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1. INTRODUCTION

One can resort to two families of algorithms to integrate the equations of evolution of
dynamical systems: the implicit family and the explicit family. In this paper, we focus on
the implicit family. The most widely used implicit algorithm is the Newmark algorithm [1]
(see also for examples [2, 3, 4]). Nevertheless, the total energy of a dynamical system, whose
evolution equations are integrated by this algorithm, generally exhibits oscillations in time,
even if the amplitude of these oscillations is limited for linear systems [5]. For non-linear models,
Belytschko and Schoeberle in [6] and Hughes in [7] proved that the discrete energy is bounded
if it remains positive. Nevertheless larger instabilities can arise, leading to divergence of the
numerical simulation. Moreover, for a step between times ¢, and ¢,1, the angular momentum
is conserved between the times #,_1 and #,,1 but not between the times of computation
t, and t,4+1 [8]. To avoid divergence due to the numerical instabilities, numerical damping
was introduced, leading to the generalized-a methods [2, 3, 4, 9, 10]. Another method is to
set the Newmark parameters so as to dissipate energy [11]. But these techniques have the
disadvantage to also damp the physical modes, leading to a lack of accuracy. Therefore a
new kind of dynamics integration algorithms has appeared that verifies the mechanical laws
of conservation (i.e. conservation of linear momentum, angular momentum and total energy)

and that remains stable in the non-linear range.

The first algorithm verifying these properties was described by Simo and Tarnow [12, 13].
They called this algorithm Energy Momentum Conserving Algorithms or EMCA. It consists
in a mid-point scheme with an adequate evaluation of the internal forces. This adequate
evaluation was given for a Saint Venant-Kirchhoff hyperelastic material. This scheme was
further extended to shells [14, 15, 16, 17], to composite laminates [18] and to multi-body
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 3

dynamics [10, 19]. A generalization to other hyperelastic models was given by Laursen [20],
who iteratively solves a new equation for each Gauss point to determine the adequate second
Piola-Kirchhoff stress tensor. Another solution that avoids this iterative procedure leads to
a general formulation of the second Piola-Kirchhoff stress tensor, as given by Gonzalez and
Simo [21, 22]. This formulation is valid for general hyperelastic materials. The EMCA was
recently extended to dynamic finite deformation plasticity by Meng and Laursen [23]. In such a
formulation, the algorithm remains energy conserving when no plastic deformation occurs, and
”dissipates energy in a manner consistent with the physical model in use” (sic.) when plastic
deformation occurs. The same method was applied to simulate non-frictional and frictional
contact interactions by Armero and Petocz [24, 25] and by Laursen and Chawla [26, 27, 28].
Numerical dissipation was also introduced in these conserving algorithms by Armero and
Romero [29, 30, 31, 32]. This algorithm preserves the angular momentum, contrarily to the
generalized-a algorithms and is called Energy Dissipative Momentum Conserving algorithm
or EDMC. This EDMC method was extended to beams by Ibrahimbegovic and Mamouri [33].
Another solution to verify all conservation equations is to use the generalized-a method or the
EDMC algorithm, but to augment these algorithms with energy and momentum constraints
[16, 34, 35, 36]. This solution is called either Constraint Energy Momentum Algorithm (CEMA)
in the first case or Modified Energy-Momentum Method (MEMM) in the second case. In such
an augmented method, the dissipated energy of the high frequency modes is added to the
energy of the low frequency mode. Finally the conservative properties can be ensured by using
Petrov-Galerkin finite element method applied in the Hamiltonian way as developed by Betsch
and Steinmann [37, 38, 39], or by using a Runge-Kutta method as developed by Bottasso et

al. [40, 41].
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4 L. NOELS, L. STAINIER AND J. P. PONTHOT

All the conserving methods described above were established for hyperelastic materials.
To our knowledge, they were never extended to hypoelastic materials. This paper proposes
a new expression of the internal forces, ensuring the conservation laws of the mechanics for
a hypoelastic constitutive model. In section 2 the methodology for evaluation of the stress
tensor in hypoelastic materials and its spatial integration is recalled. In section 3 the mid-point
scheme is explained. The relations that have to be verified by the internal forces to remain
consistent with the conservation laws are also exposed. In Section 4, we show how to compute
the internal forces to verify these relations for a hypoelastic material using the final rotation
scheme. Moreover, we prove that this adaptation remains consistent when plastic deformation
occurs. Finally numerical examples illustrate the advantages and the disadvantages of the

conserving algorithm (section 5).

2. THE HYPOELASTIC MATERIAL MODEL

First, the notations used in this paper are detailed. Next, the method used for computation
of the stress tensor in hypoelastic materials is explained. The plastic deformations are taken
into account. Finally, the spatial integration of this stress tensor to obtain the internal forces

is established in a finite element framework.

2.1. Preliminaries

Let the configuration n be the configuration computed after n time steps (i.e. at time t,,).
Let 2" be the deformation mapping (coordinates) in the configuration n, and let "¢ be the
coordinates of the position for the node & (e [1, N] with N the number of nodes of the element)
in the configuration n. With ¢¢ the shape function evaluated at node &, it comes (Einstein’s
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS

notations are used)

r = (pﬁ &
i = (pE i
- (pE €

(1)

The gradient of deformation (two point tensor) F between configurations m and n is indicated

by F7 . This tensor is defined by

oz™

F? —_—
ox™

m

The tensor f represents F~*. When m refers to the

deformation is written

ox™
F! =
v 00
with
Fy = F,F

(2)

initial configuration, the gradient of

(4)

According to the theorem of polar decomposition, this gradient tensor can be decomposed into

a rotation tensor R and a symmetric positive definite deformation tensor U (I is the identity

tensor)
F, = R,U,
vr = unt
R:'R: = 1 ()

The determinant of F', is denoted by the scalar J

the body and this determinant is
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6 L. NOELS, L. STAINIER AND J. P. PONTHOT

The Green-Lagrange strain tensor GL, is defined as

GL!, = % Frlrn — 1
= SlnUn -1 @
and the Almansi strain tensor A;, is defined as
A, = -
= fu GLuf,
= %an [-u, o Ry ®)

The natural strain tensor E, is also computed from F' or might be computed from GL or

from A

&
3
Il

n %m [F:;TF:;}

1
= Inl26L;, + 1)

—% In [I - ZRZITAZLRZL] 9)

The Cauchy stress tensor is evaluated in the configuration n and is refered to as X™. If the
internal forces are pushed backward into the initial configuration, the stress tensor used is the

second Piola-Kirchhoff tensor (S), that is evaluated with respect to configuration n, as

St = JfeEtfT (10)

2.2. Stress tensor computation

By definition, for a hyperelastic material, there exists a potential ¢ (GL) from which the

second Piola-Kirchhoff stress tensor is computed

06 (GLY)
no__ 0 0
S = P 5anm (11)
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 7

For the hypoelastic constitutive laws, the Cauchy stress tensor is computed from a stress
increment AEZH between two successive configurations. The final rotation scheme [11, 42,

43, 44, 45] is defined by the following relation
»rtl = RMU[mn 4 Azt R (12)
This scheme presents some important properties [45]:

(i) it is incrementally objective (i.e. the stress tensor is exactly updated for a rigid body
motion);
(ii) no parasitic volume variation is generated (i.e. the scheme does not lead to a variation

of the volume for a rigid motion).

If the material behaviour is elastic, the stress increment is deduced from the natural strain

tensor
AXMY = 3 BT (13)
with # the Hooke fourth order tensor (k is the bulk modulus and g the shear modulus)
2
Hijee = Kk 0i0k + g |0irdji + 05bjn — §5ij5kl (14)

and the operation H : E defined by H;;x Er;. For an elastoplastic or elastoviscoplastic material,
relation (12) and relation (13) can only be directly used when the material remains elastic. If

J2 plastic deformations occur, the relation (12) becomes
»l = R[4 AR - 0] RIS (15)

where s€ is the purely deviatoric correction tensor resulting from the radial return mapping
[45, 46, 47, 48]. Tt is evaluated by the following method: the elastic predictor s¢ is defined by
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8 L. NOELS, L. STAINIER AND J. P. PONTHOT

the deviatoric part of £" + AX"! where AX" ! is given by (13). If « is the heredity back

stress tensor, the normal tensor IN is defined by

where the operation a : b is defined as a;;b;;. If the scalar P is the equivalent plastic strain,
if the scalar X, function of €P, is the subsequent von Mises yield stress, and if @, function of

eP, is the equivalent heredity, then the scalar v can be defined such as to have [11, 45]

2
pntl  _ _pn z
€ e’ + \/;7

£ = )
2
a"tl = a"+\/;[a(5p"+l)—a(5p")]N
s¢ = 297N (17)

where the scalar value of 7 is solved from the von Mises criterion [45] evaluated at time 5,41

2l ) (s)

[s° — 297N — ™t (7)] : [s® — 297N — a"'(7)] 3

Now we will establish the expression of the internal forces from the Cauchy stress tensor.

2.8. Internal forces formulation

Let du be an admissible virtual displacement, let W}.,,

oW, and 0K"™ respectively be
the virtual work of internal forces, the virtual work of external forces and the virtual work
of inertia forces in the configuration n, let b™ be the volumic forces, let ¢" be the surfacic
tractions, let V,, be the volume of the element and let S,, be the boundary of the element.

Then, the principel of the virtual work can be rewritten as [11]

SK™ +0W!, = W

(19)
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 9

with
oK™ = / {p"E" x du}dV,
Vn
W, = / {p"b" * du} dV, +/ {t" * du} dS,
Vn Shn
odu
own = EnT i —— 2 dV, 2
Wznt /Vn { 83?”} Vi ( 0)

where the operation a * b is defined by a;b;. Using (1), (6), the mass conservation law (i.e.
p"dV, = p°dVj) and the spatial discretization of the virtual displacement (i.e. du = @ dut),

the virtual work of the inertia forces can be rewritten as
K" = / (POt} dVe [E7]" + us
Vo
= M [E")" % sub (21)
where MS* is the mass matrix component relative at the nodes ¢ and u. The virtual work of

external forces is expressed as

SWp, = [Fn,] * dus
(22)
Finally, the internal forces variation can be rewritten as
int = /Vo {EnT {%]TJOH}dVo s ous
_ /V {27 f DI} dve + 6 (23)
0

where D is the derivative of the shape function (in the reference configuration, i.e. D¢ = %).

Using relation (21) to (23), the balanced equation at node & for the configuration n leads to

. - 13
M [ = [Fly — Fl (24)
with the expression of internal forces given by
Ef = [ {=Ta oo} av (25)
Vo
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10 L. NOELS, L. STAINIER AND J. P. PONTHOT

These expressions are valid for any time t.

3. THE ENERGY MOMENTUM CONSERVING SCHEME

The equation (24) has to be resolved for successive time steps, but this integration should
verify the conservation laws. First the mid-point scheme presented in [12] is briefly recalled.
Next the relations that the internal forces should verify to be consistent with the conservation

laws are detailed.

3.1. The mid-point scheme

For an integration from time ¢, to time t, + At = t,41, the relations between positions,

velocities and accelerations are given by

gty o Than
2
PO S e i
At
B i,n—ﬁ—l _}_xn
- 2
P S et i
At
:'L',n—ﬁ—l + Fn
- (26)
The balance law (24) for node ¢ is rewritten
Iz 1 17€
mee [em3]" = R - Fre (27)

Let F”+%(:U”,:U”+l) be the expression of the forces in configuration n + % This expression
depends both on the position in configuration n (i.e. ") and n + 1 (i.e. ™). The goal of
the following section is to evaluate it for hypoelastic models. The system (26) and (27) can be
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 11

resolved by a predictor-corrector algorithms. The predicted values are

At?
"t = g4 %5&”
Ptlo= 0 (28)

Residual for configuration n + 1 is expressed as

1

1 17§
AFS = oM [ 4" 4 i ® = Flr? ] (29)

Then, the corrections for the values at configuration n 4+ 1 are iteratively evaluated as

2

KEH =
T aAp

M5“I] Azt = —AF¢

[z"T1)" —  [a"T + Al

[j:n+1]u - [:-Un+1 +1A4u
At
] e |a A ’ (30)
At?

where K" is tangent stiffness matrix

) [F”*ﬂ5 ) [F”*é]5
fu _ int B ext
K= O [ant1)H O [xn+1]* (31)
Equations (30) are solved iteratively until convergence of the iterations occurs, i.e. until
AFE x AF¢
1 T — - e < Tol (32
(i @) [FntZ @)+ [FEEF (@)« [P (@)

where Tol is a user defined tolerance (generally taken as 10710 - see numerical applications).

1
In equation (27) the explicit form of F;jz was not given. In the subsequent section the final

1
expression for FS;Z will be tailored so that it verifies the conservation conditions.
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12 L. NOELS, L. STAINIER AND J. P. PONTHOT
3.2. The conservation conditions

The equation (27) has to verify the linear and angular momentum conservation, and the
energy balance. The first two conditions result from the physical laws assuming that the
internal forces cannot change the rigid motion of a body. The last condition assumes that
the total energy of the system is preserved for a reversible transformation and that the total

energy is decreasing for an irreversible transformation.

3.2.1. The linear momentum conservation. Let L be the vector (first order tensor) discrete

linear momentum
L = ) Mwir (33)
§

where we have adopted the convention of summing on repeated indices. The conservation of

L over a time step is discretized to

ext

Y
Lo = A ER (34)
:

By performing a sum on ¢ in equation (27), and using (26), it leads to

1 17§
éZM&H[J}n-&-l_i_n]ﬂ _ Z[F;Jtré_ ;Jtré]
13 13
1 17§
e D S e ioe) (35)
13

If (34) is compared to (35), the internal forces have to verify the following relation

S [Et] = o (36)

3

3.2.2. The angular momentum conservation. Let J be the first order tensor discrete angular

momentum

J = M%[z° Ai*] (37)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 13

The conservation of J over a time step is discretized in

JL g = At [:c”+%r A [F"*ﬂE (38)

ext
The vector product of ™2 and of relation (27) gives
3 Iz 3 1 11§
e [ore5 ] A 3] =[] AR - FE (39)

int

Using relations (26), this last expression leads to

§ 1 14
ﬁMEH { [xn-‘rl]g A [i.n-t-l]“ _ [l.n]ﬁ A [l.n]li} — I:xn-i-%:l A [ngi‘Z _ FzﬁIZ}
13 11§ 13 11§
g [t =] = [antH ] A [FE] - [t A [ F R (40)

If we compare (38) and (40), the internal forces must thus verify

A F.TWL%5

int

= 0 (41)

3.2.3. The energy balance. Let E, Wi, Weyr and K respectively be the total energy, the
internal energy, the external energy and the kinetic energy. Usually (spring, hyperelastic model)
the internal energy could be defined by a potential. Nevertheless, for a hypoelastic model, no
potential could be defined but we will sidestep this difficulty in the next section by using the

work of the internal forces. It comes

E = K+ Wi — Weyt (42)

The energy balance over one time step is discretized in

E"T B = A

< 0 (43)
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14 L. NOELS, L. STAINIER AND J. P. PONTHOT

with A;,; the dissipation during the time step from configuration n to n+1. The scalar product

of "2 and of relation (27) leads to (using relation (26))

M [5é"+%]” « [¢”+%]£ - [F;J{% - Fi’;ﬁ]g « [¢”+%]£
];JZ: {[:i?n+l:|£ * [:'U"H]“ — [ « [w"]”} = Ait [ngt_% - F;—:%]g * [z — :U"]5
Kok B e e o) = -, (49)

If (43) is compared to (44), then the relation that the internal forces have to verify is

17§
[Fo] e ot =) = W - W+ A (45)

int int

The next section of this paper will propose a formulation of the internal forces (F”+% depending
on " and z"*!) for hypoelastic materials. We will prove that this expression verifies relations

(36), (41) and (45).

4. INTERNAL FORCES EXPRESSION FOR HYPOELASTIC MATERIALS

The expression of the internal forces in the configuration n is given by relation (25).
Nevertheless, if this expression is evaluated for 2™z relation (45) is generally not verified.
Moreover, the volume will then be evaluated in an intermediate configuration that will

n+%

introduce a parasitic volume change (for example, in a rigid body motion, det [FO } #

1
%det [FgJrl + FO”]) Therefore, the following expression for [Fﬁz] is proposed

11§
) = [ (e En s Ry e g g D v,
0

1 * * ok
= 5 [Fint + ‘Fint]5

* ]' n n n
[Fr)t = 5/‘/ {[I+Fn+l] = fe" Do }dVO
0
k€ 1 n+17 sn+17T en4+17 e 7o+
Flt = 5 [ {lEeat s oot av (46)
Vo
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 15

The stress tensors are evaluated by the final rotation scheme combined with the radial
return mapping (see section 2.2). The stress tensor in configuration n + 1 is evaluated from
the stress tensor in configuration n. Therefore, the scheme remains incrementally objective.
Moreover, in relation (46), the stress tensors are always integrated over their relative volume
(through J). Therefore, no parasitic volume variation are induced. The tangent stiffness matrix

corresponding to this expression of the internal forces is given in appendix (I).

In the next section, we will demonstrate that relation (46) verifies the conservation laws.
Next, this expression of the internal forces is compared with the expression given by Simo and

Tarnow [12].

4.1. Verification of conservation laws

The conservation of the linear and angular momentum is ensured by verifying respectively

relations (36) and (41). The conservation of energy is ensured by verifying (45).

4.1.1. Linear momentum conservation. Relation (36) is directly verified by performing an
addition over ¢ in equation (46) and by using the following properties of the shape functions

(VKe[L,3])

13

o)
A

;;:o

Sof = Y%
13 3

= 0 (47)

)¢ and (Fp )f from relation

4.1.2. Angular momentum conservation. We will verify that (F,); int

int
(46) both verify relation (41). Let € be the third order permutation tensor such that, for each
vector ¢ and b, it comes (a A b) = € : [a ® b], with the operation [a ® b];; = a;b;. Therefore, it

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50
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16 L. NOELS, L. STAINIER AND J. P. PONTHOT
leads to

2;En+%£/\]*—';;lt£ = e:{[$”+1£+xn5]®F~* g}

int

1
L (e [ (e s s
Vo
Using (2) and (4) yields

[m"]5®[ gTDg] =1

[mn+1]§ ® [ngDg] — FZHT (49)
Thanks to relation (49) and the fact that X is symmetric, relation (48) becomes

§
s3] A = e;/v{[quH] s+ Fp g ) av,
0

{e: ®@JF}dVy
Vo

= 0 (50)

. . . . n+1 n n+1171 . .
This can be easily verified since ® = [I + F, ] b)) [I +F, ] is a symmetric tensor and e
is an anti-symmetric tensor. Therefore € : © is equal to zero. The same process with Fjr% also

leads to
+1i ¢ w18
[ AlFE = 0 (51)

and equation (36) is thus verified.

4.1.3. Energy conservation. The energy balance is verified through relation (45). First F}:

int

(46) is included in (45). Using (2) and (4), it comes

% [z — 2] / {[I +Fpt s gTDEJg} dVy
Vo

[$n+1 - xn]E * [Fi*;zt]ﬁ

= %/VO { [FZHTFZH I FZ+1T 3 I] : E"ng} h(52)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50
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Since X is symmetric, it leads to
prittogn pritosn g (53)
Using (7) and (53), the relation (52) becomes
[27t! — 2]« [Fr S = / {GLI"" : =" 3} dVy (54)
Vo

For F:%% the same process leads to

[zt — 2 w (e = [ {Arthometlnlyan, (55)

int
Vo

and finally one gets

11§
[F;t;} * [wn+1 — wn]E = % v {GLZJrl XY+ AZH : EnHJgH}dVO (56)
0

which should be equal to W;};‘l — W, + Aipe if the energy is conserved (45). From this point,
for a hyperelastic material, a potential ¢ could be written to evaluate the internal energy
[23]. However, for a hypoelastic material, no potential can be defined. Thus we will proceed
differently in order to demonstrate (56). Let’s imagine a loading-unloading cycle, that takes
place in two steps, from configuration 1 to 3 (Figure 1), such that the initial Cauchy stress

tensor X' corresponds to the final Cauchy stress tensor X up to any arbitrary rotation Q

(QTQ =TI and detQ = 1)
¥ = Q¥'Q (57)

During the loading phase from configuration 1 to 2, we assume that plastic deformations occur,
while the transition from configuration 2 to configuration 3 corresponds to elastic unloading.
Note that configuration 3 might be kinematically inadmissible for a whole body, but this is
not of concern here since we are reasoning at the particle level. The expression of internal

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50
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18 L. NOELS, L. STAINIER AND J. P. PONTHOT

stress

strain

Figure 1. Definition of the loading-unloading cycle (1D analogy).

forces (46) is consistent with the Druckers Postulate (see e.g. [49]) if the reversible work of

the loading phase is recovered during the second step (i.e. W32, — Wl ., = 0). Therefore, the

energy balance between the configurations 1 and 3 can be expressed as

() R ) RS PR

int

Using relation (56) and relation (57), expression (58) becomes

1 ‘
Ay = 5/ {GL% UL+ A2 X2+ GLE B2 + A [QleT] Jg} vy
Vo
1 ‘ o ‘
5/ {Jg GL:: ' + J3 [QTAgQ] . x4+ J02 [A2 + GILY) 22} Ve  (59)
VO

Now we examine the implications of relation (57). Let Eelf be the elastic natural strain tensor

defined such that

2 .
H:E®] = H:E?—s7 (60)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50
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ENERGY-MOMENTUM ALGORITHM FOR HYPOELASTIC MODELS 19

It yields from equation (15)

»2 R [21 +HE - sﬂ r"

= R}[='+u: B RY

(61)
Therefore we define U‘”f the symmetric tensor such that
el2  _ 1 el2yrel?
E = §1n[U ‘U 1}
(62)

The existence of U elf result from the symmetry of tensor Ee’f. The elastic Green-Lagrange

. 2 . . . 2 2
strain tensor GL®], and the elastic Almansi strain tensor A®] are defined from U®]

1
GL*® = 5 [Ue’erlf - I]
1 -1 -1
A = SR [I— vl Ut ] rR
(63)
Finally, the corresponding plastic tensors can be defined as
pl2  _ 2 el?
GL*, = GL7 — GL*]
APV = A2 pet] (64)

Now we must compute the variables in configuration 3 from these defined values. Using
relations (57) yields
QleT — 23
‘ oT A oT T
= R|RS'RY + R*H:ERY +H:E| R
= RRS'R'R +RRH-EVR R +RH - ERT  (65)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50
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20 L. NOELS, L. STAINIER AND J. P. PONTHOT
From this relation, assuming that # is constant between configurations 1 and 3, we can see that
the transformation from configuration 2 to configuration 3 must have the following properties
3 2T
R, = QR; (66)
and
3 2 et2 paT
H:E;, = —R{H:E® R;] (67)
in order to be consistent with our definition of configuration 3. Using relations (5), (9), (14),
(63) and (67), yields
3 el?
GL, = -—-A®]

2
Al -QGLY Q" (68)

From relation (67), we have

[H:E}], = [—Rf?—L:Ee’fRfT]ii
[7-[ : Eg]n = [—7—[ : Eelf]ii
3k[B3), = 3k|-E7] (69)

and, since the trace of a logarithm mapping correspond to the logarithm of the determinant
of the matrix, we have the determinant of Ueli equal to the inverse of the determinant of
U3. Using the same technique from relation (60), and since the tensor s¢ is trace less, the

determinant of Ue’f is equal to the determinant of U?, and it leads to
55 = Jy (70)

Therefore, using relation (70) and (68), the relation (59) becomes

1 . . ) . ) ‘
At = 5[/0 {I:GL% - GLEli] -yl jol + |:Af _ Aelf] :ZzJOJ}dVO
1 G G
= 5/ {GLplf 3ot 4 Apl? : EZJO’Z} dvy (71)
Vo
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If there is no plastic strain increment between configuration 1 and 2, GL¢] and A°' are
respectively equal to GL% and A%. Therefore, A;,; is also equal to zero. This verifies the laws
of thermodynamics. On the other hand, if there is plastic strain increment, the relation (71)
has to be related with a physical relation that is positive. The internal plastic dissipation can

be expressed from a volumic dissipation D;,: as

Ay = | (Duyavy
Vo
> 0 (72)

Nevertheless, the equivalence between Aj;,; and Afgf does not exist. So we introduce two

corrections (¢* and ¢**) in the evaluation of the internal forces (46)

* 1 n n c* : En n T T n
[l = 5 /V {[I +Fi [E o g | f DEJO}dVo
0 n ° n
* % 1 n n C** : En+1 n g n T
[Frn) = §/V {[I+fn+1] [E P S AT ST DR Ve (73)
0 n * n

where ¢* and ¢** are tensors to be determined. The conservation of the linear momentum is not
affected by these corrections (relation 47), and since the corrections are symmetrical tensors,
the conservation of the angular momentum remains verified (relation 51). On the other hand,
the expression (58) of the internal dissipation is modified. Assuming that the correcting tensors
are to be equal to zero when no plastic deformation occurs (i.e. during the transformation from

configuration 2 to configuration 3) yields to

1
A = 5 / {ler™ +e] izt v [aP T o] szttt Ly (14)
Vo

With the tensors

D; +1
x int n+1 n+1 n+1 el™
¢t = DI ) — GL + GL
n .+l g+l 0 n n
LIS ST
D; T
% int n n n+1 el
¢t o= XM -ATT+ A (75)
DIUN/OED YR e " "
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the relation (74) becomes (using relation 72 and the fact that the physical dissipation is

positive)

h
Aint = APV

int
> 0 (76)

The order of these correction tensors is now determined. Relation (60) can be transformed,

using relation (9), relation (17) and relation (60) as

H:EST = 3 Br— gentl

HeGLT = WG 0 (GLP’Z+12> — 297N (77)
or as (with N™ = RZHNRZ'HT)

WA g art L0 <Aplz+12) N -

Using the fact that for J2 plasticity the trace of IN is equal to zero, the inversion of the Hooke

law (relation 14) yields
GL' — 6L + 0 <GLP’Z+12> = AN
AT A9 L o (AP’Z+12> = N7 (79)
Therefore, the order of the relations (75) is

c X"}

n

2
Dipg — YN :Z"JJ + O (2” e )
n412
™ X = Dy —yNTELET 4+ O (2”“ . APt ) (80)

n

The internal dissipation can be expressed as

1
+1 1 = 1 1 —
Dint = ESPZ { [Evn+ + a"+ ] JSH_ + [Evn + Oén] J(;l}
> 0 (81)
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With the definition of v (17), € (17), N (16) and s™ defining the deviatoric part of 3", the

relation (18), at the first order leads

YN :X"J§ = N :s"J§

1

P, + an) gy

YN Z gt = N7 gt et

1

Epz-ﬁ—l [Evn-’rl +dn+l] JS’L-‘rl

(82)

And finally, the sum of the two term of expression (80) leads to second order terms. Therefore,
for small increments of transformation, the correction tensors are of the second order. In
this paper, the time steps sizes are taken small enough so that the correcting tensors can be
neglected. In a further work, we will prove that if the time step is increased (and therefore
the plastic strain increment, these correcting tensors must be taken into account unless the

relation (76) is not longer verified and the dissipation could even be positive.

Remark: For one hypoelastic model, the stress could exhibit oscillations for a load-unload
cycle over some time steps. Nevertheless, this results from the model and not from the proposed
method since the demonstration is based on the hypothesis that the loading-unloading is
computed altogether during one single time step. Now, the proposed method is compared with

other existing models.

4.1.4. Small transformation hypothesis. If the total strain and the rotation are assumed to

be small, we define the small strain (second order tensor) e = % (g;”_ + %) where u is the
i i
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small displacement vector and the Cauchy stress (second order tensor) o. Therefore, it comes

n+1
Jo

eln+1
GL"

eln+1
A n

eln+1
E n

eln+1
E 0

pln—i-l
G

ln—i—l
n

AP
GLn+1
An—‘,—l

The internal potential is defined by

1

1

1

12

12

12

12

12

12

1

1

Jo

elntl
n

eln+1l
€ n

eln+1
n

el elnt1
E) + E*,

I
. el
H: B
1
plt
€ n
1
plt
€ n
elnt1 pln+1
n €
etnt1 pln+1
n € n

it = —/ {selg cH EElg}dVO
2 Vo

With the hypothesis expressed in (83), expression (56) becomes

118
(o] et =’

2

IR

= wnrtt—

int

IRC

ptntl | n P
n 1O FET,

]. n n n n
—/ { [sdoﬂ —e%y + splnH] :H: B9 } avo +
Vo

n+1 n n+1 n+1
Ao —elg e ) oo BT b,

n
int +

n+1
t : 0'"+1} dVp

(83)

(85)

This last expression corresponds to the usual definition of the internal reversible and irreversible

work for models defined by an internal potential.
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4.1.5. Comparison with the hyperelastic model. The conserving scheme for a hyperelastic
material uses a flow definition to compute the plastic deformation [23]. The present paper
uses a final rotation scheme combined with the radial return mapping to compute the plastic
deformation. Since the plastic formulation for an hyperelastic material differs from the plastic
formulation for a hypoelastic material, we consider the case where no plastic deformation
occurs. The Cauchy stress tensor is transformed into the Piola-Kirchhoff stress tensor, using

relation (10). The expression (46) is therefore rewritten as

C2)

int

[T+ FrH FrstErt gl De gy } AV +

=)

{ + fn+1 Fn+1 gl Fn+1Tfn+1TD§Jn+1} Vi
{

1
[F§ + Fg™] [S™ + 8" D¢} avy (86)

e N B N

=)

This last expression corresponds to the expression established by Simo et Tarnow [12] for the
Saint Venant-Kirchhoff material. This similitude is consistent with the fact that the elastic
part of the hypoelastic formulation has the same behavior as the Saint Venant-Kirchhoff

formulation. Moreover, using relations (8) and (10), expression (56) can be rewritten as

W’n+1 Wznt _l_ Aznt —

int

{ Ln+l EnJOn + AZ+1 . En+1J6’L+1}

(=)

{[F”T L"+1F0] L S" [F{}“TAZ“FO”“} :s"+1}dv0

N = N~ N -~

[GLit! — 6Ly :S”+%}dvo (87)

=)

For a Saint Venant-Kirchhoff material, without plastic deformation, this latter expression is
reduced to A;p; =0 [12].
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5. NUMERICAL EXAMPLES

In this section the results obtained with the proposed conservative scheme (EMCA) are

compared with the results obtained with:

(i) the Newmark algorithm [1] (NMK) with the first Newmark parameter () equal to 0.25
and the second Newmark parameter (y) equal to 0.5;

(ii) the Chung-Hulbert algorithm [9] (CH) with 3 equal to 0.9801, y equal to 1.48, the inertial
forces parameter (aps) equal to —0.97 and the internal forces parameter (ap) equal to
0.01;

(iii) the Hilber-Hughes-Taylor algorithm [50] (HHT) with 8 equal to 0.255025, v equal to

0.51 and a equal to 0.05.

For the hypoelastic material, the internal energy is not directly accessible. Therefore, the
total energy is computed from the work of internal forces. For the conservative algorithm, the

total energy at time %, is defined as

En+1 — En + Kn+1 _ Kn + I:Fn+%j| [$n+1 _ xn] (88)

int

Y13 L . . . .
with F/'72 computed from relation (46). For the other algorithms, it is defined by

int

1
B = BN KM Ko [F - FE [ -] (89)
with Fj}, defined from relation (25). This total energy evaluation includes the internal

dissipation and must thus remains constant for each problem. Therefore, the variation of
the energy comes only from the numerical modes. The internal dissipation is evaluated from
relation (71) for each algorithm. This relation was established for the conservative scheme but
remains physically correct for the other algorithms.
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The finite elements used for each example are 8-noded trilinear bricks with 8 deviatoric
Gauss points and one volumic Gauss point. For each problem, the time step size is constant
to avoid any instabilities resulting from a time step size variation, and is chosen small enough
to avoid the obligation of taking into account the terms of the second order in the increment
of the plastic deformation. Let’s note that the total plastic deformation is not limited by this
restriction. Moreover the tolerance on the residual (32) is set to 1071° for each problem and

for each algorithm.

5.1. Ezample 1: The uniform rotation of a beam.

This problem consists of a beam with a constant square section. Its properties are given in
Table I. This beam has an initial angular velocity € (Table I). The material of the beam is
assumed elastic. The mesh consists of 48 elements. The median nodes of one of the extremities
belong to the rotation axis and are fixed (no displacement, but rotation is allowed). The initial
balanced configuration is computed with a Newton-Raphson algorithm where the inertial
(centrifugal) forces are computed analytically. This balanced configuration is illustrated in

Figure 2. The time step size is equal to 0.5ms.

Figure 3 and Figure 4 represent the evolution of the angular momentum. Ounly the
conservative scheme leads to a constant value. The evolution of the total energy is reported in
Figure 5 and in Figure 6. The conservative scheme preserves the total energy. For the Chung-
Hulbert and the Hilber-Hughes-Taylor schemes, numerical dissipation occurs (4% of the total
energy is lost in a round for the Chung-Hulbert scheme and 0.03% of the total energy is lost
in a round for the Hilber-Hughes-Taylor scheme). Since the time step is small enough, for
the Newmark scheme, the oscillations mentioned in the introduction do not appear. Figure 7
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Table I. Properties of the beam in

uniform rotation.

Property Value
Length L=1m
Width l=0.0lm
Density p = 4000kg/m®

Young modulus E = 10" N/m?
Poisson ratio v=20.3

Initial angular velocity — Q = 2909rpm

199.5
179.6 Q
159.6
139.7
119.7
99.8
79.8
59.9
39.9
20

0

Figure 2. Initial configuration and von Mises stress (N/mm?) for the beam

in uniform rotation.
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Figure 3. Angular momentum evolution for the beam in uniform rotation.

and Figure 8 illustrate the von Mises stress evolution for an element at the base of the beam.
Results from the conservative scheme and the Newmark scheme are conform to the theory
(i.e. constant von Mises stress). The accumulated number of iterations for one hundred time
steps are reported in Table II. The conservative scheme and the Newmark scheme converge in
the same number of iterations. On the other hand, the Chung-Hulbert and the Hilber-Hughes-
Taylor require more iterations since the numerical dissipation results in an angular acceleration

of the beam.

5.2. Example 2 : The Taylor bar problem

This classical example was first simulated with a conservative algorithm for a hyperelastic
Saint-Venant-Kirchhoff material by Meng and Laursen [23]. It consists in a cylindrical bar
(Table III), discretized by 576 elements (Figure 9). It has an initial velocity #o. The time step
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Prepared using nmeauth.cls



30

L. NOELS, L. STAINIER AND J. P. PONTHOT

-162.964 ‘ ‘ ‘ ‘
0.0125 0.025 0.0375 0.05
- > NMK
== -162.9641667 -
"= EMCA
2 |
~— -162.9643334 -
1S
=
fer)
g -162.9645 - % q
£
(o] %
£ -162.9646667 -
—
T
=
(o]
C  -162.9648333 -
<
-162.965 .
Time (s)
Figure 4. Angular momentum evolution for the
beam in uniform rotation (zoom).
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Figure 5. Total energy evolution for the beam in uniform rotation.
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Figure 6. Total energy evolution for the beam in uniform rotation (zoom).
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Figure 7. Evolution of the von Mises stress (N/mm?) at the base of the

beam in uniform rotation.
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Figure 8. Evolution of the von Mises stress (N/mm?) at the base of the

beam in uniform rotation (zoom).

Table II. Iteration num-
ber for the beam in uni-

form rotation (100 time

steps).
Scheme Iterations number
Newmark 302
Chung-Hulbert 400
Hilber-Hughes-Taylor 424
Counservative scheme 300
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Table III. Properties of

the Taylor bar problem.

Property Value
External diameter de = 6.4mm
Length l =32.4mm
Density p = 8930kg/m?

Young modulus E = 11TE9N/m?
Poisson ratio v =20.35
Yield stress oo = 400N/mm?

Hardening parameter ~ h = 100N/mm?>

Initial velocity To = 22Tm/s

size is equal to 0.1us (small enough to avoid the obligation of taking into account the terms of
the second order in the increment of the plastic deformation as previously mentioned. Figure
10 and 11 represent the evolution of the total energy (internal dissipation included). Figure
12 and 13 represent the evolution of the internal dissipation. Let us note that the internal
dissipation does not decrease during the time evolution. The second law of thermodynamics is
therefore verified. It appears that the Chung-Hulbert and the Hilber-Hughes-Taylor algorithms
underestimate the internal dissipation. The final plastic strains are illustrated in Figure 14.
The solution obtained by the Chung-Hulbert algorithm is 2% different of the other solutions.
The differences between the schemes are rather small, resulting from the fact that the internal
physical dissipation is much more important (275 times at the end of the computation for
the Chung-Hulbert algorithm) than the numerical dissipation. Therefore the differences in
the solutions obtained are not very important (less than 2%). The number of iterations are
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e

Figure 9. Discretization of the Taylor’s bar.

reported in Table IV. The Newmark scheme is the most expensive one (2.5% more than the
conservative scheme, 5% more than the Chung-Hulbert and 9% more than the Hilber-Hughes-
Taylor scheme). The Chung-Hulbert algorithm is more expensive than the Hilber-Hughes-
Taylor algorithm, even if the numerical dissipation if higher. It comes from the severity of the
tolerance on the residue (1071%) and the small time step size. Let us note that this difference
in the number of iterations does not include the cost of the evaluation of the internal forces
and of the stiffness matrix. Once the stress tensor has been evaluated, these evaluation are
twice more expensive for the conservative scheme that for the other schemes. Results obtained
are similar to the results obtained by Meng and Laursen [23].
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Figure 10. Evolution of the total energy for the
Taylor bar problem.
Table IV. Iterations number of the
Taylor’s bar.
Scheme Iterations number
Newmark 1951
Chung-Hulbert 1844
Hilber-Hughes-Taylor 1777
Conservative 1904
Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50

Prepared using nmeauth.cls



36 L. NOELS, L. STAINIER AND J. P. PONTHOT

56.26 -
D Y s
56.2585 -
£
2  56.257 4
'
>
o > NMK
= 562555 |
2 —+ HHT
et EMCA
© 962541
°
|_
56.2525 -
MH%H%H%%HM*%H%H%
56.251 T T T ]
0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05

Time (s)

Figure 11. Evolution of the total energy for the

Taylor bar problem (zoom).

5.83. Example 3: The tumbling L-shaped block

The dynamics of an elastoplastic L-shaped block is studied. This L-shaped block was
discretized into 99 uniform elements. Its geometry is described in Figure 15. The properties of
the material are reported in Table V. Oun face A (see Figure 15), a force, depending on time

t, is applied at each node. This time dependent force is given by

F, 4
t, 0<t<25s
F,| = 8 | N/s x (90)
(5-1), 2.5<t<5s
F. 12
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Figure 12. Evolution of the total internal

dissipation for the Taylor bar problem.

Table V. Properties of the tumbling

L-shaped block.

Property Value
Density p = 100kg/m?
Young modulus E = 2812N/m?
Poisson ratio v = 0.40625
Yield stress oo = Z’)OON/m2
Hardening parameter ~ h = 400N/m?
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Figure 13. Evolution of the total internal

dissipation for the Taylor bar problem (zoom).

On face B, another force is applied at each node

F, —4
t, 0<t<25s
F, = —8 | N/s x
(5-1t), 25<t<5s
F. —12

After 5s, the forces are relaxed. The time step size is equal to 0.25s.

Figure 16 represents the evolution of the total energy (internal dissipation included). Figure
17 represents the evolution of the internal dissipation. The numerical dissipation occurring
for the Chung-Hulbert and the Hilber-Hughes-Taylor algorithms leads to an underestimation
of the internal dissipation. The final geometric configuration and the final plastic strain
distribution are illustrated in Figure 18. Due to the lack of accuracy resulting from the
numerical dissipation, the Hilber-Hughes-Taylor and the Chung-Hulbert solutions are different
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Figure 14. Equivalent plastic strain

for the Taylor bar after 80us.

in the plastic strain but also in the final geometric configuration. The numbers of iterations
are reported in Table VI. Each scheme leads to approximately the same cost with a difference
of less than 0.05%.
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Figure 15. Geometry (m) of the tumbling L-shaped block.
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Figure 16. Evolution of the total energy for the tumbling L-shaped block.
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Figure 17. Evolution of the total internal dissipation for the tumbling L-
shaped block.
Table VI. Iterations number for the
tumbling L-shaped block.
Scheme Iterations number
Newmark 12093
Chung-Hulbert 12062
Hilber-Hughes-Taylor 12053
Conservative 12087
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Figure 18. Equivalent plastic strain (magnified by 10%)
for the tumbling L-shaped block after 1005s (notice the

different final configuration for CH and HHT).

6. CONCLUSIONS

A new expression of the internal forces at the element level for hypoelastic materials was
presented. When used with the conservative mid-point scheme, this expression leads to an
energy-momentum conservative scheme. Moreover, the internal dissipation, resulting from the
plastic deformation, is consistent with the laws of thermodynamic. If the problem remains
elastic, our formulation is shown to be similar with the formulation proposed by Simo and

Tarnow [12] for a Saint Venant-Kirchhoff hyperelastic material, but our formulation is more
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general in the sense that it remains valid for general hypoelastic-based J2 plasticity models.
Elastic and elastoplastic problems were presented. Note that, since the hypoelastic formulation
provides a straightforward mechanism to extend small-strain constitutive models to non-linear
kinematics, the proposed approach provides the great advantage of being applicable to virtually

any other constitutive model (sophisticated hardening laws, damage, ...).

The solutions obtained with this conservative scheme were compared with the results
obtained with the Newmark and the dissipative generalized-a algorithms. The conservative
scheme ensured the conservation of the angular momentum, contrarily to the Newmark scheme
that leads to numerical oscillations. When important plastic deformations (as in the Taylor
bar problem) occur in a short time, the accuracy of the dissipative schemes are of same order
than the accuracy of the conservative scheme. For less-dissipative problems, the numerical
dissipation leads to a loss of accuracy, principally due to the non-conservation of the angular
momentum and could lead to an increase of the number of iterations. Moreover, this dissipative
scheme can lead to instability in the non-linear range. Nevertheless, numerical dissipation
can be useful when high frequency modes lead to failure of the conserving scheme. But this
dissipation must be introduced in a controlled way (angular momentum conservation and

positive numerical dissipation in the non-linear range).

If the iteration number of the conservative scheme is of the same order than for the other
schemes (by about 10%), the cost of the evaluation of the internal forces and of the stiffness
matrix is higher (twice). But for large problems, this additional cost quickly becomes negligible

when compared with the cost of matrix inversion.

In this paper, the second order terms in the expression of internal forces were not taken into
account. In a further work, these terms will be integrated in the formulation. We will then

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-50

Prepared using nmeauth.cls



44 L. NOELS, L. STAINIER AND J. P. PONTHOT

be able to compare the difference between the Newmark algorithm and the proposed one for

larger time step size.
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APPENDIX

I. STIFFNESS MATRIX

The stiffness matrix defined in (46) is evaluated. We assumed that applied forces F.,: are
conservative. First the expression Fj,, is derived with respect to the positions at time ¢,+1
0 [Frlf
a[wm—l]u

= 3, omrp ot 2
0

K*&M

With the relations (2) and (4), it leads to

an-’_l nT
8 [$n+l]!"

Ne[B"]" (93)

with the first order tensor [B"]* defined by [B"]* = fi¥ D*, with the fourth order tensor A" defined

by Nijr = 11,31, and with the operation [B"]* e A" e [B"]" defined by

(B eNeBY] = (B NyulBlf (94)

ik J
Therefore, using the relation (93), the expression (92) becomes
* 1 n n n
K0 = _/ [B"f e N o [B")" I } v (95)
2 Vo
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Now the part F},; of the internal forces (46) is derived

**k E L _ 8[ i)'(n)'(t]§ _ 18p 28p
K = P =K+ K
16 l 8[I+f2+1:| n+1pé n+l
K™ = 2/V0{7a[zn+l]“ z BT b dvh
¢ 1 wi1r O [Z"TIBEIGTY
K*" = 5/\/ {[I+fn+1] E)[x"—""l]‘? dVo (96)
0

The first part of relation (96) is evaluated. With the relation 0F ' = —F'0FF ™! it leads to

OfnT gnT
a [$n+1]#

oFy+ T
o n+1 n+lsgn+1
= —Fofg dx n+1]u fo'®

—Pe[BH]" (97)

with Pijr = [fZH]Ik EZH. Using (97), the first part of (96) is rewritten as
e 1 n+17§ n+l n+1
K = -2 /VO {B"*),+Pe[B }ave (98)

The second part (Kzﬁu) of relation (96) is directly obtained from the the stiffness matrix of the

classical expression of the internal forces evaluated at configuration n + 1. It leads [11] to

K2 = / [T+ 7 B e M 0 BY 7 L avi (99)
Vo
with [11]
* y 1
M = Mijr+ 35 Ty + 5 [ e — 25T - B0 - B (100)

where M, is the material tensor characteristic of the material. In the elastic configuration, it is

similar to the Hooke tensor. Otherwise, with N" = RZ“NRZ“T, it becomes [44]

2 * g r
sTijI — 2" N ;N (101)

Mijui = kIjIu+g" |:Iilelc+IikIjl_3

with ¢* = B¢ and

9 yvntl + antl — qn

B -
3/[s°—a]:[s°—qa]
woo= 71 g
t s rsmmn
azv n+1
h = — 102
9er (102)
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If M™* is defined as
Miju = [T+ fﬁ“]im Mk (103)
the equation (99) becomes
28n 1 n+17¢ ok n+178 yn+1
K = = [B"™' ] e M™ e [B"]" Jg T b dVL (104)
2 /v,
The combination of the terms (95), (98) and (104) leads to the final expression of the stiffness matrix
K®% = i/ {[B ) e tM™ = Ple [BV]" 3™ + [B") e N @ [B"]" Jg' }dVo (105)
Vo

Let us note that this stiffness matrix is not symmetric. Nevertheless, since the relation (100) (that is
also used in the Newmark stiffness matrix [11]) gives a non symmetric fourth order tensor, the use of

the Newmark scheme also gives a non-symmetric stiffness matrix.
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