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Saturation and non-linear effects in diffractive processes
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4000 Liège, Belgique

Through a direct implementation of the saturation regime resulting from the unitarity
limit in the impact parameter representation, we explore various possibilities for the energy
dependence of hadronic scattering. We show that it is possible to obtain a good description
of the scattering amplitude from a hard pomeron provided one includes non-linear effects.
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1 Introduction

The most important results on the energy dependence of diffractive hadronic
scattering were obtained from first principles (analyticity, unitarity and Lorentz
invariance), which lead to specific analytic forms for the scattering amplitude as a
function of its kinematical parameters — s, t, and u. Analytic S–matrix theory
relates the high-energy behaviour of hadronic scattering to the singularities of the
scattering amplitude in the complex angular momentum plane. One of the impor-
tant theorems is the Froissart–Martin bound [1] which states that the high–energy
cross section for the scattering of hadrons is limited by

σmax
tot =

2π

µ2
log2

(

s

s0

)

, (1)

where s0 is a scale factor and µ the lightest hadron mass (i.e. the pion mass). As
the coefficient in front of the logarithm is very large, “saturation of the Froissart–
Martin bound” usually refers to an energy dependence of the total cross section
rising as log2 s rather than to a total cross section equal to (1).

Experimental data reveal that total cross sections grow with energy. This means
that the leading contribution in the high–energy limit is given by the rightmost
singularity in the complex–j plane, the pomeron, with intercept exceeding unity.
In the framework of perturbative QCD, the intercept is also expected to exceed
unity by an amount proportional to αs [2]. At leading–log, one obtains a leading
singularity at J − 1 = 12 log 2(αs/π). In this case, the Froissart–Martin bound is
soon violated.

But this is not the whole story, as there is another important consequence of
unitarity, which is connected with the impact–parameter representation.
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2 Unitarity bound

Unitarity of the scattering matrix SS+ = 1 is connected with the properties of
the scattering amplitude in the impact parameter representation as it is equivalent
at high energy to a decomposition in partial–wave amplitudes. As energy increases,
the scattering amplitude in impact parameter can saturate the unitarity bound for
some impact parameter bs.

To satisfy the unitarity condition, there are different prescriptions. Two of them
are based on particular solutions of the unitarity equation.

For two–particle elastic scattering, the latter can be written

ℑ
〈

p1, p2, out|T |p1, p2, in
〉

=
(2π)4

2

∑

γ

∫

dγ δ

(

2
∑

r=1

pr −
n
∑

r=1

qr

)

|Tγα|2. (2)

The scattering amplitude in the impact parameter representation is defined as

T (s, t) =

∫

∞

0

b dbJ0(b∆)f(b, s) . (3)

with
ℑf(b, s) ≤ 1 . (4)

and
ℑf(s, b) =

[

ℑf(s, b)
]2

+
[

ℜf(s, b)
]2

. (5)

One of the possibilities is obtained in the U–matrix approach [4]:

f(s, b) =
U(s, b)

1 − iU(s, b)
. (6)

This solution leads to a nonstandard behaviour of the ratio [4]

σel

σtot
→ 1 , (7)

as s → ∞. For the highest energies reached so far (
√

s = 2.0TeV), such a ratio
is 0.25. It is not too far from the standard value 1/2, but it is very far from the
solution in the U–matrix representation.

The second possible solution of the unitarity condition corresponds to the eikonal
representation

T (s, t) =

∫

∞

0

b dbJ0(b∆)
(

1 − exp(−χ(s, b)
)

. (8)

with t = ∆2. If one takes the eikonal phase in factorized form

χ(s, b) = h(s) f(b) , (9)

one usually supposes that, despite the fact that the energy dependence of h(s) can
be a power

h(s) ∼ s∆ , (10)
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the total cross section will satisfy the Froissart bound

σtot ≤ a log2 s . (11)

We find in fact that the energy dependence of the imaginary part of the amplitude
and hence of the total cross section depends on the form of f(b), i.e. on the s and
t dependence of the slope of the elastic scattering amplitude. If f(b) decreases as
a power of b, the Froissart–Martin bound will always be violated. In the case of
other forms of the b dependence, a special analysis [5] is required. Note that the
eikonal form does not correspond to a saturation of the amplitude: in this case,
ℑf(s, b) reaches the black disk limit only asymptotically. Hence, the saturation of
the black disk limit and the eikonal representation lead to different results for the
scattering amplitude in the momentum transfer representation.

Let us take, as an example, the hard plus soft pomeron model [6, 7] which
includes two simple poles (a soft and a hard pomeron) to describe pp and p̄p scat-
tering. In this case, the pp–elastic scattering amplitude is proportional to the
hadron form factors and can be approximated at small t by:

ℑT 0(s, t) ≈
[

h1(s/s0)
ǫ1eα′

1
t log(s/s0) + h2(s/s0)

ǫ2eα′

2
t log(s/s0)

]

F 2(t) . (12)

where h1 = 4.7 and h2 = 0.005 are the coupling of the “soft” and “hard” pomerons,
and ǫ1 = 0.0072, α′

1 = 0.25, and ǫ2 = 0.45, α′

2 = 0.20 are the intercepts and the
slopes of the two pomeron trajectories. The normalization s0 will be dropped
below and s contains implicitly the phase factor exp(−iπ/2). F 2(t) is the square
of the Dirac elastic form factor, which can be approximated by the sum of three
exponentials [8]. We then obtain in the impact parameter representation a specific
form for the profile function Γ(b, s) [5], which we show in Fig. 1. One can see
that at some energy and at small b, Γ(b, s) reaches the black disk limit. For one–
pomeron exchanges, this will be in the region

√
s ≈ 1.5TeV. If one adds to the

model 2–pomeron exchanges, the resulting Γ2 will saturate at
√

s = 4.5TeV.
Saturation of the profile function will control the behaviour of σtot at super–high

energies. Note that one cannot simply cut the profile function sharply as this would
lead to a non-analytic amplitude, and to specific diffractive patterns in the total
cross section and in the slope of the differential cross sections. Furthermore, we
have to match at large impact parameter the behaviour of the unsaturated profile
function. We have tried some specific matching patterns which softly interpolate
between both regimes. The interpolating functions give unity in the large impact
parameter region and force the profile function to approach the saturation scale bs

as a Gaussian.
If we take a single simple pole for the scattering amplitude, with an exponential

form factor, the radius of saturation, and its dependence on energy, can be obtained
analytically:

R(s)2 ∼ 4

[

B log

(

h

2B

)

+

(

B + log
h

2(B + ǫ log s

)

ǫ log s + ǫ2 log2 s

]

,
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Fig. 1. The profile function of proton–proton scattering. (hard line and circles – at
√

s = 2TeV without and with saturation; dashed line and squares – at
√

s = 14 TeV
without and with saturation; dash-dotted line – the eikonal form (13) at

√

s = 14TeV)

Fig. 2. σtot calculated in different approaches. (The hard line – saturation regime; the
long-dashed line – with the eikonal representation (13); the dash-dot-dotted line – with
soft pomeron and unitarized hard pomeron [7]; the dash-dotted line – with only a soft

pomeron)

where B is the average slope at small t. Hence the total cross section grows loga-
rithmically at medium energies and grows like log2 s at very high energies.

We show in Fig. 2 the possible behaviours of the total cross section at very high
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energies, depending on the model and on the unitarization scheme. We also show
there the result of a simple eikonalization, where we took

Tpp(s, t = 0) = 2

∫

d2b
[

1 − exp
(

heikG(s, b)
)]

. (13)

and where heik = 1.2 was chosen so that the values σtot determined by (13) and
by the saturation procedure are equal at

√
s = 50GeV, and G(s, b) is the Fourier

transform of ℑT 0(s, t) given in (12).

3 Non-linear equations

The problem of the implementation of unitarity via saturation is that the match-
ing procedure seems arbitrary. Hence we considered a different approach to saturate
the amplitude. It is connected with the non-linear saturation processes which have
been considered in a perturbative QCD context [9, 10]. Such processes lead to an
infinite set of coupled evolution equations in energy for the correlation functions
of multiple Wilson lines [11]. In the approximation where the correlation functions
for more than two Wilson lines factorize, the problem reduces to the non-linear
Balitsky–Kovchegov (BK) equation [11, 12].

It is unclear how to extend these results to the non-perturbative region, but
one will probably obtain a similar equation. In fact we found simple differential
equations that reproduce either the U–matrix or the eikonal representation. We
can first consider saturation equations of the general form

∂N(ξ, b)

∂ξ
= S(N) , (14)

with N the true (saturated) imaginary part of the amplitude. We shall impose the
following conditions:

(a) N → 1 as s → ∞,

(b) ∂N/∂ξ → 0 as s → ∞,

(c) S(N) has a Taylor expansion in N , and considering the first term only gives
the hard pomeron Nbare = f(b)s∆. Similarly, we fix the integration constant
by demanding that the first term of the expansion in s∆ reduces to Nbare.

Inspired by the BK results, we shall use the evolution variable ξ = log s. If we want
to fulfil condition (c), then we need to take S(N) = ∆N + O(N2). Conditions (a)
and (b) then give S(N) = ∆(N − N2) as the simplest saturating function. The
resulting equation

∂N

∂ log s
= ∆(N − N2) (15)

has the solution

N =
f(b)s∆

f(b)s∆ + 1
. (16)
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One can in fact go further: eq. (15) has been written for the imaginary part of the
amplitude. If we want to generalize it to a complex amplitude, so that it reduces
to (15) when the real part vanishes, we must take:

∂A

∂ log s
= ∆(A + iA2) . (17)

The solution of this is exactly the form (6) obtained in the U–matrix formalism,
for ℑU(s, b) = s∆f(b).

Many other unitarization schemes are possible, depending on the function F(N).
We shall simply indicate here that the eikonal scheme can be obtained as follows:

∂N

∂ log s
= ∆(1 − N)

(

− log(1 − N)
)

. (18)

Other unitarization equations can be easily obtained via another first–order
equation. The idea here is that the saturation variable is the imaginary part of the
bare amplitude. One can then write

∂N

∂Nbare
= F ′(N) ⇒ ∂N

∂ log s
=

∂Nbare

∂ log s
F ′(N) , (19)

with Nbare the unsaturated amplitude.
This will trivially obey the conditions (a) – (c) above, and saturate at N = 1.

Choosing F ′(N) = 1 − N gives the eikonal solution

N(b, s) = 1 − exp
(

−Nbare(b, s)
)

, (20)

whereas F ′(N) = (1 − N)2 leads to the U–matrix representation (16).
We can come to the same results if we solve this equation via an iteration

procedure. For that let us take some model of the hadron interaction in which the
main hadron–hadron interaction is created by the valence quarks surrounded by
clouds of sea quarks.

Ref. [13] proposed a picture in which the whole impact parameter interval is
divided into small and large distances: the BFKL approximation works within a
small radius R0 and the BK representation works for large impact parameters.

We examine two cases: the first includes only a short–range form factor (as a
simple Gaussian), and the second uses a short–range form factor and a long–range
one (in the form of a MacDonald function).

So, we divide the whole energy interval in small pieces inversely proportional to
s2∆. We then obtain the step in s

s0 = s∆/s2∆ = 1/s∆ (21)

and the number of such pieces will be

n = int (s2∆) , (22)

6



Saturation and non-linear effects in diffractive processes

where the function int chooses the nearest natural number.
N(s, b) after this small energy interval will be

N0(s0, b) = s0f(b) = f(b)/s∆ . (23)

We calculate the derivative δ on this small interval and increase N(s0, b) by δN0(s0, b):

δi = 1 − Ni ,

Ni+1 = Ni + δ N0(s0, b) .
(24)

We then iterate the above procedure for Ni = N(si, b) until we get to the end of the
interval. It is clearly understood that, if the energy is sufficiently high, we obtain
for some iteration Nk = 1 and δ = 0, so we reach the saturation bound at some
impact parameter. Of course this energy will depend on the form of f(b).

In this case

T (s, t = 0) =

∫

∞

0

b db N(s, b) (25)

and
σtot(s) = 4π ℑT (s, t = 0) . (26)

The results of our calculations are shown in Fig. 3. We can see that energy depen-
dence of the total cross section is a simple logarithm. So, in this case, σtot(s) does
not saturate the Froissart unitarity bound and coincides with the eikonal solution
with a Gaussian eikonal.

Note that we obtain in this case the right energy dependence not only for σtot(s),
but also for the differential cross sections. Of course, this picture is only qualitative.

Fig. 3. σtot calculated in different approaches. (The hard line – f(b) in Gaussian form;
the long-dashed line – with the contribution of the large distances; the dashed line – in

the soft +hard pomeron model)
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For a quantitative description of the different features of the diffraction processes,
we presumably need to take into account many different effects and a more com-
plicated structure for the non-linear equation.

We have shown that the most usual unitarization schemes could be recast into
differential equations which are reminiscent of saturation equations [11, 12]. Such
an approach can be used to build new unitarization schemes and may also shed
some light on the physical processes underlying the saturation regime.
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