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Abstract

We report on fits of a large class of analytic amplitude models for forward scatter-
ing against the comprehensive data for all available reactions. To differentiate the
goodness of the fits of many possible parameterizations to a large sample of data,
we developed and used a set of quantitative indicators measuring statistical quality
of the fits over and beyond the typical criterion of the χ2/dof . These indicators
favor models with a universal log2 s Pomeron term, which enables one to extend the
fit down to

√
s = 4 GeV.

1 Introduction

This presentation is based on the results of the recent comprehensive stud-
ies on the fits of the comprehensive analytic amplitude models for the high
energy forward scattering amplitude against all available data of the total
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cross sections and real part of the hadronic amplitudes by the COMPETE
[1–3] collaboration. The data set is accumulated and maintained by some of
us (COMPAS) for the PPDS data bases [4].

The problem of universal description of forward scattering and rising total
cross section has been with us for over two decades ever since the ISR ex-
periments. Interest in this topic has been revived by the recent activities at
HERA on deep-inelastic and diffractive scattering and also at LEP on γγ
scattering. The rising behavior of total cross sections in energy was suggested
theoretically before the ISR results in connection with the rigorous proof of
the Pomeranchuk theorem [5].

Theoretically the total cross section is related to the imaginary part of the
forward scattering amplitude. Unitarity and analyticity relates the real part
to the imaginary part of the scattering amplitude. The real part of the forward
amplitude F ab can be obtained from the imaginary part via the well-known
substitution rule s → se−iπ/2 or, in an equivalent way, from the derivative
dispersion relations [6]. A slow rise of total cross sections with energy is pos-
sible if the leading Regge trajectory having vacuum quantum numbers has an
intercept slightly larger than 1, i.e., the intercept of the Pomeron as a simple
Reggeon is αP (0) = 1 + ε, ε being a small positive number, which was proved
to be useful for studying the data at non-asymptotic energies [7]. But as the
Pomeron intercept has a bearing on the extrapolation of total cross section to
higher energies, such Pomeron term will violate eventually the Froissart bound
[8] σtot ≤ c log2 s, s being the square of the C.M. energy, a consequence of the
unitarity and positivity of the imaginary part of the scattering amplitudes in
the Lehmann ellipse. In addition, the simple Pomeron model does not offer
a simple and automatic extension to the off-shell particle scattering and in
particular to deep inelastic scattering (DIS). It is generally believed that the
BFKL re-summation of energy logarithms is relevant to high energy hadron
processes but the BFKL scheme offers no simple clue for the off-shell extension
either.

The Pomeron intercept is also a crucial element in HERA DIS analyses and
provides the starting point at low x and low Q2, from which perturbative QCD
evolution can be performed and can be tested. Since the Regge-Pomeron be-
havior in s originates from that of the large t-channel scattering angle, cos θt,
in hadron-hadron scattering, the same J− plane singularity is affecting the
corresponding (x, Q2) region in DIS at HERA. Though there is some overlap
region of the large s behavior of the soft Pomeron in hadronic scattering and
the small x behavior from perturbative QCD evolution, the study of the sin-
gularity structure of forward hadronic scattering lies mostly outside the realm
of perturbative QCD. In pQCD, one may expect that a higher order effects
would unitarize the amplitude and tame the fierce rise observed at large Q2

to something compatible with the Froissart bound. But no one has derived
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reliably unitarized QCD amplitudes. Moreover such unitarization will involve
necessarily multi-gluon exchanges between the quarks and therefore will re-
quire detailed quark structure, i.e., the hadronic wave functions. In doing so,
one is likely to lose the nice properties that the simple Regge-Pomeron ex-
hibits. It is simply the reality that no one has the QCD-based understanding
and derivation of the forward hadronic scattering amplitudes.

The basic idea of the analytic amplitude method for the forward (t = 0) hadron
scattering is to treat this non-perturbative domain by implementing the gen-
eral principles as much as possible, such as analyticity, unitarity, crossing-
symmetry and positivity of total cross-sections, and by supplementing the
scheme by some well-established strong interaction properties. Good analytic
models must describe not only the desired rising behavior at high energies
but also the correct energy behavior of the cross sections when extended to
medium energies where a smooth analytic behavior of the amplitude has set in
and the secondary Reggeon contributions are needed. Such general approach,
unfortunately, does not provide a unique answer. There can be many models
that satisfy these theoretical criteria. In addition, good models are required
to explain all available forward scattering data of all reactions and their ap-
plicability must be judged on a common ground. It is therefore clear that one
needs to develop and use a common procedure and decision-making criteria to
differentiate the goodness of the fits of the models. In fact a decision-making
procedure was initiated in Ref. [9] for pp and p̄p scattering, which led us to
conclude that the exchange-degenerate Reggeons were not preferred by the
forward scattering data and pursued further in Refs. [4] for the collisions p∓ p,
π∓ p, K∓ p, γ p, and γ γ, which however led to the conclusion that the for-
ward data could not discriminate between a simple Regge-Pomeron fit and
asymptotic log2 s and log s fits for

√
s ≥ 9 GeV.

• We have therefore developed a set of statistical indicators which measure
quantitatively the goodness of the fits and which complement the usual χ2

criterion. The values of these indicators enable us to differentiate the diverse
analytic amplitude models on the basis of characteristics of their fits.

• The data set has been improved somewhat by eliminating some preliminary
data on the ρ parameter and by adding newly published data from SELEX
(π−N and Σ−N at 600 GeV/c) [10] and OPAL (γ γ) [11]. Thus new SELEX
data of the (Σ−p) collision and the published OPAL data are added to the
current simultaneous scan-fits. We have however excluded all cosmic data
points [12,13] as in the previous studies [4] because the original numerical
Akeno(Agasa) data are not available (only data read from graph) and there
are contradictory statements concerning the cosmic data points of both Fly’s
Eye and Akeno(Agasa) in the literature.

• Recently a two-component soft Pomeron picture was rediscovered [14], in
which the first component has intercept 1 and comes from C = +1 three-
gluon exchanges and the second component may be thought of as a unita-
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rized Pomeron with intercept larger than 1, the well-known BFKL Pomeron
associated with 2-gluon exchanges[15,16]. The first component can take the
quark counting rule into account while the second one is responsible for the
universal rising of total cross sections with energy.

We see that this procedure changes the picture considerably and can differen-
tiate the models that can be applied to the energy region as low as

√
s = 4

GeV.

2 Analytic Parameterizations for the Forward Scattering Ampli-
tudes

The different variants of parameterization can be classified basically into three
exemplary classes depending on the asymptotic behaviors of the cross section,
in the limit s → ∞, as a constant, as log s or as log2 s. We introduce the fol-
lowing notations accordingly for the imaginary part of the forward scattering
amplitude:

ImF ab = sσa∓b = R+ab(s)±R−ab(s) + Pab + Hab(s), (1)

where the ± sign in formula corresponds to anti-particle(particle) - particle
collisions,

R±ab(s) = Y ab
± · (s/s1)

α±,

R± representing the effective secondary-Reggeon ((f, a2), (ρ, ω)) contributions
to the even(odd)-under-crossing amplitude, Pab = sZab, and Hab(s) stands for
either Eab = Xab(s/s1)

α℘ , or Lab = s (Bab ln(s/s1) + Aab), with s1 = 1 GeV 2,
or L2ab = s(Bab ln2(s/s0) + Aab) with an arbitrary scale factor s0.

In our work we combine the constant Aab with Zab in the P ab term and rewrite
Pab +Lab = s (Bab ln(s/s1) + Zab) and also Pab +L2ab = s(Zab +Bab ln2(s/s0)).
Analyticity determines the real part of F ab from the formula (1) via the rule
as mentioned already. Most of the analytic amplitude models proposed in
the literature [6,17,18] are some variants of the RRPH parameterization or
those constrained further by imposing such conditions as the degeneracy of the
leading C = ± Regge trajectories, the universal rising Bab = B of total cross
sections, the factorization of the Regge residues of Hab, Hγγ = δHγp = δ2Hpp,
and the quark counting rule for the residues of the Regge-Pomeron terms in
Hab, in the interest of reducing the number of parameters. Models constrained
by such additional conditions are indicated by appropriate symbols d, u, qc and
nf (in the case of not imposing the factorization of Hab) as supplementary

4



subscript or superscript.

In general there are seven (six) adjustable parameters for each pair of collisions
a b and a b in the analytic parameterizations RRPH where H = E, L2 (L) so
that there are 24 or 25 parameters in total to adjust the simultaneous fits
for the collisions p∓ p, Σ− p, π∓ p, K∓ p, γ p, and γ γ. We considered more
than 256 different variants of the analytic amplitudes [19]. We summarize in
Table 1 the results of six representative cases that give a χ2/dof smaller than
1.5 for all all cross section and ρ data for

√
s ≥ 4 GeV. Because of the large

number of points, slight upward deviations of the χ2/dof from 1 would imply
a very low confidence level. The area of applicability of the models, i.e., the
low-energy cut-offs for which χ2/dof ≤ 1.0 are shown with numbers in bold.

√
smin in GeV and number of data points

Model code (Npar) 4 (742) 5 (648) 6 (569) 7 (498) 8 (453) 9 (397) 10 (329)

RREnf 1.4 1.1 1.1 1.1 1.1 1.0 1.0

RRLnf (19) 1.1 0.97 0.97 1.0 0.96 0.94 0.93

RRPL(21) 1.1 0.98 0.98 0.99 0.94 0.93 0.91

(RR)d Pnf L2(20) 1.2 1.0 1.0 0.99 0.94 0.93 0.92

RRPL2u(21) 1.1 0.97 0.97 0.97 0.92 0.93 0.92

(RR)d PL2u(17) 1.3 1.0 1.0 0.98 0.94 0.93 0.93

Table 1: Six representative models in three classes fitting all cross section and ρ

data down to 5 GeV. Numbers in bold represent the area of applicability of each

model.

As can be seen from Table 1, the data are compatible with many possibilities
for

√
s ≥ 9 GeV and cannot differentiate the models at this level, let alone the

nature of the Pomeron. Also it seems that sub-leading trajectories and other
non-asymptotic characteristics do not manifest themselves. The two classes of
logarithmic increases seem to fit better than simple powers. Also reasonable
degeneracy of the leading Reggeon trajectories can be implemented only for
the class of PL2 models having a log2 s-type effective Pomeron. Such degener-
acy is in fact expected to hold in global fits to the forward scattering data of
all hadronic processes that include pp and K+p scattering, which have exotic
s-channel, in view of the Reggeon-particle duality.

5



3 Statistical Indicators Measuring the Quality of the Fits

To distinguish further the nature of the fits in these models, we need a statisti-
cal procedure. This procedure will enable us to compare and rank the quality
of the analytic amplitude models.

The best known quantity is certainly the χ2/dof , or more precisely the con-
fidence level (CL). However, because Regge theory does not apply in the res-
onance region, no model is expected to reproduce the data down to the low-
est measured energy. The energy cutoff

√
smin in Table 1 is ad hoc. Clearly

the range of energy over which the model can reproduce the data with a
χ2/dof ≤ 1.0 must be a part of the indicators. Also the quality of the data
varies depending on which quantity or which process one considers. An unbi-
ased way of taking into account the quality of the data is to assign a weight
to each process or quantity. Given that this will be done to compare models
together, the weights as determined by the best fit is a reasonable choice for
the weight, i.e., we introduce

wj = min

(

1,
1

χ2
j/nop

)

where j = 1, . . . , 9 refers to the process, and we define the renormalized χ2
R ≡

∑

j wjχ
2
j . The number of parameters in the model should be a consideration

too, given the data sample in the range of applicability. Finally, if a fit is
physical in a given range, then its parameters must be stable with respect
to the sub-part of the range: different determinations based on a sub-sample
must be compatible. Hence certain criteria for the stability of the fits should
be taken into consideration as indicators.

We have developed a set of statistical quantities that enable us to measure
the above features of the fits. All these indicators are constructed so that the
higher their values are the better is the quality of the data description.

(1) The Applicability Indicator: It characterizes the range of energy
which can be fitted by the model with a confidence level bigger CL > 50%.
This range can in principle be process-dependent, but we consider the sim-
plest case here:

AM
j = wj log(EM,high

j /EM,low
j ), AM =

1

Nsets

∑

j

AM
j (2)

where j is the multi-index denoting the pair (data subset, observable);
EM,high

j is the highest value of the energy in the area of applicability of

the model M in the data subset j; EM,low
j is the lowest value of the energy
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in the area of applicability of the model M in the data subset j, and wj is
the weight determined from the best fit in the same interval (hence wj will

depend itself on EM,high
j and EM,low

j ). In our case the applicability indicator
takes the form:

AM =
1

15

(

AM
pp,σ + AM

pp,σ + AM
π+p,σ + AM

π−p,σ + AM
K+p,σ + AM

K−p,σ + AM
Σ−p,σ

+AM
γp,σ + AM

γγ,σ + AM
pp,ρ + AM

pp,ρ + AM
π+p,ρ + AM

π−p,ρ + AM
K+p,ρ + AM

K−p,ρ

)

.

The fit results in detail show that for L, PL and PL2 class of models we
obtain rather good fits to all cross sections starting from Emin = 4 and
to cross section and ρ data from 5 GeV but in some cases with negative
contributions to the total cross sections from terms corresponding to the
exchange of the Pomeron-like objects in low energy part of the area of
applicability as defined above. This is unphysical: we are forced to add an
additional constraint to the area of applicability and exclude the low energy
part where at least one collision process has a negative contribution from the
Pomeron-like (asymptotically rising) term. It turned out that some models
have an empty area of applicability once this criterion was imposed.

(2) Confidence-1 Indicator: CM
1 = CL%

where the CL refers to the whole area of applicability of the model M.
(3) Confidence-2 Indicator: CM

2 = CL%
where the CL refers to the intersection of the areas of applicability of all
models qualified for the comparison (we choose here

√
s ≥ 5 GeV for the

fits to the cross sections but without ρ-data, and
√

s ≥ 9 GeV for the fits
to both cross sections and ρ data.

(4) Rigidity Indicator 1: We propose to measure the rigidity of the model
by the indicator

RM
1 =

NM
dp (A)

1 + NM
par

(3)

The most rigid model has the highest value of the number of data points
per adjustable parameter.

(5) Reliability Indicator 2: This indicator characterizes the goodness of
the parameter error matrix.

RM
2 =

2

Npar(Npar − 1)
·

N
∑

i>j=1

Θ(90.0 − CR
ij ) (4)

where CR
ij – is the correlation matrix element in % calculated in the fit at the

low edge of the applicability area. For the diagonal correlator this indicator
is maximal and equals 1.

(6) Uniformity Indicator: This indicator measures the variation of the
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χ2/nop from bin to bin for some data binning motivated by physics:

UM =







1

Nsets

∑

j

1

4

[

χ2
R(t)

N t
nop

−
χ2

R(j)

N j
nop

]2






−1

, (5)

where t denotes the total area of applicability, j is a multi-index denoting
the pair (data set, observable). In our case we use the calculation of the
χ2

R/nop for each collision separately, i.e. the sum runs as in the case of the
applicability indicator.

(7) Stability-1 Indicator:

SM
1 =







1

NstepsNM
par

∑

steps

∑

ij

(P t − P step)i(W
t + W step)−1

ij (P t − P step)j







−1

(6)

where: P t - vector of parameters values obtained from the model fit to the
whole area of applicability; P step - vector of parameters values obtained
from the model fit to the reduced data set on the step, by which we mean
shift in the low edge of the fit interval to the right by 1 GeV. If there are
no steps then SM

1 = 0 by definition; and W t and W step are the error matrix
estimates obtained from the fits to the total and to the reduced on the step
s data samples from the domain of applicability.

(8) Stability-2 Indicator:

SM
2 =







1

2NM
par

∑

ij

(P t − P t(no ρ))i(W
t + W t(no ρ))−1

ij (P t − P t(no ρ))j







−1

.(7)

The indicator SM
2 characterizes the reproducibility of the parameters values

when fitting to the reduced data sample and reduced number of observable
but with the same number of adjustable parameters and might be strongly
correlated with the uniformity indicator UM . In this case, we fit the whole
set of the model parameters to the full area of applicability (superscript
t) and the same set of parameters but to the data sample without ρ-data
(superscript t(no ρ)).

To complement the usual χ2 criterion, we have developed and used these
quality measure indicators to rank the models via the “league comparison”
between the models in eight disciplines of the quality indicators with equal
weight

Im
k = (Am, Cm

1 , Cm
2 , Rm

1 , Rm
2 , Um, Sm

1 , Sm
2 )

where the index m describes the model and index k describes the indicator
type.
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With all the calculated components of the indicators, it is easy to assign score
points in each discipline to a given model M :

P M
k =

∑

m6=M

(2Θ(IM
k − Im

k ) + δIM
k

,Im
k

). (8)

The rank of models is decided by the total score points:

P M =
∑

k

P M
k =

∑

k

∑

m6=M

(2Θ(IM
k − Im

k ) + δIM
k

,Im
k

) (9)

The scores of the ACCRRUSS league comparison are given in Table 2 for
the five high ranking representative models, out of 21 models that passed the
high CL tests of the fit comparison of the σtot(s)- and ρ(s)-data.

Model Code AM CM
1 CM

2 UM RM
1 RM

2 SM
1 SM

2 rank PM

RRPL2u(21) 2.2 68. 85. 23. 29. 0.90 0.22 0.10 222

(RR)d PnfL2(20) 2.2 50. 82. 18. 31. 0.90 0.27 0.41 178

(RR)d PL2u(17) 2.0 50. 83. 16. 32. 0.88 0.30 0.67 174

RRLnf (19) 1.8 73. 81. 17. 32. 0.78 0.29 1.3 222

RRPL(21) 1.6 67. 82. 26. 29. 0.75 0.21 1.1 173

Table 2: Quality indicators in five representative models fitting all forward data.

4 Results of the Quality Tests of the Fits

The clearest outcome of the applicability indicator AM test is that all models
belonging to the class of a simple Regge-Pomeron are eliminated from the
exclusive group that meets χ2/dof ≤ 1 for

√
s > 5 GeV. The best χ2/dof for

these is 1.12 for RREnf , which is rejected at the 98% C.L. as we have a large
number of data points, 648, for

√
s > 5 GeV. However, upon checking where

these values of χ2/dof come from, we see that the main difference comes from
fitting the ρ parameter data, which is much worse for the class of RRE than
the others, though no model in all variants can fit the ρ data perfectly and in
particular those of πp and pp.

As we can see from Table 2, the two classes of models having double poles
or triple poles achieve comparable levels of quality, and one cannot decide
which is better with these indicators. Clearly we shall need further physics
arguments to differentiate these two effective Pomeron.
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We found that imposing the Johnson-Treiman-Freund relation for the cross
section differences ∆σ(N) = 5∆σ(π), ∆σ(K) = 2∆σ(π) never has led to an
improvement of the fit and in some case degraded the fit considerably, though
they produced two parametrisations with fewest parameters.

It turns out that the original cosmic experimental data are best fitted by our
high-rank models quoted in Table 2.

The class of models with a log s type Pomeron gives excellent fits to the soft
data without violating the unitarity and can be extended to deep-inelastic
scattering [20] without any further singularity. But it suffers from several draw-
backs: First of all, the Pomeron term becomes negative below 9.5 GeV, and
the split of the leading meson trajectories is somewhat bigger than what a
normal duality-breaking estimate or a linear extrapolation of the known res-
onances would allow [21]. As a result, the Pomeron in this class of variants
is inevitably compromising with the crossing even Reggeon in the Regge re-
gion, effectively counter-balancing the excessive contribution of the C = even
Reggeon and thus taming the medium energy behavior while describing the
asymptotic behavior of the amplitude. Though the quark counting rule seems
to be respected to a very good approximation by this effective Pomeron , i.e.,
by the coefficients of the log s and of the constant term, this only reinforces
the problem of negativity as it is very difficult to conceive a non factorizing
pole which would nevertheless respect quark counting.

Finally, we conclude that the best fits are given by the class of PL2u models
that contain a triple pole at J = 1 besides a simple pole with the intercept
exactly 1, which thus produce log2 s, log s and constant terms in the total
cross section. Barring the details of the best model RRPL2u(21) and its pa-
rameters to [1,2], the most interesting properties of this model may be that
the constant term respects the quark counting rule to a good approximation,
whereas the log2 s term can be taken as universal, i.e. independent of the pro-
cess, as rediscovered in [14] (see also [22]). The universality of the rising term
is expected in the case of the eikonal unitarisation of a bare Pomeron with the
intercept larger than 1, because the coefficient of the rising term turns out to
depend only on the intercept and slope of the bare Pomeron [23]. But for the
J-plane singularities of double and triple pole types considered in this paper,
the structure of such a singularity and the origin of its universality is less
obvious. Nevertheless, such a singularity at J = 1 may in fact have a theoret-
ical explanation: recently, Bartels, Lipatov and Vacca [15,16] discovered that
there are, in fact, two types of Pomeron in LLA: besides the well-known BFKL
Pomeron associated with 2-gluon exchanges and with an intercept bigger than
1, there is a second one associated with C = +1 three-gluon exchanges and
having an intercept precisely located at 1. Also the factorization of the ris-
ing components of the cross section, (Hγp)

2 → Hγγ × Hpp, is well satisfied by
the PL2 Pomeron. Furthermore, the degeneracy of the lower trajectories is
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respected to a very good approximation, and the model seems extendible to
deep inelastic scattering [24]. This model also respects unitarity by construc-
tion. Hence this solution is the one that currently meets all phenomenological
and theoretical requirements.

A few remarks as for the future directions are in order: a remaining problem
in the analysis of the forward data is the difficulty in adequately fitting the
data for the ρ parameter in pp and in π+p reactions. While extraction of the
ρ data from the measurements of the differential cross sections data at small t
is a delicate problem, re-analysis of these data will call for simultaneous fits to
the total cross section data and to the elastic differential cross sections in the
Coulomb-nuclear interference region and in the diffractive cones and thus an
extension of the parametrisations considered here to the non-forward region.
One could also consider a class of analytic models not incorporated in our fits
and ranking procedures, class in which the rising terms would turn on at some
dynamical threshold st (demanding the use of exact dispersion relations), or
add lower trajectories to the existing models. Both approaches would lead to
many extra parameters, and will be the subject of a future study. Secondly
the inclusion of other data may very well allow one to decide finally amongst
the various possibilities. One can go to deep-inelastic data, but the problem
here is that the photon occupies a special position in Regge theory, and hence
the singularities of DIS amplitudes do not need to be the same as those of
hadronic amplitudes. One can also extend the models to non-forward data
and off-diagonal amplitude such as those of diffractive scattering. Such steps
will involve new parameters associated mainly with form factors, but there are
many data, hence there is the hope that this kind of systematic study may be
generalized. Thirdly it is our intention to develop the ranking scheme further,
probably along the lines of [25], and to fine-tune the definition of indicators,
in order that a periodic cross assessments of data and models be available to
the community [19].
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