this formula, the Cycle-Based Rate Adaptation
Algorithm (CBRAA) that we propose estimates the loss
ratio that an ideal TCP Reno connection would expe-
rience, and then determines the available bandwidth
depending on the observed loss ratio. The loss ratio
is computed using the feedback indications sent by the
destination to the source via RTCP (receiver) reports
[12]. These reports are also used to estimate the round
trip time. To estimate the loss over the observed cycle,
a sliding window is used (in case many RTCP reports
are received during a cycle).

3.2 CBRAA: Cycle-Based Rate Adap-
tation Algorithm

CBRAA is based on the observation that if a given
source behaves as Reno TCP, then the observed loss
rate should be given by equation (4), where B is the
sending rate in packets per second, and referred to in
the sequel as Rate.

Figure 1 gives a pseudo-code of the core of CBRAA. To
explain how the CBRAA algorithm works, assume that
at a given time a CBRAA source sends its data (frames)
at the rate Rate. If Rate is the adequate sending rate
i.e. the same bandwidth of an equivalent TCP connec-
tion, then the observed loss ratio will be close to the
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For every Receiver Report (RR) do:

Cycle = srtt*(0.62%Rate*srtt + 0.96)
Loss_th = 1.0/(RatexCycle)
Loss_obs = nlost_obs_cycle / total_sent_obs_cycle

if (Loss_obs > a . Loss_th)
Rate_th = decrease(Rate)

else if (Loss_obs < b - Loss_th)
Rate_th = increase(Rate)

Rate = alpha*Rate + (1 - alpha)*Rate_th;

Figure 1: CBRAA: Cycle-Based Rate Adaptation Al-
gorithm

theoretical one, namely Loss_th, and therefore the rate
should be kept unchanged in this case.

Now if Rate is less than what a TCP Reno connection
would use, then the CBRAA source will experience a
loss rate smaller than Loss_th, and thus its average
ratc could in theory be increased. However, due to the
sparse feedback provided by RTCP, our experiments
show that increasing the rate in this situation can lead
to long-term larger loss rates and therefore long-term
TCP-unfriendliness. Therefore, we opted to probe for
available bandwidth only when a loss rate over a cycle
is smaller than b- Loss_th (b < 1). We are currently
working to find out the optimal values for @ and b, which
are set in our simulations respectively to 1.5 and 0.5.
The use of a weighted moving average for the rate allows
us to get a smoothed rate. In order to avoid affecting
the convergence severely, the smoothing factor « should
be kept small enough (less than 0.5). The choice of & in
fact determines the tradeoff between smoothness (sta-
bility) and convergence. Large values for « result in a
slow convergence and a smoothed rate, while small val-
ues result in a fast convergence but an oscillatory rate.
We have also observed that the smoothness may affect
the fairness, in the sense that a too smooth rate may
stay too long under or over the rate of an equivalent
TCP connection. The functions ”increase(Rate)” and
”decrease(Rate)”, we use in our simulations introduce
also smoothing factors, in order to moderate between
the theoretical loss rate (Loss_th) and the observed loss
(loss_obs). Thus the rate is computed following equa-
tion (2), with p set to SLoss_th + (1 — 3)Loss.obs. We
are currently working on other functions for the increase
and decrease that will allow better convergence and sta-
bility for a wide range of parameters, since the previous
functions have limitations in some cases.

In the next section, we present several simulations
to show how CBRAA behaves comparatively to TCP
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Reno and to a TCP Friendly that uses equation (2) di-
rectly. From now on, we call “TCP-Friend” a simple
algorithm based on equation (2) which works as fol-
lows: no smoothing in the loss ratio is done, and if the
loss reported by RTCP RRs is zero then the rate shall
be increased in the TCP-like manner, by %55—3; which
corresponds to half what would be the increase in TCP
Reno, where TRTCP is the average time between two
consecutive RTCP receiver reports. If the reported loss
is larger than zero then TCP-Friend, uses equation (2)
to compute its rate.

4 Simulations

In order to study the behavior of CBRAA, we compared
it with TCP Reno and with the original TCP-Friendly
by Mathis as described in Section 2. We performed a set
of simulations, in order to observe the basic, individual
behavior of the algorithm in terms of convergence and
fairness, and to show how CBRAA behaves for non-
equidistant sources (i.e. sources that observe different
RTTs).

Nz
O, O

Figure 2: Simulation setup

We used the REAL network simulator [6] to simulate
the topology described in figure 2. In this model, we
have n sources (S;) sending to n destinations (D;), and
sharing the same bottleneck link of capacity 4 Mbps.
All the other links have a capacity of 10 Mbps. All
links are bidirectional and symmetric, and the end-to-
end propagation delay is 50ms in each direction. The
buffer size in the bottleneck access router (router A
in the figure) is 20000 bytes, and the packet discard-
ing discipline is a simple drop tail. Each source is ei-
ther TCP Reno, Mathis TCP-Friendly or CBRAA. All
sources send packets of constant size 1000 bytes. For
all the simulations using this scenario we considered
a = 0.5, and the minimum rate for each TCP-Friendly
or CBRAA source is set to 1.0/srtt x packet_size bps
(the initial rate is set to 5 pkts/s).
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Figure 3: Rate for Mathis (“TCP-Friend”) and
CBRAA sources, the average RTT is 120 ms.

4.1 CBRAA and equation (1)

Consider a TCP-Friendly algorithm based on Mathis
formula as described in Section 2. Our aim in this
section is to show how CBRAA behaves comparatively
to the direct use of equation (1). We used the sce-
nario of Figure 2 with one TCP Reno and one Mathis
TCP-Friendly source. The simulation time is 500 sec-
onds. After that, we replaced the Mathis source with
a CBRAA source, and ran the simulation for another
500 seconds. The initial rate for the CBRAA source is
set to 5 packets per second (40kbps).

In figure 3, we plot the goodput for the Mathis TCP-
Friendly source and the CBRAA source. We can see
that after 60 seconds the rate of the CBRAA source is
very smooth, while that of the Mathis source remains
oscillatory. CBRAA gets approximately 2Mbps while
TCP-Friend source gets slightly less than the fair share.
With respect to the convergence speed, in the exam-
ple, after 60 seconds of simulation CBRAA reaches its
fair share of 2Mbps. In fact, the convergence speed in
CBRAA depends on the effect of the parameter o, and
other smoothing parameters, we introduce for ”decrease
(Rate) and increase(Rate)” (see figure 1).

4.2 Reaction to arriving and leaving
sources

In the present section we consider the reaction of
CBRAA to leaving and arriving sources.

Consider the model shown in Figure 2, where at the be-
ginning only one TCP source and one CBRAA source
are competing for 4Mbps. At time 300 seconds, two
TCP connections arrive. Figure 4 shows how CBRAA
reacts to the arriving sources. In approximately 10
seconds (two RTCP RRs) each connection gets almost
the same fair share (1 Mbps). The two arriving TCP
sources leave the network after transmitting 30Mbytes
each, respectively at time 550 and 560. CBRAA regains
arate of 1.6 Mbps (which is close to its fair share) in less
than 20 seconds after the two TCP connections leave
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the network.
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Figure 4: Behavior of CBRAA, when sources arrive and
depart, the average RTT (for all sources) is ~120 ms.

4.3 Fairness

Since thresholds are used in computing the rate, we
expect that the fairness of CBRAA may vary. The pre-
vious example (figure 4) illustrates this; the average
rate of CBRAA is close to 270 kbyte/s during the time
70-300, and only 200 kbyte/s during the time 570-700.

ek tyuier

Figure 5: Fairness for equidistant sources. The average
RTT is ~120 ms.

Figure 5 illustrates the previous example with three
TCP connections and one CBRAA source. All the
sources in this case have a propagation delay of 50 ms.
We can see that all the connections get almost the same
fair share. CBRAA gets a bit less than the TCP sources
(116 kbyte/s average rate for CBRAA, and for the TCP
sources 119, 123, and 124 kbyte/s, respectively).

Let us now consider the case where the sessions have
different round trip time. We considered the same ex-
ample of figure 2 with one TCP source and two CBRAA
sources. The TCP session has a propagation delay of
25ms, and the two CBRAA sessions have respectively
25ms and 100 ms as propagation delay.

Figure 6 plots the rate of each source. We ran the sim-
ulation for 500 seconds, and get the following results:
the average round trip time of the TCP source and
one CBRAA source is ~70 ms, and that of the other
CBRAA source is ~220 ms. Hence, since the rate is in-
versely proportional to the RTT (and if all the sources
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Figure 6: Effect of RTT on the average rate

experience the same loss rate), ideally TCP and one
CBRAA source (the one with smallest RT'T) should get
about 215 kbyte/s each, and the other CBRAA source
should get about 69 kbyte/s.

The obtained rate for the TCP source is about 178
kbyte/s, and the average rates of the two CBRAA
sources are respectively 233 and 69 kbyte/s, which are
very close to the ideal values. Due to limited buffer
sizes, when multiple connections are running, TCP is
likely to get less than its fair share, due to its retrans-
mission mechanism and timeouts. We believe that the
use of TCP SACK [9] together with mechanisms such
RED [8] would reduce this unfairness, and would make
the proposed scheme proportionally fair [5].

5 Conclusions

We proposed a TCP-friendly algorithm which seeks to
smooth the source sending rate while at the same time
allowing TCP to get a reasonable fair share of the avail-
able bandwidth by using thresholds. The algorithm is
based on the TCP cycle estimation, which is used to
calculate a mean rate that TCP would have had over
the same cycle duration.

Our first simulation results show that the fairness of the
proposed scheme is kept within reasonable bounds, al-
though not strictly guaranteed. Using smaller smooth-
ing factors would help improving the fairness, but would
also result in deep oscillations which are not desirable
for real-time multimedia applications in general. Ac-
tually, since real-time and TCP applications have very
different characteristics and requirements, we do not
seek the perfect guaranteed fairness, we rather seek a
level of fairness which allows TCP and TCP-Friendly
sources to maintain reasonable rates. Some examples
of characteristics of real-time applications which dif-
fer from those of TCP applications are: a relatively
smooth rate is required, feedback from receivers might
be sparse, there are minimum and maximum sending
rates. Therefore, trying to meet the requirements of
the two kinds of applications simultaneously is a very
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hard task, and keeping them closer seems sufficient.
This first version of CBRAA assumes a saturated
source, i.e. a source that always has data to send.
Nevertheless, a real-time source generally is not able
to adapt its rate continuously, but rather in steps. The
size of the increment depends on the amount and type
of codecs available. Our algorithm can be used in such
situations by differentiating between the effective send-
ing rate (i.e. rate at which packets are actually sent to
the network) and the computed sending rate (i.e. rate
computed by CBRAA based on the observed network
conditions), in such a way that the effective sending
rate is always below the computed rate.

The simulation results presented here are peer-to-peer
oriented to facilitate the study of the algorithm. Work
is in progress to study its behavior in multicast where
each receiver may experience very different network
conditions.
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Abstract

We focus in this paper on the undesirable phenomenon
of early buffer overflow during Slow Start (SS) when
TCP operates in large Bandwidth-Delay Product net-
works such as those including Geostationary satellite
links. This phenomenon, already identified in [1, 6], is
caused by the bursty type of TCP traffic during SS.
It results in an underestimation of the available band-
width and a degradation in TCP throughput. Given the
high cost and the scarcity of satellite links, it is of im-
portance to find solutions to this problem. We propose
two simple modifications to TCP algorithms and illus-
trate their effectiveness via mathematical analysis and
simulations. First, we reduce the SS threshold in order
to get in Congestion Avoidance before buffer overflow.
Second, we space the transmission of packets during SS.

Introduction

TCP [4, 10] uses two algorithms Slow Start (5S) and
Congestion Avoidance (CA) to control the flow of pack-
ets in the Internet. With SS, the Congestion Window
(W) is set to one segment and it is incremented by
one segment for every non-duplicate ACK received. If
we suppose that the window advertised by the receiver
doesn’t limit the source throughput, this process con-
tinues until the SS threshold (W) is reached or losses
occur. In the first case, the source moves to CA where
W is increased slower by one segment for every win-
dow’s worth of ACKs. In the second case, W and Wiy,
are reduced and a recovery phase is called. TCP sup-
poses that the new Wy, is a more accurate estimate of
the network capacity.

In this paper, we investigate a problem that occurs
when TCP operates in a network having small buffers
compared to its Bandwidth-Delay Product (BDP). It
is the problem of early buffer overflow and packet losses
during SS before fully utilizing the available bandwidth.
These losses are due to the high rate at which TCP
sends packets during SS (every ACK triggers the trans-
mission of a burst of two packets). If the network
buffers are not large enough to absorb this high rate,
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they will overflow early. The window size when this
overflow is detected is a wrong estimation of the net-
work capacity. But TCP considers it as the maximum
reachable window and reduces its Wy, which results
in a throughput degradation. This problem has been
studied in [1, 6]. In these works, the authors show that
when the Tahoe version of TCP [4] is used in a net-
work with small buffers, two consecutive SS phases are
required to get in CA. A second SS is called when the
buffer overflow in the first SS is detected.

Due to their high BDP and the limitations on buffer
size on satellite board, this problem is very likely to
appear in Geostationary satellite links. Given the high
cost and the scarcity of these links, a solution to early
losses during SS is required. We propose in this paper
two possible changes to TCP in order to solve this prob-
lem. The impact of these changes on TCP performance
is mathematically analyzed. The results are then val-
idated by a set of simulations using ns, the Network
Simulator [7].

Our first proposition consists in reducing the SS thresh-
old Wy, so that to get in CA before the overflow of
buffers. A similar idea is proposed in [3] to set Wy,
to the BDP of the path crossed by the connection. In
our analysis, we find the explicit expression for the re-
quired Wy, to get rid of these early losses. A study of
the throughput as a function of W,y is also performed.

Second, we propose to reduce the rate at which TCP
transmits packets during SS. Instead of sending imme-
diately a burst of two packets in response to an ACK,
the source inserts a certain delay before the transmis-
sion of the second packet. This proposal is similar to
the one proposed in [9] for spacing the ACKs on the
return path. The solution in [9] requires intelligence
in routers whereas our solution requires only change at
the sender. Similar propositions can be found in [8, 11].
The difference from our work is that these works aim
to accelerate the SS phase. They propose to bypass
SS by transmitting directly at a large window which
may overload the network. In our work, we keep the SS
phase but we space the packets transmitted in a burst.
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