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Abstract We parameterize the potential energy surface of
bismuth after intense laser excitation using accurate full-
potential linearized augmented plane wave calculations. An-
harmonic contributions up to the fifth power in the Ay,
phonon coordinate are given as a function of the absorbed
laser energy. Using a previously described model including
effects of electron—phonon coupling and carrier diffusion
due to Johnson et al., we obtain the time-dependent potential
energy surface for any given laser pulse shape and duration.
On the basis of this parameterization we perform quantum
dynamical simulations to study the experimentally observed
amplitude collapse and revival of coherent Ag phonons in
bismuth considering work of Misochko et al. Our results
strongly indicate that the observed beatings are not related
to quantum effects and are most probably of classical origin.

PACS 63.20.Ry - 78.47.]J-

1 Introduction

When an intense femtosecond laser pulse interacts with a
semiconductor in such a way that a considerable fraction of
the valence electrons is excited, the interatomic potential, or
potential energy surface can change dramatically. As a con-
sequence, the solid can undergo ultrafast phase transitions,
or, as a precursor to laser-induced structural changes, large
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amplitude coherent phonons can be excited [1]. These col-
lective lattice vibrations, which usually involve only a few
degrees of freedom, provide a useful system to study both
laser—matter interactions and the physical processes related
to the relaxation of the nonthermal state induced by the laser
[2—4]. A question that has received relatively little atten-
tion is, whether the induced phonons behave classically as
is usually assumed or whether some quantum effects may
be detected [S]. An in this respect interesting observation
has recently been made by Misochko et al. [6] in bismuth:
it was found that the amplitude of coherent A1g phonon os-
cillations vanishes and, at a later time, reappears when the
fluence of the pump laser is above a certain threshold value.
This phenomenon, which was explained as a quantum me-
chanical effect and was therefore referred to as “amplitude
collapse and revival” (see Sect. 3), is the main topic of this
paper. In particular, our goal is to clarify whether its origin
is classical or quantum mechanical. To this aim we have per-
formed quantum dynamical simulations on time-dependent
potential energy surfaces, which we describe in Sect. 5. Be-
cause we expect that our potential energy surfaces will also
be useful for the simulation and interpretation of other ex-
periments, we describe its derivation and parameterization
in detail in Sect. 4. A brief explanation of “amplitude col-
lapse and revival” is given in Sect. 3. In Sect. 2 we provide
a short description of the atomic structure of bismuth.

2 Peierls distortion

The atoms in bismuth are located on positions near the ver-
tices of a distorted simple cubic lattice. For a detailed de-
scription of the atomic structure of bismuth we refer the in-
terested reader to [7]. Here the most relevant point is that
the bismuth unit cell is doubled as compared to the distorted
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simple cubic lattice due to a Peierls instability. The mag-
nitude of the Peierls displacement can be derived from the
atomic coordinate z, which is usually expressed as a fraction
of the lattice parameter ¢ = 11.8 A. A value of z = 0.25 in-
dicates no Peierls distortion. In the ground state z = 0.234,
which means that atomic planes are displaced by 0.19 A in
alternating directions. The coordinate z is perhaps the most
important parameter in the rest of this paper, because it is as-
sociated to the A1, phonons. These phonons can be excited
by a femtosecond laser pulse and can, for example, be de-
tected through induced changes in the isotropic reflectivity.
As we will see below, the A1, phonon frequency is propor-
tional to the second derivative of the potential energy curve
along the z direction.

3 Theory of amplitude collapse and revival

A theoretical derivation of the amplitude collapse and re-
vival of wave packets in weakly anharmonic potentials has
been given in [8]. Here we just mention the main results.
(i) Wave packets in a harmonic potential move along classi-
cal trajectories. They typically spread, but the spreading is
reversible. After one period a packet completely regains its
initial shape due to the equidistant character of the spectrum
of states. (ii) Anharmonicity leads to a quantum dephasing
of a wave packet. The time scale on which this happens can
be estimated from

Trey = ZTCI (1)

vl
hlgE |

Here, Tt is the classical period of the trajectory, v is the
classical frequency, and E is the expectation value of the en-
ergy of the wave packet. Note, that all quantities appearing
on the right-hand side of (1) are classical. For times t < Trey,
the wave packet behaves essentially classically. (iii) If the
anharmonicity is small, the quantum dephasing is reversible.
In particular, at t = Ty the initial wave packet is approxi-
mately restored (this is called revival) and at t = Tiy /2 the
wave packet is shifted by half a classical period (the so-
called revival of order 1/2). (iv) In between these revivals,
which are phase shifted with respect to each other, the ex-
pectation value of the amplitude of the oscillation disap-
pears. This is sometimes referred to as “amplitude collapse
of the wave packet”.

The derivation given in [8] relies on the discrete nature
of the spectrum of states. Therefore, it should be expected
that “amplitude collapse and revival” can only be observed
in finite systems. In (1) this becomes apparent if one real-
izes that v is an intrinsic quantity, which changes little with
system size, and that E is an extrinsic quantity, which scales
roughly linearly with, for example, the number of atoms in
a molecule.
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Experimentally, amplitude collapse and revival has un-
ambiguously been observed for electronic wave packets in
Rydberg atoms [9] and for molecular wave packets in small
molecules [10]. In addition, the recent experiment on bulk
bismuth that we have mentioned in the introduction has also
been explained in the same way. However, a theoretical jus-
tification for the conclusion of [6], that the A1, phonons in
solid Bi behave quantum mechanically is lacking, as we will
point out below.

4 Potential energy surface

4.1 Selfconsistent full-potential linearized augmented
plane wave calculations

We computed the total energy of bismuth with the all-
electron full-potential linearized augmented plane wave
(LAPW) computer program WIEN2k [11]. This implemen-
tation of density functional theory (DFT) [12, 13] has been
designed to provide accurate results, which validity depends
on no other approximation than the local density approx-
imation [14]. Details of our calculations are as follows.
In our basis set we included LAPW’s with energies up to
18.9 Ry. Atomic spheres around the Bi atoms had radii of
2.3 ap. Inside the atomic spheres we used a combination
of augmented plane waves and local orbitals (APW + lo)
[15, 16] to describe the 5d, 6s, and 6p states. The augmen-
tation energies for these APW + 1o’s were —1.237, —0.274,
and 0.262 Ry, respectively. In order to achieve a further
reduction of linearization errors we employed additional
6p and 6d local orbitals [17] with energy parameters of
2.262 and 0.142 Ry, respectively. We treated spin—orbit cou-
pling selfconsistently in a second variational procedure [18],
where we used the scalar relativistic eigenstates up to 10 Ry
as a basis for the relativistic calculation. We sampled the
entire Brillouin zone with 32768k points using tempera-
ture smearing (7, = 1 mRy). The above parameters make
our present computations substantially more accurate than
the DFT results that we have previously published on bis-
muth [7].

4.2 Effect of laser excitation

To describe bismuth after laser excitation we have used the
following physical picture: The laser pulse creates electrons
and holes, which undergo dephasing and collisions on a time
scale that is much shorter than the typical time of ionic mo-
tion (~300 fs, based on the A1z phonon frequency). There-
fore one can for all practical purposes assume that the ex-
cited carriers thermalize instantaneously. In other words, we
simulated the effect of the excitation by an ultrashort laser
pulse by heating the electrons. In our calculations the elec-
tronic temperature 7, ranged between 1 mRy for the elec-
tronic ground state and 28 mRy (4.4 x 103 K) for the highest
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Fig. 1 Difference of the total energies for finite electronic tempera-
tures using (i) (2) (non-selfconsistent approach) and (ii) standard tem-
perature-dependent DFT (selfconsistent approach). The data shown are
for z =0.2341. The solid line is a guide to the eye, showing the trend
of the data

excited state. Here we wish to mention, that we have used
the microcanonical ensemble for the electrons (there is no
heat bath). This means that the electronic entropy S, not
the temperature 7,, was a constant of motion. The atomic z
coordinate of bismuth was treated as an external parameter.

In practical computations, we have calculated the total
energies at elevated electronic temperatures 7, (correspond-
ing to constant values of the entropy S,) using

Ewot(Te) = Etot(g8) + A Epand, 2)

where Eo(gs) is the selfconsistent total energy of the elec-
tronic ground state (see Sect. 4.1) and A Epand = Evand (Te) —
Evana(gs). This approach is based on the interpretation of
the Kohn—Sham energies [13] as single-electron excitation
energies. In standard temperature-dependent DFT [19] the
electronic occupation numbers are incorporated in the self-
consistent cycle to take into account possible screening ef-
fects. We have also performed such calculations, assuming
that the local density approximation of [14] is still valid at
high temperatures. We found that the differences between
the predictions of both approaches are very small, typically
less than 0.02 mRy/atom for T, <28 mRy. This is illustrated
in Fig. 1 for z =0.2341.

4.3 Parameterization

We fitted our total energies, which we computed on a fine
grid of z values (z = 0.2250,0.2251, ..., 0.2480) and for
28 different electronic entropies (the entropies were chosen
in such a way that 7, = 1,2, ...,28 mRy at z = 0.2341) to
a function of the form

V(z, Eo) = Eo +4373.002(2 — Zeq)?* + ¥ (2 — 2eq)°
+8(z — Zeq)* + €z — 2eq)” 3)

where Eo was entropy dependent (a different value has been
allowed for each electronic entropy) and the parameters v,
Zeqs ¥» 0, and € depended implicitly on the electronic en-
tropy through Eg via the following relations:

v =1+ vi Eo + nEj + v3EJ + v E§ + vsEy, 4)
Zeq = 20 + 21 Eo + 22Ef + 23 E}, )
y=»+ 1/1/21‘33/2 + Vs/zES/z, (6)
8 =380+ 81 Eo + 8 E} + 53 E], @)
6=60+61/2Eé/2+61E0, (8)

where E(y was shifted by a constant to make it zero for
the electronic ground state calculation. The symbols in the
above equations have the following physical meaning and
units: v is the harmonic Ajg phonon frequency in THz,
V(z, Eo) is the total energy in mRy/atom, and zeq is the
quasi-equilibrium value of the atomic z coordinate of Bi
(see Sect. 2). y, 8, and € describe the third, fourth, and
fifth order anharmonicity of the potential [see (3)]. Ey is the
total energy at the minimum of a constant-entropy curve,
which can be interpreted as the energy absorbed from the
laser. Whereas this interpretation is exact for relatively long
laser pulses, which heat Bi adiabatically, the error is never
more than ~5% of Ey, even in the limiting case of an ex-
tremely short laser pulse that deposits an energy of Ey =
10.5 mRy/atom, which is the maximum value of Eq for
which our fit is still valid. Therefore, in this paper we have
used this interpretation. We wish, however, to stress that it
is not complicated to compute corrections to the absorbed
laser energy for short pulses using (3).

In summary, we fitted 6468 computed data points to a
function with 48 free parameters [28 values of Ep plus
the 20 parameters of (4)—(8)]. Our best-fit parameters are
summarized in Table 1. Together with (4)—(8) they give a
closed analytical description of the Ay phonon frequency,
the quasi-equilibrium value of the atomic coordinate, and
the third, fourth, and fifth order anharmonic terms as a func-
tion of the energy absorbed from the laser. It is worth men-
tioning, that the root-mean square of the residuals of our
fit was only 0.005 mRy/atom, indicating that our parame-
terized potential energy surface followed the computed data
very closely.

4.4 Time dependence

In [3] we have presented a model for the time dependence
of the energy density absorbed from a short laser pulse. The
explicit form is given by the sum of expressions (5) and (6)
in [3]. This model depends on the following parameters: the
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Table 1 Best-fit parameters

Parameter Fitted value

o 2.98316

i —0.146079

vy 0.0219823

V3 —0.00407929
V4 0.000370427

Vs —1.27975 x 1073
20 0.234416

21 0.00047797

2 —3.79899 x 10~6
23 3.51079 x 1077
Yo —0.698865
i —0.197901

V32 0.00845577

o —31.8839

5 0.914822

5 0.16485

53 —0.0103825

€ —1.30737

€1 1.0219

€ —0.176243

electronic energy decay time 71, the penetration depth L
of the laser light, a diffusion constant D for the electrons
and holes, and a constant ng, which is the total absorbed
energy from the laser. Assuming that the optical properties
of bismuth do not change during the laser excitation, in the
present work, we have simply obtained the time dependence
of Ey for a laser pulse of finite duration by convoluting the
model of [3] with the laser pulse shape described below.

In our simulations we have used 71 =4 ps, D =0, Lo =
16 nm, and we have varied ng. These values are somewhat
different from the experimentally determined parameters in
[3], but they do not affect our qualitative conclusions of the
present paper. To create comparable conditions as in [6] we
have assumed that the laser pulse shape is a Gaussian with a
full width at half maximum of 130 fs. The resulting time-
dependent potential energy surface for ngp = 5 mRy/atom
is shown in Fig. 2. We wish to stress that our approach,
which combines the model of [3] and the parameterization
of Sect. 4.3, can be used to describe the time-dependent po-
tential energy surface of bismuth due to laser pulses of arbi-
trary shapes and intensities.

5 Quantum simulation of coherent A;; phonons
5.1 Method

In the present work, we assumed that the displacive excita-
tion of coherent phonons (DECP) [20] is the only generating
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Fig. 2 Computed potential energy at different times during ultrafast
laser excitation. The curves A, B, and C correspond to the points A,
B, and C in the inset. A represents the ground state potential, B is the
excited potential at the peak time of the Gaussian pulse, and C repre-
sents the potential at = 200 fs. The inset shows the variation of the
absorbed energy E as a function of time

mechanism of the A1, oscillations in Bi (see [7] for a justifi-
cation of this approximation). The idea behind DECP is that
oscillations along the z direction (coherent A1y phonons)
are essentially a consequence of the change in the potential
equilibrium position zeq due to the laser excitation. When
the pulse duration is short enough (approximately less than
half a phonon period) to induce such a change nonadiabati-
cally, the atoms start to oscillate about their new equilibrium
positions after the laser pulse. Note that our simulations on
time-dependent potential energy surfaces automatically in-
clude the phonon generation due to DECP.

To describe the evolution of the system on the time-
dependent potential of Sect. 4.4, we solved the time-
dependent Schrodinger equation

ih% =[T+V@ED]¥En. )
T is the kinetic energy operator and V(z,t) = V(z, Eo(t))
the potential as given by (3). Please note that the time de-
pendence enters through Eg as described in Sect. 4.4. ¢ is
the wave function of the A, phonons. Because of the com-
plexity of V(z,1), due to the anharmonic terms, we used
numerical methods to solve this quantum mechanical equa-
tion of motion. First, we constructed two one-dimensional
grids, in position and momentum space, where our spa-
tial grid ranged from zmin = 0.227 ¢ to zZmax = 0.248 ¢,
with 1024 grid points. At low temperature (amplitude col-
lapse and revival in Bi has been observed for 7 = 10 K
[6]), only the ground state is occupied. Therefore, a well-
defined initial wave packet is formed. This initial state was
constructed by solving numerically the time-independent
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Schrodinger equation on the spatial grid. We obtained the
spatial and time propagation of the quantum wave packet
using the split operator technique [21], in which one cal-
culates ¥ (z, t + &t) from ¥ (z, t) by applying the propaga-
tor U (81) ~ e 101V /2o—i8tT o=idtV/2 yhere V is evaluated at
t + 6t/2. We used an extremely small time step of 0.01 fs,
which was necessary to properly account for the time depen-
dence of the Hamiltonian. The potential and kinetic energy
operators are diagonal in the position and momentum space,
respectively. By going back and forth between our two nu-
merical grids using Fourier transformations the propagator
U (6t) could efficiently be applied [21].

An important point that we have not addressed so far is
how the macroscopic size of bulk bismuth affects the quan-
tum simulations of the Ay phonons. To study this we have
introduced a parameter N, which indicates the number of
unit cells included in our quantum dynamical simulation.
This parameter affects both the initial wave packet and the
form of the operators V and 7. The case N = 1 represents
an artificial Bi dimer with exactly the same potential energy
surface as bulk bismuth. As this is a finite system, we ex-
pected to see clear indications of its quantum nature. To cal-
culate the quantum response of bismuth, we have studied the
Ay, oscillations as a function of N, where the bulk limit is
obtained for N — oo. Note that, according to our discussion
after (1), one expects the emergence of classical mechanics
as N — oo.

5.2 Results

Our computed oscillatory parts of the expectation value of
the z coordinate of Bi are shown in Figs. 3 and 4. As pointed

0.2
6mRy
0.1
7mRy T
0

oscillation amplitude (c)

i

0 5 10 15 20
time (ps)

Fig. 3 Oscillatory part of the z coordinate for different absorbed en-
ergies ng. The excitation was caused by a laser with pulse duration of
130 fs. The parameter N = 1 (see text). Note that the curves are off-
set along the y axis, for clarity of presentation. Arrows indicate the
amplitude collapse of the oscillations

classical

0.5 ‘
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T[WWWNM\AMW" N=4
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time (ps)

N=064

oscillation amplitude (c)

Fig. 4 Oscillatory part of the z coordinate for an absorbed laser energy
of np = 10 mRy/atom and a pulse duration of 130 fs. Curves for differ-
ent values of N are offset along the y axis. The five lowest curves show
results from our quantum dynamical simulations and the uppermost
curve shows the classical trajectory of the resulting Ay oscillation

out in the previous sections, the oscillations depend on the
laser characteristics (fluence, pulse duration, pulse shape).
In Fig. 3 we show the dynamics of the phonon wave packet
in a two-atom system (N = 1). The interaction of the wave
packet and the potential leads to a series of collapses and
revivals. At low fluences, collapses and revivals are not ob-
served in agreement with experiment [6]. For high fluences,
we found that the collapse and revival times increase when
the absorbed laser energy is decreased.

Figure 4 shows the results of our quantum dynamical
simulation as a function of system size. As was to be ex-
pected, for large systems the behavior of the quantum sys-
tem approaches the classical limit (the top curve in Fig. 4).
This implicates that the experimentally observed series of
beatings in bulk bismuth [6] cannot be explained as a quan-
tum mechanical effect, but is most likely of classical origin.

6 Conclusion and discussion

In this paper we have performed quantum dynamical simu-
lations on time-dependent potential energy surfaces in order
to elucidate the origin of experimentally observed [6] beat-
ings of laser-induced coherent phonons in bismuth. By intro-
ducing a parameter for the number of unit cells included in
our study we found that the behavior of the excited phonons
approaches the classical behavior rapidly as a function of
system size. This is a strong indication that quantum effects
do not play a role in the generation of the observed beatings.

Possible alternative explanations are a classical interfer-
ence between signals reflected from different parts of the
sample or the beating between excited modes of different
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symmetries. The first mechanism would presuppose that the
sample has been heated unevenly by the laser. Of course
from our computations we cannot judge the likeliness of
this scenario, but we hope that our study will inspire exper-
imentalists to study this possibility. The second mechanism
requires that at least two kinds of phonons are excited in
bismuth, that their frequencies are near, and that there is a
strong coupling between the two modes. Whereas the first
condition is fulfilled (so-called E, phonons are excited in
Bi through Raman scattering), our previous calculations on
bismuth [7, 22] indicate that the Ajg and E,, frequencies are
not close enough to explain the observed beatings and that
the coupling between these modes is relatively weak. There-
fore, we believe that this latter explanation is unlikely.
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