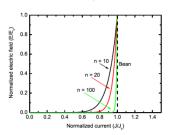
3D finite-element modeling for the magnetization of bulk high-Tc drilled superconductors

Gregory P. Lousberg, M. Ausloos, Ch. Geuzaine, P. Dular, and B. Vanderheyden

SUPRATECS Research Centre, Montefiore Institute (B28), University of Liège, B-4000, Liège, Belgium

HTS are modeled by a non-linear resistivity



$$E(J) = E_c \left(\frac{J}{J_c}\right)^n$$

For HTS : *n* ≈ 20

Bean model : $n \to \infty$ analytical calculations are available on specific geometries for comparison with numerical results

Introduction

Finite-element method (FEM) is widely used for solving HTS-based systems

Advantages

- Many geometries can be treated
- No extensive writing of numerical codes is required
- Treatment of non-linear problems available in most commercial packages

Drawbacks

- Long calculation time on fine meshing or in 3D geometry
- Convergence problems when n is large

▶ Proposed improvements

Single time step method implemented in an open-source solver, GetDP

- Better control of the algorithm parameters
- Used for simulating the **penetration of an external magnetic field** that varies linearly with time

1. FEM $A-\phi$ formulation

- The Maxwell equations are solved for two independent variables
 - the vector potential A
 - ullet the scalar potential ϕ

$$\mathbf{B} = \mathbf{B}_{\text{react}} + \mathbf{B}_{\text{a}} = \text{curl } \mathbf{A} + \text{curl } \mathbf{A}_{\text{a}}$$

$$\mathbf{E} = -\alpha \mathbf{A}/\text{dt} + \mathbf{d}\mathbf{A}_{\text{a}}/\text{dt} - \text{grad } \phi$$
Magnetic flux density induced by the HTS

Applied magnetic flux density (uniform)

- A is approximated by a series of edge functions A_i
 - $\mathbf{A} = \sum_{i} a_{i} \mathbf{A}_{i}$ (ensures the **continuity of the tangential** component of A)
- ϕ is approximated by a series of **node functions** ϕ_i

$$\phi = \sum_i b_j \phi_j$$
 (ensures the **continuity** of ϕ)

• The Maxwell equations reduce to

$$\begin{bmatrix} \nabla \times \nabla \times \mathbf{A} = \mu_0 \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \\ & \text{Ampere's law (rot H = J)} \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \\ & \text{Continuity equations (div J = 0)} \end{bmatrix}$$

where $\sigma(\mathbf{A}, \phi)$ is derived from the non-linear E-J relationhisp

2. Gauge conditions

 $\mathbf{A}\mathbf{w}=0$ (not a Coulomb gauge)

Set of meshing edges that connects all the nodes without closed contours

3. Boundary Conditions

• Use of **Jacobian transformation** for sending the outer surface of a spherical shell to infinity

Outer surface

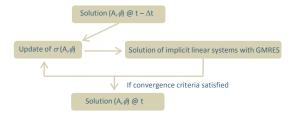
Dirichlet conditions

• Source field ${\bf A_a}$ corresponds to a uniform magnetic flux density . The source field ${\bf B_a}$ is a temporal ramp with a constant sweep rate (mT/s)

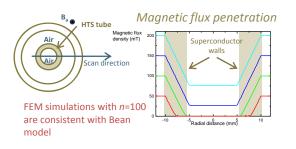
4. Numerical scheme

Implicit time-resolution and non-linear Picard iteration

- The equations are solved with a Galerkin residual minimization method
- We use the **Backward Euler method** at each time step
- Non-linear terms are treated with a **Picard iteration** loop

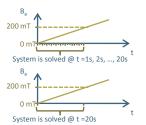


5. Comparison with Bean model for a HTS tube with an infinite extension



Choice of the time step

For solving the problem with $B_a = 200 \text{ mT}$ with a sweep rate of 10 mT/s:



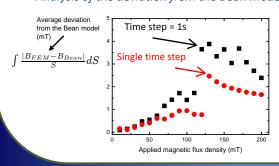
Comparison of single/multiple time steps methods

Magnetic field penetration of an external field increasing from 0 mT to 200 mT

1. in a single simulation with 20 time steps of 1s

2. in 20 single time step simulations with a time step of respectively 1s, 2s, ..., 20s

Analysis of the deviation from the Bean model

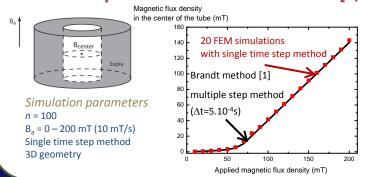


Calculation time

1 simulation with 20 time steps 2 days 3/4
20 single time step simulations 3 hours

Single time step method produces more accurate results in a shorter calculation time

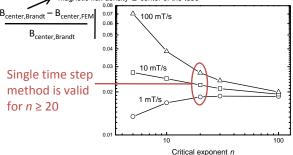
5. Comparison with Brandt's method [1,2] for a HTS tube of finite extension



Accuracy of the single time step method with smaller *n* values

• Applied magnetic flux density : 200 mT with different sweep rates (1mTs, 10 mT/s and 100 mT/s)

Difference between FEM-single step and Brandt's method for the magnetic flux density @ center of the tube



[1] Brandt E H *1998 Phys. Rev. B* **58** 6506 [2] Denis S *et al. 2007 Supercond. Sci. Technol.* **20** 192

6. Magnetization of drilled HTS cylinders

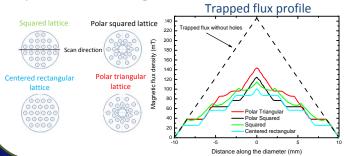
Simulation parameters

n = 25

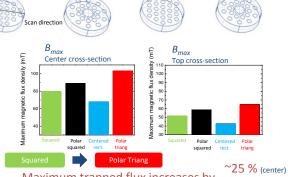
 B_a = 0 \rightarrow 200 mT in one time step and B_a = 200 \rightarrow 0 mT in another time step (two time steps method)

2D (infinite height) or 3D (finite height) geometry

Cylinders of infinite height



Cylinders of finite height Squared lattice Polar squared lattice



Maximum trapped flux increases by

~30 % (top)

Polar triangular lattice

Assuming the same J_c in both configurations

Acknowledgments

This work has been funded in part by the Belgian Fonds de la Recherche Scientifique (FRS – FNRS).