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ABSTRACT

Production of rare particles within rapidity gaps has been proposed as a back-
ground-free signal for the detection of new physics at hadron colliders. No
complete formalism accounts for such processes yet. We study a simple lowest-
order QCD model for their description. Concentrating on Higgs production,
we show that the calculation of the cross section pp → ppH can be embedded
into existing models which successfully account for diffractive data. We extend
those models to take into account single and double diffractive cross sections
pp → HX1X2 with a gap between the fragments X1 and X2. Using conserva-
tive scenarios, we evaluate the uncertainties in our calculation, and study the
dependence of the cross section on the gap width. We predict that Higgs pro-
duction within a gap of 4 units of rapidity is about 0.3 pb for a 100 GeV Higgs
at the Tevatron, and almost 2 pb for a 400 GeV Higgs within a gap of 6 units
at the LHC with

√
s=14 TeV.
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1. Rapidity gaps as a detection tool

At hadron colliders, rare high-Q2 processes can be produced in the usual hard collision
picture, where two partons, one from each nucleon, collide head-on and annihilate into the
rare particle one is trying to produce. The big drawback of such a production mechanism
is that hadrons cannot simply loose their partons, since the annihilation of two partons
leaves the initial nucleons in a coloured state. This means that they will not fragment
independently, but rather that a colour string will link them. When they pull apart,
the spectator partons will break the string. Hadronic matter will then populate most of
the central phase space. However in roughly 10% of the hard scattering events at HERA,
further interactions neutralize the colour of the proton fragments, and lead to large rapidity
gaps [1].

If one manages to produce a rare particle without changing the colour of the nucleons,
then very little hadronic activity should be present in the event. Of course, both nucleons
will still fragment, as the production of a heavy particle imbalances the kinematics of their
partons, but the two fragmentations will be independent, as they are not correlated by
colour strings. Hence the produced hadrons will follow the direction of the initial nucleons
and there will be a large rapidity gap with no hadronic remnants. The rare particle will
often be produced within the gap, and hence its decay should be essentially background-free.
Bjorken [2] has suggested using such rapidity gaps as a means of detecting new physics.

Colour-singlet exchange between protons is in fact a very common event, and it has been
known and observed for a long time. Indeed, the simplest kind of event with a rapidity gap
is the elastic scattering pp→ pp, which accounts for about 20% of the total cross section at
the Tevatron [3, 4]. Another 20% of the cross section is due to single diffractive scattering
pp → pX, and to double diffractive scattering pp → X1X2, both processes leading to a
large rapidity gap between produced hadrons. Hence the study of rare particle production
in a rapidity gap can be seen as the inclusion of a high-mass component into soft, low-Q2

diffractive physics.

Several attempts have been made to describe this process within a structure function
formalism, following Ingelman and Schlein [5], and the demonstration by UA8 that hard
diffractive scattering does exist [6]. These works use a pomeron structure function, and
treat the pomeron in a way similar to a photon. The major drawback of this approach is
that we do not know what the pomeron is made of, and whether the concept of structure
function holds for it. Similarly, the pomeron structure function is not well measured, even
if it exists, and its flux factor is also subject to question [7].

The cleanest estimate of Higgs production is presumably that due to Bialas and Land-
shoff [10], where they perform a two-gluon exchange calculation. However, their calculation
suffers from a few drawbacks:
• They rely on the Landshoff-Nachtmann [17] model of the gluon propagator, which is
taken to be a falling exponential. Although this model has reasonable phenomenological
support, it is not adapted to higher-order calculations;
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• In the case of diffractive scattering, i.e. when the proton breaks up, they rely heavily on
Regge theory, as their cross section converges only because of the non-zero Regge slope;
• They totally neglect exchanges involving several quarks in each proton ;
• They neglect the effects of the longitudinal parton kinematics, which is essential for heavy
particle production.

In this paper we remedy all the above problems: we introduce new form factors, which
describe diffractive scattering, and explain how the longitudinal kinematics comes into play.
We keep the exact kinematics of the problem, and show that the cross section are IR finite
even in perturbative QCD. We then estimate the size of the cross section, and obtain a
result surprisingly close to that of Bialas and Landshoff.

It is well known that lowest-order QCD produces surprisingly good estimates of diffrac-
tive processes. In the present case, we tune the form factors so that they reproduce the
measured elastic and diffractive cross sections. We then embed Higgs production within
soft cross sections.

Our first task will then be (in Section 2) to review the calculation of the elastic cross
sections [8, 9], and to extend it to single- and double- diffractive processes. We will then (in
Section 3) lay out the formalism which embeds high-mass particle production in diffractive
physics. Although the method is quite general and can be used for a variety of processes,
we shall concentrate in Section 4 on Higgs production. We show that our treatment leads
to a cross section which is about 20% higher than the estimate of Bialas and Landshoff, and
that the details of the infrared region do not play an overwhelming role in the determination
of the total rate. We also find that the evaluation of the elastic cross section depends very
little on the details of the model. We then evaluate the inelastic diffractive contribution
pp → X1X2H , which turns out to be a factor ∼ 3 larger than the elastic one. The final
section contains a summary of our results and conclusions.

2. QCD models of diffractive physics

Colour-singlet interactions between nucleons is an old topic. Regge theory attributes these
interactions to the exchange of mesons, grouped into Regge trajectories according to their
quantum numbers. In the high-s limit, one expects the hadronic amplitude to be a sum
of simple poles, each pole corresponding to the exchange of the particles lying on a given
Regge trajectory:

A(s, t) =
∑

i

β2
i (t) sαi(t)ξ(αi(t)) (2.1)

with ξ the Regge signature factor. A(s, t) is normalised so that the elastic cross section is
given by dσel/dt = |A|2/16π2, which through the use of the optical theorem gives a total
cross section σtot = Im (A(s, t = 0)).

The leading meson trajectories are the (degenerate) trajectories of the ρ and f mesons,
clearly present when plotting the meson states in a J vs M2 plane. When continued to
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Figure 1: The lowest order Feynman diagrams for pp colour-singlet exchange

negative values of M2, these trajectories are responsible for the fall-off of the total cross
section at small s, σtot ∼ 1/

√
s. At higher energies, the cross sections grow, and the most

natural assumption is that another term in Eq. (2.1) is responsible for that rise although
there is no observed trajectory to guide us. Hence one new Regge trajectory was invented,
the pomeron, which is whatever makes the total cross section rise at high energy (at 1800
GeV, more than 99% of the total cross section is due to pomeron exchange). In modern
day QCD, non-mesonic exchanges are attributed to multi-gluon exchanges, which naturally
produce a rising elastic cross section in perturbation theory.

Several other properties of high-s colour-singlet exchanges can be inferred from data [11]:
• The pomeron trajectory of Eq. (2.1) is well fitted from

√
s = 5 GeV to 1800 GeV, and

from t = 0 to −1 GeV2 to the form

αP (t) = 1.08 + 0.25t (2.2)

• The pomeron coupling to protons, βP (t), is well approximated by the coupling of photons,
i.e. by the Dirac elastic form factor:

F1(t) =
(3.53 − 2.79t)

(3.53 − t) (1 − t/0.71)2
(2.3)

• Colour-singlet exchanges are factorizable: the ratio of the differential cross section for
pA → XA to that for pA → pA does not depend on A [12]. Another related property is
the quark counting rule: hadronic cross sections are proportional to the number of valence
quarks contained in the hadron. This is tested not only in πp vs pp cross sections, but also
in cross sections involving strange quarks, e.g. 2σtot(Ω

−p) − σtot(Σ
−p) can be predicted

from σtot(pp), σtot(πp) and σtot(Kp) [13].

2.1. QCD models for elastic and total cross sections

The simplest QCD colour-singlet exchange consists of two gluons [14]. and is shown in
Fig. 1. If we exchange these gluons between quarks, we obtain the following (IR divergent)
amplitude [9]:

Aq(ŝ, t̂) =
8i

9
α2

Ss
∫

d2kad
2kb

dAq

d2kad2kb
(2.4)

with
dAq

d2kad2kb
= δ(2)(∆ − ka − kb)

1

(ka
2 − σa)

× 1

(kb
2 − σb)

(2.5)
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Here bold face variables represent transverse momenta. The transverse momenta ka and
kb are the components of the gluon momenta transverse to the direction of the quarks and
∆ is the total momentum exchanged by the quarks (∆2 = t). We have introduced two
gluon squared masses σa and σb.

The quark counting rule suggests that we describe a proton as made of its 3 valence
quarks, and that the sea quarks do not contribute much to these processes (or that they are
generated by higher orders). One can then show that quark-quark scattering can be simply
embedded into the proton [9, 8]. The elastic amplitude for two-gluon exchange between
two protons has been shown to be:

A2 = 8iα2
S ŝ
∫

d2kad
2kb

d2Aq
2

d2kad2kb
[E1(ka + kb) − E2(ka,kb)]

2 (2.6)

E1 and E2 are two of the three form factors that can occur in the valence quark description
of a proton. Each of these form factors correspond to the situation where 1, 2 or 3 quarks
get hit by gluons. One can write their expression in terms of the proton wavefunction ψ:

E1(k) =
∫

dM|ψ(βj, rj)|2eik.rk

E2(ka,kb) =
∫

dM|ψ(βj, rj)|2eika.rk+ikb.rl

E3(ka,kb,kc) =
∫

dM |ψ(βj , rj)|2eika.rk+ikb.rl+ikc.rm (2.7)

where βj is the fraction of longitudinal momentum (similar to Bjorken x), and rj is the
transverse position of quark j. The natural integration measure dM is defined as:

dM = [
∏

j=1,nq

dβjd
2rj ]δ

(2)(
∑

j

βjrj)δ(
∑

j

βj − 1) (2.8)

The first delta function defines the center of momentum of the hadron, whereas the second
one enforces longitudinal-momentum conservation. Assuming that hadrons are made of
valence quarks only, we normalise the wavefunction according to:

E1(0) =
∫

dM|ψ(βj, rj)|2 = 1 (2.9)

These expressions become useful once one realises that the form factor E1 also occurs in
the elastic γ∗p cross section and is none other than the Dirac elastic form factor in Eq. (2.3).
Hence one of the form factors is determined. Furthermore, E2 and E3 are related to E1 by
the following properties:

E2(ka, 0) = E1(ka)

E3(ka,kb, 0) = E2(ka,kb) (2.10)

These properties ensure the IR finiteness of Eq. (2.6). One can either calculate these form
factors using a model for the proton wave function [9], or use a simple parametrisation,
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which takes into account both the infrared and the symmetry properties of the form factors:
one simply needs to make an ansatz for E3 and obtain E2 from Eq. (2.10). We take

E3(ka,kb,kc) = E1

(

k2
a + k2

b + k2
c − c(ka · kb + ka · kc + kb · kc)

)

(2.11)

where c is an arbritrary number which can be shown to be of order one in the proton
case [9].

We have written the form factors as functions of the gluon momenta to manifestly show
that Eqs. (10) hold as the gluon momenta go on shell. However the form factor comes from
the proton wavefunction and can only depend on quark variables. Hence ka, kb, kc should
be thought of as differences between initial- and final-quark transverse momenta.

At this stage, one is in a situation to describe elastic scattering and hence, through the
use of the optical theorem, total cross sections. The model contains two free parameters,
αS and c, which we can tune to reproduce the data. One can then look at the shape of the
differential elastic cross section to check whether the model makes sense. Unfortunately, it
is well-known [8, 9, 15] that the shape of the cross section comes out wrong: its logarithmic
slope at the origin is infinite, and its curvature is too big.

One may be tempted to look into higher order corrections for a solution to this prob-
lem. Indeed, αS is not small, and the perturbative series contains terms of order αn+1

S logn s
which clearly can become big at large s. These terms can be resummed using the BFKL
techniques [16], but such formalism cannot account for diffractive scattering at low momen-
tum transfers, where unfortunately most of the cross section is concentrated. The most
obvious problem is that the rise of the cross section predicted by leading-log-s perturbative
QCD is entirely different from that which is observed in data, as its leading contribution to
the hadronic amplitude goes like s1+2.65αs . Secondly, the slope of the pomeron trajectory
α′ = 0.25 GeV−2 introduces a scale of the order of 1/

√
α′ ≈ 2 GeV, which comes in the

description of the t-dependence of the hadronic amplitude. No such scale is present in per-
turbative QCD, hence the differential elastic cross section retains its wrong shape. Finally,
the amplitude is not factorizable: this is in fact a consequence of the infrared finiteness
of the answer. Quark-quark scattering via gluon exchange diverges for massless gluons.
Nevertheless, hadron-hadron scattering is infrared finite, as the colour of the hadron gets
averaged for very long wavelength gluons. Hence there is a contribution that comes from
the diagrams where gluons are exchanged between different quarks in the hadron. These
diagrams feel the hadronic wavefunction, and hence their contribution depends on the
target.

Even the lowest-order two-gluon exchange cross section fails to reproduce the factoriz-
ability of the hadronic amplitude. This prompted Landshoff and Nachtmann [17] to pos-
tulate that gluons have an intrinsic propagation length 1/µ0 smaller than typical hadronic
sizes. The propagator hence becomes:

D(k2) = d(k2/µ2
0)/µ

2
0 (2.12)

with limx→0 xd(x) = 0. In that case, the diagrams in which the gluons couple to different
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quarks are suppressed by a factor ∼ (25 GeV −2)µ2
0 with respect to those in which the

gluons couple to the same quark line, and factorisation can be restored, for µ0 ∼ 1 GeV.

This kind of picture has recently been questioned on theoretical grounds [18], but it
seems to remain the only one available which reproduces the observed properties of the
pomeron. In the following, rather than worrying about the ultimate nature of the pomeron,
we shall adopt the following pragmatic approach: we are after rates for the production of
rare particles produced in a rapidity gap. This is very similar to single-diffractive processes
and elastic processes, except that we need to insert a rare particle production vertex in
the diagram. The best phenomenological description of such processes is two-gluon ex-
change, multiplied by a pomeron s-dependence given by Eq. (2.1). We shall first set up
the lowest-order perturbative calculation of Higgs production via two-gluon exchange. We
shall then evaluate the importance of the IR region by using a constituent-gluon propagator
which matches to the perturbative one at high k2 [19]. The model hence contains several
parameters: αS, c and a non perturbative scale µ0. We shall tune these parameters to the
highest-energy data available, reproducing the total, elastic and diffractive cross sections at
the Tevatron. Hence our calculation of Higgs production at the LHC will be parameter-free.

Note that this procedure also factors in the gap survival. Indeed, diffractive cross
sections surely produce a gap, and the final-state multiple interactions which may spoil it
are taken into account by our tuning of the parameters. As the kinematics of the process
we are considering is rather similar to diffractive scattering, we expect that the choice of
parameters which accounts for gaps in diffractive scattering will also lead to gaps in Higgs
production.

2.2. A QCD model for inelastic diffractive cross sections

Before embarking into the afore-mentioned fit, we need to develop the formalism needed to
describe inelastic diffractive cross sections, i.e. those in which a proton gets hit by a colour
singlet, but nevertheless fragments. The main ingredient needed is a new form factor for
the proton.

Hence we want to describe the process p → X instead of p → p. The simplest way to
do this is to square the amplitude, and to recognise that the cross section, including all
the interference terms in the final state, is similar to the elastic amplitude resulting from
4-gluon exchange, with gluons arranged in two singlets.

To calculate the corresponding form factor, one has to notice that one-photon exchange
leads to an E1 form factor. The two-gluon form factor can then be built by squaring the
one-photon exchange diagram, and removing the intermediate proton. This can lead to an
E1 form factor, if the same quark is hit in the two interfering diagrams, or to an E2 form
factor, if different quarks are hit. Similarly, an E2 convoluted with an E1 will give either
an E2, or an E3. In the case of the calculation of the elastic form factor, there is an extra
complication coming from the colour algebra. However, in the case at hand, the colour
algebra is trivial, because we are exchanging colour-singlets, and hence the colour factor

7



P PY

k k1 K1 K

Figure 2: One of the 81 interference terms contributing to the inelastic diffractive form factor

is factorised between the two sides of the diagram. Therefore, after we recognise that the
elastic form factors are given by 9 terms, three E1 and six E2/2, we can simply write down
the 81 possible interferences, and decide by inspection which form factor will describe them.

More formally, one first needs to assume that in diffractive scattering one goes through
an intermediate state, call it Y , described by a wave-function ψY . The only change in the
preceeding formulae (2.7) then occurs in the substitution
|ψ(βj, rj)|2 → ψ∗

p(βj , rj)ψY (βj, rj). This means that we are not going to describe interme-
diate states which have a mass very different from that of the proton, as their production
necessitates a change in the longitudinal momentum. Hence the cross section we are calcu-
lating represents the bulk of diffractive scattering, but does not reproduce the high-mass
tail. This tail presumably comes from higher-order diagrams, be they 3-pomeron vertices
or gluon radiation[20, 12].

Now, in elastic scattering, the form factor describing p → p is 3(E1(t) − E2(t)). This
comes from 9 × 2 diagrams similar to those of Fig. 1, as each gluon can be attached to 3
different quarks. The form factor describing p→ Y is the similar, with e.g. E1 given by

E1(k) =
∫

dMψ∗

p(βj, rj)ψY (βj, rj)e
ik.rk (2.13)

Squaring the amplitude, we obtain the square of these form factors. Let us for instance
concentrate on the E1 × E2 term shown in Fig. 2. It corresponds to the expression:

∑

Y

E1(k + k1)E2(K1,K) =
∑

Y

∫

[
∏

j=1,nq

dβjdrj]δ
(2)(

∑

j

βjrj)δ(
∑

j

βj − 1)

ψ∗

p(βj, rj)ψY (βj, rj)e
i(k+k1).r1

× [
∏

l=1,nq

dBldRl]δ
(2)(

∑

l

BlRl)δ(
∑

l

Bl − 1)

ψ∗

Y (Bl,Rl)ψp(Bl,Rl)e
iK1.R1+K.R2 (2.14)
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The completeness relation for the wavefunctions reads:

f(βl, rl) =
∑

Y

∫

[
∏

j=1,nq

dBjdRj]δ
(2)(

∑

j

BjRj)δ(
∑

j

Bj − 1)

ψY (βl, rl)ψ
∗

Y (Bj ,Rj)f(Bj,Rj) (2.15)

Hence formula (2.14) becomes:

∑

Y

E1(k + k1)E2(K1,K) =
∫

dMei(k+k1).r1|ψp(bl, rl)|2eiK1.r1+K.r2

= E2(k + k1 + K1,K) (2.16)

All the other 80 interference terms can be worked out similarly, and we get the form factor
in the inclusive case from the square of the amplitudes.

Noting that the four momenta entering the form factor have to sum to zero (as we
are squaring an amplitude, the initial and the final states must be identical), we use the
short-hand notation: E2(l) ≡ E2(l,−l), E3(l,L) ≡ E3(l,L,−l − L). We then obtain the
following:

3 F (k,k1,K1,K) = 3 [1 − E2(k) − E2(k1) − E2(K1) − E2(K)

+ 2E2(k + k1) +
1

2
E2(k + K) +

1

2
E2(k + K1) (2.17)

− E3(k,k1) − E3(K,K1) +
1

2
E3(k1,K1) +

1

2
E3(k,K1) +

1

2
E3(k,K) +

1

2
E3(K,k1)]

Note that we recover the same IR behaviour of the square form factor as we had for
its elastic components: F(k1,k2,k3,k4) → 0 for any k2

i → 0. This insures the infrared
finiteness of the answer.

The diffractive cross section then has the same form as the square of the elastic ampli-
tude, except that the form factor 81[E1 − E2]

4 gets replaced by 9F2.

2.3. Best values of parameters

We are now in a position to fix the parameters of the model. As we need to extrapolate
to the LHC, we use Tevatron data. The fits we obtain are good to about 10% in the
perturbative case. Slightly better results are obtained if we smooth the infrared region of
the propagator, using a constituent-gluon propagator, as explained at the end of Section
2.1.

Table 1: Diffractive data

experiment σtot (mb) σel (mb) 2σsd (mb)
CDF [3] 80.03 ± 2.24 19.7 ± 0.85 9.46 ± 0.44
E710 [4] 72.2 ± 2.7 16.6 ± 0.7 9.37 ± 2.9
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p1

p1p1

Figure 3: The Feynman diagrams contributing to H boson production in a rapidity gap.

The E710 data are well reproduced by the following set of parameters:

Table 2: Parameters reproducing the data of Table 1

propagator αS c µ0 (GeV)
perturbative 0.88 0.61 -

constituent [19] 1.52 0.11 1.9

Note that in the case of the constituent gauge propagator, the running of the coupling
is included in the gluon propagator, and that in this case the value of αS is that at the
renormalisation point µ0.

3. Heavy Particle Production

The purpose of this work is to estimate the cross section for the production of a heavy
particle H within the central region, hence the heavy particle must be produced within the
gluon exchange, and not as a result of the proton fragmentation. One can describe the
production mechanism via an effective gluon-gluon-H vertex:

Wµν = δab(k1 · k2g
µν − kµ

1k
ν
2)
W1

m2
H

+ (k2
1k

2
2g

µν + kµ
1k

ν
2k1 · k2 − kµ

1k
ν
1k

2
2 − kµ

2k
ν
2k

2
1)
W2

m4
H

(3.1)

and the specialisation to a specific particle is done via the calculation of W1 and W2.

Once this vertex is known, we must embed it into the two-gluon exchange graphs. One
can couple the vertex to either gluon, and there are two two-gluon exchange graphs, hence

10



Hk2
k1q1

q2
kp
p0 KQ1

Q2
p1
p2K2
K1

p0
p

Figure 4: The square of the Feynman diagram contributing to H production in a rapidity gap. The
imaginary part of this diagrams gives the total cross section for the process in Fig. 3. The dash-dotted line
shows the cuts used in obtaining the imaginary part.

in principle we have to calculate four diagrams. However, as noted in Ref. [10], the sum of
the four diagrams in Fig. 3 is equal to the s-channel discontinuity of the first one. Thus we
can obtain the quark-level H production cross section by calculating the imaginary part of
the diagram in Fig. 4.

Heavy particle production forces the gluons to carry a non-vanishing longitudinal mo-
mentum, hence the kinematics is not purely transverse anymore. We shall have to modify
slightly the expressions for the form factors to take this into account, and these form factors
will then allow us to go from the process qq → Hqq to pp→ Hpp, or pp→ HX1X2.

3.1. Kinematics

The expression for the quark-level cross section is given by:

dσ̂ =
(2/9)2

8ŝ
|M|2 (3.2)

with the 2/9 the colour factor for two-gluon exchange.

The contribution to the total cross section of the process depicted in Fig 3 is arrived at
by calculating the imaginary part of the diagram in Fig 4 via cutting rules. In the notation
of Fig. 4, the square of the imaginary part of the amplitude given by:

|M|2 =
α4

S

2π5

∫

d4kd4Kd4p1d
4p2δ+(p2

1)δ+(p2
2)δ+(q2

1)δ+(q2
2)δ+(Q2

1)δ+(Q2
2)

δ+(H2 −M2
H)M̃ (3.3)

where M̃ is the squared differential amplitude given by Feynman rules (see the next section)
and δ+(k2) = δ(k2)θ(k0).
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Let us rewrite the momenta in terms of Sudakov variables:

k =
x̄

ŝ
p+

ȳ

ŝ
p′ + k (3.4)

p1 = x1p+
ȳ1

ŝ
p′ + p1 (3.5)

p2 =
x̄2

ŝ
p + y2p

′ + p2 (3.6)

with k,p1,p2 transverse to p and p′.
We assume that the off-shellness of the incoming quarks can be neglected, so that

p.p = 0, p.p′ = ŝ/2, p′.p′ = 0 (3.7)

One can then solve for the δ functions putting the quarks on-shell:

δ(q2
1) = δ(ȳ + k2) (3.8)

δ(q2
2) = δ(x̄− k2) (3.9)

δ(p2
1) =

1

x1
δ(ȳ1 +

p2
1

x1
) (3.10)

δ(p2
2) =

1

y2
δ(x̄2 +

p2
2

y2
) (3.11)

Treating the δ+(Q2
1)δ+(Q2

2) in a similar manner, we arrive at:

d4k d4K δ(q2
1)δ(q2

2)δ(Q2
1)δ(Q

2
2) =

1

4ŝ2
d2kd2K (3.12)

d4p1d
4p2 δ(p

2
1)δ(p2

2) =
1

4

dx1

x1

dy2

y2

d2p1d
2p2 (3.13)

We now have to deal with the δ-function putting the H on-shell:

δ((p1 +p2 −p−p′)2 −M2
H) = δ(2p1.p2 + ŝ(1−x1)(1−y2) +

p2
1p

2
2

x1y2
+

p2
1

x1
+

p2
2

y2
−M2

H) (3.14)

We will eventually use it to eliminate x1 or y2.

Hence the differential cross section becomes:

dσ̂ =
1

81 × 8ŝ

α4
s

(2π)5ŝ2

dx1

x1

dy2

y2
d2p1d

2p2d
2kd2K

× δ

(

ŝ(1 − x1)(1 − y2) + (p1 + p2)
2 +

p2
1

x1
+

p2
2

y2
−M2

H

)

M̃ (3.15)

The positivity of the energy of the on-shell lines dictates the integration limits:

0 < x1, y2 < 1 , |ȳ + x̄| < ŝ , |Ȳ + X̄| < ŝ . (3.16)
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All the dot products can then be expressed in terms of the transverse kinematics and
of the longitudinal momentum fractions x1 and y2. The integration bounds (3.16) do not
guarantee the existence of a rapidity gap, but simply that of a physical process.

Several conditions are necessary for the existence of a gap. First of all, the final state
must not be too far off-shell. If the incoming proton has momentum P, then the outgoing
X cluster has momentum PX ≡ P − p + p1. Its mass is given by (write P = p/xB ≡ ωBp)
M2

X = |p1|2(ωB − 1)/x1. Similarly for the outgoing cluster X ′ with momentum PX′ ≡
P ′ − p′ + p2 we have M2

X′ = |p2|2(ω′

B − 1)/y2.

The rapidity gap ∆y between the two outgoing quarks is given by:

∆y ≡ 1
2

ln
p′.p1

p.p1
− 1

2
ln
p′.p2

p.p2
= ln

x1y2ŝ

|p1||p2|
(3.17)

and that between the two hadronic clusters is:

∆y ≡ 1
2

ln
P ′.PX

P.PX
− 1

2
ln

P ′.PX′

P.PX′

=
1

2
log

(

s2x1y2(ωB + x1 − 1)(ω′

B + y2 − 1)

ω2
Bω

′2
Bp2

1p
2
2

)

(3.18)

Setting aside the question of gap survival (see section 4.4), a large rapidity gap will be
present if the fractional longitudinal momentum loss of the quarks 1 − x1, 1 − y2, and the
transverse momentum fraction, |p1||p2|/ŝ, are small. The gluon propagators automatically
provide us with small |p1||p2|/s.

Whereas large gaps are produced for x1 and y2 near one, heavy particle production
requires that neither x1 nor y2 be too close to unity:

(1 − x1)(1 − y2)ŝ ≈M2
H . (3.19)

Since for valence quarks, ŝ ≈ s/9, we arrive at the kinematic limit

MH ≤ (1 − x1)
√
s/3 (3.20)

We shall take x1 > 0.7, since cross sections then become mainly diffractive [12]. Roughly
speaking, particle production and detection in a rapidity gap is limited to masses less than
an order of magnitude below the center of mass energy. Note that here x1 is defined at the
quark level, and that this cut is similar to that used by Bialas and Landshoff.

3.2. The s-channel discontinuity of the amplitude

Let us now turn to the evaluation of |M|2 (see Eq. (3.3)), which is what couples to the
diffractive form factor. Because of the flat high-s behaviour of the cross section, and
because the exchange is even under charge parity, the amplitude M is equal to its s-channel
discontinuity.
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M̃ is made of two traces, T1 and T2, six gluon propagators, D(k2), and two effective
vertices from the Higgs loop, ΦNΛ

1 and φνλ
1 . We thus have, (see Eq. (3.3)):

M̃ = T1T2Φ
NΛ
1 φνλ

1 D(k2
1)D(k2

2)D(k2)D(K2
1 )D(K2

2)D(K2) (3.21)

The traces are given by:

T1 = Tr(p.γ γµ q1.γ γν p1.γ γN Q1.γ γM)

T2 = Tr(p′.γ γµ q2.γ γλ p2.γ γΛ Q2.γ γM) (3.22)

and the tensor structures in Eq. (3.1) associated with the ggH vertex are:

ΦNΛ
1 = (K1.K2g

NΛ −KN
2 K

Λ
1 )W1/m

2
H

φνλ
1 = (k1.k2g

νλ − kν
2k

λ
1 )W1/m

2
H (3.23)

Here, we have neglected the W2 term, as it will be smaller in the special instance of Higgs
production (see section 4 and the Appendix).

The number of terms arising from the traces, after we perform a Sudakov expansion of
the momenta, is of the order of one million and so we will keep only the leading order in
the quark center of mass energy ŝ. The final answer then takes the form:

M̃ = ŝ4AD(k2
1)D(k2

2)D(k2)D(K2
1)D(K2

2)D(K2) (3.24)

Here D is the gluon propagator and A is a complicated function of the transverse momenta,
which includes the triangle vertex. We do not quote the full expression for A as used in the
program since that is not very illuminating. Instead we present the first terms in a series
expansion in 1 − x1, 1 − y2, which as discussed in the previous section, are required to be
small (< 0.3) to insure a large rapidity gap.

A = (A0 + A1(1 − x1) + A2(1 − y2))W1W
′

1
∗

/M4
H (3.25)

with:

A0 = 64 (k.p1 − k.p2 − k2) (K.p1 − K.p2 −K2)

A1 = −64 [(k.p1 − k2) (2 K.p1 −K.p2 − 2 K2) − (K.p1 − K2) k.p2]

A2 = 64 [(k.p2 + k2) (K.p1 − 2 K.p2 − 2 K2) + (K.p2 + K2) k.p1] (3.26)

3.3. The form factor

We have discussed elastic and diffractive form factors when all gluon momenta are trans-
verse. We are however interested in producing a Higgs particle in the rapidity gap. This
requires that a significant fraction of the proton longitudinal momentum be carried by the
gluons. Our previous expressions for the form factor needs to be adapted to this situation.
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(b)

H
(a)

Hk1 kk k1P P P 0P 0
Figure 5: Valence quark description of proton where one (a) or two (b) quarks get hit by a gluon.

Let us first consider the process pp → ppH , similar to the elastic cross section in
Eq. (2.6). This involves two form factors corresponding to diagrams (5a) and (5b). One
starts with a proton of momentum P and ends with an on-shell proton of momentum

P1 = x1P − p2
1

x1s
P ′ + p1 (3.27)

P ′ is the momentum of the proton with three momentum opposite to that of P. What
matters for the quark recombination, and hence for the form factor, is the transverse
kinematics in the P1 frame. The total momentum transfer is ∆ = P1 − P = k + k1, with

k = O(1/s)P +O(1/s)P ′ + k

k1 = (x1 − 1)P +O(1/s)P ′ + p1 − k (3.28)

We want to calculate the transverse parts of the gluon momenta k1 and k w.r.t. the P1

direction. The momentum of the first gluon k is purely transverse to order 1/s and does not
directly enter into Higgs production. To order 1/s its transverse part remains unchanged.
The momentum k1 has a non-negligible component in the P direction. With respect to the
P1 = P + k + k1 direction it becomes

k1 = (
x1 − 1

x1
)(P + k + k1) + k̃1 +O(1/s) (3.29)

where the vector k̃1 is now transverse to P1. Solving this equation for k1 we get

k1

x1

= (x1 − 1)P +O(1/s)P ′ +
x1 − 1

x1

k + k̃1 (3.30)

which by comparing to Eq. (3.28) gives:

k̃1 =
p1 − k

x1
− x1 − 1

x1
k =

p1

x1
− k (3.31)

Hence, the transverse momenta which must enter the form factor are k and k̃1. We need
to worry a little further as the coefficients of the dot products can also be x1 dependent.
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To check this, and to check how x1 enters into the diagram, we consider the simplest
case: the form factor E1 in the case of elastic of pion scattering. way is to consider E1 in
the case of pion exchange.

First solve for the pion kinematics: let ∆ = (x1 − 1) P + 2β∆/s P ′ + ∆, with P.P = 0,
P ′.P ′ = 0 and P.P ′ = s/2. The on-shell condition for the final pion, (P + ∆).(P + ∆) = 0,
gives:

β∆ = − ∆2

2 x1
(3.32)

and the total momentum transfer squared is:

t =
∆2

x1

= x1(k̃1 + k̃) (3.33)

As we are calculating the imaginary part of the diagram, we have a few on-shell condi-
tions for some of the quarks: one of the incoming quarks is on-shell, call its momentum r,
with r = x P + 2βr/s P ′ + r. The on-shell condition r.r = 0 gives

βr = − r2

2 x
(3.34)

The off-shellness of the other quark is:

m2 = (P − r).(P − r) =
r2

x
(3.35)

The momentum of the first gluon is given by k = 2αk/s P + 2βk/s P ′ + k, and the last
on-shell condition, (P − r + k).(P − r + k) = 0, gives:

βk =
k2 x− 2 k.r x+ r2

2 x (x− 1)
+O(1/s) (3.36)

The second gluon is k1 = ∆ − k, with

k1 ≈ (x1 − 1) P +
−2 x1βk − x1 t

x1 s
P ′ − k + ∆ (3.37)

Now, the dot product of the two quarks making up the proton is:

A2 = 2r.(p− r + ∆) = −2(p− r + ∆).(p− r + ∆) = −m2x1 + 2r.∆ − x t (3.38)

The form factor emerges as a convolution of wavefunctions. These can only depend on
the dot products of the 2 quarks making the proton, hence on A1 and A2. In the case where
x1 = 1, one gets:

∫

ψ∗(
r2

x
)ψ(

r√
x
−

√
x∆)2d2rdx (3.39)
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which clearly is a function of ∆ only. In the more general case, one gets:

∫

ψ∗(
r2

x
)ψ(

r
√

x/x1

−
√

x/x1∆)2d2rdx (3.40)

So, for t1 >> m2, one gets F1(t1). However, this is not true in general, and the form factor
clearly has an extra x1 dependence: ∆ = 0 does not lead to a form factor equal to 1. One
can in fact make a rough guess: the effective argument is t̃ = t+ < m2

x
> (1 − x1) and

< m2

x
>≈ 9 × 0.32 ≈ 1 GeV2.

Hence we see that the ansatz is as follows: replace the transverse vector k1 by k̃1, and
multiply the overall argument by x1. Note that this guarantees the infrared finiteness of the
answer when k2 or k2

1 = k̃2/x1 → 0. Clearly, this procedure straightforwardly generalises
to the diffractive case pp→ X1X2H .

4. Higgs production

Apart from the form factors W1 and W2, the preceeding formalism can be applied to the
production of any rare particle within a rapidity gap. We shall now specialise the calculation
to the production of the minimal standard model Higgs boson. We first calculate the
effective coupling resulting from the triangle graphs.

4.1. Higgs-gluon-gluon effective vertex

By calculating the diagrams in Fig. 6 we arrive at the following effective Higgs-gluon-gluon
vertex:

δab(k1 · k2g
µν − kµ

1k
ν
2 )
W1

m2
H

+ (k2
1k

2
2g

µν + kµ
1k

ν
2k1 · k2 − kµ

1k
ν
1k

2
2 − kµ

2k
ν
2k

2
1)
W2

m4
H

(4.1)

where

W1 =
[
√

2Gf ]1/2αsm
2
H

3π
N1 W2 =

[
√

2Gf ]1/2αsm
2
H

3π
N2 (4.2)

and

N1 = 3
∫ 1

0
dx
∫ 1−x

0
dy

1 − 4xy

D
(4.3)

N2 =
3m2

H

k1 · k2

∫ 1

0
dx
∫ 1−x

0
dy

1 − 2x− 2y + 4xy

D
(4.4)

D ≡ 1 − (2k1 · k2/m
2
t )xy + (k2

1/m
2
t )(y2 − y) + (k2

2/m
2
t )(x

2 − x) (4.5)
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Figure 6: The Higgs-gluon-gluon vertex. All quarks run around in the loop, but since the Higgs-quark-
quark coupling is proportional to its mass, the top quark contribution dominates.

Because of the kinematics of Higgs production in a rapidity gap, k2
1, k

2
2 << 2k1·k2 ≈ m2

H ,
and we can approximate the integral expression by setting k2

1, k
2
2 equal to zero:

No
1 = 3

∫ 1

0
dx
∫ 1−x

0
dy

1 − 4xy

Do
(4.6)

No
2 = 6

∫ 1

0
dx
∫ 1−x

0
dy

1 − 2x− 2y + 4xy

Do
(4.7)

Do ≡ 1 − (m2
H/m

2
t )xy − iǫ (4.8)

Note that with k2
1 and k2

2 set equal to zero it is the iǫ prescription coming from the top
quark propagators in the loop that defines the contour.

Since the off-shellness of the gluons is small compared to the Higgs mass, and since the
tensor structure (4.1) will always contract k1 with the upper side (µ) of the diagram and
k2 with the lower side (ν), the W2 term in Eq. (4.1) can be ignored, unless of course |No

2 |2
turns out to be abnormally large compared to |No

1 |2. As we explain in more detail in the
Appendix, |No

2 |2 is always at least 30% smaller than |No
1 |2 for Higgs masses of 1 TeV or

less. Thus we ignore W2 and the above effective vertex can be derived from the following
momentum space Lagrangian

Leff = Aa
µAaνH(k1 · k2g

µν − kµ
1k

ν
2 )
W1

m2
H

(4.9)

The term above, while not gauge invariant, forms part of the following gauge invariant
term.

Leff =
W1

2m2
H

Ga
µνGaµνH (4.10)

As a check we use our effective vertex to calculate the decay for H → gg and we obtain
the well-known result

Γ(H → gg) =
|W1|2

2! · 4πmH
(4.11)

where the last 2! is an identical final state particle phase space symmetry factor.3

3Our result for the effective vertex differs from the result quoted by Bialas and Landshoff by a factor 2,
presumably the above symmetry factor.
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The approximate form of N1 in Eq. (4.8) can be evaluated in closed form. Defining
a ≡ m2

H/m
2
t we have

No
1 = 3

∫ 1

0
dx
∫ 1−x

0
dy

1 − 4xy

1 − axy − iǫ

=
6

a

[

1 − (1 − 4/a)
(

arctan[
√

a/(4 − a)]
)2
]

if a ≡ m2
H

m2
t

< 4 (4.12)

=
6

a

[

1 + (1 − 4/a)
(

arctanh[
√

a/(a− 4)]
)2
]

if a ≡ m2
H

m2
t

> 4

where arctanh(x) = ln |(x+ 1)/(x− 1)| − iπ/2. At a = 4, No
1 = 3/2, and No

1 is continuous
for the entire range of a. Note the change in sign in front of the second term between the
two expressions.

4.2. The Higgs production cross section

From Eq. (3.2) we get:

σ =
1

ŝ3

(2/9)2

8

α4
s

(2π)5

∫

dx1dy2

x1y2

d2p1d
2p2d

2kd2Kδ(H2 −M2
H)M̃

3F(k, k1, K1, K) 3F(k, k2, K2, K) (4.13)

with k2
1 ≈ (k + p1)2 + (1 − x1)(k2 − p2

1), k2
2 ≈ (k + p2)2 + (1 − y2)(k

2 − p2
2), k2 ≈ k2, and

similar expressions for K2, K2
1 , K2

2 , and the Higgs momentum

H2 = (p1 + p2 − p− p′)2 = ŝ(1 − x1 +
p2

2

ŝy2

)(1 − y2 +
p2

1

ŝx1

) + (p1 + p2)
2 (4.14)

The form factors 3F(k, k1, K1, K) 3F(k, k2, K2, K) correspond to calculating the inelas-
tic cross section pp → HX1X2. To calculate pp → ppH these factors are replaced by an
expression written in terms of the Dirac elastic form factor F1(t) given in Eq. (2.3)

(3F1(t1)F1(t2))
2 where t1 = p2

1/x1 and t2 = p2
2/y2 (4.15)

In order to make explicit the flat s behaviour we first use Eq. (3.24) to substitute for M̃

σ =
ŝ

18

α4
s

(2π)5

∫

dx1dy2

x1y2
d2p1d

2p2d
2kd2Kδ(H2 −M2

H)AW1W
′∗

1 /m
4
H (4.16)

F(k, k1, K1, K)F(k, k2, K2, K)D(k2
1)D(k2

2)D(k2)D(K2
1)D(K2

2)D(K2)

M̃ brings in a factor of ŝ4 and we still need a factor of 1/ŝ so we solve the Higgs momentum
δ function for x1 or y2. (Note that scaling p1 and p2 by

√
s produces the wrong power of
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ŝ.) In order to facilitate presenting the solution, we linearise the kinematics in terms of
1 − y2. Hence

H2 ≈ ŝ((1 − x1) +
p2

2

ŝ
+ (1 − y)2)

p2
1

ŝ
)((1 − y2) +

p2
1

ŝ
+ (1 − x1)

p2
1

ŝ
) + (p1 + p2)

2

≈ ŝ((1 − x1) +
p2

2

ŝ
)((1 − y2) +

p2
1

ŝ
) + (p1 + p2)

2 (4.17)

Thus solving the δ function we get

1 − y2 ≡ (1 − y2) =
M2

H − (p1 + p2)2

ŝ((1 − x1) +
p2

2

ŝ
)
− p2

1

ŝ
(4.18)

This brings a 1/ŝ/((1 − x1) + p2
2/ŝ) from the δ function upon performing the dy2 integral

and the answer behaves like ŝ0.

There is an overall arbritrary angle in the integral with respect to which we measure
all angles. We choose to measure our angles from k. Thus d2k = dθdk2/2 = πdk2. Thus
we arrive at:

σ =
α4

s

18(2π)4

∫

dx1 dk d2p1 d
2p2 d

2K
1

x1y2

(

(1 − x1) +
p2

2

ŝ

)

× F(k, k1, K1, K) F(k, k2, K2, K) (4.19)

× D(k2
1) D(k2

2) D(k2) D(K2
1) D(K2

2 ) D(K2)

As explained in section 2, we need to multiply the above expression by a Regge factor,
∏

i=1,2

(

s
si

)α(t1)
, with si = (pi + H)2, and ti = (p − pi)

2. This is our final expression for
the cross section. Note that although the Regge factor is very important when one fits the
purely soft cross sections (as in section 2.3), it plays very little role here, because M2

H , and
hence si are sizeable fractions of ŝ.

4.3. The Bialas-Landshoff Limit

Bialas and Landshoff (BL) [10] work out the leading term in (1 − x1), (1 − y2) at p1 =
p2 = 0, and then reintroduce the p1, p2 integration after reggeisation. In this limit, we
get: k2

1 = x1k
2, k2

2 = y2k
2, A = (8 |k2|W1)

2ŝ4. To compare more easily with BL, we do not
eliminate the on-shell Higgs condition, and write:

dσ =
4

81 × 8ŝ

α4
s

(2π)5ŝ3

dx1

x1

dy2

y2

d2p1d
2p2δ((1 − x1)(1 − y2) −

M2
H

ŝ
)

× [
∫

d2k8 |k2|D(k2)D(x1k
2)D(y2k

2)W1]2ŝ4
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=
α4

s

81π5

dx1

x1

dy2

y2
d2p1d

2p2δ((1 − x1)(1 − y2) −
M2

H

ŝ
)

× [
∫

d2k |k2|D(k2)D(x1k
2)D(y2k

2)W1]
2 (4.20)

which is identical to formula (4.2) in Ref. [10] at ǫ = α′ = λ = 0, except for the factor of 2
which come from symmetrizing two identical particles as discussed in section 4.1.

Note that this is not the only simplification in their work, as they also assume that an
exponentially falling propagator multiplying F1 is a good representation of the product of
the form factors by the gluon propagators. Furthermore, their estimate of the diffractive
cross section comes from the replacement of F1 by 1, and their integrals then converge only
because of the Regge slope. We shall now see that, surprisingly, the improvements we have
introduced – higher orders in (1− x1), full form factors, propagators – do not significantly
modify the final answer.

4.4. Results

Eq. (4.20) is an eight-dimensional integral which we evaluate with the Monte-Carlo program
VEGAS [22], both for the elastic cross section, pp → ppH , (corresponding to using the
form factors in Eqs. (2.7) and (2.11)), and for the diffractive cross section, pp → XH ,
(corresponding to the form factors described in Eq. (2.17)).

We present our results for the Tevatron (
√
s = 1.8 TeV), and the LHC (

√
s = 10 TeV

and
√
s = 14 TeV), in Figs. 7,8,9. The bands represent the effect of switching from a purely

perturbative propagator to a renormalisation group improved propagator suppressed in the
infrared region. We see that the extrapolation from the purely diffractive cross sections of
section 2 to Higgs production seems to bring in relatively modest uncertainties of about
a factor 2. The upper bands are for diffractive scattering, the lower bands for elastic
scattering.

It is striking to note that our calculation leads to essentially the same conclusion as
the Bialas-Landshoff estimate. This can be understood for the following reasons. One
phenomenologically parametrises the model so as to correctly reproduce the soft elastic
and diffractive cross sections. In the Higgs production diagrams, the off-shellness of the
gluons is rather small <∼ 1 GeV2, and comparable to that in the soft diffractive processes
which we fit to. The deep infrared region is cut off by the form factors. Thus the behaviour
of the gluon propagator in the UV region and the deep IR region does not matter much,
and the uncertainties arising from the extrapolation to Higgs production are small.

The diffractive cross section (upper band) is on average about a factor 5 higher than
the elastic one (lower band). We call attention to the fact that it is really a factor 10
higher in the purely perturbative case, and a factor 3 higher if we use the constituent-gluon
propagator. In other words the perturbative calculation is the upper limit of the diffractive
band and the lower limit of the elastic band. Given the smallness of the gluon off-shellness,
we consider the perturbative result less reliable.
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Figure 7: The Higgs production cross section within a gap at 1.8 Tev
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Figure 8: The Higgs production cross section within a gap at 10 TeV
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Figure 9: The Higgs production cross section within a gap at 14 TeV
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We see that the cross section at the Tevatron is rather small, of the order of a fraction
of a picobarn, for light Higgs masses. It indeed gets rapidly cut by the condition (3.20)
which precludes production of particles of mass bigger than 200 GeV. If the Higgs is below
100 GeV, it will be observable within a rapidity gap at the Tevatron. A handful of them
may already have been produced within the 60 pb−1 available today.

Fig. 10 helps us understand the shape of the Higgs production curves, Figs. 7,8,9.
Fig. 10a shows the vertex as a function of the Higgs mass. It rises with the Higgs mass, until
one reaches the threshold for top quark production (after which the vertex is dominated
by its imaginary part). Fig. 10b shows the x1 distribution for a 100 GeV (solid line) and
a 550 GeV Higgs (dashed line), in the diffractive case, for

√
s = 10 TeV. Although the x1

distribution is higher for the higher mass (because the vertex is bigger), it gets cut off at
x1 ≈ 0.9, after which one does not have enough partonic energy to produce a 550 GeV
Higgs. Hence the low-mass Higgs cross section is higher because it is dominated by large
x1. This also shows that the dependence of the cross section on the cut-off x1 > 0.7 (used
to insure a rapidity gap) is very weak at low Higgs masses, and gets progressively larger
as the cross section decreases: the main cause of its large fall-off at large Higgs masses is
indeed the x1 cut. Putting these considerations together we can understand the dip in the
Higgs production curves before the rise peaking at about twice the top mass. Fig. 11 gives
an estimate of the size of the rapidity gap. We show the rapidity distribution of the Higgs
(thick solid line) and the partonic cluster (thin solid line). As the latter will fragment into
hadrons, we envisage a worst case scenario, where the cluster decays into a forward proton
and a backward pion. The dashed curves give the pion rapidity distributions. A gap is
clearly present for

√
s = 10 TeV, and the Higgs peak becomes sharper as the mass of the

Higgs increases. At the Tevatron, we see that the gap is reduced to a few units of rapidity,
but remains present.

5. Conclusion and further studies

We have considered the lowest order QCD diagrams that give rise to Higgs production
within a rapidity gap. They correspond to single pomeron exchange. We have found that
the cross section is stable with respect to the details of the infrared region, and that it is
a substantial fraction of the total Higgs production cross section this way at the Tevatron,
whereas the LHC will comfortably produce 1 pb of 600 GeV Higgses within a gap.

There are three main factors effecting the accuracy of our predictions: the background,
the survival of the gap, and higher order corrections. The first two effects will reduce our
estimate, the last will increase it.

Although no conventional background is expected, there will be direct heavy quark
production in the rapidity gap through the same color singlet exchange diagrams. Some
work along this line [23] indicates that this background will be tiny for Higgs masses greater
than 200 GeV. For Higgs masses less than 100 GeV the cc̄ and bb̄ background can be a
problem.
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Figure 10: (a) The Higgs production vertex as defined by Eq. (4.12). The thin solid line shows the real
part, the dashed line the imaginary part, and the thick solid line the magnitude. (b) The x1 distribution

for a 100 GeV Higgs (solid line) and a 550 GeV Higgs (dashed line), for
√
s = 10 TeV, in the diffractive

case, using a constituent-gluon propagator.
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Figure 11: The rapidity distribution of the Higgs (thick solid line), of the partonic cluster (thin solid

line), and decay pions (dashed line) at (a) the LHC with
√
s = 10 TeV and a 100 GeV Higgs (b) the LHC

with
√
s = 10 TeV and a 550 GeV Higgs (c) the Tevatron with a 100 GeV Higgs.
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Another issue to consider is the survival of the rapidity gap. Although the lowest order
diagram produces a gap, further final-state interactions between the out-going partonic
clusters might destroy it. Typical estimates for the survival of the gap give a number
between 1 and 10% [24]. However, we want to point out that such an effect is implicitly
included in our calculation: we fit the soft diffractive cross section, which already have to
include such a survival factor, and as the kinematics of the event is not very different from
the soft one, we expect those corrections to be small.

Finally, we have set up the calculation in such a way that higher orders can be calculated
 la BFKL [16]. In the elastic case these corrections dramatically increase the cross section
(e.g. a factor of

√
s/MH). We expect a similar effect in our calculation.

6. Appendix

In this Appendix we will justify neglecting the W2 term in the effective vertex given in
Eq. (4.1) when calculating Higgs boson production in a rapidity gap. Given the cuts we’ve
imposed to insure the survival the gap, the approximate form of N2 given in Eq. (4.8) can
be used. Defining a ≡ m2

H/m
2
t we have

No
2 = 6

∫ 1

0
dx
∫ 1−x

0
dy

1 − 2x− 2y + 4xy

1 − axy − iǫ
(6.1)

=
−12

a

[

5 − (1 + 4/a)
(

arctan[
√

a/(4 − a)]
)2

− 4
√

a/(4 − a)
arctan[

√

a/(4 − a)]



 if a ≡ m2
H

m2
t

< 4 (6.2)

=
−12

a

[

5 + (1 + 4/a)
(

arctanh
√

a/(a− 4)
)2

− 4
√

a/(a− 4)

(

arctanh
√

a/(a− 4)
)



 if a ≡ m2
H

m2
t

> 4 (6.3)

At a = 4, No
2 = −15 + 3π2/2. It is the iǫ prescription that tells us how to analytically

continue from a < 4 to a > 4 by replacing
√

a

4 − a
→ i

√

a

a− 4

arctan

√

a

4 − a
→ i



ln





√

a/(a− 4) + 1
√

a/(a− 4) − 1



− i
π

2



 ≡ i

(

arctanh

√

a

a− 4

)

(6.4)

We are interested in showing that the No
2 is never much greater than the No

1 term. The
analytic expression for No

1 is given in Eq. (4.12). We plot the ratio |No
2 |2/|No

1 |2 in Fig. 12
and see that it is always less than 0.30.
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Figure 12: The ratio |No
2 |2/|No

1 |2 as a function of a ≡ m2
H/m

2
t between a = 0 and a = 33. With a

top mass of mt = 175 GeV this corresponds to a Higgs mass 0 < mH < 1 TeV.
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Y.Y. Balitskǐı and L.N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822

[17] P.V. Landshoff and O. Nachtmann, Z. Phys. C35 (1987) 405.

[18] K. Buttner and M.R. Pennington, preprint DTP-95-54, (June 1995), e-Print Archive:
hep-ph/9506449.

[19] J. R. Cudell and D.A. Ross, Nucl. Phys. B359 (1991) 247
J.R. Cudell, Proceedings of the 4th Blois Workshop on Elastic & Diffractive Scattering,
La Biodola, Italy (1991).

[20] M.G. Ryskin, Sov.J.Nucl.Phys. 52 (1990) 529, Nuclear Physics B (Proc.Suppl.) 18C

(1991) 162.

[21] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s guide,
preprint SCIPP-89/13, June 1989, (Addison-Wesley, 1991); Errata, preprint SCIPP-
92-58, Dec 1992, e-Print Archive: hep-ph/9302272.

[22] G.P. Lepage, preprint CLNS-80/447 (March 1980).

[23] A. Bialas and W. Szeremeta, Phys.Lett. B296 (1992) 191; W. Szeremeta, Acta Phys.
Pol. B24 (1993) 1159.

[24] R.S. Fletcher, Phys. Lett. B320 (1994) 373-376;
J.D. Bjorken (SLAC). SLAC-PUB-95-6949, Jul 1995;
E. Gotsman, E.M. Levin, U. Maor, Phys. Lett. B353 (1995) 526.

30

http://arXiv.org/abs/hep-ph/9506449
http://arXiv.org/abs/hep-ph/9302272

