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Analytic properties
of different unitarization schemes
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Abstract. The analytic properties of the eikonal and U -matrix unitarization sche-
mes are examined. It is shown that the basic properties of these schemes are
identical. Both can fill the full circle of unitarity, and both can lead to standard and
non-standard asymptotic relations for σel/σtot. The relation between the phases
of the unitarised amplitudes in each scheme is examined, and it is shown that
demanding equivalence of the two schemes leads to a bound on the phase in the
U -matrix scheme.

1 Introduction

At the LHC, the investigation of diffraction processes will occupy an important place. However,
the diffraction processes at very high energies does not simplify asymptotically, but can display
complicated features [1,2]. This concerns especially the asymptotic unitarity bound connected
with the so-called Black Disk Limit (BDL).

Summation of different sets of diagrams in the tree approximation can lead to different uni-
tarization procedures of the Born scattering amplitude. In the partial-wave language, we need to
sum many different waves with l → ∞ and this leads to the impact parameter representation [3]
converting the summation over l into an integration over b.

The different unitarization procedures are then naturally formulated in the impact-parame-
ter representation. As they include different sets of inelastic states in the s channel, this leads
to unitarization schemes with different coefficients in front of the multiple exchanges.

In the impact parameter representation, we shall write the Born term of the amplitude as

χ(s, b) =
1

4π

∫ ∞

0

eib·q FBorn(s, q2) d2
q, (1)

where we have dropped the kinematical factor 1/
√

s(s − 2m2
p) and a factor s in front of F . For

proton-proton scattering, where five helicity amplitudes exist, the non-flip Born term in the
near forward direction is FBorn(s, t) = F+

Born(s, t) = F1(s, t) + F3(s, t). and χ(s, b) is, in first
approximation, given by that non-flip helicity amplitude only. After the unitarization procedure
we get

σtot(s) = 4π

∫ ∞

0

G(χ(s, b)) b db. (2)
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Two unitarization schemes are more commonly used: one is the eikonal representation where

G(s, b) = [1 − e−χ(s,b)], (3)

and the other is the U -matrix representation [4,5] where

G(s, b) = UT (s, b) = 2
χ̂(s, b)

1 + χ̂
, (4)

with χ̂(s, b) = χ(s, b)/2. Of course, the eikonal representation can be obtained in different ways
starting from simple diagrams in the tree approximation. But many additional diagrams exist
when inelastic states in the s-channel are taken into account. Other approaches exist, see for
example [6,7,8], in which renormalized eikonal representations were obtained. No one really
knows which are the leading diagrams and how to sum them. Therefore, all these approaches
of the eikonal scheme remain phenomenological.

There are two most important conditions which must be satisfied by any unitarization
scheme. Firstly, in the limit of small energies, every unitarization representation must reduce to
the same scattering amplitude. Of course, the way this happens can depend on the representa-
tion of the Born amplitude in the model. The various unitarization schemes will give different
results [9,10] only at high energies, when the number of diagrams and their forms are essentially
different. Secondly, the unitarized amplitude cannot exceed the upper unitarity bound. In the
different normalizations, this bound may equal to 1 or 2.

At LHC energies we will be in a regime close to the unitarity bound. Hence, it is very
important to specify the possible domains of validity of the various unitarization schemes and
to determine, from the analysis of the experimental data, which form really corresponds to the
physical picture.

2 Properties of the standard U-matrix approach

The standard U matrix was intensively explored in [5], where it was written, in the partial-wave
language, as Ul(t) so that it is bounded by Ul ≤ 1. In the impact parameter representation,
the properties of the U matrix were explored in [11], where the U matrix was taken as pure
imaginary. We will denote it by iUT (s, b) and it corresponds to the following definition of the
Born amplitude, which varies from 0 to ∞:

χ̂(s, b) =
1

2
ℑm(FBorn(s, b)). (5)

In this case, the relation with the S matrix will be

S(s, b) =
1 − χ̂(s, b)

1 + χ̂(s, b)
. (6)

We can see that when χ̂ varies in the domain [0,∞], the S matrix varies in the interval [−1, +1].
Hence the scattering amplitude in the impact parameter space G(s, b) = T (s, b) = 1 − S(s, b)
will span the domain [0, 2]. The upper value is the maximum of the unitarity bound. In this case,
the unitarised amplitude can fill the full circle of unitarity, and remains in it for all energies.

This form of unitarization leads to unusual properties at super-high energies as was shown
in [11]; with non-standard properties as s → ∞: σinel/σtot → 0, σel/σtot → 1.

In a recent paper [12], it has been claimed that such properties arise from the difference
between the rational representation (U matrix) and the exponential representation (eikonal).
Let us show that it is not so. We can consider an extended eikonal in the form

σtot(s) = 8π

∫

∞

0

ER(s, b) b db = 8π

∫

∞

0

[1 − e−χ̂(s,b)] b db. (7)
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Formally, this is the same as the standard form of the eikonal (3), except for the coefficient
in front of the overlap function and for the use of χ̂(s, b) instead of χ(s, b). At small energy
(i.e. small χ̂), we obtain the standard Born amplitude. But at high energy, we obtain the same
properties as in the case of the UT -matrix representation. Indeed, the inelastic cross section can
be written

η(s, b) =
1

2
exp(−χ̂(s, b)) [1 − exp(−χ̂(s, b))], (8)

which leads to the same result as the standard UT matrix [11]: σinel/σtot → 0 and σel/σtot → 1
as s → ∞.

Our calculations for the inelasticity corresponding to UT and ER are shown in Fig. 1. We
see that both solutions have the same behavior in s and b but ER has sharper anti-shadowing
properties. Both solutions lie in the unitarity circle, reach the maximum of the unitarity bound
as s → ∞, and have the same analytic properties asymptotically.
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Fig. 1. Antishadowing effects with eikonal (full line) and UT matrix (dashed line)
√

s = 1.4 TeV (left)

and
√

s = 14 TeV (right) [UT (s, b) = ˆχ(s, b) = 0.005 s0.4 exp(−b2/32)]

Hence, non-standard analytic asymptotic properties are not unique to the UT matrix with
its special form (4), and can be reproduced by the exponential form (7) for ER.

Most importantly, at LHC energies, these forms of unitarization do no have a Black-Disk
limit. Indeed, the amplitude does not reach the saturation regime and the basic parameters of
the scattering amplitude, such as ρ(s, t) and the slope B(s, t), do not change their behavior
(see Fig. 2). It is only at still larger energies, when ηinel(s, b) goes to zero and the scattering
amplitude reaches the unitarity limit, that ρ(s, t) and B(s, t) exhibit properties similar to those
in the saturation regime.

3 Properties of the standard eikonal and comparison with the UT matrix

In order to extend the U matrix, and make it similar to the eikonal, we find it more transpar-
ent to work in a different normalisation, where σtot(s) = 4πImF (s, t). The standard form of
eikonal does not change, but we take an extended U -matrix unitarization Ue with an additional
coefficient 1/2 in the denominator, as

σtot(s) = 4π

∫ ∞

0

b [
χ(s, b)

(1 + χ(s, b)
] db. (9)

This form of the U matrix then satisfies all the analytical properties of the standard eikonal
representation: the inelastic overlap function is

η(s, b) =
1

2

χ(s, b) + 2χ2(s, b)

[1 + χ(s, b))]2
,
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Fig. 2. The energy dependence of the amplitudes from UT (s, b = 0) for a model with a soft and a
hard pomerons (the full and dotted lines are the imaginary part and the modulus of the real part, the
long dashed line gives Gel(s, b = 0), and the dotted line is Ginel(s, b = 0)).

and it can easily be seen that in this case, when s → ∞, we obtain: σinel → σel and
σel/σtot → 1/2. Differently stated, this Ue-matrix representation has the standard BDL. In
Figs. 3, η(s, b)inel is shown for these cases.
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Fig. 3. Inelastic overlap function with eikonal (plane line) and U matrix (dashed line) unitarization, at
√

s = 1.4 TeV (left) and
√

s = 14 TeV (right), for a Born amplitude χ(s, b) = 0.005 s0.4 exp(−b2/32).

Now let us compare directly the different forms of unitarization schemes. In Ref. [4], the
eikonal and U -matrix phases are compared from Eqs. (3) and (4). Assuming that the two
unitarised amplitudes are equal, one obtains

χu(s, b) = 2 tanh

[

1

2
χe(s, b)

]

. (10)

It is more convenient to analyze the inverse relation

χe(s, b) = log

[

1 + χu(s, b)/2

1 − χu(s, b)/2

]

. (11)

Both dependencies are shown in Fig. 4. At low energy, we have approximately the same size
for the two phases. But at high energy, when χe(s, b) goes to infinity, χu(s, b) → 2. Hence the
energy dependences of these phases are very different.
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At asymptotic energy, if χu(s, b) grows like the standard Born amplitude, χe(s, b) will tend to
iπ, as can be seen from Eq. (10). So the high-energy limit of U -matrix unitarisation corresponds
to the low-energy of the eikonal amplitude. Indeed, for the standard eikonal at low energy we
obtain the saturation of the maximum unitarity bound = 2 in our normalization (see Fig. 5a)
in the case of a purely real scattering amplitude. Larger values of the real part of the scattering
amplitude lead to a faster decrease of this bound with some oscillations (see Fig. 5b).

If we compare the phases of the extended and standard eikonal unitarization schemes, we
obtain a similar result: the phase of the extended eikonal will also be bounded

χre(s, b) = − log

[

1

2
(1 + e−χe(s,b))

]

. (12)

Hence at high energies , when χ(s, b) → ∞, χe(s, b) will be bounded by 0.693.
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Fig. 4. The correlation of χe(s, b) and χu(s, b) obtained from the eqs. (3) and (4) (dashed line is
χu(s, b), plane line is χe(s, b)
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Fig. 5. The imaginary part of the unitarised eikonal in the region of small (a: left panel) and large (b:
right panel) real part (x axis) of the scattering amplitude.

However, if we take the U matrix in the form (9), the relation between phases will be

χe(s, b) = log [1 + χu(s, b)] (13)

whose inverse relation is

χu(s, b) = eχe(s,b)
[

1 − eχe(s,b)
]

(14)

In this case both phases can vary from zero to infinity.



6

4 Conclusion

From the above analysis we are led to conclude that the unusual properties of the UT -matrix
unitarization are not connected with its specific form as a ratio of polynomials. The exponen-
tial form can have the same properties, including the antishadowing regime and the unusual
asymptotic ratio of σel to σtot. These unitarizations do not have the BDL at high energies,
and do not change significantly the behavior of the scattering amplitude at LHC energies, but
they lead to a faster growth of σtot. Conversely, we have shown that an extended U -matrix
unitarization has the same properties as the standard eikonal unitarization.

The analysis of the relation between the phases of the standard eikonal and of the UT

matrix shows that if the phase of the UT matrix unitarization is bounded, both unitarization
schemes will have the same properties. This would imply either that these unitarizations are
valid only at low energies, or that their Born term must profoundly change at high energies
and be bounded.

Up to now, we have not found any decisive argument to forbid unitarization approaches
like the UT matrix. But the predictions for the total cross sections in these two approaches of
the unitarization have large differences (see, for example [10,13]) for the LHC energy region, so
that we hope that future experimental data will give us the true answer.

A note on the real part

In a recent comment [14], Troshin has pointed out that the extended eikonal which we propose
here unitarises only purely-imaginary amplitudes. We indeed considered here the eikonalised
amplitude

f(s, b) = iG(s, b) = ik[1 − ei(φ(s,b)/k)], (15)

with k = 2, and ℑmφ = χ. As is well known [8], this maps the complex half plane ℑmφ ≥ 0
to twice the unitarity circle, and maps φ = i∞ to 2i. So it cannot be considered a generic
unitarisation scheme.

However, we are not interested here to map the whole half-plane to the circle: indeed,
we only want a scheme that unitarises at high energy. We see no reason why an arbitrary
amplitude should always be unitarised: surely, the multiple exchanges depend on the underlying
theory, and a scheme that would work in one theory has no reason to work in another. Hence,
we are interested in unitarising high-energy hadronic amplitudes. These are dominated by
their imaginary part at high energy, so that the scheme we propose here produces very small
deviations from unitarity at high energy for amplitudes which fit the lower-energy data. The
unitarity condition |f − i|2 ≤ 1 can indeed be rewritten

(k − 2) + kρ2 ≤ 2(k − 1)ρ cos(ℜeφ/k) (16)

with ρ = e−ℑmφ/k. When one includes a real part in the Born term, we see that eventually
k = 2 will lead to a contradiction as the cosine term goes to zero. However, because the latter
is suppressed by ρ, we also see that values of k very close to 2 will lead to a proper solution. In
the case of the 2-pomeron model of [10], we find that values k = 1.95 do not lead to a violation
of unitarity at high energy, and keep the properties of antishadowing described in this paper.

The authors would like to thank for helpful discussions J. Fischer and E. Martynov, and acknowledge
extended discussions with S.M. Troshin. O.S. gratefully acknowledges financial support from FNRS
and would like to thank the University of Liège where part of this work was done.
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