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Abstract
Main conclusion This review provides a detailed description of the function and mechanism of VQ family gene, which
is helpful for further research and application of VQ gene resources to improve crops.

Abstract Valine-glutamine (VQ) motif-containing proteins are a large class of transcriptional regulatory cofactors. VQ
proteins have their own unique molecular characteristics. Amino acids are highly conserved only in the VQ domain, while
other positions vary greatly. Most VQ genes do not contain introns and the length of their proteins is less than 300 amino
acids. A majority of VQ proteins are predicted to be localized in the nucleus. The promoter of many VQ genes contains
stress or growth related elements. Segment duplication and tandem duplication are the main amplification mechanisms of
the VO gene family in angiosperms and gymnosperms, respectively. Purification selection plays a crucial role in the evolu-
tion of many VQ genes. By interacting with WRKY, MAPK, and other proteins, VQ proteins participate in the multiple
signaling pathways to regulate plant growth and development, as well as defense responses to biotic and abiotic stresses.
Although there have been some reports on the VQ gene family in plants, most of them only identify family members, with
little functional verification, and there is also a lack of complete, detailed, and up-to-date review of research progress. Here,
we comprehensively summarized the research progress of VQ genes that have been published so far, mainly including their
molecular characteristics, biological functions, importance of VQ motif, and working mechanisms. Finally, the regulatory
network and model of VQ genes were drawn, a precise molecular breeding strategy based on VQ genes was proposed, and
the current problems and future prospects were pointed out, providing a powerful reference for further research and utiliza-
tion of VQ genes in plant improvement.

Keywords VQ proteins - Molecular characteristics - Growth and development - Biotic and abiotic stresses - Importance of
VQ motif - Working mechanisms - Precise molecular breeding

Abbreviations Introduction
Ka The nonsynonymous substitution rate
Ks The synonymous substitution rate Gene expression is usually regulated by the interactions

between cis-acting elements and transcription factors, and
the latter often require some cofactors to co-regulate gene
expression. Valine-glutamine (VQ) motif-containing protein
is a specific class of transcriptional cofactor widely found
in plants, containing the highly conserved VQ motif Fxxh-
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processes and responses to biotic or abiotic stress (Kim
et al. 2013; Zhang et al. 2015; Song et al. 2016; Jiang et al.
2018). By mainly interacting with WRKY transcription fac-
tor (WRKY), mitogen-activated protein kinase (MAPK), and
other proteins, VQ proteins function as important transcrip-
tion regulators (Cheng et al. 2012; Li et al. 2014a; Ali et al.
2019; Yuan et al. 2021). Although there have been some
studies on the VQ family genes, they are scattered, and the
overall regulatory context and application prospects are
not clear enough. In this study, we reviewed the detailed
molecular characteristics, biological functions, and working
mechanisms of VQ proteins in plants, and emphasized their
importance in regulation of transcriptional activity. Mean-
while, we also pointed out the problems faced in current
research and proposed corresponding solutions and future
prospects, which will provide sufficient reference and guid-
ance for researchers.

Structural features of VQ genes and proteins

The VQ family genes have been individually identified and
systematically analyzed from different plants via bioinfor-
matics and experimental methods, such as Arabidopsis, soy-
bean, apple, tomato, cucumber, potato, tobacco, cotton, rice,
maize, wheat (Table 1). Some studies have also performed
large-scale analysis and comparison of VQ gene families
in multiple plant species, including angiosperms and gym-
nosperms, to elucidate their characteristics and patterns
(Jiang et al. 2018; Cai et al. 2019; Ma et al. 2023b; Tian
et al. 2023). VQ proteins have their own specific molecular
features. The conserved VQ motif is FxxhVQxhTG, with
three main terminal amino acids, namely LTG, FTG, and
VTG, but occasionally, there are other types in some plants,
such as ITG, YTG, and LTR (Zhang et al. 2022a) (Fig. 1).
The core element ‘VQ’ in FxxhVQxhTG is slightly changed
in some plants, such as FxxhVHxhTG and FxxhVExhTG
(Wang et al. 2017; Liu et al. 2022a; Zhang et al. 2022a;
Tian et al. 2023). In addition to the VQ motif, although the
amino acid sequences at other positions vary greatly, there
are still some relatively conserved motifs in some VQ pro-
teins (Weyhe et al. 2014; Tian et al. 2023). The top 5, top 10,
and top 20 conserved motifs of VQ proteins have been iden-
tified in different plants (Cai et al. 2019; Tian et al. 2023)
(Fig. 1), which may be related to protein localization and
interaction. The homologous sequence of VQ proteins in dif-
ferent plants can be preliminarily determined by comparing
the composition and quantity of motifs. Studies have shown
that many VQ proteins contain single- or dual-component
nuclear localization signals, and some also contain chlo-
roplast targeting signals. Most VQ proteins are expected
to be located in the nucleus, with a few in the cytoplasm,
chloroplast, and mitochondria (Cheng et al. 2012; Kim et al.
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2013; Jing and Lin 2015; Guo et al. 2018). Moreover, the
N-terminal sequence of Arabidopsis AtVQ15 and AtVQ22
contains a calmodulin (CaM) binding motif, which is essen-
tial for their interaction with CaM (Perruc et al. 2004; Yan
et al. 2018). In addition to interacting with CaM, this motif
is also speculated to be related to the nuclear localization of
proteins (Tian et al. 2023). Some VQ proteins also contain
the predicted MAPK docking sites, which are necessary for
their interaction with MAPK (Pecher et al. 2014). Most VQ
genes in higher plants are intron-free and encode relatively
small proteins with less than 300 amino acids (Jiang et al.
2018; Cai et al. 2019; Tian et al. 2023). The lack of introns
in these VQ genes leads to more effective transcription and
translation, thus generating these small proteins. Interest-
ingly, Poaceae plants, such as rice, corn, and wheat, have
a high GC content (up to 70%) in their VQ genes, which is
prominent among many plants and may be related to their
genetics and evolution (Tian et al. 2023). These basic char-
acteristics of the VQ genes help us to better understand and
identify this family of plants.

Based on structural and sequence similarity, the phy-
logenetic tree divided VQ proteins from different species
into 7 groups (Kim et al. 2013; Wang et al. 2017), 8 groups
(Zhang et al. 2022a), 9 groups (Dong et al. 2018; Tian et al.
2023), and 10 groups (Pecher et al. 2014; Cai et al. 2019).
Among them, gymnosperms and angiosperms, as well as
monocotyledons and dicotyledons, were found to have their
own independent and intersecting branches, which provides
evidence for the evolutionary history of VQ genes (Jiang
et al. 2018; Cai et al. 2019; Tian et al. 2023). Segmental
duplication and tandem duplication are considered to be the
main mechanisms for the expansion of the VQ gene family
in angiosperms and gymnosperms, respectively, and there is
no necessary relationship between VQ numbers and genome
size (Jiang et al. 2018; Xu and Wang 2022; Zhang et al.
2022a; Tian et al. 2023). The estimated number of VQ genes
based on the times of genome replication events is inconsist-
ent with the actual number, indicating that there may be gene
loss events after genome replication (Wang et al. 2019). The
substitution rates of Ka and Ks are the basis of analyzing the
selection pressure in gene duplication events (Wang et al.
2010a). The Ka/Ks values of most duplicated VQ gene pairs
are < 1, indicating that they mainly evolved under purifica-
tion selection in plants (Wang et al. 2017; Cao et al. 2018;
Jiang et al. 2018; Zhang and Wei 2019; Zhang et al. 2022a;
Tian et al. 2023). These findings provide important refer-
ences for evolutionary comparison and biological function
of VQ genes in different plants.

In addition, cis-acting elements such as W-box (WRKY
binding site), and SA-, JA-, or ABA-related elements were
enriched in the promoter region of VQ genes in different
plants. These cis-acting elements are mainly classified into
four categories: hormone, stress, growth, and photo-reactive
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Table 1 Identification of VQ
family genes in different plants

Species

No. of total VQ genes

References

Arabidopsis thaliana
Arabidopsis thaliana
Brassica juncea
Brassica napus
Brassica oleracea
Brassica rapa
Camellia sinensis
Cicer arietinum
Coix lacryma-jobi
Cucumis melo
Cucumis sativus
Cucurbita pepo
Eucalyptus grandis

Fragaria

Fragaria

Glycine max
Glycine max
Glycine max

Gossypium

Helianthus annuus

Ipomoea

Malus domestica
Medicago truncatula
Nicotiana tabacum
Nicotiana tabacum
Oryza sativa

Oryza sativa
Phyllostachys edulis
Populus trichocarpa

Prunus

Pyrus

Saccharum spontaneum
Setaria italica

Solanum lycopersicum

34

34

120

118

64

57

25

19

31

30

32

44

27

19 (F. nipponica)
21 (F. iinumae)
23 (F. orientalis)
23 (F. vesca)

23 (F. nubicola)
25 (F. x ananassa)
25

74

74

75

89 (G. hirsutum)
89 (G. barbadense)
45 (G. raimondii)
45 (G. arboretum,)
20

55 (I. batatas)

58 (I. triflida)

50 (1. triloba)

47 (1. nil)

49

32

59

61

39

40

29

51

55 (P. yedoensis)
70 (P. domestica)
25 (P. avium)

23 (P. dulcis)

26 (P. persica)

23 (P. yedoensis var. nudiflora)

41 (Pyrus bretschneideri)
28 (Pyrus communis)

78

32

26

Cheng et al. (2012)
Jing and Lin (2015)
Zheng et al. (2022)
Zou et al. (2021)
Yang et al. (2023)
Zhang et al. (2015)
Guo et al. (2018)
Ling et al. (2020)
Wang et al. (2023b)
Zhang and Wei (2019)
Shan et al. (2021)
Xu and Wang (2022)
Yan et al. (2019)
Zhong et al. (2018)

Garrido-Gala et al. (2019)
Wang et al. (2014)
Zhou et al. (2016)
Wang et al. (2019)
Chen et al. (2020)

Ma et al. (2021)
Si et al. (2023)

Dong et al. (2018)
Ling et al. (2020)
Liu et al. (2020)
Yan et al. (2023)
Kim et al. (2013)
Li et al. (2014b)
Wang et al. (2017)
Chu et al. (2016)
Zhong et al. (2021)

Cao et al. (2018)

Liu et al. (2022a)
Liu et al. (2023)
Ding et al. (2019)
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Table 1 (continued)

Species No. of total VQ genes References
Triticum aestivum 113 Zhang et al. (2022a)
Triticum aestivum 65 Cheng et al. (2022a)
Vitis vinifera 18 Wang et al. (2015a)
Zea mays 61 Song et al. (2016)
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Fig.1 The top 5 conserved motifs of VQ proteins. MEME online
program (https://meme-suite.org) (Bailey et al. 2015) was used to
identify motifs of VQ proteins from Arabidopsis, soybean, grape,
tomato, Chinese cabbage, cotton, rice, maize, and wheat. Here, the

related elements (Wang et al. 2015a; Song et al. 2016; Wang
et al. 2017; Zhang and Wei 2019; Zhang et al. 2022a). These
findings suggest that VQ genes may be associated with
responses to biotic and abiotic stresses, as well as growth
and development. Additionally, VQ genes were reported to
be regulated by microRNA (Guo et al. 2018; Zhang et al.
2022a). For example, 38 of 113 wheat VQ genes were
predicted to be targeted by 15 putative miRNA. The lat-
ter belong to different miRNA families, such as miR160,
miR395, miR1130, and miR9657, which play key roles
in various biotic and abiotic stresses (Zhang et al. 2022a).
These studies have expanded our understanding of the struc-
ture, function, and regulation of VQ genes, indicating that
there may be more complex regulatory networks in plants.

Biological function of VQ protein

The role of VQ protein in plant growth
and development

The growth and development process of plants is con-
trolled by gene expression and its regulatory networks
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top 5 motifs were listed. Motif analysis can help us to better under-
stand protein structure and determine homologous sequences, and
these motifs may play important roles in subcellular localization and
interactions with different proteins

(Scanlon and Timmermans 2013). The diverse spatiotem-
poral expression levels of VQ genes in different tissues and
developmental stages indicate their widespread involve-
ment in regulating plant growth and development (Wang
et al. 2014, 2017; Zhou et al. 2016; Cao et al. 2018; Guo
et al. 2018; Cai et al. 2019; Ling et al. 2020; Zhang et al.
2022a). Some studies have shown that knocking out or
overexpressing certain VQ genes can significantly affect
plant growth and development.

VQ proteins play important roles in regulating seed size,
plant fertility, and growth. For example, the AtVQ14/IKU1
is strongly expressed in early endosperm development, and
the vg14/ikul mutant only produces small seeds, indicat-
ing that this gene may regulate endosperm development
and thus affect seed size (Wang et al. 2010b). The loss-of-
function mutants of AtVQ8 showed yellow-green leaves
and delayed growth, while plants overexpressing AtVQ17,
AtVQI18, or AtVQ22 showed a stunted phenotype with
severely inhibited growth (Cheng et al. 2012). ArVQ18 and
AtV(Q26 were identified as two key VQ members involved
in seed germination and early seedling establishment in
Arabidopsis. The overexpression of AtVQI8 or AtVQ26
reduces the ABA response during seed germination, and
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simultaneously reducing the expression of AtVQI8 and
AtVQ26 can make the germinated seeds more sensitive
to ABA, indicating ArVQ18 and AtV(Q26 are functionally
redundant (Pan et al. 2018). The growth and development
of AtVQ21/MKS1 overexpressing plants are inhibited, but
the phenotype of RNAI plants is consistent with that of
wild-type plants (Andreasson et al. 2005). Heterologous
overexpression of ArVQ21 in long-lived flowers (Kalan-
choé blossfeldiana) and petunia (Petunia hybrida) pro-
motes plant dwarfing and delayed flowering (Gargul et al.
2015). Compared with wild-type plants, the overexpres-
sion lines of AtVQ23/SIBI showed increased resistance to
Pseudomonas syringae, but was accompanied by varying
degrees of growth retardation (Xie et al. 2010). AtVQ29
plays an important role in the photomorphogenesis of
Arabidopsis seedlings. The expression level of AtVQ29 is
relatively higher in stem, and the length of the hypocotyl
in overexpression plants is significantly longer than that
in wild-type plants, while it is opposite in vg29 mutants,
indicating that ArVQ29 regulates the elongation of the
hypocotyl in seedlings under far red or weak light condi-
tions (Li et al. 2014a). Meanwhile, AtVQ29 overexpression
plants also exhibited a delayed flowering phenotype with-
out altering vegetative growth (Cheng et al. 2012). Leaf
senescence is another developmental process that may be
regulated by VQ proteins. AtVQ23/SIB1 and AtVQ16/
SIB2 can interact with WRKY75 to negatively regulate
ABA-mediated leaf senescence and seed germination
(Zhang et al. 2022b).

In addition to Arabidopsis, the VQ genes in other plants
were also found to affect plant growth and development.
The overexpression of soybean GmVQ43 and GmVQ62 in
Arabidopsis promotes flowering, and GmVQ37 is associ-
ated with plant fertility (Zhou et al. 2016). Furthermore, the
overexpression of apple MdVQ37, MdVQ25, or MdVQ15 in
Arabidopsis and tobacco affected vegetative and reproduc-
tive growth of plants (Dong et al. 2018). Cabbage BoV(Q25-1
is preferentially expressed in pollen and plays an important
role in pollen germination (Yang et al. 2023). The overex-
pression of OsVQ13 can increase grain size, and OsVQ13
can associate with OsMPKG®6 to affect grain development in
rice (Uji et al. 2019). ZmVQ52 is mainly expressed in maize
leaves, and the overexpression of ZmVQ52 in Arabidopsis
can accelerate leaf senescence (Yu et al. 2019). The over-
expression of wheat TaV(Q25 accelerates leaf senescence in
Arabidopsis and leads to hypersensitivity reaction in ABA-
induced leaf senescence, which is a positive regulatory fac-
tor for ABA-related leaf senescence (Meng et al. 2023).

The above results indicate that VQ proteins play an
important role in balancing, promoting, or inhibiting plant
growth. Plant hormones affect the growth and development
of plants by influencing the expression of genes, and gene
expression can also indirectly affect the secretion of plant

hormones, thus forming interactive relationships (Oliva
et al. 2013). Reactive oxygen species (ROS) and oxidative
signals generated by metabolic or phytohormone pathways
control almost all aspects of plant development (Considine
and Foyer 2021). In addition, the absorption and transpor-
tation of plant nutrients also have an important impact on
plant growth and development (Kopriva et al. 2019; Ahmad
et al. 2023). Accordingly, we speculate that the changes in
plant growth and development caused by VQ protein may
be related to hormones, oxidation, or nutrients. In fact, VQ
proteins can interact with transcription factors to regulate the
expression of plant hormone synthesis and signal transduc-
tion related genes, leading to metabolic changes and ulti-
mately affecting plant growth, development, and resistance
(Cheng et al. 2012; Chen et al. 2018, 2022a; Yan et al. 2018;
Hao et al. 2022; Gayubas et al. 2023; Meng et al. 2023).
Therefore, the complex regulatory relationships between VQ
genes, transcription factors, hormones, and the environment
ensure the normal growth and development of plants.

The role of VQ protein in response to biotic stress

In general, plants resist pathogen infections through two
different immune systems: ETI (effector-triggered immu-
nity) and PTI (PAMP-triggered immunity) (Jones and Dangl
2006; Coll et al. 2011). The recognition of PAMP (pathogen-
associated molecular patterns) activates a series of cellular
signaling events, triggering changes in gene expression, cell
biochemistry, and metabolism, ultimately leading to plant
resistance to pathogen attacks (Senthil-Kumar and Mysore
2013; Pecher et al. 2014). Salicylic acid (SA) and jasmonic
acid (JA) are two important hormone signaling molecules
that mediate plant immunity and also participate in plant
growth, development, and stress responses (Bari and Jones
2009; Meldau et al. 2012; Caarls et al. 2017; Myers et al.
2023). Studies have shown that the expression of many VQ
genes in different plants is induced or inhibited by JA and
SA hormones or different pathogen treatments (Cheng et al.
2012; Kim et al. 2013; Zhou et al. 2016; Jiang et al. 2018;
Zhang et al. 2022a; Si et al. 2023). These results indicate that
VO genes play an important role in responding to complex
signaling pathways mediated by hormones such as JA and
SA.

The overexpression of AtVQ4/MVQI in Arabidopsis
reduces Flg22-induced resistance, thus AtVQ4/MVQl1
negatively regulates PAMP-induced pathogen resistance
(Pecher et al. 2014). AtVQ10, as a positive regulator, is
involved in JA-mediated signaling pathways to resist infec-
tion by Botrytis cinerea (Chen et al. 2018). AtVQ16/SIB2 is
strongly induced by pathogenic B. cinerea, and the disease
resistance of its functional deficient mutant is reduced (Lai
et al. 2011). The overexpression of AtVQ20 in Arabidopsis
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reduces plant resistance to P. syringae, indicating that
AtVQ?20 negatively regulates the defense response (Cheng
et al. 2012). AtVQ21/MKS1 overexpression plants showed
significantly increased resistance to P. syringae through SA
signaling pathway (Andreasson et al. 2005), and decreased
resistance to B. cinerea through negative regulation of the
JA signaling pathway (Petersen et al. 2010; Fiil and Petersen
2011). The expression level of AtVQ22/JAVI significantly
increased after JA treatment, and rapidly accumulated after
mechanical injury. Its functional deficient mutants not only
enhanced the resistance to necrotic pathogen B. cinerea, but
also enhanced the resistance to herbivorous insects. It is a
negative regulatory factor that controls plant defense without
detected adverse effects on plant growth and development
(Hu et al. 2013a). ArVQ23/SIB1 can be significantly induced
by SA, JA, or pathogens P. syringae and B. cinerea, and
its overexpression in plants can observably enhance disease
resistance. AtVQ23/SIB1 can mediate the cross-talk between
SA and JA signaling pathways in disease resistance (Naru-
saka et al. 2008; Xie et al. 2010). The overexpression of
AtVQ28 in Arabidopsis reduced resistance to Phytophthora
sojae and Phytophthora infestans, and promoted infection of
Phytophthora parasitica. AtVQ28 negatively regulates non-
host resistance (NHR) of plants to Phytophthora (Lan et al.
2022). Both AtVQ12 and AtV(Q29 were strongly induced by
JA and B. cinerea, and its overexpression plants showed a
significant susceptible phenotype, whereas the single and
double mutants showed significantly improved resistance to
B. cinerea (Wang et al. 2015b).

Moreover, the overexpression of soybean GmVQ35 or
GmVQ47 in Arabidopsis makes plants more susceptible
to B. cinerea, indicating that these two VQ genes act as
negative regulator in the response to necrotrophic patho-
gens (Zhou et al. 2016). Silencing GmVQ58 can improve
the resistance of soybean to common cutworm (Li et al.
2020a ). The overexpression of BnVQ7/BnMKS1 in rapeseed
showed enhanced resistance to Leptosphaeria maculans in
adulthood stage (Zou et al. 2021). Knocking out rapeseed
BnVQ12 enhanced plant resistance to Sclerotinia sclero-
tiorum, while overexpressing BnVQ12 in plants showed
the opposite effect (Zhang et al. 2022¢). Tomato SIVQI15
mutants showed reduced resistance to B. cinerea, while its
overexpression plants showed increased resistance to patho-
gens (Huang et al. 2022a). Cucumber VQ protein CsSIB1
positively regulates cucumber defense response to downy
mildew through the SA pathway (Tan et al. 2022). The over-
expression of OsVQ14 or OsVQ32 in rice enhanced plant
resistance to Xanthomonas oryzae pv. oryzae (Xoo) (Li et al.
2021). It is worth noting that rice OsVQ25 knockout mutants
showed significantly enhanced resistance to rice blast and
bacterial blight, without penalty of plant growth and devel-
opment. The explanation of the function and mechanism of
OsVQ?25 is of great significance for the study of VQ genes in
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food crops (Hao et al. 2022). These results reflect the func-
tional importance and diversity of VQ proteins in response
to biotic stress.

The SA signaling pathway generally plays a role in
defense against biotrophic pathogens; the JA-dependent
signaling pathway usually exerts effect in defense against
necrotrophic pathogens and insects; these two signaling
pathways are sometimes antagonistic and sometimes syn-
ergistic (Halim et al. 2006; Bari and Jones 2009; Lai and
Mengiste 2013; Ke et al. 2017). The above-mentioned
results indicate that the VQ genes are widely involved in
the JA- and SA-regulated disease resistance pathways and
play a crucial role. The mechanism of plant disease resist-
ance is the existence of resistance genes in plants, which
can resist the invasion and spread of pathogens. These dis-
ease resistance genes are divided into physical resistance
and chemical resistance factors (Miller et al. 2017; Parisi
et al. 2019; Wang et al. 2020; Ninkuu et al. 2022). Therefore,
the VQ gene should ultimately trigger at least one of these
two disease resistance mechanisms, resulting in changes in
plant immunity. In addition, there are many reports on the
relationship between VQ gene and plant pathogen resistance,
but relatively few reports on insect resistance, which requires
more experiments to investigate this function.

The role of VQ protein in response to abiotic stress

Salt, drought, and low/high temperature are common abiotic
stresses that impair the normal growth of plants and increase
endogenous hormones such as ABA, which is a key hormone
that helps plants to adapt and survive in these extreme envi-
ronments (Tuteja 2007; Roychoudhury et al. 2013; Verma
et al. 2016; Yu et al. 2020). Studies have found that the
expression of a large number of VQ genes in many plants
is induced or inhibited by salt, drought, temperature, low
nitrogen stress, and abscisic acid (ABA), indicating that VQ
genes also play important roles in regulating plant responses
to abiotic stress (Kim et al. 2013; Wang et al. 2014; Wang
et al. 2015a; Zhang et al. 2015; Song et al. 2016; Wang et al.
2017; Dong et al. 2018; Zhang and Wei 2019; Liu et al.
2020; Liu et al. 2022a; Zhang et al. 2022a; Si et al. 2023).
AtVQ9 is strongly induced by NaCl treatment, and its
mutants exhibit higher seed germination rate and better
seedling growth under NaCl treatment, while the over-
expression lines exhibit the opposite effect, indicating
that AtVQO negatively regulates the Arabidopsis resist-
ance to NaCl stress (Hu et al. 2013b). AtVQ15 belongs
to the calmodulin binding protein (AtCaMBP25), and
its overexpression lines are highly sensitive to NaCl and
osmotic stress during seed germination and seedling
growth, while the mutants exhibit significant resistance,
indicating that AtVQ15 negatively regulates Arabidop-
sis tolerance to NaCl and osmotic stress (Perruc et al.
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2004). The overexpression of poplar VQI in Arabidop-
sis enhances resistance to salt stress and P. syringae, and
confers resistance to multiple biotic and abiotic stresses
by mediating ABA and SA signaling pathways (Liu et al.
2022b). The expression of bamboo PeVQ28 is induced by
salt and ABA treatment; the overexpression of PeVQ28 in
Arabidopsis shows increased tolerance to salt stress and is
more sensitive to ABA; under salt stress, PeVQ28 overex-
pression plants have low malondialdehyde, high proline,
and increased expression levels of ABA signaling and
ABA synthesis related genes. These results suggest that
PeV(Q28 can mediate the positive regulation of salt toler-
ance through ABA-dependent signaling pathways (Cheng
et al. 2020). The overexpression of sweet potato IbWRKY?2
in Arabidopsis exhibits strong drought and salt tolerance.
IbWRKY?2 can interact with IbVQ4, which can be induced
by PEG or NaCl treatment, indicating that /bVQ4 may
play an important role in drought and salt tolerance of
sweet potato (Zhu et al. 2020). Recent research has shown
that SIVQ16 positively regulates tomato resistance to salt
stress, while SIVQ21] negatively regulates tomato resist-
ance to salt stress (Ma et al. 2023a). In addition, the over-
expression of wheat TaV(Q4-D in Arabidopsis and wheat
plants increased their tolerance to drought stress. Under
drought stress conditions, compared to the wild-type
plants, transgenic wheat plants overexpressing TaVQ4-
D showed increased levels of superoxide dismutase and
proline, decreased levels of malondialdehyde, and up-reg-
ulated expression of genes related to reactive oxygen clear-
ance and stress response (Zhang et al. 2023a). Similarly,
under drought and salt stress, TaVQ14 is up-regulated
in wheat seeds, and heterologous expression of TaVQ14
increases the resistance of Arabidopsis seeds to salt and
drought stress (Cheng et al. 2022b). The overexpression of
tomato SIVQ6 in Arabidopsis showed a high sensitivity to
high-temperature stress, indicating that SIVQ6 negatively
regulates plant thermotolerance (Ding et al. 2019). The
overexpression of soybean GmVQ47 in Arabidopsis dis-
played reduced heat tolerance in transgenic plants (Zhou
et al. 2016). Under high-temperature stress, the relative
transcription level of apple MdV(Q37 was significantly
down-regulated; transgenic apple plants overexpressing
MdVQ37 exhibited a thermo-sensitive phenotype, result-
ing in a significant decrease in endogenous SA content
and disruption of SA-dependent signaling pathways;
exogenous SA could partially improve the survival rate
of transgenic lines. These results suggest that the regula-
tion of apple MdV(Q37 under high-temperature stress is
related to the changes in transcription factor activity and
SA homeostasis (Dong et al. 2021). RsVQ4, as a positive
regulator of plant thermotolerance in radish, its overex-
pression can improve heat tolerance, while its RNAi plants
have the opposite phenotype (He et al. 2023).

In addition, the analysis of the dynamic expression pat-
terns of rice VQ genes under NO treatment found that 45%
(14/31) of VQ genes showed significantly differential expres-
sion, indicating that VQ genes may play an important role
in NO-mediated physiological processes (Peng et al. 2020).
Transcriptome data of oxygen-related processes in Arabi-
dopsis revealed that 56% (19/34) of VQ genes and 64%
(48/75) of WRKY genes were up-regulated after ozone treat-
ment (Ledn et al. 2021). These data suggest that some VQ
proteins have potential regulatory roles in response to NO
and O,. COX6B-3 and COA6-L can be induced by osmotic
stress, and their encoded proteins can interact with AtVQ27
in the presence of NO. The mitochondrial biogenesis was
impaired in vg27 mutant (Kumari et al. 2023). A hypermor-
phic vg10-H mutant of AtVQI10 (T-DNA inserted into its
3’-UTR region) exhibits enhanced meristem development
and increased tolerance to oxidative stress, as well as less
sensitive to NO than wild-type plants (Gayubas et al. 2023).

The molecular mechanisms of plant responses to abiotic
stress involve multiple processes, including sensing, signal
transduction, transcription, transcript processing, transla-
tion, and post-translational protein modification (Waadt et al.
2022; Zhang et al. 2022d). The above findings suggest that
the VQ genes regulate plant adaptation and resistance to abi-
otic stress through multiple pathways, such as ABA signal-
ing, transcription factors, and ROS metabolism. Overall, VO
genes play important roles in both independent pathways and
multi-factor cross-talk in the input stimuli of salt, drought,
cold/heat, and ABA signals.

Working mechanisms of VQ protein
Interactions between VQ and WRKY

The precise regulation of gene expression usually requires
transcription factors and transcription cofactors (Buscaill
and Rivas 2014; Lai et al. 2019). As one of the largest tran-
scription factor families in the plant kingdom, the WRKY
family is involved in a variety of biological processes,
including plant signal transduction, growth and develop-
ment, and response to biotic and abiotic stresses (Jiang et al.
2017; Li et al. 2020b ; Wani et al. 2021; Goyal et al. 2023;
Khoso et al. 2022). Many VQ proteins interact with WRKY
transcription factors through conserved ‘VQ’ residues to
regulate various biological activities, and WRKY proteins
are also the main interacting proteins of the VQ family (Lai
etal. 2011; Cheng et al. 2012; Weyhe et al. 2014). The inter-
action between VQ protein and WRKY protein depends on
the WRKY domain, which is mainly associated with DNA
binding (Bakshi and Oelmiiller 2014). Therefore, their
interaction can affect the DNA binding activity of WRKY,
thereby regulating the expression of downstream genes.
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WRKY33 has been reported to positively regulate plant
defense response to B. cinerea (Zheng et al. 2006). AtVQ23/
SIB1 and AtVQ16/SIB2 can bind to the C-terminal WRKY
domain of WRKY?33, stimulate its DNA binding activity,
enhance its binding ability to the W-box, and positively reg-
ulate plant defense against B. cinerea (Lai et al. 2011; Cheng
et al. 2012). Further research found that AtVQ23/SIB1 and
AtVQ16/SIB2 can interact with WRKY33 and WRKY57.
The presence of AtVQ23 and AtVQ16 further enhances the
competition between WRKY57 and WRKY?33, and their fine
regulation of B. cinerea resistance will be more conducive
to plant defense (Jiang and Yu 2016). In addition, AtVQ23/
SIB1 and AtVQ16/SIB2 can interact with WRKY75 to
inhibit its transcriptional repression function and regulate
the expression of downstream GLKs genes, thereby regu-
lating ABA-mediated leaf senescence and seed germina-
tion (Zhang et al. 2022b). By interacting with WRKYS8 and
inhibiting the binding activity of WRKYS to the W-box,
AtVQO regulates the expression of the salt stress resistance
gene AtRD29A, thereby negatively regulating plant salt toler-
ance (Hu et al. 2013b). The interaction between AtVQ10 and
WRKYS in the nucleus activates the transcriptional activ-
ity of WRKYS, increases the expression of downstream
defense-related gene PDF1.2, and positively regulates the
basic defense of Arabidopsis against B. cinerea (Chen et al.
2018). AtVQ10 also interacts with WRKY25 and WRKY?33,
and F1 hybrids overexpressing AtVQ10 and WRKY?25 or
WRKY33 exhibit significantly slow and weakened growth,
indicating that AtVQ10 and WRKY proteins synergistically
inhibit plant growth and development (Cheng et al. 2012).
AtVQ14/IKUI1 can interact with WRKY 10/MINI3 to pro-
mote the expression of /IKU2, which synergistically regulates
the development of endosperm, and then affects the size of
seeds (Luo et al. 2005; Wang et al. 2010b). AtVQ15 can
interact with CaM, WRKY?25, and WRKY51, and may link
Ca”* signals with transcriptional regulation of downstream
targets of osmotic stress signaling pathways, regulating plant
tolerance to osmotic stress (Perruc et al. 2004; Cheng et al.
2012). Pollen-specifically expressed AtVQZ20 can interact
with WRKY2 or WRKY34 to form complexes, enhance the
transcriptional repression activity of WRKY2 and WRKY34
to regulate the expression of downstream genes related to
pollen development and pollen tube germination (such as
AtMYB97, AtMYB101, and AtMYB120), thereby affecting
male fertility (Lei et al. 2017, 2018). AtVQ22/JAV 1 interacts
with CaMs, JAZS, and WRKYS51 to form a JAV1-JAZS-
WRKY51 complex, which jointly regulates JA synthesis.
Normally, the JAV1-JAZ8-WRKY51 complex can inhibit
the expression of JA biosynthesis genes; when plants are
subjected to insect feeding or mechanical damage, extra-
cellular Ca®* flows in and activates intracellular CaMs.
CaMs bind to JAV1 in a Ca’*-dependent manner and induce
phosphorylation of JAV1. Subsequently, JAV1 is degraded
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through the ubiquitin-26S proteasome pathway, thereby dis-
rupting the JAV1-JAZ8-WRKY51 complex, alleviating the
inhibition of JA signaling, promoting the expression of JA
synthesis genes (such as AtfAOS), leading to rapid outbreak
of JA and activating plant defense (Hu et al. 2013a; Yan et al.
2018; Ali et al. 2019).

In addition, soybean GmVQS58 can interact with
GmWRKY32, and silencing GmVQ58 can significantly
increase the expression levels of defense-related genes down-
stream of GmWRKY32 (GmVSPp and GmN:IFR), thereby
enhancing soybean resistance to common cutworm (Li et al.
2020a). Rapeseed BnVQI12 can interact with BnWRKY28
and promote the competitive binding of BhWRKY?28 and
BnWRKY33 to the promoter of BhWRKY33 to regu-
late the expression of downstream phytoalexin synthesis-
related genes, thereby helping plants to effectively resist
S. sclerotiorum (Zhang et al. 2022¢). Banana MaWRKY26
is induced by cold stress or methyl jasmonate (MeJA),
enhancing the cold tolerance of banana fruit. MaVQ5 can
interact with MaWRKY?26, weakening the transcriptional
activation of JA biosynthesis genes (MaLOX2, MaAOS3, and
MaOPR3), indicating that MaVQ5 may act as an inhibitor
of MaWRKY?26 and participate in JA-mediated cold stress
response (Ye et al. 2016). The interaction between RsVQ4
and RsWRKY26 promotes the expression of RsHSP70-
20, thereby positively regulating the heat stress response
in radish (He et al. 2023). Apple MdVQ10 and MdVQ15
were found to interact with MdWRKY52 to regulate defense
and development (Dong et al. 2018). Apple MdVQ10 can
also interact with MdAWRKY75 to promote the expression
of downstream senescence-related genes, thereby acceler-
ating injury-induced leaf senescence, and is regulated by
MdACMLI15 and MdJAZs (Zhang et al. 2023b). Moso bam-
boo PeVQ28 and PeWRKY83 interact in the nucleus, and
the overexpression of PeVQ28 promotes the expression of
ABA-related genes downstream of PeWRKY83 and pos-
itively regulates salt tolerance in plants (Wu et al. 2017,
Cheng et al. 2020). Tomato SIWRKY37 interacts with
SIVQ7 to promote the expression of downstream SIWRKY53
and SISGRI, positively regulating JA- and dark-induced leaf
senescence (Wang et al. 2022a). Tomato SIVQ15 interacts
with SJAZ and SIWRKY31, and participates in JA-mediated
plant defense response to B. cinerea (Huang et al. 2022a).
The latest research found that tomato SIWRKY57 plays a
negative regulatory role in salt stress response. SIVQ16
and SIVQ21 competitively interact with SIWRKYS57 and
antagonize its transcriptional repression activity, thereby
regulating the expression of downstream salt stress-related
genes SIRD29B, SIDREB?2, and SISOSI. In addition, the
SIWRKY57-SIVQ21/SIVQ16 module also interacts with the
SIJAZ proteins and regulates the expression of JA-induced
salt stress-related genes, suggesting that this module may
be involved in the JA pathway to regulate tomato resistance
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to salt stress (Ma et al. 2023a). TcJAV3 is a VQ protein in
Taxus chinensis, and the TcJAV3-TcWRKY26 complex is
involved in JA-mediated regulation of the taxol biosynthesis
gene DBAT and plant defense response (Chen et al. 2022b).
Rice OsVQ8 interacts with OsWRKY 10 to inhibit its DNA
binding and transcriptional activity. OsWRKY 10 negatively
regulates heat tolerance in rice by regulating ROS balance
and allergic reaction, and its interacting protein OsVQ8
plays a antagonistic role. This functional module provides
a safe and effective regulatory mechanism for rice response
to heat stress (Chen et al. 2022a). Rice OsV(Q25 balances
the broad-spectrum disease resistance and growth of plants
by interacting with U-Box E3 ubiquitin ligase OsPUB73
and the transcription factor OsWRKY53. OsVQ25 interacts
with OsPUB73 and promotes the degradation of OsVQ25
through the 26S proteasome pathway, negatively regulating
rice resistance to Magnaporthe oryzae and Xoo. Moreover,
OsVQ?25 interacts with OsWRKY53, a positive regulator
of plant immunity, and inhibits its transcriptional activity.
Defense-related genes downstream of OsWRKYS53 are up-
regulated in the OsVQ25 mutants. These results reveal a
E3-VQ-WRKY module that can control plant immunity and
growth at the transcriptional and post-translational levels
(Hao et al. 2022). Recently, wheat TaVQ2S5 is reported to
interact with TaWRKY 133 to regulate ABA-mediated leaf
senescence (Meng et al. 2023).

Based on the above studies, the WRKY transcription
factors play a critical role in the function of VQ proteins.
VQ proteins mainly regulate the expression level of down-
stream genes by regulating the transcriptional activation or
repression activity of different WRKY transcription fac-
tors. Some WRKY transcription factors are known to have
multiple effects and play a certain role in different aspects
(Zheng et al. 2006; Jiang and Deyholos 2009; Li et al. 2011;
Chi et al. 2013). VQ protein can form complexes with one
or more WRKY proteins, while a WRKY protein can also
interact with multiple VQ proteins. Therefore, the intricate
interactions endow VQ proteins and WRKY proteins with a
wide range of biological functions.

Interactions between VQ and MAPK

The immune response triggered by PAMP includes the
changes in various phosphorylation cascades, among which
one of the earliest and key phosphorylation-mediated sign-
aling events is the activation of MAPK (Meng and Zhang
2013; Pecher et al. 2014; Yamada et al. 2016; Bi et al. 2018).
Activated MAPKSs phosphorylate downstream substrates to
post-translationally regulate the function of many proteins,
including changes in protein—protein interaction, protein
activity, protein stability, thus promoting signal transduc-
tion in various environmental stresses and development pro-
cesses (Taj et al. 2010; Pecher et al. 2014; Bigeard and Hirt

2018). Phosphorylation usually leads to targeted degrada-
tion of proteins through the ubiquitin—proteasome pathway
(Henriques et al. 2009). Some VQ proteins can be targeted
and phosphorylated by MPK3, MPK4, or MPK6, leading
to their degradation, thereby affecting proteins that inter-
act with VQ proteins, such as WRKY, and regulating plant
immune responses (Pecher et al. 2014; Weyhe et al. 2014).

A total of 10 VQ proteins (MPK3/6 targeted VQ pro-
teins, MVQ1-10) in Arabidopsis have been identified as
phosphorylation substrates of MPK3 and MPK6, and these
VQ proteins can also interact with a specific subset of
WRKYs (Pecher et al. 2014). Normally, AtVQ4/MVQ1 can
interact with WRKY's such as WRKY33 to suppress their
transcriptional activity, thereby inhibiting the expression of
downstream defense genes such as NHLI0. However, when
invaded by bacterial pathogens, AtVQ4/MVQI is phospho-
rylated by MPK3/6, which promotes its instability and deg-
radation, leading to weakened or even ineffective activity
inhibition of WRKYSs. The expression level of downstream
disease resistance genes increases along with the increase of
phosphorylation level. MAPK3/6 participates in the inter-
action between AtVQ4/MVQI1 and multiple WRKYs to
finely regulate the immune response in Arabidopsis (Pecher
etal. 2014). AtVQ21/MKS1 was identified as a downstream
substrate of MPK4. In the absence of pathogen infection,
AtVQ21 can bridge MPK4 and WRKY33 to form a ternary
complex, and physical interactions constrain the activity of
WRKY33. When infected with pathogens, activated MPK4
phosphorylates AtVQ21, leading to denaturation and disas-
sociation of the MPK4-AtVQ21-WRKY33 complex, com-
pletely releasing WRKY33 and targeting the promoter of
antitoxin gene (PAD3) to regulate its expression, enhancing
plant resistance to pathogens (Andreasson et al. 2005; Qiu
et al. 2008; Fiil and Petersen 2011).

In addition, tomato SIVQ6 has been identified as a phos-
phorylation substrate of SIMPK1 and plays an important
role in the response to some abiotic stresses such as drought,
high temperature and salt; the overexpression of SIVQ6 can
reduce high-temperature tolerance of plants (Ding et al.
2019). It is reported that OsMPKG6 positively regulates rice
resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and
grain size/weight (Liu et al. 2015; Ma et al. 2017; Xu et al.
2018). Rice OsVQ1 interacts with OsMPK®6, and the OsVQ1
knockout mutant exhibit stronger resistance to Xoo, accumu-
late high levels of hydrogen peroxide, and exhibit a delayed
flowering phenotype under natural long-term conditions
(Wang et al. 2021). OsVQI13 can interact with OsMPK6 and
activate the OsMPK6-OsWRKY45 component, positively
regulating the JA signaling pathway and mediating rice
resistance to bacterial blight. The overexpression of OsVQ13
can also increase grain size, and OsVQ13 and OsMPK6
work together to regulate rice grain development (Uji et al.
2019). Both OsVQ14 and OsVQ32 can positively regulate
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rice resistance to Xoo. OsVQ14 and OsVQ32 can interact
with and be phosphorylated by OsMPK4. In OsMPKK6
transgenic plants, OsMPK4 is highly phosphorylated after
pathogen infection, enhancing plant resistance to Xoo, and
meantime, phosphorylated OsVQ14 and OsVQ32 also accu-
mulate significantly before and after infection. The results
indicate that OsVQ14 and OsVQ32 serve as the substrate
of the OsMPKK6-OsMPK4 signaling cascade, enhanc-
ing rice resistance to Xoo, thus defining a more complete
signal transduction pathway in plant induced defense (Li
et al. 2021). Recent research has found that wheat TaVQ4
interacts with MPK3 and MPK6 and plays a role as a phos-
phorylation substrate for MPK3 and MPKG6 in plant drought
stress resistance (Zhang et al. 2023a).

Moreover, MAPK can also directly interact with WRKY
(Chi et al. 2013). It was shown that WRKY 34 is phosphoryl-
ated by MPK3 and MPKG6 during the early stages of male
gametogenesis, and the MAPK-WRKY signaling module
plays a crucial role in early pollen development (Guan et al.
2014). When inoculating Arabidopsis with B. cinerea, the
MPK3/6 signaling pathway is activated, which in turn phos-
phorylates and activates WRKY33, and promotes the expres-
sion of PAD3 to synthesize a large amount of phytoalexin,
ultimately leading to a defense response in plant (Zhou et al.
2020). Rice OsWRKY45 has also been identified as a down-
stream target of OsMPKG6 to regulate defense response of
rice (Shimono et al. 2007; Ueno et al. 2013). OsWRKY53
can interact with and be phosphorylated by OsMAPKG®6 to
regulate BR signaling and plant architecture (Tian et al.
2017), as well as herbivore-induced defense responses (Hu
et al. 2015). A recent study showed that MPK3/6 interacts
with and phosphorylates WRKY 18 to regulate the expres-
sion of two protein phosphatases AP2C1 and PP2C5, and
through the MPK3/6-WRKYs-PP2Cs module, PTI triggers
and inhibits ETI responses to balance plant growth and
defense (Wang et al. 2023a). Moreover, both barley MPK4
and WRKY1 negatively regulate powdery mildew resist-
ance, and MPK4 phosphorylates WRKY 1, enhancing its
DNA binding ability and transcriptional repression activity.
The MKK1-MPK4-WRKY 1 module can regulate powdery
mildew resistance in plant (Xue et al. 2023).

MAPK is one of the important signaling proteins in plants
and plays an crucial role in many biological processes. The
above results suggest that VQ protein can be phosphorylated
by MAPK, affecting its activity and degradation, thereby
regulating plant growth, immune and stress response. At the
same time, MAPK can also directly phosphorylate WRKY
transcription factors, affecting their activity and regulatory
ability. Therefore, there is an interactive and interdepend-
ent relationship between VQ protein, WRKY, and MAPK.
VQ proteins play an important role in balancing and buffer-
ing the interaction between MAPK and WRKY, which is of
great significance for maintaining plant survival.
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Interactions between VQ and other proteins

Except for WRKY and MAPK, VQ protein can also inter-
act with other proteins, such as E3 ubiquitin ligase (E3),
Calmodulin (CaM), JASMONATE-ZIM DOMAIN (JAZ),
ABA Insensitive 5 (ABIS), and PHYTOCHROME INTER-
ACTING FACTOR 1 (PIF1). These proteins have been
reported to play important roles in plant growth, develop-
ment, and response to external stimuli (Yang and Poovaiah
2003; Shen et al. 2005; Pauwels and Goossens 2011; Sku-
bacz et al. 2016; Ban and Estelle 2021). VQ proteins expand
their functions and participate in the regulation of various
life processes by interacting with these proteins.
AtVQ15/AtCaMBP25 binds to typical CaM in a cal-
cium-dependent manner, functions as a negative effector
of osmotic stress tolerance, and may participate in stress
signal transduction pathways (Perruc et al. 2004). AtVQ18
and AtVQ26 can interact with the ABIS transcription fac-
tor to inhibit the transcriptional activation ability of ABIS,
reducing the expression levels of AtEM1 and AtEM6, and
negatively regulate ABA response during seed germination
and seedling establishment (Pan et al. 2018). AtVQ29 inter-
acts with PIF1 transcription factor during the early stages of
seedling development to enhance its transcriptional activa-
tion activity on downstream genes such as PIL] and XTR7,
thereby regulating the elongation of hypocotyls in Arabidop-
sis under different light spectra (Li et al. 2014a). AtVQ22/
JAV1 can interact with CaMs, JAZ8, and WRKY51 to regu-
late JA-mediated plant defense (Yan et al. 2018). Meanwhile,
AtVQ22/JAV1 also interacts with RING-type E3 ubiquitin
ligase JUL1, which ubiquitinates JAV1 and causes its degra-
dation through ubiquitin-26S proteasome system, triggering
the up-regulated expression of PDF1.2 and the activation
of the JA pathway, thereby conferring resistance to biotic
stress in Arabidopsis. This study provides insights into the
mechanisms by which the JAV1/JULI system specifically
coordinates plant defense responses without interfering with
plant growth and development (Ali et al. 2019). Similarly,
rice OsVQ25 balances the broad-spectrum disease resistance
and growth of plants by interacting with U-Box E3 ubiqui-
tin ligase OsPUB73 and transcription factor OsWRKY53
(Hao et al. 2022). Tomato SIVQ15 can interact with SIJAZ.2,
SUAZS, SUAZ6, SIUAZT, and SIJAZ11 to regulate JA-medi-
ated plant defense against B. cinerea (Huang et al. 2022a).
In addition, VQ proteins can also form homodimers or het-
erodimers. For example, AtVQ12 can strongly interact with
AtVQ3, AtVQS, AtVQI10, AtVQI12, AtVQ17, AtVQ18,
AtVQ29, and AtVQ32. AtVQ12 and AtVQ29 physically
interact to form homodimers and heterodimers, negatively
regulating plant defense against B. cinerea (Wang et al.
2015b). Apple MdVQ1, MdVQ10, MdVQ15, and MdVQ36
can interact with multiple MdVQ proteins to form heter-
odimers, while MdVQ15 can form homodimers with itself
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through the C-terminal fragment (Dong et al. 2018). These
results provide more important information for studying the
interactions and functional pathways of the VQ family.

In summary, there is a complex and subtle triangular
relationship between MAPK, VQ, and WRKY, which work
together to achieve precise regulation of various physi-
ological processes in complex environments. Meanwhile,
the interaction between VQ protein and other types of pro-
teins may also affect the interaction between VQ protein and
transcription factors such as WRKY, thereby altering gene
expression. Based on the above results, we comprehensively
summarized the functions and interacting proteins of VQ
genes in different plants (Table 2), and finally plotted their
intracellular regulatory patterns (Fig. 2). When subjected
to external environmental pressures, the transduction of
phosphorylation signals, calcium signals, hormone signals,
and photoelectric signals will occur in plant cell. This sub-
sequently alters the interaction and modification between
the VQ protein and one or more proteins in MAPK/CaM/
E3/VQ/WRKY/JAZ8/ABI5/SIG1/PIF1, thereby activating
or inhibiting relevant transcription factors and further regu-
lating the expression levels of different downstream genes,
including genes related to hormones, nutrients, and metabo-
lites. Finally, plants will respond to external biotic or abiotic
stresses, such as pathogens, insects, drought, salt, and high/
low temperatures. Here, we proposed a typical signal trans-
duction model, the MAPK-VQ-E3-WRKY cascade, based
on these previous studies. When plants encounter external
stimuli, MAPK is strongly activated, interacts with VQ
proteins, and phosphorylates them, leading to their ubig-
uitination by E3 ubiquitin ligase and subsequent degrada-
tion by 26S proteasome pathway, ultimately triggering the
disintegration of VQ-WRKY complex, releasing WRKY
to regulate downstream genes (Fig. 2). The overexpression
or mutation of some VQ genes, in addition to altering the
plant's response to external stimuli, may also be accompa-
nied by changes in plant growth and development, which
is likely due to the sustained expression or suppression of
certain downstream genes. These results not only provide a
complete molecular perspective for the regulatory network
of VQ genes, but also provide a reference for the cultivation
of new materials through manipulating these related genes.

The importance of VQ domain

The VQ motif is the most conserved and important feature
of VQ proteins, and multiple studies have shown that the
VQ motif has a significant impact on the function of VQ
proteins. For example, the mutation of IVQQ to EDLE in
the VQ domain of AtVQ14 results in smaller seeds, while
mutations at other positions do not have this phenotype
(Wang et al. 2010b). Further study found that the role of

the VQ domain may be achieved through the following two
mechanisms. Firstly, the VQ domain can affect the sub-
cellular localization of the VQ protein. For example, the
fusion protein of AtVQO9-GFP is localized in the nucleus,
but when VVQK is mutated to EDLE in the VQ domain of
AtVQ09, it is distributed in both the nucleus and cytoplasm
(Hu et al. 2013b). The VQ motif of AtVQ21/MKSI is not
only involved in the interaction with WRKY33/WRKY?25,
but also participates in the nuclear localization of AtVQ21
(Petersen et al. 2010). However, not all VQ domains are
related to subcellular localization. For instance, the muta-
tion of VQ to AA in the VQ domain of AtVQ23 does not
affect its localization, possibly because AtV(Q?23 contains
nucleus and chloroplast targeting signal peptides in addi-
tion to the VQ motif (Lai et al. 2011). Secondly, the VQ
domain can affect the interaction between VQ protein and
other proteins. For example, mutations in the VQ domain
can cause failed interactions of AtVQ9-WRKYS8 (Hu et al.
2013b), AtVQ14-WRKY 10 (Wang et al. 2010b), AtVQ20-
WRKR2/34 (Lei et al. 2017), and AtVQ23-WRKY33 (Lai
et al. 2011), respectively, indicating that the VQ motif is the
core element for interaction with WRKY. In addition, an
amino acid substitution (V70A or V70D) in the VQ motif
of AtVQ?29 eliminates its inhibitory activity, indicating that
the VQ motif is essential for mediating AtVQ29-regulated
transcriptional activity. Interestingly, the double substitution
(V70D and Q71L) leads to significant induction of reporter
gene LUCIFERASE (Li et al. 2014a), indicating that tran-
scriptional regulatory activity can be transformed from inhi-
bition to activation by modifying the VQ motif.

However, the VQ motif is not the only critical domain
for the interaction between VQ protein and other proteins.
Mutations at other sites can also lead to the loss of the origi-
nal function of VQ protein. For example, the VQ motif is
not essential for interaction or phosphorylation with MPK3/
MPKG6 (Pecher et al. 2014). Mutations in the VQ domain
affect the transcriptional regulatory activity of AtVQ29, but
do not alter its ability to interact with PIF1 (Li et al. 2014a).
Studies have shown that the amino acid sequences on both
sides of the VQ motif are highly diverse in VQ protein (Tian
et al. 2023). The variable regions and sub-motifs of VQ
protein can also regulate the interaction with WRKY, and
affect the binding affinity and specificity of WRKY-VQ com-
plex by interacting with other proteins (Cheng et al. 2012;
Chi et al. 2013). Mutating the amino acid residues LVQR
to EDLE in the VQ motif does not affect the interaction
between AtVQ12 and AtVQ29, but mutating the C-terminal
region eliminates their interaction. Therefore, AtVQ12 and
AtVQ29 may interact with each other through their C-ter-
minal segment, and interact with WRKY33 through their
VQ motif, forming a large protein complex to mediate plant
defense against B. cinerea (Wang et al. 2015b). In addition,
when the two lysine residues K52 and K179 in AtVQ22/
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Springer

defense

Positively regulate drought tolerance Zhang et al. (2023a)

TaMPK3/6

TraesCS1D02G340900 TaVQ4

Triticum aestivum

Cheng et al. (2022b)
Meng et al. (2023)

Regulate salt and drought tolerance

TraesCS3B01G219100 TaVQl4

Regulate leaf senescence

TaWRKY133

TraesCS4A02G290800 TaVQ25

JAV1 are mutated to threonine (T), the interaction between
AtVQ22/JAV1 and the E3 ubiquitin ligase JUL1 is signifi-
cantly reduced (Ali et al. 2019). The interaction between
apple MdVQ10/MdVQ15 and MdWRKY52 requires not
only the VQ motif, but also several amino acid residues
flanking the VQ motif (Dong et al. 2018). Therefore, in addi-
tion to the VQ motif, some motifs or sites of VQ proteins
also have specific functions, and their functions in protein
stability, subcellular localization, and interactions with dif-
ferent proteins need further analysis.

With the advancement of technology, genome editing,
including gene knockout, gene replacement, base editing,
fragment insertion and deletion, has been applied in plants
(Gao 2021; Molla et al. 2021). Therefore, the modification
of the designated sequence of genes has received sufficient
technical support. In addition, molecular design breeding
based on the genes related to certain important agronomic
traits is a promising crop breeding strategy (Zhang et al.
2018; Xing et al. 2020; Xu et al. 2021; Huang et al. 2022b;
Song et al. 2022; Claeys et al. 2023; Li et al. 2023; Zhou
et al. 2023). Given the regulatory functions of VQ proteins
in plant disease resistance, stress resistance, and growth
and development, as well as the presence of multiple func-
tional motifs in their structure (Tian et al. 2023), VQ genes
exhibit great potential for precise manipulation to study the
functions of different motifs and achieve modern molecular
breeding. Therefore, we proposed a new molecular design
breeding strategy based on VQ genes (Fig. 3). Firstly,
through big-data analysis, including genomics, transcriptom-
ics, metabolomics, proteomics, and phenomics, candidate
VO genes associated with important traits in plants can be
identified. These VQ genes may be related to plant responses
to biotic or abiotic stress, growth and development, yield
and quality, and on the other hand, may be related to plant
hormones, metabolites, and nutrients. Secondly, based on
the structure, interactions, and pathways of VQ genes, key
active sites and motifs on VQ genes, as well as core regula-
tory elements on their promoter sequence, can be identi-
fied. According to this information, we can knock out one
or more VQ genes (to study gene function), replace key loci
(to alter protein activity through homologous recombina-
tion, base editing, or primer editing), delete specific frag-
ment (to study the function of a certain region), insert spe-
cific fragment (to fuse with other proteins to generate new
functional protein, or insert tags to observe gene real-time
dynamics, including protein interactions and changes in gene
expression levels), and edit promoter (to delete, replace, or
insert certain sequences to alter gene expression). Thirdly,
strategies such as manual design, artificial intelligence
(AD) design, genome editing, transgene, and mutant library
screening can be utilized to achieve the modification of VQ
genes. Especially in Al design, it has begun to be highly
recognized and increasingly applied in protein structure
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Fig.2 The functional model and interaction network of VQ family
genes. When faced with pathogen invasion or adversity stress, plants
intracellular signal transduction will occur. Subsequently, the interac-
tion between VQ protein and different proteins such as MAPK, CaM,
E3, and transcription factors will be strengthened, which in turn
affects the transcriptional activation or inhibition activity of these
transcription factors, causing changes in downstream gene expres-
sion, ultimately affecting plant response and phenotype. The bot-

prediction and new functional protein development (Baek
et al. 2021; Tunyasuvunakool et al. 2021; Bryant et al. 2022;
Dauparas et al. 2022; Wang et al. 2022b; Huang et al. 2023;
Lutz et al. 2023; Madani et al. 2023; Schuster et al. 2023;
Watson et al. 2023). Fourthly, the characteristics of VQ
gene molecular design materials will be clarified through
molecular level evaluation, phenotype identification, and
functional verification. Finally, the working mechanisms of

tom frame displays a typical signal transduction mode, namely the
‘MAPK-VQ-E3-WRKY’ cascade. When exposed to external stimuli,
the MAPK phosphorylation cascades are activated, MAPK phospho-
rylates VQ protein. Then, E3 ubiquitin ligase recognizes and ubig-
uitinates the phosphorylated VQ protein, leading to its degradation
through the 26S proteasome pathway, thereby disassembling the VQ-
WRKY complex and completely releasing WRKY transcription fac-
tor to regulate the expression of downstream genes

the VQ gene can be revealed, and a series of new materials
with specific or comprehensive traits improved can also be
obtained. This provides clear research ideas and implemen-
tation approaches for further utilizing genetic resources to
achieve molecular design breeding, intelligent breeding, and
precision breeding.

@ Springer



16 Page 16 0of 23

Planta (2024) 259:16

Cis-element 1 I Cis-element 2 ICis-element 3
CRISPR/Cas Morit 1 [ Motif2 | Motif 3 [ VQ domain
- Promoter Gene Inserted Fragment
El E2 E3 Ml vQ M2 M3 IF

Growth < > Defense

Biotic/abiotic stress

Genomics Growth/development
1 . . Gene structure Key loci
Transcriptomics Yield and quality
Big-data analvsis ——> VO gene _ Interactions — Motifs
g Y Metabolomics

Hormones Pathway Promoter
Proteomics Il

Metabolites
Phenomics

Nutrients

Gene knockout Manual design

Key loci replacement Al design

Fragment deletion Genome editing

—

Fragment insertion Transgene

Promoter editing Mutant library

Fig.3 Molecular design breeding strategy based on VQ gene. In the
structure of VQ genes, blocks with different colors represent differ-
ent functional units. Three different elements are exemplified on the
promoter and gene sequences, respectively. E1 represents cis-element
1, E2 represents cis-element 2, and E3 represents cis-element 3; M1
represents motif 1, M2 represents motif 2, and M3 represents motif

Conclusion and prospects

VQ proteins are a class of VQ motif-containing proteins that
widely exist in plants as a multigene family. Early studies
suggested that VQ family is a plant-specific transcription
regulatory factor (Jing and Lin 2015), but afterwards, single
or multiple VQ genes were identified in some fungi, lower
animals, and bacteria, proving that it is not unique to plants,
but an ancient gene family (Jiang et al. 2018). The VQ gene
family has been widely identified and characterized in vari-
ous plants, and they have unique structural and evolution-
ary features. They are not only involved in the response to
biotic and abiotic stresses, but also involved in the regula-
tion of various life processes in plants. By interacting with

@ Springer

Molecular evaluation Mechanism exploration

Phenotypic identification —> Specific trait improvement

Functional verification Comprehensive trait improvement

3; VQ represents VQ domain; IF represents the inserted fragment.
Mining candidate VQ genes through big-data analysis, identifying key
loci, and applying genome editing tools for modification. The modifi-
cation of cis-elements in the promoter and motifs in the coding region
will further promote the working mechanism analysis of VQ proteins
and create a series of new materials with different phenotypes

many proteins such as MAPK and WRKY, VQ proteins play
a very important role in balancing plant stress resistance,
immunity, and growth and development. In this paper, we
comprehensively summarized all research on the VQ gene to
date, including member identification, molecular character-
istics, biological functions, interacting proteins, and working
mechanisms, and further depicted the functional model and
regulatory network of VQ proteins, as well as its application
in molecular breeding. These results can help us to gain a
deeper understanding of the VQ family and the interactions
between plants and the environment, and further promote
their research and application.

However, there are still many limitations and urgent
problems in the current research on VQ genes. Here, we
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elucidated these limitations and proposed corresponding
solutions and future prospects. Firstly, although the num-
ber, structure, and expression pattern of VQ genes have been
preliminarily analyzed in some plants, published studies
on their functions and mechanisms are mainly focused on
Arabidopsis, with little research on other higher plants, espe-
cially crops. Therefore, we need to further explore VQ func-
tional genes in more plants with higher application value,
extensively and deeply reveal their functions and working
mechanisms, and fully utilize their molecular and evolution-
ary characteristics. In addition, research on VQ family genes
mostly focuses on angiosperms, and the existence status,
specific functions, and evolutionary relationships of VQ
genes in gymnosperms and other plants also require further
exploration and utilization. Secondly, the VQ family con-
tains a large number of members with significant sequence
variations, so it remains to be determined whether the VQ
motif plays an important role only in certain VQ proteins.
This means that although some proteins contain VQ motif,
this motif or even the entire protein actually does not play
any role. Therefore, it is of great value to identify the VQ
proteins with key regulatory capabilities and discover their
structural and functional patterns. Moreover, mutations in
the VQ motif can switch its transcriptional regulatory activ-
ity from inhibition to activation (Li et al. 2014a), remind-
ing us to manipulate its activity through gene replacement
or base editing, which may produce diverse plant pheno-
types. Thirdly, from the perspective of sequence similar-
ity, interacting proteins, and gene expression patterns, VQ
proteins exhibit functional diversity or redundancy, which
still needs further experimental verification. For example,
both AtVQI12 and AtVQ29 can negatively regulate plant
defense against B. cinerea, and vq12/vq29 double-mutant
plants displayed greater resistance than vg29 single-mutant
plants and wild-type plants (Wang et al. 2015b). But once
these genes mutate simultaneously, although it may greatly
improve plant resistance, it may also have a significant
impact on plant development. Therefore, it will be of great
significance for crop breeding if knocking out some VQ
genes can observably improve plant resistance or agronomic
traits without affecting growth and development, such as
OsVQ25 (Hao et al. 2022). Fourthly, the working mechanism
of VQ proteins mainly focuses on some known interaction
patterns, such as MAPK-VQ, WRKY-VQ, CaM-VQ, and
E3-VQ. However, the multiple roles of VQ proteins in plant
growth, development, defense, and stress response indicate
that the signal transduction of these processes requires strict
regulation and fine-tuning. Therefore, more interaction com-
binations (such as MYB-VQ, MADS-VQ, AP2/ERF-VQ,
and bHLH-VQ), more specific pathways or mechanisms
(such as regulatory mechanisms of plant development), and
even more upstream and downstream networks need to be
further uncovered. Fifthly, the application of VQ genes in

breeding is still lacking. Although VQ genes play a very
important regulatory role and have been extensively stud-
ied, they are rarely used in breeding practices and VQ gene
resources have not been fully utilized. At present, big-data
platform breeding, molecular design breeding, and smart
agriculture have gradually become the trend and theme of
agricultural development. They associate genes with agro-
nomic traits, decrypt and manipulate plant life codes from a
molecular perspective, and obtain controllable new materials
for crop improvement. Therefore, studying the characteris-
tics and functions of multiple motifs in the VQ gene, utiliz-
ing genome editing and other technologies to explore their
important sites, and creating new materials with different
phenotypes and agronomic traits will greatly promote the
application of the VQ gene family in crop breeding.

In conclusion, this study systematically reviewed the
structural and functional characteristics of VQ genes in
plants, as well as their working mechanisms and regulatory
networks. However, despite many achievements, the cur-
rent research on VQ family genes is still limited. Our study
pointed out five limitations of current VQ gene research and
proposed corresponding strategies and directions. With the
advancement of technology and the deepening of research,
we believe that exploring the specific functions and mecha-
nisms of VQ genes in more plants will become a reality, and
molecular breeding strategies based on VQ genes will also
further promote the development and application of genetic
resources.
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