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Introduction

HTS are modeled by a non-linear resistivity Finite-element method (FEM) is widely used for solving HTS-based

10 systems
Advantages

08f
osh * Many geometries can be treated

oal * No extensive writing of numerical codes is required

Normalized electric field (E/E,)

* Treatment of non-linear problems available in most commercial packages

Drawbacks
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Normalized current (J/J)

* Long calculation time on fine meshing or in 3D geometry

* Convergence problems when n is large

» Proposed improvements

For HTS : n= 20

Bean model : n - ° analytical calculations
are available on specific

geometries for comparison  Used for simulating the penetration of an external magnetic field that varies
with numerical results

Single time step method implemented in an open-source solver, GetDP
 Better control of the algorithm parameters

linearly with time

1. FEM A-¢ formulation 2. Gauge conditions

* The Maxwell equations are solved for two independent AW =0 (not a Coulomb gauge)

variables Set of meshing edges that connects all the nodes

. ithout closed cont
* the vector potential A Without closed contours

1
* the scalar potential ¢

|
B= Breact + Ba =curl A + curl Aa Magnetic flux density

E=-dA/dt ‘ dA,/dt—grad ¢ inducedbythe TS 3. Boundary Conditions

Applied magnetic flux density
(uniform)

spherical shell to infinity Buter surfacd
A 0 ent to |nf|n|t
* Ais approximated by a series of edge functions A; Dirichlet conditions o 0],

Worklng
domain
A= Z a2, (ensures the continuity of the tangential
F component of A)

° ¢ is approximated by a series of node functions ¢: . Source.field A."’ corresponds to a uni.form magnetic flux density . The
source field B, is a temporal ramp with a constant sweep rate (mT/s)

* Use of Jacobian transformation for sending the outer surface of a

¢ = Z b (ensures the continuity of ¢)

4. Numerical scheme
Implicit time-resolution and non-linear Picard iteration

* The Maxwell equations reduce to * The equations are solved with a Galerkin residual minimization method

¢ We use the Backward Euler method at each time step

UxVxA— #QO(A. ¢) (—A _ Aa _ v¢) * Non-linear terms are treated with a Picard iteration loop

Solution (A,¢) @ t— At
Ampere’s law (rot H = J)

V-{o(A ¢ (-A—A,— Ve )} =0

Continuity equations (div J = 0)

Update of o (A,¢) Solution of implicit linear systems with GMRES

. . . . . If convergence criteria satisfied
where ”(A- ii’} is derived from the non-linear E-J relationhisp

Solution (A,¢) @ t




5. Comparison with Bean model for a HTS tube with an infinite extension

vo wrsupe | MOgNetic flux penetration Choice of the time step
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walls
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FEM simulations with n=100 ) —\ f ) 1 time step of 20s System
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model
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“Radial distance (mm?
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Single time step method omH

. . . . System is solved @ t =20s
Comparison of single/multiple time steps methods
Magnetic field penetration of an external field increasing from 0 mT to 200 mT

1. in a single simulation with 20 time steps of 1s 2. in 20 single time step simulations with a time step of respectively 1s, 2s, ..., 20s

Analysis of the deviation from the Bean model Calculation time

Average deviation 5 " T T
from the Bean model Time step = 1s 1 simulation with 20 time steps | 2 days 3/4

(mT) | N.- .

f |BFE1W;BBeanldS 3_Single time step n

—,

20 single time step simulations 3 hours

- s ° Single time step method produces more accurate results
- soe®%ee = in a shorter calculation time
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5. Comparison with Brandt’s method [1,2] for a HTS tube of finite extension

Magnetic flux density
in th ter of the tub T, . . .
i the center 00 e wbe ) . Accuracy of the single time step method with

| Beenter | 140} 20 FEM simulations smaller n values

--=-7 o 10| With single time step method * Applied magnetic flux density : 200 mT with different

- - T
t—a 100 [ Brandt method [1] sweep rates (1mTs, 10 mT/s and 100 mT/s)

80 -multiple step method Difference between FEM-single step and Brandt's method for the

Simula tion parameters ol magnetic flux density @ center of the tube
-100 P (At=5.10"s) B ~7 B ol A
n= L center,Brandt center,FEM| 007 100 mT/s
B, =0-200 mT (10 mT/s) B 008
Single time step method center,Brandt oo
0.0
3D geometry 50 100 150 ¢
Applied magnetic flux density (mT) . ) 0.03 10 mT/s
Single time step —

. . . . th d i |d 0.02
6. Magnetization of drilled HTS cylinders :.—2?,,225 - et

O

Simulation parameters . .
n=25 .
X i ) Critical exponent n
B, =0 -> 200 mT in one time step and B, = 200 - 0 mT in another
time step (two time steps method)
2D (infinite height) or 3D (finite height) geometry
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~25 % (center)
~30 % (top)

Assuming the same J, in both configurations




