
Adaptive Applications over Active Networks:

Case Study on Layered Multicast

Lidia Yamamoto, Guy Leduc

Research Unit in Networking, University of Liège

Institut Montefiore, B28, B-4000 Liège, Belgium

Tel.: +32 4 366 2766, +32 4 366 26 98

Fax.: +32 4 366 29 89

Email: yamamoto@run.montefiore.ulg.ac.be,

leduc@montefiore.ulg.ac.be

Abstract

In this paper we study the potential and limitations of

active networks in the context of adaptive applications.

We present a survey of active networking research applied

to adaptive applications, and a case study on a layered

multicast active application. This active application is a

congestion control protocol that selectively discards data

in the active routers, and prunes multicast tree branches

affected by persistent congestion. Our first results indicate

that active networks can indeed help such an application to

adapt to heterogeneous receivers, with a minimum amount

of state overhead, equivalent to that of a single IP multicast

group.

Keywords: Active network, multicast, adaptive appli-

cation, congestion control.

1. Introduction

The need for a network technology able to transport multiple

existing and emerging services was detected long ago, and is

now reinforced by the convergence of computing and com-

munications, and by the variety of availablefixed andmobile

network technologies. Earlier attempts such as ISDN, ATM-

based B-ISDN and the enhancement of IP for QoS support

require long years of standardisation and therefore lack the

flexibility to quickly adapt to a wide range of service charac-

teristics and requirements over a wide range of transmission

technologies, in a rapidly changing network environment.

Recent advances in mobile software and distributed systems

are opening a new path towards active and programmable

networks [1, 2, 3]. Active networks (AN) allow the net-

work managers or users to program the network nodes ac-

cording to their needs, offering a great amount of flexibility.

They become therefore an ideal candidate for complement-

ing existing networks towards a truly multiservice environ-

ment, that can quickly adapt to new service requirements

and transmission technologies.

Active networks bring a lot of promises, such as to enhance

existing networks with customisable services, that would en-

able network operators and service providers to offer user-

driven instead of manufacturer-driven solutions. However,

few active applications seem to be available at the moment,

which can really show the benefits and trade-offs involved.

For the moment most of the efforts are concentrated on

AN platform architectures, with relatively few applications

which are not just usage examples of a given AN platform.

We believe that building more applications can help under-

standing the requirements on new AN platforms, and there-

fore help refining these platforms.

Of course it is still too early to say what the future of active

networking technology will be. There is still room for a lot

of research in crucial issues such as security, performance,

resource management and others. The focus of our work

is on resource management from the point of view of an

adaptive application. Such an application must be able to

react to changing network conditions in a very dynamic way

in order to adapt to the existing resource availability and its

possible fluctuations.

In this paper we study the potential and limitations of active

networks in the context of adaptive applications. We present

a survey of active networking research applied to such ap-

plications, and a case study on a layered multicast active

application.

2. Background

In this section we give an overview of adaptive applications

in the context of active networks. We start with a brief sum-

mary of what active networks are, the current architectures

proposed and environments available. Then we turn to mul-

timedia adaptation using active networks, focusing on the

special case of layered multicast, which is the subject of our

study.



2.1. Active Networks

Downloading mobile code is already a routine over the In-

ternet, such as the use of Java applets and mobile agent plat-

forms. But mobile code technology can also be applied to

computer networks in order to accelerate the deployment of

new protocols and services. The nodes of an active network

[1] are capable not only of forwarding packets as usual but

also to load and execute mobile code. The code can be trans-

ported by specialised signalling channels (programmable

networks) or within special packets called “capsules” (ac-

tive networks). Capsules might contain the code itself (such

as in [4]) or a reference to it, such that it can be downloaded

when the first capsule containing the reference arrives at a

given node (such as in [5]). This allows us to program the

nodes in a much more flexible and dynamic way than with

the current network technologies such as IP or ATM.Within

an active or programmable router, it is possible to load a new

protocol or service, and to remove protocols or services that

are no longer useful, without having to shut down the router,

thus without service interruption. If the distinction between

active and programmable networks seemed at some point

in time clear [6], the tendency today seems to be towards

an integration of the two concepts, since both are forms of

achieving open programmability in networks [3], and spe-

cial flavours in between or combining both approaches are

also possible [7].

A framework for an active node architecture is being pro-

posed within the AN community [8]. It includes a support-

ing operating system (the NodeOS), one or more execution

environments (EE), and the active applications (AA). The

NodeOS is responsible for managing local resources such as

CPU processing time, link bandwidth and memory storage.

On top of the NodeOS, a number of EEs can be installed.

On top of each EE, various AAs can be dynamically loaded

and executed. The EE is responsible for controlling the ac-

cess from the AAs to local resources, and limiting resource

usage depending on specified policies.

The NodeOS plays a crucial role in providing access to local

node resources, as well as information about resource avail-

ability. A NodeOS API is currently being defined [9]. At

the moment this API treats four types of resources: compu-

tation, memory, communication, and persistent storage. The

communication resource is handled through the channel ab-

straction, which when ready should include QoS support, as

well as access to link information such as bandwidth, queue

length, and other properties and statistics.

When not all the network nodes are active, it is necessary to

discover resources outside an active node. For this purpose,

complementary efforts such as CMU Remos [10] could be

used. The CMURemos interface enables network-aware ap-

plications to obtain network properties such as topology, la-

tency and bandwidth. Another interesting approach appears

in [11], where an equivalent link abstraction is proposed,

such that from an AN point of view it is possible to look at

a set of non active nodes as a single link, with some mecha-

nisms needed to discover the (possibly changing) properties

of such a virtual link.

2.2. Adaptive Applications

Adaptive applications can tolerate fluctuations in resource

availability, and are necessary in a heterogeneous environ-

ment such as the Internet today, where different network

technologies and user terminals are interconnected together,

and over which a multitude of services coexist. In the case of

multimedia applications, a good survey can be found in [12].

The adaptation mechanisms can be implemented at several

layers of the protocol stack, ranging from pure application

layer techniques to network level protocols. For example,

we can adapt to the available bandwidth using elastic traffic

that reduces the data rate generated in presence of network

congestion. Fluctuations in delay can be dealt with by us-

ing elastic buffers to adjust the play-out time. To deal with

CPU andmemory bottlenecks, some interaction with the op-

erating system is necessary (see Section 5 of [12] for exam-

ples). Our focus in this paper is on network and transport

level mechanisms for adaptation.

One of the main difficulties encountered in classical adap-

tation approaches is how to obtain the required information

about resource availability, mainly when this information is

hidden in a blackbox network and has to be inferred using

only some indirect indications that are observed at the end

systems. Using active networks, new models for adaptive

applications could be envisaged, which can benefit from the

possibility to send mobile code or agents to certain elements

inside the network. These agents can be in charge of collect-

ing information about network conditions, without having to

rely on indirect indications or on heavy signalling protocols.

Indeed, the idea of sending small pieces of code directly to

where the data needs to be treated, instead of exchanging a

large amount of data, is one of the main motivations of mo-

bile agent technology, and it can also be applied to mobile

code in the case of active networks.

Actually many adaptation mechanisms come from the world

of mobile agents. Some examples are: In [13] an open re-

source allocation scheme based on market models is applied

to the case of memory allocation for mobile code. In [14]

an adaptive QoS scheme for MPEG client-server video ap-

plications is described. It is based on intelligent agents that

reserve network bandwidth and local CPU cycles, and ad-

just the video stream appropriately. In [15] a market model

to allocate QoS is applied to a conferencing tool targeted at

casual meetingswhere sudden variations in bandwidth avail-

ability require an adaptive QoS control strategy.

Several adaptive algorithms inspired on operational research

and economy theories have been proposed to control re-

source usage in networks. These algorithms are able to con-

verge towards a globally optimal resource allocation in a

decentralised way. For an overview on the topic see [16].

In [17, 18, 19] such theories are applied to the problem



of end-to-end congestion control (i.e. where bandwidth is

the scarce resource). In [17] an optimisation framework is

used to derive a class of optimal algorithms inside which

TCP (after some modification) can be seen as a special case.

In [18] a thorough stability and fairness analysis of some

optimisation-based rate control algorithms is presented, and

it is shown that these algorithms implement proportionally

fair pricing. In [19] a similar algorithm is proposed, and in a

more recent work [20] it is adapted to the Internet environ-

ment, using a packet tagging scheme to communicate link

price information to the end hosts. The results shown are

promising since they are generic enough to be adapted to a

wide variety of applications. However, their direct applica-

tion to discrete layering multicast schemes such as the one

we present in our case study, is not straightforward due to

fairness issues, as pointed out in [21]. A cost model for

active networks is proposed in [22], which expresses the

trade-off between different types of resources in a quanti-

tative way. However, the recursive approach adopted makes

its usage for multicast applications probably impractical.

A lot of AN example applications are related to informa-

tion filtering or transcoding in the active nodes, as a form of

adaptation to bandwidth limitations. In [23], a video plug-

in designed for multicast video distribution is built over a

high performance active node platform. The video plug-

in is loaded on-demand using a code caching scheme, and

runs in kernel space in order to achieve high performance.

The video stream is encoded using a highly scalable codec.

When congestion occurs, the plug-in performs fine-grain

selective dropping of video packets containing higher fre-

quency coefficients, which carry image details and are not

crucial for the image definition. The use of the video plug-

in shows significant improvement in video quality under

congestion, with respect to the situation without the plug-

in. Other examples of application-tailored selective discard

modules implemented over an active network platform can

be found in [11, 7]. The common idea to these examples is

to show howmore intelligent functionality in the routers can

help improving the reception quality of a multimedia stream.

2.3. Layered Multicast

A special class of adaptive applications is layered multicast,

in which the problem of multicasting to heterogeneous re-

ceivers, under heterogeneous network conditions, is dealt

with by using a hierarchical encoding scheme, in which the

data stream is divided into a number of layers, such that the

lower layers contain the basic information, and the upper

layers successively refine this information in order to obtain

a higher quality when enough bandwidth is available. An

example of such an encoding scheme can be found in [23]

as mentioned in Section 2.2.

In a pure end-to-end layered multicast scheme [24, 25], the

source transmits a hierarchically encoded stream, and the re-

ceivers subscribe/unsubscribe to a number of layers accord-

ing to the observed network conditions (loss rate, etc.). The

existing end-to-end layered schemes suffer from the limita-

tions of pure best-effort networks which make most of the

Internet today, and therefore present many problems: slow

and/or coarse-grain adaptation; unstable behaviour charac-

terised by subscribe/unsubscribe oscillations; the need to al-

locate and manage several multicast groups; random packet

drops that lead to poor quality due to hierarchical depen-

dence among packets from different layers; probing for ad-

ditional bandwidth has a potential to intensify congestion;

difficulty to synchronise among receivers leading to under-

utilisation of bandwidth.

Recently, more attention has been devoted to router assisted

schemes [26, 27, 28], that can count on router support in or-

der to solve the abovementioned problems. However, for a

router assisted scheme to be useful, it needs to be widely ac-

cepted and deployed, or at least deployed in critical points in

the network, which anyway requires a long standardisation

process and deployment time. Since multicast sessions are

heterogeneous by nature, it is difficult to agree on a single

solution or set of solutions. That is where active networks

can play a role, since we can design customised solutions

that are loaded on-demand, and let them evolve through us-

age experience.

We cited some examples in Section 2.2, that selectively fil-

ter information inside the active nodes in order to provide an

improved delivery quality under bandwidth constraints. In

these examples, the source of congestion does not react in

order to prevent overflow and discarding. Intelligent filter-

ing in the intermediate active nodes alleviates downstream

congestion while preserving most of the quality. It is impor-

tant for heterogeneous multicast, since it enables the adap-

tation of one original stream for several different groups of

receivers. However, filtering alone is obviously not a so-

lution to the congestion control problem, since it does not

tackle the source of the congestion.

3. Case study on layered multicast

This section shows a case study in the domain of layered

multicast. The goal of this study is to provide a sample AN

application that enables a better understanding of the trade-

offs involved with the AN paradigm, mainly with respect to

resource management. For the moment we only consider

bandwidth as a monitored resource, making our active ap-

plication essentially a multicast congestion control scheme.

We consider a layered multicast application composed of

a single source and several different receivers. The source

generates real-time delay sensitive traffic encoded in a hier-

archical way such that the information carried in lower lay-

ers is more important than the one in higher layers. Addi-

tionally, data from higher layers might depend on data from

lower layers to be decoded. The hierarchical stream is car-

ried by capsules which also contain instructions about the

behaviour to adopt in face of congestion inside the active

nodes along the path to the receivers. The data capsules



are organised in layers according to the hierarchical posi-

tion of the data they carry. This is similar to conventional

layered transmission [24, 25] except that in this case, since

customisable capsules are used, it is feasible to use a poten-

tially large amount of layers. Besides that, the semantics of

the relationships among the layers is built into the scheme

itself, facilitating its customisation to the specific character-

istics of a given application.

The multicast routingmechanism employed is a simple form

of source-based sparse-mode scheme which is similar to

typical AN usage examples such as [5]. For simplification

purposes, no group address is used. Receivers subscribe di-

rectly to the address of the source they wish to receive data

from. While subscribing, a receiver specifies the subscrip-

tion level it wishes to obtain, which indicates how many

layers it wishes to receive. This requires only one type of

capsule: a subscribe capsule, which takes two parameters:

the source address and the desired subscription level. To

abandon all layers, a receiver spawns a subscribe capsule

carrying zero as the subscription level.

 subscr(4)

Source

Rcv A

(a)

4 layers

Rcv B

Source

Rcv A

(b)

  subscr(2)

(d)

 subscr(5)

Rcv B

Source

Rcv A

4 layers

Rcv B

Source

Rcv A

(c)

2 layers

(e)

 5 layers

Rcv B

Source

Rcv A

 5 layers

 4 layers

Figure 1: Subscribe mechanism in different situations.

Figure 1 illustrates the behaviour of the subscribe mecha-

nism. When the session is empty (a) no traffic flows through

the network. When the first receiver (“rcv A” in the figure)

joins the session requesting 4 layers, its subscribe request

travels upstream until it reaches the source. The source then

starts sending 4 layers of data (b). Then a second receiver

joins with 2 layers (“rcv B” in (b)). Its subscription request

stops in the active node, since it is inferior to the current

subscription level coming from the upstream router (in this

example, the source itself). The data capsules for the first

two layers now duplicate themselves in the directions of re-

ceivers A and B (part (c) of figure). In (d), the receiver now

requests 5 layers. Its subscription capsule now reaches the

source, which starts sending an additional layer (e).

(a)

Rcv B

Source

Rcv A

 5 layers

 4 layers

4 layers

Source

Rcv A

(b)

  subscr(0)

(c)

Source

Rcv A

 4 layers

  subscr(0)

Source

(d)

Figure 2: Subscribe mechanism in different situations.

Figure 2 explains the unsubscribe mechanism in a similar

way. Initially (2(a)), receiver B is getting 5 layers, resuming

the situation sketched in 1(e). When receiver B wishes to

leave the session, it issues a subscribe capsule with zero as

the requested number of layers (still in 2(a). Since receiver

A is still participating in the session, the subscribe request

stops at the active router, which also prunes the tree branch

leading to B (part (b) of figure). When receiver A also de-

cides to leave, its subscribe request will travel to the source

(c), and the session will become empty, with no data cap-

sules flowing any longer.

This simple subscription method allows any number of lay-

ers to be used, since the amount of state left in the nodes does

not increase with the number of layers (as it would happen

in conventional layering schemes using IP multicast). The

disadvantage is that the processing of a subscription request

in a node is more complex, since it has to keep track of the

maximum subscription levels at each outgoing interface in

order to compute the upstream subscription level.

From an abstract point of view, all capsules can be regarded

as small mobile agents with a certain degree of autonomy,

much in the spirit of messengers [29]. They travel to net-

work nodes where they decide when to continue or stop the

trip (e.g. stop due to congestion), and when to fork new



capsules (in a multicast branch).

Complete end-to-end congestion control is achieved by a

combination of several efforts: (i) link outgoing interfaces

export a price that is calculated as a function of the link char-

acteristics and current load; (ii) data capsules filter them-

selves by comparing the current link price with their own

budget; (iii) data capsules prune multicast tree branches

affected by persistent congestion; (iv) subscribe capsules

probe for additional bandwidth.

This is a pure AN approach in which all capsules carry code.

It is possible to optimise it in several ways [7, 30], but for

the moment we are not concerned with the actual perfor-

mance but only with the necessary functionality. Therefore

we try to be as generic as possible without imposing the con-

straints of a real implementation. Furthermore, we assume

that all nodes are active. Although this assumption seems

unrealistic, the use of an equivalent link abstraction [11] en-

ables us to easily migrate to a mixed scenario of active and

non-active nodes, while at the same time keeping a pure AN

abstraction so that we do not need to worry about implemen-

tation and interoperability constraints.

The budget assigned to a data capsule is directly propor-

tional to the relative utility of its layer, which in our case

expresses its relative importance with respect to the other

layers. Since the relative utility of an individual layer de-

creases as we go towards higher layers, the budget of each

capsule decreases too. Therefore, a higher layer capsule

is more likely to discard itself due to a rise in link prices

than a lower layer capsule. The resulting behaviour is sim-

ilar to a priority dropping mechanism, or a weighted RED

[31]. Such a simple filtering mechanism does not require

specialised schedulers, it only requires that the link exports

a price function that varies as a function of the load on the

link. The reason why not exporting the load directly is that

an abstract price function gives more freedom to adapt its

shape to offer different incentives to the users.

When long-term congestion is detected at an output inter-

face of a node, the application itself (through its data cap-

sules running in the router) decreases its subscription level

for that interface by issuing a subscribe capsule with a lower

subscription level. The subscribe capsule is injected into

the local EE and processed as if it had come from the con-

gested outgoing interface. It will first prune the traffic on

the concerned interface, and then, if no other interfaces are

requesting the pruned levels, it will travel upstream, prun-

ing the tree at the level of the maximum subscription level

required locally.

Since a capsule executing inside an active node has no

means to know if there are downstream nodes still interested

in a layer which was pruned long ago due to congestion, the

decision to probe for bandwidth is always taken by the re-

ceivers. To be able to probe, each receiver needs to moni-

tor the number of layers it effectively receives, which might

be different from its desired subscription level (since lay-

ers might have been pruned by the upstream routers due to

congestion). After a period in which the quality achieved is

considered good with respect to the effective number of lay-

ers received, but this number is inferior to the desired one, a

receiver decides to probe for bandwidth which might even-

tually be available. To do that it sends a subscribe capsule

increasing its subscription level by one layer.

When a subscribe capsules arrives at a node, it first checks

the router interface from where it came: if this interface

shows persistent congestion (according to the same crite-

rion used to prune congested branches), the subscribe cap-

sule simply decides to terminate its execution. This results

in a loose form of “self-admission control” which filters out

potentially harmful bandwidth probe requests. In order to

avoid denial of service for new flows, this check is only per-

formed when multicast routing state is already present for

the source on the concerned interface. This naive filtering

does not take into account the actual new bandwidth intro-

duced into the system when a probe is accepted, therefore

does not guarantee that an accepted probe will not cause

congestion. This mechanism could clearly be improved, but

for the moment we try to keep it as simple as possible.

To summarise, the decision to prune is always taken inside

intermediate active nodes (by data or subscribe capsules),

while the decision to graft is always taken by the receivers.

This is a way of distributing the decision load among AN

nodes, such that an operation is performed at the place where

the data it needs is available. As a result, in the active nodes

the reaction to congestion is fast, using the combination of

data filtering (for short term congestion) and tree pruning

(for persistent congestion).

Probing for available bandwidth is a task assigned exclu-

sively to the receivers, therefore some delay can be expected

from the moment when some bandwidth is released to the

moment when new flows start to use it. The amount of such

delay is a trade-off between how fast a reaction is desired

and howmuch bandwidth we are ready to spend in the prob-

ing process. We try to minimise the impact of probes on

the downstream congestion level by ignoring probe requests

during congestion periods.

The feedback information is carefully used such that no ex-

tra packets are generated in a situation of congestion. The

amount of state kept in each active node is of the order of

the state necessary to maintain one IP multicast group. The

scheme is therefore as scalable as any other multicast based

traditional scheme.

4. Results

We simulated our AN layered multicast application in order

to study its feasibility from the point of view of adaptation

to the available bandwidth and the competition among dif-

ferent sessions.

First of all, we designed and implemented a simplified EE

and a NodeOSmodule over the NS simulator [32] in order to



be able to simulate the execution of active packets in the NS

network nodes. The simulated EE is based on the execution

of capsules written in TCL language.

AA

BB

SS11

SS33

RR1,1

RR2,1

RR3,1

RR1,2

RR2,2

RR3,2

SS22

Figure 3: Topology used in the simulation.

The topology used in the simulation is illustrated in Figure

3. All nodes are active. All links are point-to-point bidirec-

tional and symmetric, with a propagation delay of 10 ms in

both directions, and a drop-tail FIFO queue. Links A and

B are bottlenecks with bandwidths of 1200 kbps and 800

kbps, respectively. The other links have the capacity of 1

Mbps each.

Session 1

10 20 30 40 50 6000

Session 2

Session 3

Time (s)

Figure 4: Lifetimes of the sessions involved in the simula-

tion.

The simulation includes three sessions of one source and

two receivers each: session ( is comprised of

source and receivers ( ). Each of the sources

generates a stream with an average rate of 1 Mbps divided

into 5 layers of equal average rate.

Receivers subscribe to the 5 layers of at the begin-

ning of the simulation, while receivers and sub-

scribe to their respective sources after 10 seconds and 20

seconds of simulation time, respectively, and leave the ses-

sion at and , respectively. This can be better

explained through Figure 4, which indicates the lifetimes of

each session. The purpose of this join and leave order is

to show the reaction to arriving and leaving sessions, and

it is symmetric in order to facilitate the visualisation of the

results.

Figure 5 show the evolution of the rates in time for the first

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 10 20 30 40 50 60

R
a

te
 (

b
it
/s

)

Time (s)

s(1)

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 10 20 30 40 50 60

R
a

te
 (

b
it
/s

)

Time (s)

r(1,1)
r(1,2)

Figure 5: Evolution of the rates in time for the first session:

source , receivers and .

session. At the beginning of the simulation, transmits

all layers. While is able to receive all layers, re-

ceives only 4 layers, corresponding to its bottleneck band-

width. When the second and third sessions start, the first

session progressively accommodates itself to the new situa-

tion. After the second and third sessions finish, the first ses-

sion is able to resume its initial configuration. As expected,

the curve for closely follows that of , the receiver with

the largest amount of available bandwidth. This shows that

the prune mechanism is indeed effective in eliminating su-

perfluous layers. The same happens to the other sessions

(not shown).

The reaction to a sudden congestion situation is faster than

the reaction to newly available bandwidth. This is especially

visible when comparing the first 10 seconds with the last 10

seconds of simulation shown in Figure 5.

The slower probe time compared to the prune time is a re-

sult of the strict probe criteria used. While several layers

may be pruned at once, only one layer may be added at a

time, and only when a combination of several conditions is

met: (i) The minimum interval between consecutive probes

is set to one second. (ii)The layer budget for the new sub-



scription level desired must be greater than the average price

observed. (iii)The average prices must be stable enough

or decreasing during an observation period, before probing.

The observation period is set to the minimum between the

time to receive 20 packets and the probe interval. (iv) The

maximum subscription level received must stay unchanged

during the observation period.

300000

400000

500000

600000

700000

800000

0 10 20 30 40 50 60

R
a

te
 (

b
it
/s

)

Time (s)

r(2,1)
r(3,1)

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

R
a

te
 (

b
it
/s

)

Time (s)

r(2,2)
r(3,2)

Figure 6: Evolution of the rates in time for two receivers

sharing bottleneck A ( and , upper graphic), and two

receivers sharing bottleneckB ( and , lower graphic).

The decision of when to probe is a very difficult one. Further

studies are needed to improve the current probe method. An

ideal probe rule should virtually eliminate useless probes,

while at the same time allow a relatively fast reaction to

grab available resources. These two goals are conflicting

and therefore a compromise must be found.

Another difficulty is that the task of probing is delegated to

the receivers, while the information for a successful probe

is scattered: the information about bandwidth availability is

present in the active nodes, while the receivers know about

their preferences and the traffic characteristics of each layer

(e.g. average bandwidth).

We now turn to the second and third sessions. Figure 6

shows that the receivers under bottleneck A equally share

the available bandwidth, also when comparing to in Fig-

ure 5. On the other hand, the same does not happen in the

case of link B: when the three sessions are active, there is

enough bandwidth for around 1.33 layers. The utility of re-

ceiving one third of a layer is questionable. The result in this

case is that one of the receivers ( ) ends up with two lay-

ers and the others with one layer each. The fairness issues

involved when dealing with discrete layers have been stud-

ied and formalised in [21], and it turns out to be a complex

problem. In [21] the author proposes a centralised algorithm

to allocate the layers, but how close decentralised schemes,

such as the one we present in this paper, can get from the

ideal solution, seems to be still an open question.

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

R
a

te
 (

b
it
/s

)

Time (s)

Layer 1
Layer 2
Layer 3

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

R
a

te
 (

b
it
/s

)

Time (s)

Layer 1
Layer 2
Layer 3

Figure 7: Cumulative layers for receivers and

It is also important to check how each individual layer is af-

fected by congestion. Figure 7 shows the received rate per

layer at receivers and . Each of the curves

represents the rate of plus the cumulative rate of the

lower layers. This figure basically conveys the same infor-

mation as shown in the lower part of figure 6, but on a per-

layer basis. We can see that the base layer is essentially

unaffected, showing that the filtering mechanism selectively

discards data according to the importance of the layer and

the network conditions.

5. Conclusions

We learned several lessons from this experience. First of

all, our initial impression that it would be trivial to perform

adaptation using a full AN infrastructure, was clearly wrong.

Relatively complex capsules are needed, and basically the

same trade-offs of classical control algorithms are encoun-

tered, such as stability versus reaction time, feedback avail-

ability versus bandwidth consumption, etc. On the other

hand, we have a lot of flexibility to choose where to place

a given functionality, and we can therefore try to place it as

close as possible to the data it needs. For the case of prun-



ing, this task has shown to be easy, but the same does not

apply to the probe procedure.

The next step now is to perform extensive tests including a

wider variety of cases, in simulations as well as on a real

active network environment using multiple node and link

types, as well as in a mixed network in which some of the

routers are active while others are not. The performance

penalty, which cannot be measured in simulations, needs to

be evaluated on a real network. We are also enhancing our

sample application to treat multiple sources using a shared

tree.

References

[1] D. L. Tennenhouse et al., “A Survey of Active Network

Research”, IEEE Communications Magazine, Vol. 35,

No. 1, pp80-86. January 1997.

[2] J. Smith et al., “Activating Networks: A Progress Re-

port”, IEEE Computer, April 1999, p.32-41.

[3] A.T. Campbell, et al., “A Survey of Programmable

Networks”, ACM SIGCOMM Computer Communica-

tion Review, April 1999, p.7-23.

[4] M. Hicks et al., “PLANet: An Active Internetwork”,

Proceedings of IEEE INFOCOM’99, New York, 1999.

[5] D. J. Wetherall, J. V. Guttag, D. L. Tennenhouse,

“ANTS: A Toolkit for Building and Dynamically De-

ploying Network Protocols”, Proceedings of IEEE

OPENARCH’98, San Francisco, USA, April 1998.

[6] T.M. Chen, A.W. Jackson, “Active and Programmable

Networks”, Guest Editorial, IEEE Network, May/June

1998, p.10-11.

[7] G. Hjálmtýsson, “The Pronto Platform: A Flexible

Toolkit for Programming Networks using a Commod-

ity Operating System”, Proceedings of IEEE OPE-

NARCH’2000, Tel-Aviv, Israel, March 2000, p. 98-

107.

[8] K.L. Calvert (ed) et al., “Architectural Framework

for Active Networks”, (DARPA) AN Working Group,

draft version 1.0, July 1999, work in progress.

[9] L. Peterson (ed) et al., “NodeOS Interface Specifica-

tion”, (DARPA) AN NodeOS Working Group, draft,

January 2000, work in progress.

[10] N. Miller, P. Steenkiste, “Collecting Network Status

Information for Network-Aware Applications”, Pro-

ceedings of IEEE INFOCOM’2000, Tel-Aviv, Israel,

March 2000.

[11] R. Sivakumar, S. Han, V. Bharghavan “A Scalable Ar-

chitecture for Active Networks”, Proceedings of IEEE

OPENARCH’2000, Tel-Aviv, Israel, March 2000.

[12] B. Vandalore et al., “A Survey of Application Layer

Techniques for Adaptive Streaming of Multimedia”, to

appear in the Journal of Real Time Systems, 2000.

[13] C. Tschudin, “Open Resource Allocation for Mobile

Code”, Proceedings of the Mobile Agent’97 Work-

shop, Berlin, Germany, April 1997.

[14] K. Jun, L. Bölöni, D. Yau, D.C. Marinescu, “Intelli-

gent QoS Support for an Adaptive Video Service”, To

appear in the Proceedings of IRMA 2000.

[15] H. Yamaki, M.P. Wellman, T. Ishida, “A market-based

approach to allocating QoS for multimedia applica-

tions”, Proceeding of the Second International Con-

ference on Multiagent Systems (ICMAS-96), Kyoto,

Japan, December 1996.

[16] D. F. Ferguson, C. Nikolaou, J. Sairamesh, Y. Yemini,

“Economic Models for Allocating Resources in Com-

puter Systems”, Market based Control of Distributed

Systems, Ed. Scott Clearwater, World Scientific Press,

1996.

[17] S.J. Golestani, S. Bhattacharyya, “A Class of End-to-

End Congestion Control Algorithms for the Internet”,

Proceedings of ICNP, October 1998.

[18] F.P. Kelly, A.K. Maulloo, D.K.H. Tan, “Rate control

for communication networks: shadow prices, propor-

tional fairness and stability” Journal of the Operational

Research Society, vol. 49 issue 3, pp.237-252, March

1998.

[19] S. Low, D.E. Lapsley, “Optimization Flow Control,

I: Basic Algorithm and Convergence”, IEEE/ACM

Transactions on Networking, 1999.

[20] S. Athuraliya, D. Lapsley, S. Low, “An Enhanced Ran-

dom Early Marking Algorithm for Internet Flow Con-

trol”, Proceedings of INFOCOM’2000, Tel-Aviv, Is-

rael, March 2000.

[21] S. Sarkar, L. Tassiulas, “Fair Allocation of Dis-

crete Bandwidth Layers in Multicast Networks”, Pro-

ceedings of IEEE INFOCOM’2000, Tel-Aviv, Israel,

March 2000.

[22] K. Najafi, A. Leon-Garcia, “A Novel Cost Model for

Active Networks”, Proc. of Int. Conf. on Communica-

tion Technologies, World Computer Congress 2000.

[23] R. Keller et al., “An Active Router Architecture for

Multicast Video Distribution”, Proceedings of IEEE

INFOCOM’2000, Tel-Aviv, Israel, March 2000.

[24] S. McCanne, V. Jacobson, M. Vetterli, “Receiver-

driven layered multicast”, Proceedings of ACM SIG-

COMM, Palo Alto, USA, August 1996, p. 117-130.



[25] L. Vicisano, J. Crowcroft, L. Rizzo, “TCP-like con-

gestion control for layered multicast data transfer”,

Proceedings of IEEE INFOCOM’98, San Francisco,

March/April 1998.

[26] B. Cain, T. Speakman, D. Towsley, “Generic Router

Assist (GRA) Building Block Motivation and Archi-

tecture”, IETF RMT Working Group, Internet draft,

March 2000, work in progress.

[27] R. Gopalakrishnan et al., “A Simple Loss Differentia-

tion Approach to Layered Multicast”, Proceedings of

IEEE INFOCOM’2000, Tel-Aviv, Israel, March 2000.

[28] M. Luby, L. Vicisano, T. Speakman, “Heterogeneous

multicast congestion control based on router packet fil-

tering”, (work in progress), RMT working group, June

1999, Pisa, Italy.

[29] C. Tschudin, “On the Structuring of Computer Com-

munications”, PhD. thesis, Université de Genève,

Switzerland, 1993.

[30] T. Wolf, D. Decasper, C. Tschudin, “Tags for High

Performance Active Networks”, Proceedings of IEEE

OPENARCH’2000, Tel-Aviv, Israel, March 2000.

[31] S. Floyd, V. Jacobson, “Random Early Detection Gate-

ways for Congestion Avoidance”, IEEE/ACM Trans-

actions on Networking, August 1993.

[32] UCB/LBNL/VINT Network Simulator - ns (version 2),

http://www-mash.cs.berkeley.edu/ns/.


