

From Environmental Monitoring to Breath Analysis: Leveraging Sensor arrays for Healthcare – Lessons from the PATHACOV project –

Justin MARTIN, Simon LIEGEOIS, <u>AC ROMAIN</u>

Prof. A-C ROMAIN Responsable Labo SAM (Sensing of Atmospheres and Monitoring)

Interwattonieven

PATHACOV HUMAN DISEASES DIAGNOSIS REATH

Bormio/ISOCS

AC Romain 18/01/2024

Lung cancer and AOS (briefly)

PATHACOV project

InterWaltenie Waltenie Staarderen

1

Outline

2

3

4

5

6

PATHACOV PATHACOV

Methodology to develop AOS without/with Patient breath samples?

Sensor and AOS performances for LC

From Environmental Monitoring to Breath Analysis

Take-home messages

Winter School-Bormio/ISOCS

AC Romain 18/01/2024

I. Lung cancer and AOS (briefly)

- Lung cancer (LC) is one of the most common and deadly forms of cancer.
- Screenings are carried out late (asymptomatic disease): the later the screening, the lower the chances of survival.
- Diagnosis equipment is expensive, not portable, requires trained personnel and

(screening campaign) Doubts on scans on the entire at-risk population:

undesirable effects, management of abnormalities, insufficiently defined frequency of checks!

\rightarrow <u>early diagnosis, simple and non-invasive</u> are requested by pulmonologists.

- New approaches:
 - Hospital-based solutions
 - Screening solutions: dogs and... Artificial Olfactory System (AOS or IOMS or E-NOSE)

Volatilome for Lung cancer: VOC biomarkers? no yet a consensus on a list of specific compounds/the efficiency

- "Breathprint"? → AOS?
 - > numerous studies but samples size too low (exceptionally above 100 for non-healthy patients)
 - results not convincing

The timeless story of electronic nose !!!

I. Lung cancer and AOS (briefly)

VOC biomarkers

Volatilome

More than 1000 exhaled VOCs

- endogenous and exogenous chemicals
- cellul/organ specific
- > organ pathology specific
- + environmental contaminants/life conditions (dtrugs, smoke, food,...)

Courtesy from Prof. Régis Matran, pneumologue, CHU Lille

4

2018 - (end of) 2022 11 partners

doctors, mathematicians, chemists, physicists, electronic engineers, computer scientists...

Large-scale study in various French and Belgian hospitals

- > Determining a VOC signature marker for LC ("breathprint")
- Developing an artificial olfaction system

https://pathacov-project.com/

Clinical study: 1 400 subjects (650 patients and 750 control people (control: smoker, non-smoker)

→ VOC markers of bronchopulmonary cancer (ReCIVA® mask, GC-MS, data analysis by Machine learning – confidential-) ✓ VOC signature (breathprint) obtained (confidential)

(not yet for AO development)

New sensors: Synthesis and study of materials, manufacture of sensors and ability to detect markers metal oxide sensor (ZnO); polymer ; polymer and FET transistor (confidential)

AO system development

- I. with commercial sensors
- 2. integration of new sensors

Communication system

Exchanging the data collected, via Bluetooth, with a server linked to a database-Secure data exchange between the device and the server-Requires minimal interaction with the doctor

2 years between

the Authorisation of the study protocol by the « Commission de Protection des Personnes (CPP) » and authorising inclusion of the first patient (due to time to acquire equipment and administrative concerns)

Why clinical study was not used for AO development?

Essential prerequisites for starting the study:

- Obtaining all "administrative" authorisations
- Sufficient supplies of equipment
- Setting up the data collection system (tested on the Lille CHU team for Reciva)
- Consideration of patient targeting, the patient's journey after the diagnosis (psychologically difficult!) and the proposal to take part in the study (explanations, consent, data collection, patient follow-up).

Before the other recruiting hospital centres can begin the study, the principal investigator (Lille University Hospital) must:

- Integrate all recruiting centres into the study protocol
- Initiate patient recruitment
- Draw conclusions / Improve operating procedures
- Obtain sufficient supplies of the necessary equipment for all recruiting centres (electronic nose, RECIVA masks, gloves, etc.)
- Set up each centre: training, equipment, etc.

In addition, new sensors cannot be developed in few weeks without knowing

the target compounds and their concentration

3. Methodology to develop AOS without Patient breath samples? (1/5)

Artificial breath?

- \rightarrow Potential biomarkers and respective chemical concentration: Literature survey (under publication) \rightarrow VOC signature (breathprint) obtained at the end of the Pathacov clinical study (confidential-Patent)
- Sample? first trial: breathless mixture = CO₂ enriched air + VOC + Humidity

4 replicates, 4 concentrations, several weeks, randomly

3. Methodology to develop AOS without Patient breath samples? (2/5)

Artificial breath?

- \rightarrow Potential biomarkers and respective chemical concentration: Literature survey (under publication) \rightarrow VOC signature (breathprint) obtained at the end of the Pathacov clinical study (confidential)
- Sample, second trial: Real breath + 9VOC*

*Martin, J.D.M.; Romain, A.-C. Building a Sensor Benchmark for E-Nose Based Lung Cancer Detection: Methodological Considerations. Chemosensors 2022, 10, 444. https://doi.org/10.3390/chemosensors10110444

**Y Luo, A Ly, D Lahem, J D.M. Martin, AC Romain, C Zhang, M Debliquy, Role of cobalt in Co-ZnO nanoflower gas sensors for the detection of low concentration of VOCs, Sensors and Actuators B: Chemical, Volume 360, 2022, 131674, https://doi.org/10.1016/j.snb.2022.131674.

3. Methodology to develop AOS without Patient breath samples? (3/5)

• "Artificial" Real breath

Participant Breath sampling

best methodology we found to reduce the intersubject variability

- same "<u>environment</u>" (local, T, RH and air exchange); same operator
- Time: no restrictions, "nothing by mouth" 12 hours before sampling
 - (i.e., no smoking, teeth brushing, chewing, or eating. Drinking water was allowed).
- 5 minutes to acclimatise and rest (seated position). Fill in the questionnaire
- They were given <u>water for mouth rinsing</u> before blowing in a bag
 Inhale to full capacity then blow into bag.
- Successive exhalations until +/- 8L of exhalation is obtained (whole breath)
- Storage: max 03 hours before measurement

AOS measurement

- cycle: reference air (humidity-saturated air synthetic air or filtered ambient air –); 5min/5min
- thermostated
 - Feature: one/sensor = raw signal difference (stable conductance)
 - not in-line sampling (if direct blowing = no stable signal)
 - "Off-line" sampling: 2 steps in the same device
 - I. Breath stored in a medium by sampler
 - 2. Medium is connected to AOS

Drotoco1

I validated by the

Methodology to develop AOS with Patient breath samples? (4/5)

• Patient breath sampling for clinical study

Same conditions but blowing in a « specific sampler »

- reduced bag volume: max one liter
- very low-pressure resistance to help patients suffering from respiratory diseases
- several blowing; a wait of few seconds before sending the breath through the analyser
 - (blowing control with CO₂ sensor, actually not really "capnography")

3. Methodology to develop AOS without Patient breath samples? (5/5)

Illustration "Real" breath + 9VOC

- 21 participants ۰
- 26 sampling days across four months (August 2022 and January to March 2023) ۰
- 127 unique breath samples (average of 6 samples/participants)
- 236 measurements ٠
 - 117 « healthy » .
 - 119 « sick »

Male (%)	40 (31.7%)	BMI – Average	24.0
Age – Average	36.6	BMI – Median	26.0
Age – Median	34.0	BMI – Range	18.4 - 29.4
Age – Range	21 - 62	Sport – Daily (%)	15 (11.9%)
Smokers (%)	7 (5.6%)	Sport – Weekly (%)	61 (48.4%)
Ex-smokers (%)	18 (14.2%)	Sport – Monthly (%)	32 (25.4%)
Never-smokers (%)	101 (80.2%)	Sport – Rarely (%)	18 (14.3%)

(Some data are presenting in the next slides)

Femmes Hommes

Protocol validated by the

Initee (Pf. Schleich)

4. Sensor and AO system performances for LC (1/5)

Metrological performances

- operating conditions (e.g. working temperature, energy consumption): Easy to consider
- sensitivity to temperature and humidity variations: Easy to keep constant conditions
- sensor response time and recovery time: Not important for this application
- stabilisation period: Not so important for this application
- sensor lifetime: Should be better
- Inear or non-linear response : not a real problem but essential to consider for algorithm development
- .
- stability over time (<u>drift</u>): Important to correct but "rather" easy to do
- Sensitivity
- <u>LOD</u>
- Selectivity

Important to know before data analysis!

(and do not forget pre-processing)

4. Sensor and AO performances for LC (2/5)

Normalisation?

4. Sensor and AO performances for LC (3/5)

Drift: 2022 and 2023

Drift correction

4. Sensor and AO performances for LC (4/5)

LOD $\,$ - critical point for breath analysis \rightarrow limit of classification

ciences

4. Sensor and AO performances for LC (5/5)

LOD $\,$ - critical point for breath analysis \rightarrow limit of classification

Discrimination Performance Score (DPS):

Fig. 2. Diagram illustrating the DPS interpretation for three cases.

J. Martin[,], C. Falzone and AC. Romain 2024 How well does your E-nose detect cancer? Application of artificial breath analysis for performance assessment J. Breath Res. https://doi.org/10.1088/1752-7163/ad1d64

Procedure:

- "healthy" breath collected on participants (not patients)
- artificial cancer breath: by adding biomarkers to the "healthy" breath at concentrations "realistic" (low values, ppb-ppt)
- ightarrow Evaluation of the AOS performance in classifying

If the AOS fails to meet the CPC at these initial concentrations,

- \rightarrow concentration doubled for a repeated test and so on until success is achieved.
 - The point at which the success is achieved gives the DPS

5. From Environmental Monitoring to Breath Analysis (1/5)

5. From Environmental Monitoring to Breath Analysis (4/5)

6. Take home messages

Comparing to Environmental applications, Medical ones are more

- ✓ humanly satisfying
- ✓ subject to numerous project calls
- \checkmark funded
 - but also constraining (ethical aspects)

Medical research projects:

- > several years
- > several clinical centers,
- > a lot of different resources

□ Scientifically, easier for certain aspects (in lab, cycle,...) and interesting but less performing (due to breath composition and "lack of knowledge on biomarkers (volatilome)) chemical analysis (individual biomarkers) ↔ sensor array-AOS- (BreathPrint)

□ AI: Machine learning and

Deep learning (big big neural network, Danger of black box)

YES BUT DO NOT <u>NEVER NEVER</u> FORGET THE QUALITY OF THE DATA (YOUR SENSOR SIGNAL) !

(large volume of data)

« Medical Applications: The notion of risk is so important...

Given the performance of current chemical sensors, I must admit that I'm not comfortable with medical projects. ISOCS scientist community need to be careful about the message we send to medical partners who are expecting a lot from this technology" AC Romain.

THE REAL PROPERTY OF

111111111111111111111

I HIMI I HIMI I HIMI I

9 00

program in page, only

Colloque 2022 - 9h50 - Dépistage : du collectif au ciblage

Dépistage : du collectif au ciblage

2012-2022 10 ANS DE PRÉVENTION: ET MAINTENANT COMMENT

N ACCELERE

🖽 🥔 YouTube 🛟

30

Ē

Copier le lien

RESULIAIS DUT

rrL

ons de régénération de tissus moi ment de scaffolds 3D via : tographie de biomatériaux et nt de couvrir un large

-faire développé dans la m ux au regard du cahier des ch par l'application cible.

d'outils et de protocoles perme peme dispositifs médicaux

New European project submission

Development of eleven AO devices; Distributed in 5 clinic centers

- Clinic study on 246 LC patients (eligible or not to surgery)
 and 246 healthy « risky » subjects
- I7 partners
- 9 hospitals
- one partner for technology transfer toward industrial world

Clinical study

First step

- Analysis of breath sample simultaneously by ReCIVA® /GC-MS analysis and AOS (white box) linked with Pathacov VOC biomarkers
- Accuracy rate of classification (percentage of correct classification) 80 % ± 5 % (min. 75 %) : 246 patients statistically needed

Second step (only if accuracy criteria reached)

- Validation of the « real » performance of the AOS
- Only AOS (no RECIVA)
- Same population than step I but with more ration of early LC (70%)

According to the PATHACOV projet leader and for clinicians:

(AC Romain) AOS was in the pink area

Acknowledgement to all PATHACOV partners and to the people who take part in the breath collection

Merci à mon équipe

Justin Martin Simon-Pierre Liégeois Claudia Falzone Mohsen Pourkiaei Noémie Molitor Laurent Collard Bui Thi Ngoc Phuong Mauri Rosiers Alexandra Delperdange Jean-Sébastien Liégeois

Thanks for your attention

Prof. A-C ROMAIN, acromain@uliege.be

Opened Post-doc position in April 2024 ALCOVE project

https://www.campusarlon.uliege.be/cms/c_3973705/en/arlon

