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Part A — Methodology

» The results also depend on the properties of the tracer. Conservative tracers are preferred
for the validation of intrinsic vulnerability maps but most tracers are not completely
conservative (Kiss 1998).

e Tracer tests are practicable if the travel time is not too long and the dilution is not too
high. They can thus be applied in highly vulnerable zones but not in zones where travel
times of years are expected.

e Asitis difficult to sample at the groundwater surface, the use of tracer tests for the valida-
tion of resource vulnerability maps is problematic.

There are only few examples on the validation of vulnerability maps using artificial tracer
tests. Goldscheider et al. (2001) validated an EPIK wvulnerability map by means of seven
tracer injections. Six of the tracers were spread at the land surface with a watering can; one
tracer was injected in a swallow hole. After the injections, an artificial rainfall of 20 mm was
produced. The obtained travel time (in this case: time of maximum concentration!) was ai-
most identical for the tracer injected in the swallow hole and the tracers injected on soils of
low permeability. This was explained by the presence of macropores. However, there was a
strong correlation between the assessed vulnerability, the recovery rate and the normalised
maximum concentration. Perrin et al. (2002) used both artificial and natural tracers to assess
and validated the intrinsic and specific source and resource vulnerability of different test sites
in the Swiss Jura Mountains. They also showed the strong influence of the contamination sce-
nario (type of release of tracers) on the resulting breakthrough at the target.

The use of toxic compounds in tracer tests to validate a particular specific vulnerability as-
sessment 1 both unthinkable and often illegal. As a result only harmless substances can be
used as tracers (Behrens et al. 2001). This presents some difficulty when trying to simulate
the fate of toxic heavy metals, chlorinated solvents or pathogen viruses. In this case, we must
select non-toxic substances that are known to behave in a comparable way as the respective
toxic substances. As an example, some marine bacteriophages show similar transport charac-
teristics in groundwater as particular pathogen viruses but are completely harmless for human
beings and aquatic ecosystems. They can thus be used to simulate the behaviour of pathogen
viruses (Rossi et al. 1998) and can aiso be used to validate a virus-specific vulnerability as-

sessment.

7.5.4  Analytical and numerical modeiling

Unfortunately, full validation of a vulnerability assessment using analytical and numerical
models is an objective that is as yet out of reach. The principle of validating the results of a
model (the chosen vulnerability assessment method is always a simplified model of the real-
ity) using another model is a difficult concept. However, in practice a numerical model used
in validation can increase the “degree of confidence” in the main assumptions made during
the vulnerability assessment. With validation in mind, when utilising numerical models, sen-
sitivity analysis can be used to examine the most uncertain and influential parameters used in
the vuinerability method. Additionally, any validation of results requires clear criteria that are
not easy to define (e.g. legal aspects or local agreements or regulations).

Numerical models can be chosen on their degree of complexity and data need, much like
choosing a particular vulnerability assessment technique. These can range from black-box
models (which are unlikely to add confidence in this particular context), to full physically
based and spatially distributed models that can be used for accurately computing contaminant
concentrations in groundwater. Whatever the degree of complexity of the numerical model
used, a calibration using historical data and a validation on a remaining data set (not used dur-
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ing calibration) are neceded. To summarise, four kinds of data are needed in order to proceed
with accurate and reliable numerical modelling:

¢ Geometrical and geological data for the spatial discretisation of the modelled domain;

o Parameters or property values for characterising each of the discretised zones with respect
to each simulated process. This is likely to provide most difficulty in terms of uncertainty
of the parameters used in the modelled processes, due to scale effects and the lack of data
that could be used to describe aquifer heterogeneity;

o Stress-factors influencing groundwater quantity (infiltration, pumping and re-injection
rates) and groundwater quality {input/output of contaminant fluxes);

o Historical data (distributed both spatially and through time) relating to groundwater quan-
tity (measured piezometric levels, water pressures, spring discharges, hydrographs, tracer
tests) and groundwater quality (measured concentrations, chemographs, tracer tests).

Most vulnerability assessment methods were developed to avoid the need for extensive data
sets and simplify description of the processes that may act on contaminants as they travel
along a flowpath to either the groundwater table or source (spring or pumping well). In prac-
tice, only partial validations are feasible using numerical models, as they consider only some
of the active processes. However in some instances a model may consider most of the active
processes but only in a very limited and well-studied part of the area being assessed.

Trying to describe the main processes involved along the path of a contaminant, one can dis-
tinguish how numerical models, describing each of the main compartments of the water cycle,
should be coupled in order to form an integrated numerical tooi describing contaminant trans-
port in a mechanistic way. As described in Fig. 41, it involves:

» Computation of water budget at the land surface 1n order to assess actual infiltration. This
is not an easy task and many recently developed tools aim to simulate these processes ac-
curately. On that particular topic, interesting and useful literature can be found in (among
others): WILSON & LUXMOORE 1988, SMETTEM et al. 1991, LARSEN et al. 1994, MILLY
1994, SIMMERS et al. 1997, BEVEN 2000.

e Use of this modelled infiltration (and associated mass of contaminant) is then used as an
input for modelling 1D vertical transport (in some particular cases a 3D approach is
needed) of a dissolved contaminant through the different layers (porous, fissured or karsti-
fied) of the unsaturated zone. Recent developments in modelling the unsaturated zone
take into account the possible influence of epikarst, macropores, and include bio-chemical
reactions. However, in practice, huge uncertainties remain and are linked to the values
given to each parameter and mostly in the highly karstified parts of the unsaturated zone.
On these challenging topics interesting references are (among others): BEVEN & GER-
MANN 1981, CHEN & WAGENET 1992, CHEN et al. 1993, FORSITH et al. 1995, GWO et al.
1996, GERKE & VAN GENUCHTEN 1993, PERFECT et al. 1996, THERRIEN & SUDICKY 1996,
DEMARCO 1998, GRIFFIQEN et al, 1998, BROUYERE 2001.

e Use of the computed fluxes of contaminated water at the base of the unsaturated zone can
be used as input to a 3D groundwater saturated flow and transport model of the karstic ag-
uifer. Depending on the scale of the study and the knowledge of the degree of heterogene-
ity, an equivalent porous medium approach may be adopted. Groundwater modeiling in
karstic systems is still a challenge. Useful references are the following {(among others):
KIRALY & MOREL 1976, CULLEN & LAFLEUR 1984, SAUTER 1993, SMITH & SCHWARTZ
1993, HUNTOON 1995, QUINLAN et al. 1996, DASSARGUES et al. 1997, DASSARGUES 1998,
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JEANNIN & GRASSO 1997, DASSARGUES & DEROUANE 1998, HALIHAN & WICKS 1998,
JEANNIN et al. 1999, WICKS & HOKE 1999,

AEVT

AEVT = Actual Evapotranspiration
R =Runoff
I =Infiltration

A Dassargues, 2002

Fig. 41: Conceptualising the main processes affecting transport of dissolved contaminant from the soil surface
until the spring or the pumping well: coupled numerical models forming an integrated numerical tool.

In conclusion, numerical models are useful as tools for consistently interpreting the results of
field measurements and experiments. Calibration of numerical models using these measure-
ments will ensure the optimum use of this information for validating (at least to some extent)
the vulnerability assessment. They can also be considered as useful intermediate tools be-
tween field measurements and vulnerability assessments. After calibration, one can perform
sensitivity analysis to check how results can vary in different stressed scenarios (‘what if’
simulations) or to consider the uncertainty of the parameters used. Results of this analysis
allow the validation of the assumptions made in the adopted vulnerability assessment tech-
nique.
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