
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

A micromechanical Mean-Field Homogenization surrogate for the
stochastic multiscale analysis of composite materials failure
Juan Manuel Calleja Vázquez † * | Ling Wu * | Van-Dung Nguyen †* | Ludovic Noels *,**

1Computational & Multiscale Mechanics of
Materials, Liège Université, Liège, Belgium

Correspondence
† F.R.S.-FNRS Rue d'Egmont 5 - B 1000
Bruxelles Email: {jmcalleja,
vandung.nguyen}@uliege.be
* Liège Université, CM3 B52, Allée de la
découverte 9, B4000 Liège, Belgium. Email:
{jmcalleja, vandung.nguyen}@uliege.be,
{l.wu, l.noels}@ulg.ac.be
** Corresponding author l.noels@ulg.ac.be
“This is the peer reviewed version of the
following article: “Calleja Vázquez, JM, Wu,
L, Nguyen, V-D, Noels, L. A
micromechanical mean-field
homogenization surrogate for the stochastic
multiscale analysis of composite materials
failure. Int J Numer Methods Eng. 2023”,
which has been published in final form at
10.1002/nme.7344. This article may be used
for non-commercial purposes in accordance
with Wiley Terms and Conditions for Use of
Self-Archived Versions. This article may not
be enhanced, enriched or otherwise
transformed into a derivative work, without
express permission from Wiley or by
statutory rights under applicable legislation.
Copyright notices must not be removed,
obscured or modified. The article must be
linked to Wiley’s version of record on Wiley
Online Library and any embedding, framing
or otherwise making available the article or
pages thereof by third parties from
platforms, services and websites other than
Wiley Online Library must be prohibited.”

Summary
This paper presents the construction of a Mean-Field Homogenization (MFH) sur-
rogate for nonlinear stochastic multiscale analyses of two-phase composites that
allows the material response to be studied up to its failure. The homogenized stochas-
tic behavior of the studied unidirectional composite material is first characterized
through full-field simulations on stochastic volume elements (SVE) of the mate-
rial microstructure, permitting to capture the effect of the microstructural geometric
uncertainties on the material response. Then, in order to conduct the stochastic
nonlinear multiscale simulations, the microscale problem is substituted by a pressure-
dependent MFH reduced order micromechanical model, that is, a MF-ROM, whose
properties are identified by an inverse process from the full-field SVE realizations.
Homogenized stress-strain curves can be used for the identification process of the
nonlinear range, however, a loss of size objectivity is encountered once the strain
softening onset is reached. This work addresses this problematic introducing a cal-
ibration of the energy release rate obtained with a nonlocal MFH micromechanical
model, allowing to scale the variability found on each SVE failure characteristics to
the macroscale. The obtained random effective properties are then used as input of
a data-driven stochastic model to generate the complete random fields used to feed
the stochastic MF-ROM. To show the consistency of the methodology, two MF-
ROM constructed from SVE of two different sizes are successively considered. The
performance of the MF-ROM is then verified against an experimental transverse-
compression test and against full-field simulations through nonlocal Stochastic Finite
Element Method (SFEM) simulations. The implementation of the energy release rate
calibration allows to conduct stochastic studies on the failure characteristics of mate-
rial samples without the need for costly experimental campaigns, paving the way for
more complete and affordable virtual testing.
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1 INTRODUCTION

The inherent complexity of the manufacture of composite materials constitutes a major concern for all those industries in which
the use of these materials has recently been introduced. Many of these industries need a thorough characterization of the proper-
ties and characteristics of the used materials for certification purposes, for which a large number of tests are normally needed. This
costly step could be largely reduced by means of virtual testing, being possible to characterize the variability in the performance
and the main properties of these materials without the need of real-life testing campaigns.

Stochastic Finite Elements (SFEM) are a way of approaching this problematic1. This methodology is based on proper random
fields2 that allow representing the stochastic properties of the material. These random fields would have to be obtained from
a large number of experiments in order to obtain accurate results, which is not always possible. In order to avoid this costly
step, these random fields can be defined from micromechanical information (2,3) that contains the statistic properties of the
uncertainties present on the microstructure of the material, being then possible to generate realistic virtual microstructures
that contain the same stochastic properties as the real material. This has been done for multiple microstructures as shown in
the review by L. Noels4. Some examples are the works on Unidirectional (UD) fiber reinforced composites (5,6,7), for woven
composites (8,9,10) and for particle-reinforced composites11. In most cases, a homogenization step is needed, as the macro and
the microscale sizes are separated by several orders of magnitude2.

In order to perform this homogenization step, multiple approaches have been developed (12,13). Their goal is to predict the
mesoscopic or macroscopic responses of a given material. The first approach is to solve full-field Boundary Value Problems
(BVP) on a microscale volume in which the different material phases are represented at each material point of the macrostructure
(14,15,16). The Finite Element Square (FE2) (17,18) method uses Finite Element (FE) simulations for the full-field analysis, being
capable of yielding accurate predictions thanks to the explicit definition of the microstructures and the phases properties on the
microscale BVP. However, these approaches still imply high computational requirements due to the explicit definition of the
microstructure. This methodology has been mainly used taking into account a deterministic microscale called Representative
Volume Element (RVE). This RVE must be statistically representative of the microstructure, which means that its size varies with
the number of sources of uncertainties. Some works have focused on the correct definition of this RVE for different heterogeneous
material microstructures. Such is the case of the integrated framework using fast statistical homogenization procedure (FSHP)
developed in19. The developed framework makes use of the virtual element method (VEM) and allows to efficiently converge
towards the RVE size detection by solving a series of simulations. The FSHP has been used for the estimation of effective
properties in a wide variety of random heterogeneous microstructures, such as for random porous materials20 or ceramic matrix
composites (CMC)21. In some cases, the existence of the definition of an RVE is impossible because of the large size required
to be statistically representative of nonlinear behaviors (22,23), meaning that the separation criterion for a multiscale analysis is
not always met.

If the separation criterion is not met, the multiscale analysis should be performed based on multiple virtual microstructures
called Stochastic Volume Elements (SVEs)3 (see Fig. 1). With the use of multiple SVEs, the homogenized properties depend
on the location as well as the applied boundary conditions (7,23,24,25,26,27,28). These SVEs are the means used to propagate
the uncertainties from the microscale to the macroscale (23,24,25,26), which means that in order to obtain accurate macroscale
simulations, the mesh used in these simulations must have a size lower than the correlation length, which itself depends on the
size of the SVE used to define the random properties of the microscale29. This implies a strong constraint on the mesh level,
making the direct stochastic FE2 methodology unaffordable nowadays since a large number of simulations are needed.

Accelerating the homogenization process can be done by means of a Reduced Order Model (ROM), which speeds up the
microscale solution with off-line computations. This method projects the governing equations into a suitably selected reduced
order space where the microscale model is solved with a reduced number of unknown variables which are defined by means
of proper orthogonal decomposition of the degrees-of-freedom30. The computational cost of the solution of the internal forces
resulting from the evaluation of local constitutive equations could be even further reduced by the application of hyper-reduction
techniques (31,32). In the context of order reduction using a micromechanics-based homogenization model, non-uniform trans-
formation field analysis (NTFA)33 reduces the field of internal variables by using the pre-defined internal variables modes
obtained with off-line full-field analyses and a tangent second-order (NTFA-TSO) expansion of the dissipation potential reduces
the evolution equations related to the reduced internal variables34. Clustering the volume elements and applying self-consistent
homogenization of the nonlinear clusters response to avoid nonlinear pre-off-line computations is an efficient alternative35. In
the work of D. Pivovarov et al.36, hyperreduction is performed through a new element-based modification of the element-based
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FIGURE 1 Nonlinear stochastic homogenization-based multiscale analysis schematic.

empirical approximation method (EDEAM), which is combined with proper orthogonal decomposition. ROM's have been used
in stochastic analyses, for example, a ROM capable of accounting for the geometrical uncertainties of the fibers was developed
by using a mesoscale potential for finite elasticity (37,38), however, even if the use of ROM accelerates the multiscale simulation
by several orders of magnitude, the quantity of pre-off-line computations needed to perform Monte Carlo (MC) simulations of
nonlinear complex materials and the amount of memory required to store the data makes this method to be mainly applied to
deterministic analyses.

In order to avoid the computation of the homogenized properties of a microstructure, or to at least solve only a limited
amount of them, the use of surrogate models has seen an increased interest, making stochastic multiscale simulations of complex
nonlinear materials finally possible. In the seek for maximum efficiency, machine learning has recently been used to this end, as a
limited amount of microstructure computations would be needed to train the algorithm, and therefore to build the surrogate. In39,
the database of thermal conductivities used for the training of the algorithm was obtained with the use of a Fast Fourier Transform
(FFT) homogenization method on different microstructures. This data-set was used as an input for the training of a supervised
machine learning. This surrogate model showed its capabilities not only predicting a given microstructure behavior, but also
good inverse design capabilities. In the work by X. Lu et al.40, a data-driven FE2 method was developed, for which a hybrid
Neural Network (NN) interpolation scheme was introduced, achieving an improved accuracy of the NN surrogate and permitting
to lower the number of RVE needed as database for the training of the NN to account for microstructure variations. Similarly, NN
has been used in41, in which a data-driven multiscale method for anisotropic electrical responses has been developed, and in42,
where its use in calibration of surrogate models is seen as promising. Liu et al. introduced the concept of Deep Material Network
(DMN)43, which focuses on the modeling of two-phase heterogeneous composite materials, allowing for good extrapolation
capabilities in terms of the material behavior thanks to its ability to predict the interaction between the composite constituents.
This concept was later used in other works, such as in T. Huang et al.44, which introduced a microstructure-guided deep material
network that avoided the need for further training to predict the nonlinear response of new microstructures, allowing for good
accuracy while largely improving the efficiency of the modeling of heterogeneous materials with uncertainty.

In45, a surrogate model for linear elasticity was developed by using the Mean-Field Homogenization (MFH) theory for the
stochastic ROM (MF-ROM) definition. MFH is a semi-analytical technique developed to obtain efficient modeling of multi-
phase composites. Being initially conceived for the modeling of linear elastic composites by using the Eshelby single inclusion46,
the Mori-Tanaka (47,48) solutions or the self-consistent schemes (49,50) to model the interaction between multiple inclusions, it
has been later extended to nonlinear composites with the Linear Comparison Composite (LCC) concept (51,52). However, with
the use of MFH, the uncertainty effects of the microstructure are not taken directly into account. Contrary to the computation
homogenization method, these uncertainties are now contained in a vector of random parameters that will define the effective
material properties which are identified by an inverse analysis performed on the full-field SVE simulations. In the works by
L. Wu et al. (45,53), a stochastic nonlinear micromechanics model serving as mesoscale surrogate model for UD composite
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materials was developed for linear and further extended to nonlinear behaviors. This surrogate model was used as the input of a
SFEM analysis. The geometric microscale information was obtained through SEM images of real UD materials, and then used
to build synthetic microstructures SVEs of arbitrary size and number7. However, the method was not able to account for failure.

The purpose of this paper is to develop a stochastic Mean-Field Reduced Order Model (MF-ROM) capable of modeling the
nonlinear and the post-strain softening behaviors of two-phase UD composite materials and to generate a database used to feed
random fields for SFEM analyses. To that end, as shown in Fig. 2, full-field realizations are performed on virtual SVEs generated
with stochastic information extracted from experimental measurements7. The homogenized responses obtained from these SVE
realizations are then used as the input of an inverse identification process that allows identifying the random effective parameters
of the stochastic MFH micromechanical surrogate, which serves as a surrogate that can be used as input for SFEM.
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FIGURE 2 Schematic representation of the generation of the stochastic MF-ROM. 𝑟𝑓 stands for fiber radius, 𝑑 stands for the
fiber nearest distance, 𝝈̄ and 𝜺̄ stand for the homogenized macro-stress and strains, and 𝜔𝑖 stand for the phases 𝑖 that compose
the composite 𝜔.

Similar approaches for the construction of the stochastic MFH-ROM have already been developed for the cases of linear
elasticity and damaged-enhanced J2 plastic behaviors (45,7,53), however, when modeling real composite materials, some discrep-
ancies were found in the material response under different internal pressure conditions. For this reason, the pressure-dependent
MFH scheme developed in54 is used in this work. Also, it was stated, that the obtained homogenized behavior of the SVE is not
representative once the strain softening onset is reached, because of the loss of size objectivity of the SVE response encountered
once this point is reached, meaning the homogenized stress-strain curves no longer represent a valid quantity for the identifica-
tion process. In order to be able to recover this size objectivity, the inverse process must rely on a new reference quantity that
allows to recover it (55,56). Different quantities, such as the traction-displacement jump softening response, the critical energy
release rate or the fracture toughness of the material (57,58,55,59,56) have been used in the past to address this problem. In this
paper, as the MFH scheme is energy consistent during this phase because of the nonlocal formulation of the damage evolution
law, the critical energy release rate (𝐺𝑐) has been chosen as the parameter used to recover this size objectivity. The critical energy
release rate is then extracted from each SVE realization, permitting to upscale the variabilities found in the failure stage of each
SVE to the macroscale through a calibration of the MFH micromechanical surrogate model. This will allow the stochastic MF-
ROM to correctly predict not only the effect of the variabilities in the linear and nonlinear stages, but also the variabilities and
characteristics of the failure stage.

The paper is divided into 5 Sections. Section 2 focuses on the full-field SVE realizations step, from which the data needed
for the surrogate construction will be extracted (see steps 3 and 4 of Fig. 2). This Section presents the mathematical basis of the
microscale problem and the scale transition of the obtained results, followed by the development of the models used to define
the composite phases and the presentation of the performed finite element simulations. Then, Section 3 focuses on the MFH
surrogate model and the identification of its parameters. This Section briefly presents the basis of the linear-elasticity MFH,
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and the nonlinear MFH schemes. In this work, the nonlocal incremental secant scheme is used in order to model the nonlinear
behavior of the composite material including its failure. The inverse identification of the model parameters used for the definition
of the MF-ROM completes this Section. The inverse identification is detailed for the elastic and pressure-dependent nonlinear
stages of the material response and is completed with the implementation of a calibration process allowing to recover the size
objectivity once the strain softening onset is reached. This identification process is then applied to the UD composite SVE
realizations in order to construct the MF-ROM, being possible to show a comparison between the predicted MFH responses and
the full field SVE results in order to evaluate the accuracy of the inverse-identification process. The identification of parameters
is performed for SVE samples of 45 × 45 𝜇m2 and 25 × 25 𝜇m2, which allows verifying the consistency of the presented
methodology. The obtained effective random parameters are analyzed in Section 4, which ends with a brief introduction of the
data-driven sampling method used to obtain proper random fields needed for the construction of the stochastic MF-ROM and a
comparison between the distributions of the identified and the generated data. This MF-ROM is then applied to the resolution
of stochastic simulations in Section 5. To this end, two test cases will be used. First, transverse loading tests performed on ply
realizations are used as test cases to show the performance of MF-ROM and be able to assess the results obtained through the
two property field discretizations corresponding to the two SVE lengths, by comparing the results with full-field realizations.
Then, the validity of the MF-ROM is tested directly against a real-life transverse compression test on a UD composite material.

2 SVE REALIZATIONS AND THEIR APPARENT RESPONSES

In this work a homogenization-based nonlinear stochastic multiscale analysis is performed. Several scales are involved in this
analysis. As shown in Figs. 1 and 2, the homogenized responses seen at the macroscale level are obtained from the microscale
resolution. This section will present the main equations governing the relation between the different scales. First, the scale
transition and a brief recall of the computational homogenization basics are presented, followed by the models used to represent
the composite phases in the finite-element simulations. When performing the SVE simulations, large local deformations appear
in the matrix regions embedded between two contiguous fibers. Therefore a finite strain setting has to be considered at the SVE
level although the homogenized strain remains limited to a few percents. Finally, this Section concludes with the generation of
the full-field SVE realizations and the extraction of their responses, including during their failure stage.

2.1 Microscale boundary value problem
Let us consider a point 𝑿 belonging to the macroscale volume Ω. In the multiscale analysis based on homogenization, the
deformation gradient tensor 𝐅̄ and its increment ̇̄𝐅 are obtained from the macroscale Boundary Value Problem (BVP). Then, the
BVP resolution of the microscale volume element with domain 𝒙ref ∈ 𝜔, which represents a point of the studied macrostructure
𝑿, allows the macro-stress tensor 𝝈̄ to be evaluated.

The position 𝒙 of a material particle at time 𝑡 is defined as a two-point mapping of its initial position at the reference con-
figuration 𝒙ref such that: 𝒙 = 𝒙(𝒙ref , 𝑡). Defining the displacement vector 𝒖 = 𝒙 − 𝒙ref , the deformation gradient tensor 𝐅
writes:

𝐅 = 𝒙⊗ 𝛁0 = 𝟏 + 𝒖⊗ 𝛁0, (1)
where 𝟏 stands for the second-order identity tensor, and 𝛁0 stands for the gradient operator with respect to the reference con-
figuration. The energetically conjugate to the deformation gradient tensor, the first Piola-Kirchhoff stress 𝐏, is used as the stress
measure.

The microscale is composed of different phases 𝜔𝑖, having that ∪𝑖𝜔𝑖 = 𝜔. Assuming that classical continuum mechanics
applies, the equilibrium equations read:

{

𝐏 ⋅ 𝛁0 = 𝟎 ∀𝒙ref ∈ 𝜔,
𝑻 = 𝐏 ⋅𝑵 ∀𝒙ref ∈ 𝜕𝜔,

(2)
where 𝑻 is the surface traction on boundary 𝜕𝜔 with outward unit normal 𝑵 . The material constitutive law is written as:

𝐏 = 𝐏
(

𝐅(𝑡); 𝒒(𝜏), 𝜏 ∈
[

0, 𝑡
])

. (3)
Plasticity makes deformation to be a path-dependent process, being then necessary to take the strain history into account. To

that end, a set of internal variables 𝒒 that stores this history dependence is used. In the case of a damage-enhanced material, the
strain softening implies a mesh dependency of the result if a local formulation is used. In order to avoid this mesh dependency, the
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implicit nonlocal model (60,61,62,63) is used to define the nonlocal internal variables 𝒒̆. This formulation states that the relation
between the internal variable 𝑞𝑖 ∈ 𝒒 and its nonlocal counterpart 𝑞𝑖 ∈ 𝒒̆ follows a Helmholtz-type equation, which writes:

𝑞𝑖(𝒙ref, 𝑡) − 𝛁0 ⋅
(

𝒄g(𝒙ref) ⋅ 𝛁0𝑞𝑖(𝒙ref, 𝑡)
)

= 𝑞𝑖(𝒙ref, 𝑡) ∀𝒙ref ∈ 𝜔, (4)
where, for an isotropic medium64, 𝒄g = diag

(

𝑙2; 𝑙2; 𝑙2
), being 𝑙 the characteristic length scale. It is now possible to rewrite Eq.

(3) in a nonlocal form:
𝐏 = 𝐏

(

𝐅(𝑡); 𝒒̆(𝜏), 𝒒(𝜏), 𝜏 ∈
[

0, 𝑡
])

. (5)

2.2 Scale transition and computational homogenization
To ensure consistency between scales, the Hill-Mandel condition, which guarantees deformation power consistency, is used.
Expressing it in terms of the macroscopic first Piola-Kirchhoff stress tensor 𝐏 and the macroscopic deformation gradient tensor
𝐅, one has:

𝐏 ∶ 𝐅̇ = ⟨𝐏 ∶ 𝐅̇⟩𝜔 = 1
|𝜔| ∫

𝜕𝜔

𝒖̇ ⋅ 𝑻 𝑑𝐴, (6)

where 𝜔 stands for the volume element of volume |𝜔|, 𝜕𝜔 stands for its external boundary, ⟨∙(𝒙ref)⟩𝜔 = 1
|𝜔|

∫𝜔 ∙(𝒙ref)𝑑𝑉 is the
volume average, 𝑑𝐴 represents the differential area and 𝑑𝑉 represents the differential volume. This condition allows us to write
the weak form equations:

{

⟨

𝐏 ∶
(

𝒖̇⊗ 𝛁0
)⟩

𝜔 − 𝐏 ∶ 𝐅̇ = 0,
⟨

(𝑞𝑖 − 𝑞𝑖) ̇̆𝑞𝑖 +
(

𝒄g ⋅ 𝛁0𝑞𝑖
)

⋅ 𝛁0
̇̆𝑞𝑖
⟩

𝜔 = 0.
(7)

The macroscopic quantities can then be estimated by performing the average over the studied volume. By further integrating
by parts and applying the Gauss theorem using Eq. (6), one gets:

⎧

⎪

⎨

⎪

⎩

𝐅̇ = ⟨𝐅̇⟩𝜔 = 1
|𝜔|

∫𝜕𝜔 𝒖̇⊗𝑵𝑑𝐴,

𝐏 = ⟨𝐏⟩𝜔 = 1
|𝜔|

∫𝜕𝜔 𝑻 ⊗ 𝒙ref𝑑𝐴.
(8)

Contrarily to those quantities for which the scale transition ∙̄ = ⟨∙(𝒙ref)⟩𝜔 is performed in the homogenization step, this is the case
neither for the local nor for the nonlocal internal variables, for which the macroscopic variables correspond to representations
of their microscale counterpart distribution, but not to their volume average.

x+
ref ∈ ∂Tω

x−
ref ∈ ∂Lω

x−
ref ∈ ∂Bω

x+
ref ∈ ∂Rω

FIGURE 3 Graphical representation of the effect of the periodic boundary conditions on a loaded test sample.

The Hill Mandel condition, Eq. (6), and the evolution of the deformation gradient tensor, Eq. (8), have to be satisfied a priori
by the microscopic boundary condition of the displacement field. In this work, the periodic boundary condition is used: the
periodic boundary condition decomposes the edges of 𝜔 into positive and negative edges, allowing the coincident nodes to be
defined. Each point 𝒙+

ref belonging to an edge 𝒙+
ref ∈ 𝜕+𝜔 will correspond to its negative counterpart 𝒙−

ref ∈ 𝜕−𝜔. In this way, the
limit 𝜕𝜔 of the volume 𝜔 will be distributed in these two subdivisions as: 𝜕+𝜔 = 𝜕𝑅𝜔∪ 𝜕𝑇𝜔 and 𝜕−𝜔 = 𝜕𝐿𝜔∪ 𝜕𝐵𝜔 (see Fig. 3).
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These distributions allow defining the condition of antiperiodicity in the traction field and periodicity in the displacement field
for the coincident nodes:

{

𝒖̇
(

𝒙+
ref
)

− 𝒖̇
(

𝒙−
ref
)

= 𝐅̇ ⋅
(

𝒙+
ref − 𝒙−

ref
)

,
𝑻
(

𝒙+
ref
)

= −𝑻
(

𝒙+
ref
)

.
(9)

Fig. 3 shows a schematic representation of the effect of this Periodic Boundary Condition (PBC) on a loaded sample. This
expression implies a direct constraint between opposing nodes, however, this cannot be imposed in general non-periodic meshes.
In order to solve this problem the PBC are approximated by an interpolation form65. The effect of the BC choice for small periodic
and non-periodic volume elements was studied in66. By considering volume elements of increasing size, it was shown that for
a periodic microstructure the Kinematics Uniform Boundary Condition and Statistic Uniform Boundary Condition respectively
overestimate and underestimate the effective response predicted by the PBC, and that for a non-periodic microstructure, the
same trend can be observed although some oscillations appear with respect to the volume element size. We thus select the PBC,
although this introduces a boundary effect for the small SVEs considered in this work. In order to study this boundary effect,
we will consider two different SVE sizes during the analyses and will show that both sizes lead to the same statistical content
in the macroscale response predictions. Periodic boundary condition is applied on the nonlocal variables as proposed in56, and
we refer to the discussion in Appendix A. A similar idea of the periodicity in the nonlocal variable can be found in67.

The use of PBC for problems involving failure is debatable, in particular when considering PBC for the nonlocal variables.
Indeed, as discussed in the work by Van Dung Nguyen et al.56, multiple localization bands can appear in the post-peak localiza-
tion stage, which is considered to be a nonphysical result68. Nevertheless, during the post-peak localization stage characterized
by a loss of size objectivity, the stress-strain response cannot be used and, in this work, we consider the dissipated energy as a
consistent value. For this value to be unaffected by the PBC, we consider tensile loading conditions, for which the failure band is
perpendicular to the loading direction (56), allowing to correctly capture the stress-strain relation before softening onset and the
dissipated energy of the sample during failure. For this reason the uniaxial tension condition will later be the preferred loading
condition for the calibration of the post localization onset stage.

2.3 Information extracted from the SVE realizations
The system of equations is then complete and can be solved by the multiplier elimination method69. From these SVE realizations,
the fourth order homogenized macroscopic tensor 𝑪̄ = 𝜕𝝈̄

𝜕𝜺̄
can be extracted (where the Cauchy stress tensor 𝝈̄ and the small

strain tensor 𝜺̄ write: 𝝈̄ = det(𝐅̄)−1𝑷̄ 𝐅̄𝑇 and 𝜺̄ = 1∕2(𝐅̄𝑇 + 𝐅̄) − 𝑰). In order to perform the inverse identification process, the
SVE fiber volume fraction as well as the homogenized macro stress-strains (𝝈̄; 𝜺̄) and the homogenized macroscopic damaged
elastic tensors 𝑪̄elD are extracted. This macroscopic damaged elastic tensor 𝑪̄elD is computed as the homogenized composite
material tensor during a virtual elastic unloading.

These quantities allow to perform the elastic and damaged-enhanced plastic regimes identifications53, however, these quan-
tities are not valid once the strain-softening onset is reached. Between the dissipation and the localization onset stages, the
development of the damage of the composite material starts diffusing over the entire microstructure. However, once the SVE
stress reaches its peak, the so-called localization onset, the dissipated energy released during this stage does not scale to the entire
microstructure, as localization begins to unfold on a microscopic scale. A loss of the size objectivity is therefore encountered
after the localization onset, meaning that a new objective value must be used in order to be able to recover this size objectivity.
To that end, the critical energy release rate 𝐺𝑐 , computed from the SVE realization, is used. This quantity quantifies the fracture
energy released per unit of crack surface, permitting to obtain an objective value to capture the failure characteristics of a given
SVE. In order to compute this energy release rate, the dissipated energy  from the uniaxial tensile test is extracted at each iter-
ation making it possible to evaluate its value through the failure diagram as shown in Fig. 4, in which we assume that  scales
with the SVE volume before onset and with the SVE cross-section after onset.

By obtaining the value of the total dissipated energy at the localization onset and at total failure and assuming a crack per-
pendicular to the loading direction with surface 𝑆0 = 𝑊 × 1𝜇m2, being 𝑊 the side length of the square SVE, it is possible to
compute the energy release rate as:

𝐺𝑐 =
𝑒𝑛𝑑 −𝑜𝑛𝑠𝑒𝑡

𝑆0
. (10)
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Gc = Dend−DonsetS0

FIGURE 4 Stress (𝜎̄) - strain (𝜀̄) and energy dissipation () - stress (𝜎̄) plots used for the computation of the MFH energy
release rate 𝐺𝑐 .

2.4 Generation of full-field SVE simulations
In order to extract the microscale information needed to perform the multiscale analysis, the first step is the generation and
simulation of stochastic volume elements of the composite material microstructure. The simulated unidirectional composite is
composed of high strength carbon fibers UD300/CHS and a matrix of pure RTM6 epoxy resin. This Section will start defining
the parameters used to model the inclusion and matrix phases of the composite in the full-field realizations. Then, the used
geometries and boundary conditions will be presented, finishing with a brief summary of the methodology used to extract the
critical energy release rate (𝐺𝑐) from the full-field simulations.

2.4.1 Phase models and parameters
The carbon fibers are modeled as a hyperelastic and transversely isotropic material following the finite-strain setting70,71 sum-
marized in Appendix A.1. The matrix phase is modeled using the large strain constitutive pressure-dependent elasto-plastic
model enhanced by a multi-mechanism nonlocal damage continuum in order to capture the matrix failure72,56. The model is
summarized in Appendix A.2. Table 1 shows the parameters used for the UD300/CHS inclusions and Table 2 the parameters
used to model the RTM6 matrix phase1 following literature data

TABLE 1 UD300/CHS carbon fiber properties73 of the model reported in Appendix A.1
Property of carbon fibers (Unit) Value

Density 𝜌 (𝑘𝑔∕𝑚3) 1750
Longitudinal Young's modulus 𝐸L (GPa) 230
Transverse Young's modulus 𝐸T (GPa) 40

Transverse Poisson's ratio 𝜈TT (-) 0.2
Longitudinal-transverse Poisson's ratio 𝜈LT = 𝜈TL 𝐸L

𝐸T (-) 0.256
Transverse shear modulus 𝐺TT (GPa) 16.7

Longitudinal-transverse shear modulus 𝐺LT (GPa) 24

The two phases properties are considered to be uniform across each UD-composite phase, being the geometrical distribution
and fibers properties the only source of randomness on the SVE realizations.

1In the present work we neglect the viscous part of the models and thus we do not report the corresponding paramters
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TABLE 2 RTM6 epoxy properties56 of the model reported in Appendix A.2.
Property of RTM6 epoxy (Unit) Value

Young's modulus 𝐸 (MPa) 2450
Yield Exponent 𝛼 (-) 3.5
Poisson's ratio 𝜈 (-) 0.39

Plastic Poisson's ratio 𝜈𝑝 (-) 0.45
Compressive yield 𝜎0

𝑐 (MPa) 48
Tensile yield 𝜎0

𝑡 (MPa) 40.8
Compressive hardening 𝐻𝑐 (MPa) 6475 exp (−37𝑝)

Tensile hardening 𝐻𝑡 (MPa) 5503.8 exp (−37𝑝)
Kinematic hardening 𝐻𝑏 (MPa) 1412.7𝑝 − 5484.8𝑝2 + 18283𝑝3

Saturation damage law 𝐷𝑠 (-) 0.62[1 − exp(−30𝑝𝑠)]
Saturated damage 𝐷𝑠∞ (-) 0.62

Saturation damage parameter 𝐻𝑠 (-) 30
Saturation damage parameter 𝜁𝑠 (-) 0

Saturation damage onset 𝑝𝑠0 (-) 0
. Failure damage parameter 𝜁𝑓 (-) 1
Failure damage parameter 𝜁𝑑 (-) 0.3
Failure critital damage 𝐷𝑓𝑐 (-) 0.999

Failure critical strain 𝑝𝑓𝑐 (-) 0.117
Failure strain onset 𝑝𝑓0 (-) 0.

Failure surface parameter 𝑎 (-) 0.03428
Failure surface parameter 𝑏 (-) 7.815
Failure surface parameter 𝑐 (-) 0.02169

Nonlocal length 𝑙 (𝜇m) 3

2.4.2 Finite element simulations

FIGURE 5 Composite window of 135 × 135𝜇m2 with smaller 45 × 45 𝜇m2 SVE and full-field SVE mesh detail.

In order to carry the full-field simulations, transverse cross-sections of the UD composite are generated at the microscale from
dependent variables represented within a copula framework built from SEM images, allowing the generation of microstruc-
tures by an inclusions additive process7. This SVE generation process allows a realistic statistical distribution of the dependent
microscale parameters to be obtained as shown in7, ensuring the applicability of this work to real-life applications. The statistical
information of the microstructure parameters is provided in Appendix B.

One of the major constraints of this kind of approach, as already mentioned, is the size of the SVE used to build the data-set
of random homogenized parameters. The use of a larger SVE would allow for a lower number of SVE realizations needed in
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order to obtain all the required statistical information. To check the effect of the SVE size in the final obtained responses, two
different SVE sizes were used. In order to obtain these SVEs, 100 windows of 135 × 135 𝜇m2 with an average of 40% fiber
volume fraction were generated, from which small windows of 25 × 25 𝜇m2 or 45 × 45𝜇m2 are extracted as shown in Fig. 5.
Then, the extracted SVE is meshed with quadratic elements in order to perform the finite element simulation.

11

22

ε̄11 = d

ε̄11 = −d

ε̄11 = d
ε̄22 = 0

ε̄11

σ̄11

FIGURE 6 Schematic of the three loading conditions tested on each SVE realization. From top to bottom: Uniaxial tensile test,
uniaxial compressive test and uniaxial strain test. Letter 𝑑 stands for the imposed value.

In order to perform the inverse identification introduced in Section 3, three different tests are run for each SVE realization:
Uniaxial tensile and compressive loading, and a uniaxial strain test (see Fig. 6). As presented in Section 2.2, periodic boundary
conditions are used for these three tests and plane strain conditions are assumed.

FIGURE 7 Matrix failure damage of two 25 × 25𝜇m2 SVEs under uniaxial tension loading at fracture. SVE 1 on the left and
SVE 2 on the right.

As Figs. 7 and 8 show, the used matrix model allows obtaining complex matrix behaviors, including total failure of the sample.
The large strain matrix model used in this work allows to accurately capture the behavior of the RTM6 matrix up to its complete
failure thanks to the use of the critical energy release rate in the calibration of its failure parameters.

The SVEs are then deformed under tensile loading until reaching their total failure, being possible to extract the uniaxial
tensile critical energy release rate 𝐺𝑐 . As it is possible to observe in Fig. 9, each SVE will present different characteristics due to
the inherent uncertainties contained in these SVEs. This extracted data will then allow us to scale the effect of these uncertainties
to larger scales.
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FIGURE 8 Matrix failure damage of two 45 × 45𝜇m2 SVEs under uniaxial tension loading at fracture. SVE 3 on the left and
SVE 4 on the right.

1
2

3
4

1

2

3

4

FIGURE 9 Dissipated energy in matrix vs. averaged stress component 11 for SVEs 1, 2, 3 and 4 on the left and averaged stress-
strain of SVEs 1, 2, 3 and 4 for component 11 on the right (SVE numbering refers to Figs. 7 and 8).

As an example of the effect of these variabilities found in the material microstructure, the obtained distribution of the SVE
𝐺𝑐 can be seen in Fig. 10, which shows the distribution for the two sizes of SVE used in this study. Similar distributions of the
energy release rate are obtained for both cases, being the average value slightly higher for the 45 × 45𝜇m2 SVE samples.
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FIGURE 10 Probability density histograms of the energy release rate found in the 25 × 25 𝜇m2 and 45 × 45 𝜇m2 SVEs

3 MEAN-FIELD HOMOGENIZATION (MFH) SURROGATE MODEL AND INVERSE
IDENTIFICATION PROCESS

In order to build a stochastic MF-ROM capable of capturing all the microstructure variabilities shown by each SVE, an identifi-
cation process must be developed. The goal of this identification process is to find, for each SVE realization, the parameters of the
MFH model that allow obtaining a homogenized material response that is as its full-field counterpart. As seen in Section 2.4.2,
failure of the SVE occurs at few percents of deformation at the homogenized level. Therefore the MF-ROM can be developed
in a small strain setting. This Section summarizes the basis of the used surrogate model, then the identification process will be
developed by presenting the identification method for elastic behaviors first and then for pressure dependent damage-enhanced
elasto-plastic behaviors; and finally for the post-strain softening phase up to complete failure.

3.1 MFH
In this work the Mean-Field Homogenization (MFH) method is used to homogenize the behavior of the composite material. The
homogenized composite material will be modeled using a small deformation constitutive model.

Computing the average stress (𝝈𝑖) and strain (𝜺𝑖) of a given phase 𝜔𝑖 as:
𝝈𝑖 =

1
|

|

𝜔𝑖
|

|

∫
𝜔𝑖

𝝈(𝒙ref)𝑑𝑉 ,

𝜺𝑖 =
1

|

|

𝜔𝑖
|

|

∫
𝜔𝑖

𝜺(𝒙ref)𝑑𝑉 .
(11)

In the studied case of two-phase isothermal composite material, having the matrix (𝑣0) and inclusion (𝑣I) volume fractions such
that 𝑣0 + 𝑣I = 1, the scale transition can be rewritten as:

{

𝜺̄ = 𝑣0𝜺0 + 𝑣I𝜺I,
𝝈̄ = 𝑣0𝝈0 + 𝑣I𝝈I.

(12)
In small deformation, the local constitutive law for the phases writes:

𝝈𝑖(𝑡) = 𝝈𝑖
(

𝜺𝑖(𝑡); 𝒒𝑖(𝜏), 𝜏 ∈ [0, 𝑡]
)

. (13)
The notation 𝝈𝑖 refers to the microscopic Cauchy stress tensor of phase 𝑖 and 𝜺𝑖 is the phase 𝑖 small-deformation strain tensor.
Plasticity makes deformation to be a history-dependent process, being then necessary to take this history into account. To that
end, a set of internal variables that stores this history dependence 𝒒𝑖 is used. We note that 𝒒𝑖 are not necessarily the volume
average of 𝒒(𝒙ref) on the phase 𝜔𝑖.

In the case of a damage-enhanced material, the strain softening implies a mesh dependency of the result. The implicit nonlocal
model60 is used to define the nonlocal internal variables 𝒒̆𝑖 for the MFH. We consider as nonlocal variable the equivalent plastic
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strain of the matrix phase. This formulation states that the relation between the internal variable 𝑝0 ∈ 𝒒𝑖 and its nonlocal
counterpart 𝑝̆0 ∈ 𝒒𝑖 follows a Helmholtz-type equation, which writes:

𝑝̆0 − 𝛁0 ⋅
(

𝒄g ⋅ 𝛁0𝑝̆0
)

= 𝑝0 for 𝜔0, (14)
where for an isotropic medium64, 𝒄g = diag

(

𝑙2; 𝑙2; 𝑙2
), being 𝑙 the characteristic length scale. It is now possible to rewrite Eq.

(13) in a nonlocal form:
𝝈𝑖(𝑡) = 𝝈𝑖

(

𝜺𝑖(𝑡), 𝒒̆𝑖(𝜏); 𝒒𝑖(𝜏), 𝜏 ∈ [0, 𝑡]
)

. (15)
The used MFH methodology will be first introduced for the case of linear materials, completing it afterwards for nonlinear

behaviors, for which the incremental-secant MFH method will be introduced.

3.1.1 Linear behavior
Completing Eq. (12) with the constitutive laws of each of the phases:

{

𝝈0 = 𝑪el
0 ∶ 𝜺0,

𝝈I = 𝑪el
I ∶ 𝜺I,

(16)

where the constitutive material tensors 𝑪el
𝑖 are considered to be uniform per phase. The MFH scheme reduces the complexity

of the SVE formulation, by assuming a simplified morphology of the SVE in which only an ellipsoidal inclusion defined by the
geometrical property (I) and volume fraction (𝑣I) is embedded into the matrix phase.

By defining a strain concentration tensor 𝑩𝜖 , it is possible to link the strain averages of the matrix and inclusion phases:
𝜺I = 𝑩𝜖 (I,𝑪el

0 ,𝑪
el
I
)

∶ 𝜺0, (17)
where I stands for the geometrical information of the inclusions required to define 𝑩𝜖 .

Due to its good performance for two-phase composite materials for which the matrix can be identified, the Mori-Tanaka (M-T)
model47 is used to define the strain concentration. Assuming this model, the strain concentration 𝑩𝜖 reads:

𝑩𝜖 (I,𝑪el
0 ,𝑪

el
I
)

=
{

𝑰 + 𝑺
(

I,𝑪el
0
)

∶
[

(

𝑪el
0
)−1 ∶ 𝑪el

I − 𝑰
]}−1

, (18)
where 𝑺 stands for the Eshelby tensor46.

For the case of linear elastic composites, Eqs. (12, 16 and 17) can be used to write the following constitutive equation:
𝝈̄ = 𝑪̄el (I,𝑪el

0 ,𝑪
el
I , 𝑣I

)

∶ 𝜺̄, (19)
where 𝑪̄el writes:

𝑪̄el (I,𝑪el
0 ,𝑪

el
I , 𝑣I

)

=
[

𝑣I𝑪el
I ∶ 𝑩𝜖 (I,𝑪el

0 ,𝑪
el
I
)

+ 𝑣0𝑪el
0
]

∶
[

𝑣I𝑩𝜖 (I,𝑪el
0 ,𝑪

el
I
)

+ 𝑣0𝑰
]−1 . (20)

3.1.2 Nonlinear behavior
As already stated in the Introduction, the MFH method was extended to nonlinear behaviors through the use of a Linear Com-
parison Composite. This LCC is a fictitious material with linear phases, whose behavior is the same as the linearized behavior
of the original composite material. Therefore, considering a material with a matrix phase with virtual elastic operator 𝑪LCC

0 and
inclusions phase with virtual elastic operator 𝑪LCC

I , it is possible to write the MFH equations of a linear composite material. In
this case, the relation between the incremental strains of both phases, Eq. (17), can be written as:

Δ𝜺I = 𝑩𝜖 (I,𝑪LCC
0 ,𝑪LCC

I
)

∶ Δ𝜺0, (21)
and the relations between the macro and the micro strains and stresses, Eq. (12), writes:

{

Δ𝜺̄ = 𝑣0Δ𝜺0 + 𝑣IΔ𝜺I,
𝝈̄ = 𝑣0𝝈0 + 𝑣I𝝈I.

(22)
Several approaches have been developed to define this LCC, for example through linearization of the nonlinear constitutive

models of the material phases (74,75) or through variational formulations (76,77,15,78,79,80). Other approaches are the affine
formulation (81,82,83, etc.), the incrementally affine formulation (84,85), or the incremental-tangent formulation (51,86,87,88).
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These formulations yield anisotropic formulations of their tangent operators, leading to stiff predictions of the material behav-
ior and therefore needing an isotropization step89. This step is not needed in the case of the incremental-secant linearization
(90,73,91,92,54) since its material operators are isotropic by nature. In this work, the incremental-secant formulation is used.

3.1.3 Damage-enhanced incremental-secant formulation73

σ

ε

σn σn+1
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∆εunload
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FIGURE 11 Composite and phase elastic unloading and loading process for LCC definition for damage-enhanced elasto-plastic
materials. Virtual elastic unloading on the left pictures and incremental-secant loading on the right pictures.

The incremental-secant formulation consists of two steps at each time increment. Within a time step [

𝑡𝑛, 𝑡𝑛+1
], the composite

is elastically unloaded up to a stress-free state (𝝈̄res
𝑛 = 0) from the state at 𝑡𝑛, being possible to obtain the residual stresses within

the different phases. Then, the composite is re-loaded up to its new state at step 𝑡𝑛+1, defining the LCC via the secant operators
of the phases defined from the residual strains and stresses. Fig. 11 shows this process schematically.

As for the case of the large strain model used for the full-field SVE realizations, the damage effect is introduced by a single
scalar value (𝐷) in a Lemaitre-Chaboche style89. The concept of effective stress (𝝈̂) is therefore introduced, having:

𝝈̂ = 𝜎
1 −𝐷

. (23)
Let us detail the operations carried out at each step.

Virtual elastic unloading:
In this step, a fictitious elastic unloading is applied on the material from the current state up to a stress free state. As shown in Fig.
11, the phase elastic operators 𝑪el

𝑖 are used for the computation of this step. Considering a damage-enhanced elasto-plasticity
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case with isotropic behavior one has:
{

𝑪elD
𝑖 =

(

1 −𝐷𝑖
)

𝑪el
𝑖 ,

𝑪el
𝑖 = 3𝜅el

𝑖 𝑰
vol + 2𝜇el

𝑖 𝑰
dev,

(24)
where 𝜅el

𝑖 is the bulk modulus and 𝜇el
𝑖 is the shear modulus of the studied phase, and where 𝑰dev = 𝑰 − 𝑰vol is the deviatoric

fourth-order tensor and 𝑰vol = 1
3
𝟏⊗ 𝟏 the volume fourth-order tensor, being 𝟏 the second order identity tensor. For the studied

case of the UD composites, only the matrix phase will undergo damage; it is then possible to rewrite Eqs. (21-22) as:
⎧

⎪

⎨

⎪

⎩

Δ𝜺̄unload = 𝑣0Δ𝜺unload
0 + 𝑣IΔ𝜺unload

I ,
0 = 𝝈̄res = 𝑣0𝝈res

0 + 𝑣I𝝈res
I ,

Δ𝜺unloadI = 𝑩𝜖 (𝐼,𝑪elD
0 ,𝑪el

I
)

∶ Δ𝜺unload0 .
(25)

This can be solved with the general constitutive expression (see Fig. 11):
𝝈̄ = 𝑪̄elD (

I,𝑪elD
0 ,𝑪el

I , 𝑣I
)

∶ Δ𝜺̄unload; (26)
with 𝑪̄elD (

I,𝑪elD
0 ,𝑪el

I , 𝑣I
)

= 𝑪̄el (I,𝑪elD
0 ,𝑪el

I , 𝑣l
) computed using Eq. (20). The free stress state corresponds only to the

unloaded composite, but this is not the case for each of the phases. The phases will be therefore characterized by a residual strain
tensor (𝜺res𝑖 ) and a residual stress tensor (𝝈res

𝑖 ) where ∙res𝑖𝑛
= ∙𝑖𝑛 − Δ∙unload

𝑖𝑛
.

At time 𝑡𝑛, and at unloaded state, the effective stress tensors write:
⎧

⎪

⎨

⎪

⎩

𝝈̂𝑖𝑛 =
𝝈𝑖𝑛

(1−𝐷𝑖𝑛)
,

𝝈̂res
𝑖𝑛

=
𝝈res
𝑖𝑛

(1−𝐷𝑖𝑛)
.

(27)

Incremental-secant loading:
2 Being 𝜺̄𝑛+1 known from the macroscale BVP, it is possible to obtain the strain increment (Δ𝜺̄r𝑛+1) as shown in Fig. 11 by solving:

𝜺̄𝑛+1 = 𝜺̄res𝑛 + Δ𝜺̄r𝑛+1. (28)
The strain increments of each phase (Δ𝜺r𝑖𝑛+1) can be found by performing material reloading computations. Considering each
phase in the undamaged stress state space, it is possible to define an incremental-secant operator as:

{

𝝈̂𝑖𝑛+1 = 𝝈̂res
𝑖𝑛

+ Δ𝝈̂r
𝑖𝑛+1

,
Δ𝝈̂r

𝑖𝑛+1
= 𝑪Sr

𝑖𝑛+1
∶ Δ𝜺r𝑖𝑛+1 ,

(29)

writing the apparent stress tensor as:
𝝈𝑖𝑛+1 =

(

1 −𝐷𝑖𝑛+1

)

𝝈̂res
𝑖𝑛

+ 𝑪SDr
𝑖𝑛+1

∶ Δ𝜺r𝑖𝑛+1 , (30)
where the damaged incremental-secant operator is defined as 𝑪SDr

𝑖𝑛+1
=
(

1 −𝐷𝑖𝑛+1

)

𝑪Sr
𝑖𝑛+1

. From the phase residual state it is then
possible to define the LCC with 𝑪̄SDr . Eqs. (21) and (22) can be expressed as:

⎧

⎪

⎨

⎪

⎩

Δ𝜺̄r𝑛+1 = 𝑣0Δ𝜺r0𝑛+1 + 𝑣IΔ𝜺rI𝑛+1 ,
𝝈̄𝑛+1 = 𝑣0(1 −𝐷0𝑛+1)𝝈̂0𝑛+1 + 𝑣I𝝈̂I𝑛+1 ,

Δ𝜺rIn+1 = 𝑩𝜖
(

I,𝑪SDr
0𝑛+1

,𝑪Sr
I𝑛+1

)

∶ Δ𝜺r0𝑛+1 .
(31)

These equations can be solved following the process carried out in54 and detailed in Appendix C.1. Defining the macroscale
incremental-secant operator as:

𝑪̄SDr =
[

𝑣I𝑪Sr
I ∶ 𝑩𝜖 (I,𝑪SDr

0 ,𝑪Sr
I
)

+ 𝑣0𝑪SDr
0

]

∶
[

𝑣I𝑩𝜖 (I,𝑪SDr
0 ,𝑪Sr

I
)

+ 𝑣0𝑰
]−1 , (32)

Eq. (19) is rewritten in the incremental-secant form as:
𝝈̄𝑛+1 + 𝑣0

(

𝐷0𝑛+1 −𝐷0𝑛

)

𝝈̂res
0𝑛

= 𝑪̄SDr
𝑛+1

(

I,𝑪SDr
0𝑛+1

,𝑪Sr
I𝑛+1

, 𝑣I
)

∶ Δ𝜺̄r𝑛+1. (33)

2In previous works ( 91, 73, 53) it was shown that when using first statistical moments, cancelling the matrix residual stress could help improving the scheme accuracy for
composites with stiff inclusions. However, note that as the MFH model is used as a reduced order model, the residual version of the incremental-secant scheme developed
in 54 is used in this paper.
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3.1.4 Phase behaviors54

In this subsection, we omit the subscript related to the phase for clarity.
For the case of elastic phases, the constitutive material equation is written in terms of the elastic tensor 𝑪el as:

𝝈 = 𝑪el ∶ 𝜺. (34)
In this paper, the inclusion phase is modeled as a transversely isotropic elastic material, meaning it will be defined by a longi-
tudinal and a transverse Young's modulus (𝐸L, 𝐸T), and transverse and longitudinal transverse quantities of the Poisson's ratio
(𝜈TT, 𝜈LT) and the shear modulus (𝐺TT, 𝐺LT).

The matrix phase is modeled by a damage-enhanced pressure-dependent elasto-plastic model. In this work, the small-strain
pressure-dependent damaged-enhanced incremental secant implementation developed in J.M. Calleja Vázquez et al.54 of the
pressure-dependent yield surface

𝑓 (𝝈̂) =
(

(𝝈̂)eq

𝜎𝑐

)𝛼

− 3 𝑚𝛼 − 1
(𝑚 + 1) 𝜎𝑐

𝜙̂ − 𝑚𝛼 + 𝑚
𝑚 + 1

= 0 , (35)

completed by a non-associated flow rule 𝐺 = (𝜙eq)2 + 𝛽
(

𝜙̂
)2 as presented in Appendix A.2, is used for the matrix phase. In

this last equation, 𝜙̂ = 1
3
tr 𝝈̂ = 1

3
𝜎̂𝑖𝑖,

𝛽 =
9
(

1 − 2𝜈𝑝
)

2
(

1 + 𝜈𝑝
) , (36)

is a material parameter defined from the plastic Poisson's ratio 𝜈𝑝 at the plastic flow onset, and 𝑚 = 𝜎𝑡
𝜎𝑐

is the ratio between the
current compressive 𝜎𝑐 and tensile 𝜎𝑡 yield stresses. Besides, this model uses a power-enhanced version, the exponent 𝛼 being
a material constant, of the original Drucker-Prager formulation. The hardening evolution laws defining the evolution of the
compressive and tensile isotropic yield stresses are defined as a function of the equivalent plastic strain 𝑝 following 𝜎̇𝑐 = 𝐻𝑐(𝑝)𝑝̇,
and 𝜎̇𝑡 = 𝐻𝑡(𝑝)𝑝̇. In the MFH surrogate, the ratio between the compressive and tensile yield stresses is assumed to be constant
(𝑚 = 𝜎𝑡

𝜎𝑐
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) so that only 𝐻𝑐(𝑝) or 𝐻𝑡(𝑝) has to be defined. This assumption is not restrictive for the methodology.

Considering two different hardening laws in tension and compression would allow introducing more parameters in the MFH
surrogate in order to capture more accurately different loading modes. The inverse identification method further presented should
however be adapted.

In tems of the trial and residual stresses, the yield surface writes:

𝑓
(

𝝈̂tr ,Γ
)

=

⎛

⎜

⎜

⎜

⎝

(

𝝈̂tr
𝑛+1−𝝈̂

res
𝑛

1+6𝜇elΓ
+ 𝝈̂res

𝑛

)eq

𝜎𝑐

⎞

⎟

⎟

⎟

⎠

𝛼

− 3 𝑚𝛼 − 1
(𝑚 + 1) 𝜎𝑐

(

𝜙̂tr
𝑛+1 − 𝜙̂res

𝑛

1 + 2𝜅elΓ𝛽
+ 𝜙̂res

𝑛

)

− 𝑚𝛼 + 𝑚
𝑚 + 1

= 0 , (37)

where the superscript “tr” relates to the trial state –i.e. an elastic loading and Γ is the plastic multiplier. The expression (37) of
the yield surface was obtained after using the radial return mapping algorithm. By using a first order approximation in the stress
space in terms of Δ𝜺, the normal direction of the plastic flow writes:

𝐐𝑛+1 = 3
(

𝑪Sr ∶ Δ𝜺r𝑛+1
)dev +

2𝛽
3

(

𝑪Sr ∶ Δ𝜺r𝑛+1
)vol = 3

(

𝝈̂𝑛+1 − 𝝈̂res
𝑛

)dev +
2𝛽
3

(

𝝈̂𝑛+1 − 𝝈̂res
𝑛

)vol . (38)
As it can be observed, the normal is composed by a deviatoric and a volumetric terms. By updating this definition of the normal
with the plastic correction developments, these deviatoric and volumetric terms can be written as:

𝐐dev
𝑛+1 =

1
1 + 6𝜇elΓ

(

𝐐tr
𝑛+1

)dev ; 𝐐vol
𝑛+1 =

1
1 + 2𝜅elΓ𝛽

(

𝐐tr
𝑛+1

)vol . (39)
It was found in54 that with this definition of the normal, the tensors defining the LCC are naturally isotropic, being possible

to decompose the incremental secant operator 𝑪Sr as:
𝑪Sr = 3𝜅r

𝑠𝑰
vol + 2𝜇r

𝑠𝑰
dev, (40)

where the shear and bulk moduli of phase 𝜔𝑖 are defined as:
𝜅r
𝑠 = 𝜅el −

2𝛽𝜅el2Γ
1 + 2𝜅elΓ𝛽

; and 𝜇r
𝑠 = 𝜇el −

6𝜇el2Γ
1 + 6𝜇elΓ

, (41)
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with the damage counterparts

𝜅Dr
𝑠 =

(

1 −𝐷𝑛+1
)

(

𝜅el −
2𝛽𝜅el2Γ

1 + 2𝜅elΓ𝛽

)

; and 𝜇Dr
𝑠 =

(

1 −𝐷𝑛+1
)

(

𝜇el −
6𝜇el2Γ

1 + 6𝜇elΓ

)

, (42)

The increment of the accumulated plastic strain can be written in terms of the plastic multiplier Γ, the phase strain increment
Δ𝜺r and the secant tensor 𝑪Sr as:

Δ𝑝 = Γ
√

1 + 2𝜈2𝑝

√

𝐐 ∶ 𝐐 = Γ
√

1 + 2𝜈2𝑝

√

6
(

(

𝑪Sr ∶ Δ𝜺r
)eq

)2
+ 4

3
𝛽2

(1
3

tr (𝑪Sr ∶ Δ𝜺r
)

)2
, (43)

where the first statistical moment is used to compute the equivalent the average von Mises stresses and increment strains, writing:
⎧

⎪

⎨

⎪

⎩

𝝈eq =
√

3
2
𝝈 ∶ 𝑰dev ∶ 𝝈,

Δ𝜺eq =
√

2
3
Δ𝜺 ∶ 𝑰dev ∶ Δ𝜺.

(44)

The damage used to model the damaged-enhanced phase is divided into two contributions: A softening damage (𝐷𝑠) and a
failure damage (𝐷𝑓 ). The softening damage models the damage evolution up to the strain-softening onset writing:

Δ𝐷𝑠 =
𝐷onset
𝑝onset

Δ𝑝, (45)
where 𝐷onset and 𝑝onset are the matrix damage and the accumulated plastic strain at the strain-softening onset respectively. The
failure damage 𝐷𝑓 contribution starts after the matrix strain-softening onset. This law permits to model the failure characteristics
of the material by accelerating the development of damage. The failure damage 𝐷𝑓 writes:

Δ𝐷𝑓 = 𝛼Dam
(

𝑝 + Δ𝑝 − 𝑝onset
)𝛽Dam , if 𝑝 > 𝑝onset . (46)

Finally, the used matrix damage evolution law 𝐷 writes:
Δ𝐷 =

{

Δ𝐷𝑠, if 𝑝 ≤ 𝑝onset ,
Δ𝐷𝑠 + Δ𝐷𝑓 , if 𝑝 > 𝑝onset .

(47)

3.2 Inverse identification
After presenting the basis of the used surrogate model, this Section will now present the inverse identification process carried
out in order to find the micro-mechanical equivalent properties for each of the SVE realizations. This consists in an extension
to account for failure of the elastic45 and elasto-plastic53 approaches inverse identification approaches. For each SVE we will
associate corresponding parameters yielding the same homogenized behavior. As this identification is performed for each SVE
realization, as many values of each random descriptors as SVE realizations will be obtained. The notation (∙̃) will be used to
make reference to the identified parameters. The parameters that will define the inclusion phase will be the fiber volume fraction
𝑣̃I, the major and minor axes ratio of the single inclusion phase ellipsoid Ĩ, and its orientation 𝜃. The matrix phase is characterized
by its elastic, pressure-dependent plastic and damage parameters. The Young's modulus 𝐸̃0 and the Poisson's ratio 𝜈̃0 describe
the elastic matrix behavior. The pressure-dependent plasticity stage is defined by the compressive yield stress 𝜎̃0

𝑐 , the parameters
𝑯̃ =

[

ℎ̃0, ℎ̃1, 𝑚̃0
] of the further described hardening law, the tension and compression yield stress ratio 𝑚̃, the plastic Poisson's

ratio 𝜈̃𝑝 and the yield surface exponent 𝛼̃. The damage of the matrix phase will depend on the softening damage parameters
𝑝̃onset and 𝐷̃onset and its failure damage parameters 𝛼̃Dam and 𝛽Dam. A total of 163 random effective parameters, which will form
the vector 𝜷𝐷 will be identified for each SVE realization:

𝜷𝐷 =
[

𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, 𝜎̃
0
𝑐 , ℎ̃0, ℎ̃1, 𝑚̃0, 𝑚̃, 𝜈̃𝑝, 𝛼̃, 𝑝̃onset , 𝐷̃onset , 𝛼̃Dam, 𝛽Dam

]

. (48)
The inverse identification of a given SVE draws on the results extracted from the full-field simulations. As shown in Fig. 12,

the information used for the identification process of each SVE realization is extracted from the three different loading conditions
tested. The obtained effective parameter vectors from the full set of SVE realizations will form the effective random parameters
vector [𝛽𝑑] that will then serve as input for the generator of new data.

3Actually 𝛽Dam has a fixed value
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FIGURE 12 Flowchart of the complete methodology for the generation of the MF-ROM.

This Section will start presenting the identification process for the elastic properties, followed with the nonlinear damaged-
enhanced pressure dependent plasticity, and will end with the calibration of the model in order to recover the size objectivity
encountered after the strain-softening stage. At the beginning of some key points of the identification process, a line specifying
the already identified effective parameters and the parameters that will be identified at that specific point of the process will be
introduced. This will allow the reader to more easily identify the MF-ROM parameters needed for its definition and follow the
identification process.

3.2.1 Elastic Composites
At this stage, the known MF-ROM variable is: the fiber volume fraction [

𝑣̃I
]. This parameter is directly deduced from the SVE.

In this step, the following variables will be identified:[Ĩ, 𝜃, 𝐸̃0, 𝜈̃0
]

.
The equivalent inclusion model45 substitutes the complex microstructure of the composite material by an SVE composed of

matrix and a single elliptic inclusion (see Fig. 13). To define the inclusion, the volume fraction 𝑣I and its effective anisotropic
elasticity tensor 𝑪el

I , which is considered constant for all SVEs, are directly obtained from the SVE realizations. Then, the ratio
between the major and minor axes of the inclusion’s ellipsoid Ĩ, and its orientation, denoted by 𝜃, are obtained through the
inverse identification process (hence the ∙̃ notation). In this inverse identification process, the effective elasticity properties of
the isotropic matrix 𝑪̃el

0
(

𝐸̃0, 𝑣̃0
), as well as the effective Young’s modulus and Poisson's ratio (𝐸̃0, 𝑣̃0 respectively) are identified

to characterize the matrix phase.
In order to identify the elastic random descriptors, the elasticity tensor of the equivalent composite ( ̃̄𝑪el), Eq. (20), which

depends on the variables Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, has to be as similar as possible to the homogenized elasticity tensor extracted from the SVE
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FIGURE 13 Schematic representation of the elastic full-field SVE and its MFH virtual counterpart.

realizations (𝑪̄el). To that end, the following optimization process is performed:
min

Ĩ,𝜃,𝐸̃0,𝜈̃0

‖

‖

‖

‖

̃̄𝑪el
(

Ĩ, 𝜃, 𝑪̃el
0
(

𝐸̃0, 𝜈̃0
)

;𝑪el
I , 𝑣I

)

− 𝑪̄el‖
‖

‖

‖

, (49)
where ‖ ∙‖ stands for the Frobenius norm. By performing this minimization problem for each of the SVE realizations, the elastic
random descriptors are identified.

3.2.2 Nonlinear damage-enhanced elasto-plastic composites up to strain softening
Once the geometrical information of the inclusion and the effective elastic descriptors of the matrix are identified, the nonlinear
behavior descriptors of the matrix, including the plasticity onset, are still to be identified. In order to perform the identification
of the pressure-dependent matrix model parameters, three different loading conditions are used in order to characterize all its
parameters. These different loading conditions allow obtaining information about the effect of different hydrostatic pressures
on the composite material response. In this work, uniaxial tension and compression and biaxial tension (𝜺̄22 = 0) loading
conditions are used for the identification of the material parameters (as previously shown in Fig. 6). Since the incremental-secant
formulation is used, the loading curves will be divided into loading increments and virtual elastic unloadings.
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elD
C̃elD

i

˜̄C
el

FIGURE 14 Schematic representation of the damaged elastic full-field SVE and its MFH virtual counterpart (left) and schematic
unloading phase in a stress-strain plot (right).

Effective damage evolution.
The first step consists in identifying the effective damage 𝐷0 present at each loading increment. To that end, as the damaged
elastic tensor is extracted from the full-field simulation, the virtual elastic unloading step at each iteration can be used to extract
the value of the damage evolution53 (see Fig. 14). In this work, damage is taken into account on the matrix phase of the com-
posite through the scalar damage variable 𝐷0. The effective damage 𝐷̃0 of the matrix phase is obtained through the following
minimization problem:

min
𝐷̃0𝑛

‖

‖

‖

‖

̃̄𝑪elD
𝑛

(

𝑪̃elD
0𝑛

(

𝐷̃0𝑛 ; Ĩ, 𝜃, 𝐸̃0, 𝜈̃0
)

,𝑪el
I , 𝑣I

)

− 𝑪̄elD
𝑛

‖

‖

‖

‖

, (50)
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where 𝑪̃elD
0𝑛

(

𝐷̃0𝑛

) is the matrix damaged elastic tensor defined as:
𝑪̃elD

0𝑛
=
(

1 − 𝐷̃0𝑛

)

𝑪̃el
0
(

𝐸̃0, 𝜈̃0
)

. (51)
This procedure is performed for the three different loading conditions, obtaining the matrix damage evolution for each step
increment of the three loading conditions.

ε

σ Composite

Matrix Phase
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C̄el

Plastic
Onset

σ̄th

FIGURE 15 Composite yield identification scheme.

Composite plastic onset identification.
The next step consists in identifying the composite plasticity onset stress-strain state ( ̃̄𝝈𝑦, ̃̄𝜺𝑦) of the three loading conditions
used for the parameter identification in order to be able to later characterize the matrix stress-strain state at this point. Using the
already identified elastic tensor of the composite 𝑪̄el, it is possible to compute a theoretical elastic stress (𝝈̄th

𝑛 ) of the composite
as:

𝝈̄th
𝑛 = 𝑪̄el ∶ 𝜺̄𝑛. (52)

Due to the complex microstructure that is taken into account, localization points in which plasticity starts developing due to the
fibers disposition do not allow to implement a straightforward analytical methodology to find a plasticity onset. As the homog-
enized composite macro stresses and strains (𝝈̄, 𝜺̄) are known at all time steps from the full-field realizations, this theoretical
elastic stress allows us to obtain a reference value to compare with these responses obtained from the full-field realizations and
be able to assess the amount of plasticity that is developing in the SVE. In order to check when there is a meaningful amount of
plasticity developing on the SVE, the plasticity onset is identified by defining a tolerance stress (𝜎𝑡𝑜𝑙), 𝑒.𝑔 1 MPa, on the loading
component of the composite as shown in Fig. 15. The plasticity onset iteration is then found as the first step satisfying:

|𝝈̄11𝑛 | < |𝝈̄th
11𝑛

− 𝜎𝑡𝑜𝑙
|. (53)

It is then possible to define the yield strain ̃̄𝜺𝑦 and yield stress ̃̄𝝈𝑦 as the stress-strain state in which the extracted SVE stress-
strain curve crosses the tolerance line by using a linear interpolation between the values of 𝝈 and 𝜺 at the plasticity onset iteration
and the previous strain state, such that: (𝜺̄𝑛−1 < ̃̄𝜺𝑦 < 𝜺̄𝑛) and (𝝈̄𝑛−1 < ̃̄𝝈𝑦 < 𝝈̄𝑛).
Phases plasticity onset and identification of pressure dependency parameters
At this stage, the known MF-ROM variables are: [

𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0
]. In this step, the following variables will be identified:

[

𝛼̃, 𝑚̃, 𝜎̃0
𝑐

]. In addition, from the full-field simulations the macro-stressess and -strains (𝝈̄, 𝜺̄) are known and from previous steps,
the effective damage evolution 𝐷̃0𝑛 , and the plastic onset stress-strain state of the composite ( ̃̄𝝈𝑦, ̃̄𝜺𝑦) are known for the three
loading cases.

After identifying the plastic onset stress-strain state of the composite material under the three studied loading conditions, the
matrix strain-stress state at the plastic onset (𝜺0PO , 𝝈0PO ) must be obtained, which will allow to have the needed information to
compute the pressure-dependent parameters of the MF-ROM. To that end, the matrix strain and stress states at each iteration
must be computed up to the identified composite plastic onset. It is important to point out that in order to obtain an accurate
representation of the matrix stress-strain state at the plasticity onset of the three loading conditions, the damaged-enhanced
nonlinear incremental-secant scheme is used to be able to account for the starting plasticity and damage effects in the matrix
phase. Let us consider a time step [

𝑡𝑛, 𝑡𝑛+1
]:

• First, a virtual elastic unloading is performed. This step unloads the composite up to a stress-free state such that:
0 = 𝝈̄res

𝑛 = 𝝈̄𝑛 − 𝑪̄elD
𝑛 ∶ Δ𝜺̄unload

𝑛 . (54)
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FIGURE 16 Schematic representation of the damaged plastic full-field SVE and its MFH virtual counterpart (left) and schematic
loading phase in a stress-strain plot (right).
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FIGURE 17 Matrix stress-strain curves for uniaxial tension and compression, and biaxial loading up to the plastic onset.

From this expression it is possible to obtain the residual strain tensor, allowing to write the strain increment Δ𝜺̄r (see Fig.
11) as:

Δ𝜺̄r𝑛+1 =
(

𝜺̄𝑛+1 − 𝜺̄𝑛
)

+ 𝑪̄elD−1
𝑛 ∶ 𝝈̄𝑛. (55)

As enough points are obtained from the full-field simulations, it is possible to assume that
(

𝐷0𝑛+1 −𝐷0𝑛

)

𝝈̂res
0𝑛+1

≈ 0,
writing Eq. (33) as:

𝝈̄𝑛+1 = 𝑪̄SDr
𝑛+1 ∶ Δ𝜺̄r𝑛+1. (56)

• Then, using Eq. (56), the material is reloaded up to the next composite state, see Fig. 16. Since this stress-strain state is
known from the full-field simulation, it is possible to identify the matrix secant tensor 𝑪SDr

0 by performing the following
minimization problem using the definition of the composite secant tensor, Eq. (32), and of the phases, Eqs. (40, 41):

min
𝜇̃Dr
𝑠 ;𝜅̃Dr

𝑠

{

‖

‖

‖

‖

̃̄𝑪SDr
𝑛+1

(

𝑪̃SDr
0

(

𝜇̃Dr
𝑠 (𝐷̃0), 𝜅̃Dr

𝑠 (𝐷̃0); 𝐸̃0, 𝜈̃0
)

;𝑪el
I , Ĩ, 𝜃, 𝑣I

)

∶ Δ𝜺̄r𝑛+1 − 𝝈̄𝑛+1
‖

‖

‖

‖

}

. (57)

By computing the damaged matrix secant tensor ̃̄𝑪SDr
0 at each step, it is possible to obtain the stress-strain state of each

of the phases at each step by using Eq. (31).
Performing consecutive virtual unloadings and loadings until reaching the computed plastic onset, making use of the
mean-field homogenization relations shown in Eqs. (25) and (31), the plastic onset state of the matrix phase (𝜺0PO , 𝝈0PO )
is determined for each of the three loading conditions as shown in Fig. 17.
Once the stress state of the matrix is known at the plastic onset (“PO”), the surrogate model yield surface function 𝑓 is
assumed to have reached a null value. By considering the hardening 𝑅(𝑝0) is small enough to be considered null at this
stage, the number of unknowns of the yield surface decreases to three. By minimizing the yield surface equation at this
stage for the three tests, it is then possible to identify these three unkonwn parameters: 𝛼̃, 𝑚̃ and the matrix compressive
yield stress 𝜎̃0

𝑐 , as:

min
𝛼̃,𝑚̃,𝜎̃0

𝑐

{

∑

Tests
|

|

|

𝑓PO(𝛼̃, 𝑚̃, 𝜎̃0
𝑐 )
|

|

|

=
∑

|

|

|

|

|

|

((

(𝝈̂0PO)
eq)𝛼̃

(

𝜎̃0
𝑐

)𝛼̃ − 3 𝑚̃𝛼̃ − 1
(𝑚̃ + 1)𝜎̃0

𝑐
𝜙̂0PO − 𝑚̃𝛼̃ + 𝑚̃

𝑚̃ + 1

)

|

|

|

|

|

|

}

. (58)

Now that 𝛼̃, 𝑚̃ and 𝜎̃0
𝑐 are identified, all the parameters defining the pressure-dependency of the material are known except the

hardening laws. However, assuming the tensile and compressive hardenings are related through parameter 𝑚̃ as 𝐻̃𝑐 = 𝑚̃𝐻̃𝑡, there
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is no longer need to use different loading conditions in order to identify the remaining parameters. As explained in the work by
Van Dung Nguyen et al.65, multiple localization bands can appear in the post-peak localization stage, which is considered to be
a nonphysical result68. This is not the case under tensile loading conditions, for which this condition is valid since in those cases
the failure band is perpendicular to the loading direction (56), allowing to correctly capture the dissipated energy of the sample
during failure. For this reason the uniaxial tension condition will later be the preferred loading condition for the calibration of the
post localization onset stage. The uniaxial tension loading condition will therefore be used for the following identification steps.
Starting plastic flow: Initial plastic Poisson's ratio
At this stage, the known MF-ROM variables are: [𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, 𝛼̃, 𝑚̃, 𝜎̃0

𝑐

]. In this step, the following variables will be identified:
[

𝜈̃𝑝
]. Apart from these variables, the macro-stress and strains (𝝈̄, 𝜺̄) and the effective damage evolution 𝐷̃0 are known for all

steps. In addition, the phases stress-strain state (𝝈0, 𝜺0, 𝝈I, 𝜺I) have been computed up to the plastic onset.
Once plasticity is found to be reached, the initial plastic Poisson's ratio of the given SVE can be identified. To that end,

the relation between the material parameters 𝛽 and 𝜈̃𝑝, Eq. (36) is used. In order to reduce the source of errors that could be
introduced numerically at a specific time step, the following procedure is performed for the first 5 loading increments after the
plastic flow onset in order to find an averaged quantity.

Rewriting the incremental-secant scheme, Eq. (33), for the studied case with all identified parameters, it is possible to identify
the effective virtual shear and bulk moduli (𝜇̃SDr

0 , 𝜅̃SDr
0 ) of the matrix (defined in Eq. (41)) through the evaluation of the 𝑪̃SDr

0tensor using Eqs. (32, 33):
min
𝜇̃Dr
𝑠 ;𝜅̃Dr

𝑠

{

‖

‖

‖

‖

̃̄𝑪SDr
𝑛+1

(

𝑪̃SDr
0

(

𝜇̃Dr
𝑠 (𝐷̃0,Γ), 𝜅̃Dr

𝑠 (𝐷̃0,Γ, 𝛽); 𝐸̃0, 𝜈̃0
)

;𝑪el
I , Ĩ, 𝜃, 𝑣I

)

∶ Δ𝜺̄r𝑛+1 − 𝝈̄𝑛+1
‖

‖

‖

‖

}

. (59)

The matrix secant tensor 𝑪̃SDr
0 is known to be isotropic, being possible to write it in terms of 𝜇̃Dr

𝑠 and 𝜅̃Dr
𝑠 as 𝑪̃SDr

0 = 3𝜅Dr
𝑠 𝑰vol +

2𝜇Dr
𝑠 𝑰dev, where the plastic bulk and shear moduli write:

𝜅̃Dr
𝑠𝑛+1

=
(

1 − 𝐷̃0𝑛+1

)

(

𝜅el −
2𝛽𝑛+1𝜅el2Γ𝑛+1

1 + 2𝜅elΓ𝑛+1𝛽𝑛+1

)

; and 𝜇̃Dr
𝑠𝑛+1

=
(

1 − 𝐷̃0𝑛+1

)

(

𝜇el −
6𝜇el2Γ𝑛+1

1 + 6𝜇elΓ𝑛+1

)

. (60)

By solving the system of two equations formed by the definitions of the bulk and shear moduli, the unknown plastic multiplier
Γ𝑛+1 and the parameter 𝛽𝑛+1 can be obtained directly as:

Γ𝑛+1 = −

(

𝐷̃0𝑛+1 − 1
)

𝜇el + 𝜇̃Dr
𝑠𝑛+1

6𝜇el𝜇̃Dr
𝑠𝑛+1

, (61)

𝛽𝑛+1 = −
𝜅el

(

𝐷̃0𝑛+1 − 1
)

+ 𝜅̃Dr
𝑠𝑛+1

2Γ𝑛+1𝜅̃Dr
𝑠𝑛+1

𝜅el
. (62)

In order to find a unique value of the parameter 𝛽, this is computed as the arithmetic mean of the identified 𝛽𝑖 at each loading
increment. Once the parameter 𝛽 is computed, the initial plastic Poisson's ratio 𝜈̃𝑝 can be identified as:

𝜈̃𝑝 =
9 − 2𝛽
18 + 2𝛽

. (63)
Parameters 𝛽 and 𝜈̃𝑝 remain constant for the rest of the identification process.

Fig. 18 shows a flowchart of the inverse identification process up to the plastic flow with all the steps performed separated
into the three tested loading conditions.
Plastic flow and damage evolution law up to strain softening onset
At this stage, the known MF-ROM variables are: [𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, 𝛼̃, 𝑚̃, 𝜎̃0

𝑐 , 𝜈̃𝑝
]. In this step, the following variables will be iden-

tified:
[

𝑝̃onset , 𝐷̃onset
]

. Apart from the MF-ROM variables, it is worth recalling that the macro-stress and strains (𝝈̄, 𝜺̄) and the
effective damage evolution 𝐷̃0 are known for all steps, as well as the phases stress-strain states (𝝈0, 𝜺0, 𝝈I, 𝜺I) up to the plastic
onset and the matrix parameters 𝜈̃𝑝 and 𝛽, with 𝜈̃𝑝 and 𝛽 being linked through 𝜈̃𝑝 =

9−2𝛽
18+2𝛽

.
Once all the parameters defining the plastic evolution of the material are identified, it is possible to compute the plastic strain

evolution of the matrix phase by identifying the matrix damaged secant tensor 𝑪̃SDr
0 using the reloading step of the incremental

secant scheme as previously shown. Having identified and fixed the parameter 𝛽, the definition of the shear and bulk moduli,
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FIGURE 18 Flowchart of the inverse identification process up to plastic flow.

Eq. (41), will now only depend on one unknown: the plastic multiplier Γ through Eq. (61), reducing the evaluation of 𝑪̃SDr
0 to

the optimization of Γ. To that end, the following minimization is performed:
min
Γ𝑛+1

{

‖

‖

‖

‖

̃̄𝑪SDr
𝑛+1

(

𝑪̃SDr
0

(

𝜇̃Dr
𝑠 (Γ𝑛+1); 𝜅̃Dr

𝑠 (Γ𝑛+1)
)

;𝑪el
I , Ĩ, 𝜃, 𝑣I

)

∶ Δ𝜺r𝑛+1 − 𝝈̄𝑛+1
‖

‖

‖

‖

}

, (64)

Once the plastic multiplier Γ is obtained, the value of the matrix, inclusions and composite secant tensors (𝑪̃SDr
0 , 𝑪̃Sr

I and
̃̄𝑪SDr respectively) are known from Eqs. (32, 40, 41), being possible to compute the stress-strain state of each of the phases for
all loading increments (see Fig. 19). This step allows us to identify the matrix localization onset iteration, which is defined as
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being the iteration in which the matrix stress reaches its maximum (|𝝈eq
0𝑛+1

| ≤ |𝝈eq
0𝑛
|) and enters the strain softening phase, see

Fig. 20. Once this condition is reached, the iterative process is stopped, since the identification of the post-strain softening region
is not needed in terms of the plastic flow evolution information.

As shown in Fig. 19, by identifying the value of the plastic multiplier, it is possible to obtain the increment of the accumulated
plastic strain in the matrix Δ𝑝̃0𝑛+1 from time 𝑡𝑛 to 𝑡𝑛+1 using Eq. (43) as:

Δ𝑝̃0𝑛+1 =
Γ𝑛+1

√

1 + 2𝜈̃2𝑝

√

6
((

𝑪̃Sr
0𝑛+1

∶ Δ𝜺r0𝑛+1
)eq)2

+ 4
3
𝛽2

(1
3

tr
(

𝑪̃Sr
0𝑛+1

∶ Δ𝜺r0𝑛+1
))2

, (65)

where the matrix equivalent increment strain (

Δ𝜺r0
)eq is evaluated with the first statistical moment (see Eq. (44)). This accu-

mulated plastic strain increment of the matrix phase allows to approximate the accumulated plastic strain by adding all steps
increments 𝑝̃0𝑛+1 =

∑𝑛
𝑙=0 Δ𝑝̃0𝑙+1 .
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FIGURE 19 Schematic representation of the full-field SVE and its MFH virtual counterpart with computation of the plastic
strain evolution (left) and schematic loading phase in a stress-strain plot (right).
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FIGURE 20 Damage-plastic strain plot representing the identified matrix damage from the SVE and the linear approximation
used for the MFH surrogate on the left, and graphic representation of the composite, matrix and inclusions stress-strain curves
with the location of the localization onset on the right.

A softening damage (𝐷̃𝑠) evolution law is used to model the matrix damage. In this work, this surrogate model softening
damage 𝐷̃𝑠 is simplified to a linear evolution law allowing for an accurate representation of the damage value at the strain
softening onset, meaning the maximum stress reached by the composite material and the strain at which it is reached will be
accurately represented while simplifying the model. In order to be able to accurately capture the damage state at the beginning
of the strain softening onset, the slope of the damage law is defined by the damage (𝐷̃0) and the accumulated plastic strain (𝑝̃0)
values at the matrix localization onset iteration. These quantities will be called 𝐷̃𝑜𝑛𝑠𝑒𝑡 and 𝑝̃𝑜𝑛𝑠𝑒𝑡 respectively, see Fig. 20. The
evolution law of the softening damage then writes:

Δ𝐷̃𝑠 =
𝐷̃𝑜𝑛𝑠𝑒𝑡

𝑝𝑜𝑛𝑠𝑒𝑡
Δ𝑝0. (66)
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It is worth highlighting that even though the damage representation during this stage does not represent the main focus of
this work, a more complex damage evolution law can be easily implemented in future works for a more complete damage
representation during this stage.
Hardening identification
At this stage, the known MF-ROM variables are:

[

𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, 𝛼̃, 𝑚̃, 𝜎̃0
𝑐 , 𝜈̃𝑝, 𝑝̃onset , 𝐷̃onset

]

. In this step, the following variables
will be identified: [ℎ̃0, ℎ̃1, 𝑚̃0

]. Adding to the known MF-ROM variables, from which the softening damage 𝐷̃𝑠(𝑝̃onset , 𝐷̃onset )
used in this step is defined, previous steps permitted the identification of the stress-strain state of the matrix phase (𝝈0, 𝜺0) for
all iterations as well as the plastic strain evolution 𝑝̃0 up to the localization onset .

σ̂0i f = 0

D̃0

Rp̃0

σ̄ σ̄

σ0

m̃

D̃s

p (Compression)

p (Tension)

−σ2

−σ3

−σ1

FIGURE 21 Schematic representation of the damaged plastic full-field SVE and its MFH virtual counterpart (left) and yield
surface representation in the Haigh-Westergaard coordinate space and effective matrix stress at iteration 𝑖 (right).

As already mentioned, in this Section the damage evolution law 𝐷̃𝑠 used for the MF-ROM will be defined and the hardening
evolution of the matrix will be identified. The effective von Mises stress of the matrix phase can be computed using the first
statistical formula, Eq. 44. As plastic flow occurs during the full loading, the yield function 𝑓 has a null value at all steps, see
Fig. 21.

Knowing the matrix stress and strain states at each loading increment, as well as the accumulated plastic strain evolution, it is
then possible to identify the matrix effective hardening evolution 𝑅0

(

𝑝̃0
) up to the strain softening onset at time 𝑛 by minimizing

the yield surface function 𝑓 at each iteration:
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, (67)

where the effective stress is computed with the identified softening damage evolution 𝐷̃𝑠, such that:
𝝈̂0𝑛+1 =

𝝈0𝑛+1
(

1 − 𝐷̃𝑠𝑛+1

) . (68)

The use of the softening damage evolution law allows slightly increasing the accuracy of the MF-ROM, as it permits to compute
the effective hardening evolution accounting for the damage law simplification.

Once the effective hardening evolution is computed, it is possible to identify the parameters (𝑯̃) governing the dedicated
evolution law 𝑅̃0(𝑝̃0𝑛 , 𝑯̃) used for the MFH model in order to fit the computed evolution. In order to identify the hardening
parameters that best suit a given SVE, a curve fitting problem is performed using the previously computed hardening evolution
𝑅𝑛(𝑝̃0𝑛).

min
𝑯̃

{

∑

𝑛

|

|

|

𝑅𝑛(𝑝̃0𝑛) − 𝑅̃0(𝑯̃ , 𝑝̃0𝑛)
|

|

|

}

. (69)
In this paper, a linear exponential law is used in order to model this evolution:

𝑅̃0
(

𝑝0
)

= ℎ̃0𝑝̃0 + ℎ̃1
(

1 − 𝑒−𝑚̃0𝑝̃0
)

. (70)
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FIGURE 22 Flowchart of the inverse identification process during plastic flow.

With this evolution model, the set of hardening parameters (𝑯̃) that need to be identified consists of ℎ0, ℎ1 and 𝑚0, which
will be part of the set of random quantities in the final MFH-ROM. It is worth highlighting that this hardening identification
process is applied up to the strain-softening onset, as the introduction of the post-strain softening onset would introduce spurious
information due to the localization effects. A flowchart of the plastic flow stage identification process is shown in Fig. 22.

The identification process presented in this Section allows obtaining an accurate representation of the SVE behavior under
different loading conditions independently of the SVE characteristics. A direct comparison between the response obtained with
the full-field SVE realizations and its identified MFH counterpart for the three tested loading conditions, see Fig. 6, is shown
in Fig. 23. As already observed in the work by Wu et al.53, the identified matrix behavior differs from the SVE matrix material.
This is observed in the comparison between the tensile hardening evolution curves obtained from the identification process of
different SVE and the epoxy hardening law used to model the matrix behavior in the full-field realizations, see Fig. 23.

The capability of the identified surrogate model to capture the SVE behavior under a different loading to those used for the
inverse process was checked by testing its performance under shear loading. We however note that the use of periodic boundary
conditions for the cases different from tensile ones is debatable as discussed in Section 2.2. As seen in the results shown in Fig.
24, the MFH model yields less accurate results than for the previously tested loading conditions, however the MFH simulations
predict the composite strength within a 10% error. Different loading modes should be considered during the identification process
in order to reduce this error, but that would imply, on the one hand to increase the number of parameters of the MF-ROM –for
example by considering different hardening laws in tension and compression, and on the other hand to consider unsupervised
learning for the parameters identification to account for several loading cases altogether –for example using a Bayesian Inference
(BI) process as in93.

3.2.3 Nonlinear damage-enhanced elasto-plastic composites accounting for loss of objectivity
during local softening
At this stage, the known MF-ROM variables are:

[

𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, 𝛼̃, 𝑚̃, 𝜎̃0
𝑐 , 𝜈̃𝑝, 𝑝̃onset , 𝐷̃onset , ℎ̃0, ℎ̃1, 𝑚̃0

]

. In this step, the following
variables will be identified: [𝛼̃Dam, 𝛽Dam

]. At this step, the critical energy release rate extracted from the full-field realization
𝐺𝑐SVE will be used for the calibration of the failure stage damage law.

Up to now, the loss of objectivity that is encountered once the onset of strain softening occurs has not been taken into account.
To that end, the energy release rate is used as objective value that will allow the recovery of the size objectivity (56,71). In order to
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FIGURE 23 (a) Stress-strain curves of random picked SVEs under uniaxial tension. (b) Comparison between epoxy tensile
hardening law and the identified hardening evolution. (c) Stress-strain curves of random picked SVEs under uniaxial compres-
sion. (d) Stress-strain curve of random picked SVEs under biaxial tension. MFH stands for the results obtained with the surrogate
model. SVE stands for the results obtained in the full-field SVE realizations. The Identified and Fitted 𝑅̃0

(

𝑝̃0
) stand for the iden-

tified surrogate matrix hardening law. The Matrix 𝑅̃0
(

𝑝̃0
) stands for the hardening law used in the full-field SVE realizations.
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FIGURE 24 Stress-strain curves of random picked SVEs under shear loading. MFH stands for the results obtained with the
surrogate model. SVE stands for the results obtained in the full-field SVE realizations.

estimate the critical energy release rate associated to the MFH model, similarly to the approach used in the publications (56,59),
a uniaxial test with a loading direction perpendicular to the UD composite fiber orientation is performed on a 2D specimen
with length 𝐿 ten times bigger than the characteristic length 𝑙 used in the MFH model and width 𝑊 four times smaller than
the characteristic length of homogenized composite material (see Fig. 25). A slight decrease of the bar diameter in its center is
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introduced through a curvature with radius 𝑅 in order to generate a localization of the deformation while not affecting the pre-
localization response of the material. A thorough convergence study of the solution with respect to the mesh was performed in
order to ensure a correct identification of the energy release values.

FF

W/2

L

R

Fiber Orientation

σ̄

D

Dend

Donset

Dissipation onset

Localization onset

Total failure

Gc = Dend−DonsetS0

FIGURE 25 Schematic representation of the uniaxial test on the left and energy dissipation () - stress (𝜎̄) plot used for the
computation of the MFH energy release rate 𝐺𝑐 .

The failure stage of the composite response is considered to be started once 𝑝̃0 > 𝑝̃𝑜𝑛𝑠𝑒𝑡. In order to be able to control the
failure characteristics of the material, a new failure damage (𝐷𝑓 ) contribution is introduced in the MFH surrogate model. This
failure damage evolution law writes:

Δ𝐷̃𝑓 = 𝛼̃Dam
(

𝑝0 + Δ𝑝0 − 𝑝onset
)𝛽𝐷𝑎𝑚 , if 𝑝̃0 > 𝑝̃𝑜𝑛𝑠𝑒𝑡. (71)

The total damage of the surrogate model during this post-strain softening point is then defined by the sum of both damage
components: Δ𝐷̃MFH = Δ𝐷̃𝑠 + Δ𝐷̃𝑓 . As can be observed in Eq. (71), the failure damage evolution depends on two new
parameters: 𝛼̃Dam and 𝛽Dam. These parameters will affect the ductility of the material, see Fig. 26, changing the resultant energy
release rate. In this paper, 𝛽Dam was fixed to a value of 2.5 [−], value for which realistic behaviour for a wide range of 𝐺𝑐 was
obtained, allowing to reduce the optimization problem to a one-DOF problem. Furthermore, the characteristic length 𝑙 introduced
used for the definition of 𝒄g (see Eq. 14) with the use of the nonlocal formulation of the damage, was fixed to a value of 25 𝜇m,
so the value of the energy release rate will only depend on the post-strain softening damage characteristics of the composite
material.

σ̄

D

Dend

Donset

Dissipation onset

Localization onset

Total failure

{

α̃Dam, β̃Dam

p̃0

D̃0

Localization onset

p̃onset

D̃onset

α̃Dam, β̃Dam

ε̄

σ̄ Localization onset

α̃Dam, β̃Dam

FIGURE 26 Schematic representation of the composite energy dissipation () - stress (𝜎̄) plot, the matrix damage evolution
law with respect to its accumulated plastic strain and the composite averaged 𝜎 − 𝜀 curve and the effect of the failure damage
evolution law parameter (𝛼̃Dam) on each respective graph.

After the matrix softening strain onset is reached, the identification of the post-strain softening damage evolution law parame-
ter (𝛼̃Dam) is performed through an iterative process, in which the energy release rate obtained with the full-field SVE simulation
is recovered with its MFH model counterpart. These model parameters are then found through the following minimization
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FIGURE 27 𝐺𝑐 − 𝛼̃Dam distribution for the 25 × 25 𝜇m2 SVE realizations.

problem:
min
𝛼̃Dam

{

|

|

|

Δ𝐺𝑐MFH

(

𝛼̃Dam
)

|

|

|

}

, (72)
where Δ𝐺𝑐MFH

(

𝛼̃Dam
)

= 𝐺𝑐MFH

(

𝛼̃Dam
)

− 𝐺𝑐SVE .
An initial guess value for 𝛼̃Dam is used to start the iterative process, in which a finite element simulation from which the

energy release rate 𝐺𝑐MFH
will be computed is performed at each iteration as shown by Fig. 25. Once the energy release rate is

obtained, this value is compared to the SVE realization energy release rate, being possible to implement an algorithm capable of
finding a better guess of the set of parameters of the damage model for the next iteration. As shown by Fig. 26, a change in the
matrix damage evolution law modifies the failure characteristics of the homogenized composite material response. This change
in the failure characteristics has a direct impact in the dissipated energy after the localization onset, modifying the characteristic
energy release rate of the studied material. This iterative process is performed until minimizing the (

Δ𝐺𝑐MFH

(

𝛼̃Dam
)) below a

fixed tolerance value. In this work, this tolerance is fixed to be 2% of the reference value 𝐺𝑐SVE , such that Δ𝐺𝑐MFH
≤ tolerance =

0.02 ⋅𝐺𝑐SVE . In the case reaching this tolerance would not be possible for a given SVE realization, the results of that realization
would not be taken into account in the final data.

As the resultant effect of 𝛼̃Dam on the energy release rate 𝐺𝑐𝑆𝑉 𝐸
also depends on all other parameters defining the surrogate

model, a direct relation between 𝐺𝑐SVE and 𝛼̃Dam cannot be found explicitely as shown in Fig. 27, being necessary to iterate this
optimization problem until reaching a sufficiently low error Δ𝐺𝑐MFH

. Fig. 28 shows a scheme of the optimization algorithm used
to identify the parameter 𝛼̃Dam through a flowchart.

4 STOCHASTIC MF-ROM FOR UD COMPOSITE MATERIAL

After the presentation of the identification process, this section will start with a study of the statistical properties of the identified
effective random parameters used to define the MF-ROM. Then, the data-driven sampling method94 used for the generation of
proper random fields for the construction of the structural stochastic FEM53 will be presented.

4.1 Analysis of the MF-ROM effective random parameters
As shown in Section 3, a total of 16 effective random parameters is needed for the definition of the MF-ROM. These random
parameters constitute the vector 𝜷𝐷 (𝑛 = 16) (Eq. 48). A vector of 16 parameters is therefore identified for each SVE realization,
meaning as many vectors 𝜷𝐷 as SVE realizations are obtained. Fig. 29 shows the different distributions of the random effective
material parameters obtained from the inverse identification process for the case with 25 × 25 𝜇m2 and 45 × 45 𝜇m2 by plotting
their respective probability density histograms. It is possible to observe how in general, the parameters using the 45 × 45
𝜇m2 SVE present less widespread values of the effective random parameters, which is reflected in higher maximums of the
probability density histograms, due to the higher size of the SVE. This lower standard deviation allows reducing the number
of SVE realizations needed to obtain the complete distribution of the effective parameters compared to the 25 × 25 𝜇m2 case.
However, the effect of this lower heterogeneity of the effective parameter values is still to be verified afterwards during the
verification of the MF-ROM performance. The probability density distribution of the rest of the effective random parameters
can be found in Appendix D.
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FIGURE 28 Flowchart of the optimization process of parameter 𝛼̃Dam for the recovery of the size objectivity through the energy
release rate.

As in the elasto-plastic case53, the effective random parameters used to build the damage-enhanced pressure-dependent MF-
ROM show a clear cross-dependence, as shown by the distance correlation95 values obtained in Figs. 30 and 31. This cross-
dependence between the effective random parameters must be preserved by the data-driven sampling method in order to yield
an accurate result when using the MF-ROM.
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4.2 Generation of random parameters
This section will start by briefly introducing the data-driven sampling method presented in94 and used for a stochastic MF-ROM
in the works53, method that will serve in this work to generate new data from the obtained data-set through the identification
process, and will then discuss the obtained identified and generated data-sets that will be used to build the stochastic structural
FEM.

The data-driven sampling method developed by G. Soize and R. Ghanem94 is used for the generation of proper random fields.
This method accounts for the random properties of the material, which are defined in a probability space (Θ,  ,) with a given
value in ℝ𝑛 through a random vector whose statistic information is supposed to belong to a subset 𝑛 of ℝ𝑛 but its distribution
is unknown.

The random matrix [

𝜷𝐷] =
[

𝜷𝐷
1 , ...,𝜷

𝐷
𝑁

] with value in 𝑛,𝑁 , where each column is an independent copy of the random
vector defined in the space (Θ,  ,) , allows preserving the local structure of the data-set. In our case, the identification process
permits us to obtain a matrix [𝒃] = [𝒃1, ..., 𝒃𝑁 ], which is a realization of matrix [

𝜷𝐷] with a size of 𝑁 = 1037 for the 25×25𝜇m2

SVE case and with a size of 𝑁 = 803 for the 45 × 45𝜇m2 SVE case. The information contained in the matrix [𝒃] allows then
to generate 𝑛𝑀𝐶 new realizations of the random matrix [

𝜷𝐷] thanks to a Markov Chain Monte Carlo (MCMC) process. To that
end, first the mean is removed from the data-set values and a normalization of the variance is carried out, being then possible
to generate a new random data-set. Once the new data is generated, this is re-scaled to the original data-set scale, obtaining the
final data. This process is summarized in (53).

Figs. 32, 33 and 34 present visually a direct comparison between the generated data and the identified data-set. The number
of needed realizations of the random vector 𝜷𝐷 can vary with the application. The size of the studied geometry, or the number of
desired stochastic simulations could increase or decrease the needed amount of stochastic information, meaning a larger set of
realizations may be required. In this work, a value of 𝑛𝑀𝐶 = 24 was used in the generation of the new data-set for the 25×25𝜇m2

SVE case, meaning that a total of 24888 realizations are generated from the original data-set of 1037 SVE realizations. These
plots show an excellent agreement between the identified and the generated distributions. Similar results were obtained for
the 45 × 45𝜇m2 SVE case, in which a value of 𝑛𝑀𝐶 = 29 was used since less realizations were obtained from the full-field
simulations, obtaining a total of 23287 realizations of the random vector 𝜷𝐷. As already observed with the distance correlation
between the different effective random parameters, a cross-dependence between the different effective random parameters can
be observed. It is worth mentioning the ability of the generator to successfully capture the different distributions of the different
parameters. Similar results were obtained for the 45 × 45𝜇m2 SVE, whose results are presented in Appendix E.
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FIGURE 29 Probability density histograms of 𝐸̃0, 𝜈̃𝑝, 𝑚̃, 𝑝̃onset and 𝐷̃onset for the 25× 25𝜇m2 (left) and 45× 45𝜇m2 (right) SVE
cases.
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𝑣̃I, Ĩ, 𝜃, 𝐸̃0, 𝜈̃0, 𝜎̃0

𝑐 , ℎ̃0, ℎ̃1, 𝑚̃0, 𝑚̃, 𝜈̃𝑝, 𝛼̃, 𝑝̃onset , 𝐷̃onset and 𝛼̃Dam .



36 JUAN MANUEL CALLEJA VÁZQUEZ ET AL

5 APPLICATION OF THE STOCHASTIC MF-ROM

Now that the data-set used to build the stochastic MF-ROM and the modeling strategy are presented, this section will directly
test the performance of the ROM by comparing its results against full-field simulations and experimental results.

In order to test the consistency of the developed methodology, the two constructed MF-ROMs, one built with the 25×25𝜇m2

SVEs and the other built with the 45×45𝜇m2 SVEs are tested as input of the stochastic finite element simulations. As shown in
Fig. 35, the random fields of the effective parameters, which are different realizations of the random vector 𝜷𝐷, are discretized
in squares with the same size as the SVEs used to construct the used MF-ROM, i.e. 25×25𝜇m2 or 45×45𝜇m2, determining the
distribution of different effective random parameters on the integration points. Following the methodology developed in (7,53),
due to the vanishing of the spatial correlation, the effective random parameters used at each random field discretization are
independent of the parameters of adjacent squares. As in7,53, smooth step functions are used at the random field discretization,
avoiding possible artificial effects that could be introduced due to sharp changes in the material properties. The finite element
discretization of the tested sample is performed with a mesh performed with quadratic elements whose characteristic size must
be smaller than the random field discretization squares and the characteristic length used in the MF-ROM53. The nonlocal
equations governing the material at the ply level write:

{

𝛁0 ⋅ 𝝈̄
(

𝜷𝐷(𝒙ref),𝒙ref
)

= 0 ∀𝒙ref ∈ 𝜔,
𝑝̆0 − 𝛁0 ⋅

(

𝒄g ⋅ 𝛁0𝑝̆0
)

= 𝑝0 ∀𝒙ref ∈ 𝜔.
(73)

At the ply level, the stress 𝝈̄ is computed using the built MF-ROM. The resolution of this nonlocal MFH problem is detailed in
Appendix C.

This Section will start verifying the MF-ROM by applying it to the stochastic study of UD ply realizations under tensile
loading. To this end, UD plies of 500 × 250𝜇m2 will be tested by using the two constructed MF-ROMs, one built with the
25×25𝜇m2 SVEs and the other one with the 45×45𝜇m2 SVEs. Several UD ply realizations are tested under this loading condition
in order to obtain a representative view of the MF-ROM performance. Then, this Section will end by validating the performance
of the MF-ROM against real-life results. To this end, an experimental transverse compression test will be simulated, allowing
not only to directly test the validity of the MF-ROM against the real behavior of the composite, but also to test the performance
of the MF-ROM under multiple loading conditions.

5.1 UD ply under tensile loading

11
22

F

FIGURE 35 Boundary conditions and property discretization on the left and quadratic mesh used on the right.

In the tensile test, the sample will be stretched in the horizontal direction as shown in Fig. 35. Quadratic elements are used to
discretize the sample with a size smaller than the squares used for the property discretization and than the characteristic length,
see Eq. (14), used in the nonlocal damage definition of the MFH. A convergence study with respect to the macroscale element
size of the stochastic MF-ROM method is performed in Appendix F. It is shown that for elements of size lower than half of both
the SVE size and the characteristic length 𝑙 of the nonlocal MFH formulation, the predictions have converged.



JUAN MANUEL CALLEJA VÁZQUEZ ET AL 37

0.00 0.01 0.02 0.03
11

0

20

40

60

80

100

11
 [M

Pa
]

MFH 25 m
MFH 45 m
FF

C2 - Restricted use 

                    

  

    

     

     

     

     

     

     

 
 
  
 
 
 

       

       

  

Sample A
Sample B

Sample D

Sample C

FIGURE 36 Averaged stress-strain curves for samples using the 25×25𝜇m2 (MFH 25𝜇m) and 45×45𝜇m2 (MFH 45𝜇m) MF-
ROM, and full-field simulations (FF).

The model is capable of capturing successfully the average response of the sample at all stages of loading as seen in Fig. 36. In
this figure it can be seen how the stress variability in the solutions provided by the MF-ROM is able to represent the variability
in the stress-strain curve that is observed when performing the full-field simulations.

It is also observed how the point at which the failure phase of the sample begins, is correctly captured by the MF-ROM.
However, it is worth noting the slightly stiffer behavior of the stochastic MFH simulations when reaching large strains. Enriching
the damage modeling of the matrix by using more complex damage evolution laws that allow capturing more subtilities of the
damage evolution of each SVE could help making the MF-ROM more accurate and able to find more complex behaviors of
the material. The average runtimes of the ply analyses were respectively 5.3 hours and 124.4 hours on a i5 single processor for
the stochastic simulation using the MF-ROM as surrogate and for the full-field simulation. In average, the ratio between both
simulations is of 23.4 [-], demonstrating the interest of the method.

FIGURE 37 Accumulated plastic strain (left) and damage (right) field plots for the randomly picked full-field sample A whose
response is reported in Fig. 36.

Let us now discuss the resultant distribution of different quantities through field plots by considering 4 randomly picked
samples (A, B, C and D) whose responses are represented in Fig. 36. The field plots obtained for the accumulated plastic strain,
damage and stresses on the full-field sample A can be observed in Figs. 37 and 38. Figs. 39 and 40 show the obtained field
distributions of the accumulated plastic strain, damage or stress for the picked 25×25𝜇m2 MF-ROM sample B. Figs. 41 and 42
allow comparing these results with another sample C using the 25 × 25𝜇m2 MF-ROM, and Figs. 43 and 44 allows discussing,
the results obtained for the 45 × 45𝜇m2 MF-ROM sample D. The properties discretization can be easily observed, as quantities
such as damage or the accumulated plastic strain show a uniform field inside each property sub-division of the sample.

In the accumulated plastic strain field plot, it is possible to observe shear bands emanating from the location with the highest
damage. This behavior can also be observed in the full-field simulations presented in Fig. 37. These bands are also seen in
the damage field plots, see Figs. 39, 41 and 43, as the faster evolution of the plastic-strain causes a faster development of the
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FIGURE 38 Stress 11 (left) and stress 22 (right) field plots for the randomly picked full-field sample A whose response is
reported in Fig. 36.

FIGURE 39 Accumulated plastic strain (left) and damage (right) field plots for the randomly picked 25 × 25𝜇m2 sample B
whose response is reported in Fig. 36.

FIGURE 40 Stress 11 (left) and stress 22 (right) field plots for the random picked 25 × 25𝜇m2 sample B whose response is
reported in Fig. 36.

damage. A strong localization of the damage once the failure onset is reached can be seen. This localization effect can clearly be
seen in the stress graphs. When looking at the component in the loading direction of the stress (Stress 11), the location in which
one can find the highest damage suffers an abrupt decrease in its loading state, which provokes a high stress localization in its
boundaries. Similarly, the high accumulated plastic strain and damage have a clear effect on the component 22 of the stress,
which sees a sudden change in the localization zone and its surroundings.

Looking at Fig. 38, it is possible to observe a clear horizontal or vertical pattern in the stresses, depending whether the
component 11 or 22 is studied. This effect is well captured by both MF-ROMs (25×25𝜇m2 and 45×45𝜇m2) as shown by Figs.
40, 42 and 44. Focusing on the results obtained with the MF-ROM constructed from the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE
realizations, it is possible to conclude that the methodology shows a good consistency on both cases, being both MF-ROMs
capable of providing good predictions of the UD composite ply sample response up to its complete failure, where the model
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FIGURE 41 Accumulated plastic strain (left) and damage (right) field plots for the randomly picked 25 × 25𝜇m2 sample C
whose response is reported in Fig. 36.

FIGURE 42 Stress 11 (left) and stress 22 (right) field plots for the randomly picked 25 × 25𝜇m2 sample C whose response is
reported in Fig. 36.

FIGURE 43 Accumulated plastic strain (left) and damage (right) field plots for the randomly picked 45 × 45𝜇m2 sample D
whose response is reported in Fig. 36.

satisfactorily captures how the geometrical variabilities found at the microstructure level affect the failure characteristics of the
sample.

5.2 Experimental compression test
In this Section, the MF-ROM will be tested against real life experiment results. For this purpose, the used test is the transverse
compression test performed in the work by Chevalier et al.96. In this work, the transverse compression test is performed on a
10 × 10 × 10 mm3 cubic sample as shown in Fig. 45. In order to reduce the computational cost of the simulation, a 2D square
sample of 10 × 10 mm2 divided into two differentiated regions is used. As shown in Fig. 45, the 2D sample is divided into an
inner and an outer region. As it was observed in the experimental results96, the starting failure mechanism consists on a tensile
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FIGURE 44 Stress 11 (left) and stress 22 (right) field plots for the randomly picked 45 × 45𝜇m2 sample D whose response is
reported in Fig. 36.

stress driven failure at the center of the specimen, followed by a transition to shear failure (see Fig. 47). Therefore, numerical
setup must be able to provide a good representation of the damage evolution in this inner region in order to correctly capture
the failure mechanism of the sample. The inner part of the 2D geometry used for the test is meshed with quadratic triangular
elements with a characteristic length of 20𝜇m and the behavior will be modeled with the developed stochastic MF-ROM. The
outer part will be modeled with a deterministic MFH model with a characteristic length of 200𝜇m, meaning a coarser mesh can
be used. For this region, the properties used correspond to realizations of fiber volume fractions close to the average of 40%.
This division of the tested sample allows not only to reduce the computational cost of the simulation while retaining the ability
to capture the starting failure mechanism, but also to mitigate the effect of the boundary conditions on the failure characteristics
of the sample. Two different boundary conditions will be tested in order to represent two limit cases. First, a no-slip condition
is tested, in which the upper and lower edges will be constrained along the horizontal direction (see Fig. 45). Then, a perfect
slip test in which these constrains are removed is performed. Due to the impossibility to accurately model the real friction effect
at the top and lower boundaries of the tested sample, these two conditions will allow us to obtain two limit cases, knowing the
experimental conditions remain in between these two conditions. For this test, the MF-ROM built from 25 × 25 𝜇m2 SVEs is
used.

F
F

Same vertical
displacement

FIGURE 45 Schematic representation of the experimental setup built in96 on the left, blocked case boundary conditions in the
middle and second-order mesh with inner and outer regions on the right.

As in the experimental test by J. Chevlier96, an average of 40% volume fraction is used, and the Young’s modulus is corrected
in order to account for the viscous effect seen on the real experiment. To perform this correction, the same modeling approach
as the one implemented in V.D. Nguyen et al.56 is used. This viscous correction consists on:

𝐸0 = 𝐸̃0 +
𝑁
∑

𝑖=1
𝐸𝑖exp

(

− 𝑡
𝜏𝑖

)

, (74)

where 𝜏𝑖, 𝑖 = 1..𝑁 and 𝐸𝑖, 𝑖 = 1..𝑁 , are the modulus and time constants of the 𝑁 Maxwell branches and 𝐸̃0 is the random value
of the Young's modulus for a given realization. The properties identified for the modeling of the RTM6 epoxy in56 to account for
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visco-elasticity are used to account for the elastic stage of the experimental test performed at 𝜀̇ = 10−4s−1, which took around
150s to be performed.

Looking at the averaged behavior results shown in Fig. 46, we can observe how the behavior of the composite sample under
these loading conditions is capable of correctly capturing the behavior observed in the real experiment, correctly capturing the
minimum stress reached during the test. Looking at the blocked edges BC (where the no-slip condition is applied to the upper
and lower edges), a stiffer behavior compared to the one obtained at the experiment is obtained. This is due to the stronger
constraints introduced by the no-slip condition at the edges of the sample. Similarly, this stronger constraint yields on a sooner
fracture of the sample compared to the experiment results. In contrast, as expected, the free edges condition (BC in which the
horizontal constraint is removed from the top and lower edges) yields a softer behavior and a later failure of the sample. As
anticipated, the results obtained with both boundary conditions represent two limit cases, in which the experimental results yield
between both results.
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FIGURE 46 Stress-strain curve comparison between the MFH results and the experimental results obtained in96 for a true strain
rate of −10−4 s−1.

As expected, a lower variability to the one observed in the previous ply stochastic study is observed due to the much larger size
of the studied sample, size at which one obtains a representative response of the composite behavior. The use of the stochastic
MF-ROM in the inner part of the sample allows to observe a variability in the damage evolution characteristics of each realiza-
tion, as well as a slight variability in the elastic and nonlinear responses of the studied sample. Let us analyse the contour plots
obtained from these simulations. First, Fig. 47 shows images from the real experiment results and a damage contour plot of the
result obtained with a deterministic MFH at the dawn of failure in the test performed by J.M. Calleja et al.54. Then, Figs. 48-50
show the field plots for the stress, the accumulated plastic strain and the damage evolution state at the start of the failure of the
sample realizations under the blocked edges BC. Fig. 51 shows the damage field plots obtained with the two samples tested with
the free edges BC. All the shown results are extracted at the starting of the failure stage, meaning the tensile stress driven failure
observed at the center of the specimen can be observed to be developing.

The effect of the MF-ROM used in the inner part of the sample can be observed in the field plots of the stress and the
accumulated plastic strain. However, the most interesting comparison can be seen in the damage field plots. As it is presented,
the damage contour plot at the beginning of the failure stage, presented a smooth and very uniform distribution over the sample
when using the deterministic material law, being possible to observe the concentration of damage at the center of the sample
due to the tensile stress driven failure. Similar results are observed on the new stochastic results. However, these present a much
complex distribution and different behavior for each realization. Damage evolution can also be observed at the corners of the
sample, however this is a result of the no-slip boundary condition used in the numerical setup. This is thought to be one of
the main causes for the sooner failure observed with this boundary condition. As shown in Fig. 51, the free edges BC does not
present this problem, allowing the material to undergo larger strains before failing.
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FIGURE 47 Surfaces of the cubic UD specimens after failure as shown in96 on the left: the green and red lines emphasize
the transition between a tensile stress dominated crack propagation to a shear one. Reprinted from Composite Structures, 209,
J. Chevalier and P.P. Camanho and F. Lani and T. Pardoen, Multi-scale characterization and modelling of the transverse com-
pression response of unidirectional carbon fiber reinforced epoxy, 160-176, Copyright (2019), with permission from Elsevier.
Damage [-] contour plot of the deterministic multiscale MFH simulation with blocked upper and lower edges on the right.

FIGURE 48 Stress 11 (left) and Stress 22 (right) field plots of realization A with constrained upper and lower edge.

FIGURE 49 Accumulated plastic strain (left) and damage (right) field plots of realization A with constrained upper and lower
edge.
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FIGURE 50 Damage field plots of realization B (left) and realization C (right) with constrained upper and lower edge.

FIGURE 51 Damage field plots of realization D (left) and realization E (right) with slip conditions on upper and lower edge.

6 CONCLUSION

The goal of this paper is to build a stochastic MF-ROM capable of capturing the pressure-dependent nonlinear behavior of two-
phase UD composite materials with epoxy matrix, and capable of remaining valid after the strain-softening onset. In order to
generate the stochastic MF-ROM, the information extracted from full-field SVE realizations is used as input of an inverse iden-
tification process that allows obtaining the effective random properties of a micromechanical MFH surrogate. The homogenized
stress-strain responses and the damaged elastic tensor of the SVE realization serve as input for this identification process, how-
ever, these quantities do not remain valid once the strain-softening onset is reached. Once this stage is reached, a loss of size
objectivity is encountered, meaning that a new objective value that allows to recover it is needed. In this work, the energy release
rate is used as the target value that would allow this recovery of the size objectivity. By identifying the MFH surrogate parame-
ters allowing to recover the same energy release rate as the one extracted from the full-field simulation, it is possible to correctly
capture the behavior of each SVE up to its complete failure. Providing the model with the ability to maintain the size objectivity
over the entire response of the material allows the uncertainties encountered in the material microstructure to be upscaled to the
macroscale, making it possible to analyze the effect of these geometrical uncertainties in the failure characteristics of a material.

This stochastic MF-ROM paves the way for efficient stochastic virtual testing of composite materials by using an incremental-
secant mean-field homogenization scheme as its basis. Two different SVE sizes are tested in the construction of the MF-ROM,
being possible to study its impact in the performance of the stochastic simulations. The developed identification process is
able to correctly capture the behavior of the studied SVEs under multiple loading conditions up to their complete failure. The
identified parameters for each SVE represent a realization of a matrix of random vectors, which is used as the input of a data-
driven-process that allows to obtain proper random fields by generating new data with the same statistical properties as the input
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matrix. The generated data obtained with this data-driven process show a good representation of not only the distribution of
each random parameter, but also an accurate representation of the relation between them. We however note that for an identified
set of parameters, the MF-ROM predictions show more discrepancies with the corresponding SVE model when loading under
shearing, for which the use of periodic boundary condition under damage is debatable. To reduce this error, different loading
modes should be considered in the future during the identification process as well as more parameters of the MF-ROM –for
example by considering different hardening laws in tension and compression. The more complex identification would then have
to be conducted through unsupervised learning to account for several loading cases altogether, for example using a Bayesian
Inference (BI) process as in93.

Finally, the performance of the stochastic MF-ROM is verified against full-field simulations and real-life experiments. First,
multiple UD plies under tensile loading are tested using full-field and the MF-ROM representations. The field distribution plots
show how the MF-ROM models constructed with the two property discretizations (25 × 25𝜇m2 and 45 × 45𝜇m2) are able to
capture the overall patterns observed in the full-field simulations for quantities such as the stresses, the damage evolution or
the accumulated plastic strain. Looking at the averaged responses, it is possible to observe a correct representation of the ply
response for both MF-ROMs, obtaining a good variability of the responses at low and medium strains and being able to capture
the failure point of the samples. Secondly, a transverse compression test experiment was virtually modeled with the developed
MF-ROM built from the 25×25𝜇m2 SVE realizations. Two different boundary conditions were used on the edges of the sample
in order to test two limit cases (fully blocked upper and lower edges, simulating an infinite friction between the machine and
the tested sample; and free upper and lower edges, simulating an idealized zero-friction condition). The obtained results show
the ability of the methodology to capture the effects of the microscale variabilities into the macroscale response of the tested
sample, confirming the good accuracy of the MF-ROM. This MF-ROM methodology allows for a high flexibility, making it
easy to adapt it to other kind of materials or to enrich the model with more complex evolution laws. This high flexibility mixed
with the promising obtained results and the intrinsic advantages of the incremental-secant formulation, allows to confirm this
stochastic reduced-order model as a basis for future works. However, the approach is now limited to composites that can be
represented by an equivalent ellipsoidal fiber. For more complex composite microstructures, MFH blocks made of equivalent
fibers of different orientations and aspect ratio values can be combined following the approach presented in97.
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APPENDIX

A PHASE MODELS

A.1 Elastic phase model
The first presented model is the case of elastic phases. A neo-Hookean strain energy Ψ𝑓 = Ψ𝑓 (𝐂) (𝐂 stands for the right
Cauchy-Green tensor) is used to describe the transversely isotropic hyperelastic model used for the modeling of the unidirectional
fibers70,71. As transversely istropic properties are taken into account, the strain energy Ψ𝑓 can be divided into isotropic (Ψiso

𝑓 )
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and transverse (Ψtrn
𝑓 ) components as:

Ψ𝑓 = Ψiso
𝑓 + Ψtrn

𝑓 . (A1)
The parameters characterizing such material are the transverse Young’s modulus 𝐸T, Poisson's ratio 𝜈TT and shear modulus

𝜇TT, the longitudinal-transverse Poisson's ratio 𝜈LT and shear modulus 𝜇LT, and the longitudinal Young’s modulus 𝐸L.
The isotropic and transverse parts of the neo-Hookean strain energy write:

Ψiso
𝑓 = 1

2
𝜇12

(

𝐼1 − 3
)

− 𝜇12 log 𝐽 + 1
2
𝜆 log2 𝐽 ,

Ψ𝑡𝑟𝑛
𝑓 =

[

𝛼trn + 2𝛽trn ln 𝐽 + 𝛾trn
(

𝐼4 − 1
)] (

𝐼4 − 1
)

− 1
2
𝛼trn

(

𝐼5 − 1
)

,
(A2)

where 𝐼1 = tr (𝐂),𝐼4 = 𝐀 ⋅𝐂 ⋅𝐀, 𝐼5 = 𝐀 ⋅𝐂2 ⋅𝐀, being 𝐀 the unit vector with the fibers direction in the original non-deformed
configuration, 𝐽 =

√

det(𝐂). The quantities 𝜇12, 𝜆, 𝛼trn, 𝛽trn, and 𝛾trn are material constants defined as:
𝜇12 =

𝐸T

2
(

1 + 𝜈TT
) ,

𝜆 =
𝐸T

(

𝜈TT + 𝑛𝜈TL2
)

𝑚TL
(

1 + 𝜈TT
) ,

𝛼trn = 𝜇12 − 𝜇3,

𝛽trn =
𝐸T [𝑛TL𝜈TL

(

1 + 𝜈TT − 𝜈TL
)

− 𝜈TT
]

4𝑚TL
(

1 + 𝜈TT
) ,

𝛾trn =
𝐸L (1 − 𝜈TT

)

8𝑚TL −
𝜆 + 2𝜇12

8
+

𝛼trn
2

− 𝛽trn,

(A3)

where 𝑚TL = 1 − 𝜈TT − 2𝑛TL𝜈TL2 , and 𝑛TL = 𝐸L

𝐸T .
Finally, this strain energy Ψ𝑓 allows the first Piola-Kirchhoff stress tensor to be written by computing the strain energy

derivative with respect to the deformation gradient tensor 𝐅 as:
𝐏 =

𝜕Ψ𝑓

𝜕𝐅
= 2𝐅 ⋅

𝜕Ψ𝑓

𝜕𝐂
=2𝐅 ⋅

{

𝜆 ln 𝐽𝐂−1 + 𝜇12
(

𝐈 − 𝐂−1) + 2𝛽trn
(

𝐼4 − 1
)

𝐂−1

+ 2
[

𝛼trn + 2𝛽trn ln 𝐽 + 2𝛾trn
(

𝐼4 − 1
)]

𝐀⊗ 𝐀
−𝛼trn(𝐂 ⋅ 𝐀⊗ 𝐀 + 𝐀⊗ 𝐂 ⋅ 𝐀)

}

.

(A4)

A.2 Damage-enhanced pressure-dependent elasto-plastic phases model.
The elasto-plastic phase of the composite is modeled using the large strain constitutive model based on a multi-mechanism
nonlocal damage continuum72,56. In this work, the viscous effect that was studied in these works will be omited, as the main focus
of this paper is the pressure-dependent effect seen in this kind of materials and the modeling of their failure. The deformation
gradient 𝐅 will be therefore divided into an elastic part and a plastic part such that:

𝐅 = 𝐅el ⋅ 𝐅pl. (A5)
The elastic strain energy reads Ψ (

𝐄el), where 𝐄el stands for the elastic logarithmic strain defined by the elastic right Cauchy
strain tensor 𝐂el as:

𝐄el = 1
2
ln𝐂el. (A6)

A bi-logarithmic potential function is used for the definition of Ψ (

𝐄el), which writes:
Ψ
(

𝐂el) = 𝜅el

2
ln2 𝐽 el + 𝜇el (dev𝐄el) ∶

(

dev𝐄el) , (A7)
where 𝜅el and 𝜇el are the bulk and shear moduli and 𝐽 el stands for the jacobian of the elastic deformation gradient 𝐅el.

Writing in the effective stress space in view of the application of damage, it is then possible to define the conjugated stress
measures from the potential (Eq. A7) as:

Ψ̇ = 𝛋̂ ∶ 𝐋el = 𝛕̂ ∶ 𝐄̇el, (A8)
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where 𝛋̂ is the effective Kirchhoff stress, 𝛕̂ is the effective stress measure conjugated to the logarithmic strain, also called the
effective corotational Kirchhoff stress, and 𝐋el stands for the elastic spatial gradient of velocity.

As shown in72, the following relation between the effective Kirchhoff stress and corotational Kirchhoff stress can then be
obtained:

𝜿̂ = 2𝐅el ⋅
𝜕Ψ
𝜕𝐂el

⋅ 𝐅e𝑇 = 𝐅e−𝑇 ⋅ 𝝉̂ ⋅ 𝐅e𝑇 , (A9)
Finally, making use of these relations, it is possible to estimate the effective Piola-Kirchhoff stress 𝐏̂ as:

𝐏̂ = 𝜿̂ ⋅ 𝐅−𝑇 = 2𝐅el ⋅
𝜕Ψ
𝜕𝐂el

⋅ 𝐅p−𝑇 = 𝐅e−𝑇 ⋅ 𝝉̂ ⋅ 𝐅p−𝑇 . (A10)
The used yield function for the modeling of plasticity represents a power-enhanced version of the original Drucker-Prager

formulation capable of capturing accurately the behavior of amorphous glassy polymers by allowing to represent different power
yield surfaces, including the classical Drucker-Prager or Merlo et al.99 yield surfaces. This yield surface will be written in terms
of a combined stress tensor 𝝓 written in terms of the effective corotational Kirchhoff stress and the corotational backstress tensor
𝒃̂ as:

𝝓 = 𝝉̂ − 𝒃̂. (A11)
The yield surface 𝐹 of the pressure-dependent elasto-plastic material writes:

⎧

⎪

⎨

⎪

⎩

𝐹 = (𝜙eq)𝛼

𝜎𝛼
𝑐

− 3(𝑚𝛼−1)
(𝑚+1)𝜎𝑐

𝜙̂ − 𝑚𝛼+𝑚
𝑚+1

≤ 0,

𝜙eq =
√

3
2
dev(𝝓) ∶ dev(𝝓),

𝜙̂ = 1
3
𝑡𝑟 (𝝓) ,

(A12)

where the exponent 𝛼 is a material constant, tr(𝝓) = 𝝓𝑖𝑖, “dev” stands for the deviatoric operator (dev(∙) = (∙) − vol(∙)),
“vol”standing for the volume operator

(

vol(∙) = 1
3
tr(∙)𝟏

)

, being 𝟏 the second order identity tensor, and where 𝜎𝑐 represents the
isotropic compressive yield stress. Finally, 𝑚 = 𝜎𝑡

𝜎𝑐
is the ratio between the current compressive and tensile yield stresses, where

𝜎𝑡 represents the current tensile yield stress. The evolution of the tensile and compressive yield stresses will be dictated by a
tensile (𝐻𝑡) and a compressive (𝐻𝑐) hardening functions respectively, and the evolution of the backstress tensor will be ruled
by a kinematic hardening evolution law (𝐻𝑏). The plastic strain rate tensor 𝐃pl is defined as:

𝐃pl = Γ̇𝐐, (A13)
where 𝐐 is the normal to the plastic flow potential and Γ the plastic multiplier. In order to take into account the irreversibility
of the process, the internal variable used is the equivalent plastic strain 𝑝, whose increment is written as:

𝑝̇ = 𝑘
√

𝐃pl ∶ 𝐃pl = 𝑘Γ̇
√

𝐐 ∶ 𝐐, (A14)
where 𝑘 is defined in terms of the plastic Poisson's ratio 𝜈𝑝 as:

𝑘 = 1
√

1 + 2𝜈2𝑝
; 𝑘 =

√

2
3

if incompressible flow rule. (A15)

The hardening evolution laws describing the evolution of the compressive and tensile isotropic yield stresses are defined as a
function of equivalent plastic strain 𝑝̇ as 𝜎̇𝑐 = 𝐻𝑐(𝑝)𝑝̇, and 𝜎̇𝑡 = 𝐻𝑡(𝑝)𝑝̇, while the kinematic hardening law describing the
backstress evolution follows ̇̂𝒃 = 𝑘𝐻𝑏(𝑝)𝐃pl.

Following previous contributions (100,99,101), a non-associated flow rule is used for the correct capturing of the polymer
behavior. The flow rule will then evolve in a direction normal to a plastic flow potential, which writes:

𝐺 = (𝜙eq)2 + 𝛽
(

𝜙̂
)2

. (A16)
where 𝛽 is a material parameter. The plastic Poisson's ratio 𝜈𝑝 yields from this potential flow, modeling the volumetric plastic
deformation. At the plastic flow onset 𝜈𝑝 writes:

𝜈𝑝 =
9 − 2𝛽
18 + 2𝛽

. (A17)
As previously pointed out, the non-associated flow follows a direction normal to the plastic flow potential, writing:

𝐐 = 𝜕𝐺
𝜕𝝉̂

= 3dev (𝝓) + 2𝛽
3
vol (𝝓) , (A18)
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where vol (𝝓) = 𝑡𝑟(𝝓)
3

𝟏. This normal is used in the computation of the plastic evolution, which is determined through the plastic
strain rate tensor as:

𝐅̇pl = 𝐃pl ⋅ 𝐅pl. (A19)
Integrating this expression on a time interval [𝑡𝑛, 𝑡𝑛+1] and using the radial return algorithm102, one finally gets:

𝐅pl
𝑛+1 = exp(Γ𝐐)𝐅pl

𝑛 , (A20)
where Γ stands for the plastic multiplier.

For the elasto-plastic phases, a nonlocal damage model will be taken into account, introducing a new damage parameter (𝐷
∈ [0, 1)) in order to take this phenomenon into consideration. The multi-stage behavior of the high-crosslinked epoxy is modeled
using a multi-stage damage formulation (see Fig. A1) divided into softening (𝐷𝑠) and failure (𝐷𝑓 ) damages, such that:

𝐷 = 1 − (1 −𝐷𝑠)(1 −𝐷𝑓 ). (A21)

ε

σ
σ̂

(1−Ds∞)σ̂

(1−Ds)(1−Df )σ̂

FIGURE A1 Schematic representation of the modeled material response and the effect of the used multi-stage damage evolution
law

The damage is formulated in a Lemaitre-Chaboche style103 writing the first Piola-Kirchhoff stress as:
𝐏 =

(

1 −𝐷𝑠
) (

1 −𝐷𝑓
)

𝐏̂. (A22)
The saturation law 𝐷𝑠 follows a saturation law that tends to the saturated value 𝐷𝑠∞:

{

𝐷̇𝑠(𝑡) = 𝐻𝑠
(

𝑝𝑠 − 𝑝𝑠0
)𝜁𝑠 (𝐷𝑠∞ −𝐷𝑠

)

𝑝̇𝑠,
𝑝𝑠(𝑡) = max𝜏∈[0,𝑡]

(

𝑝𝑠0, 𝑝̃ (𝜏)
)

,
(A23)

where 𝑝𝑠0 is the damage threshold, 𝑝̆ is the nonlocal counterpart of the equivalent plastic strain 𝑝 following the Helmholtz-type
Eq. (4) and 𝐻𝑠, 𝜁𝑠 and 𝐷𝑠∞ are material constants. Integrating Eq. (A23), it is possible to obtain the expression of 𝐷𝑠 as:

𝐷𝑠 = 𝐷𝑠∞

[

1 − exp
(

−
𝐻𝑠

𝜁𝑠 + 1
(

𝑝𝑠 − 𝑝𝑠0
)𝜁𝑠+1

)]

. (A24)
Similarly, the failure damage is defined as:

{

𝐷̇𝑓 (𝑡) = 𝐻𝑓
(

𝑝𝑓
)𝜁𝑓 (1 −𝐷𝑓

)−𝜁𝑑 𝑟̇𝑓 ,
𝑟𝑓 (𝑡) = max𝜏∈[0,𝑡]

(

𝑝𝑓0 , 𝑝̆𝑓 (𝜏)
)

,
(A25)

where the failure strain 𝑟𝑓 results from 𝑝̆𝑓 the nonlocal failure plastic strain and𝐻𝑓 , 𝜁𝑓 , 𝜁𝑑 and𝐷𝑓∞ are material constants. As for
the case of the nonlocal plastic strain. The nonlocal failure plastic strain 𝑝̆𝑓 is related to its local counterpart 𝑝𝑓 , whose evolution
is described below, with the Helmholtz-type Eq. (4). The constant 𝐻𝑓 can be written in terms of other material quantities as:

𝐻𝑓 =
𝜁𝑓 + 1
𝜁𝑑 + 1

1 −
(

1 −𝐷𝑓𝑐

)𝜁𝑑+1

𝑝𝜁𝑓+1𝑓𝑐
− 𝑝𝜁𝑓+1𝑓0

, (A26)
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where 𝐷𝑓𝑐 = 𝐷𝑓 (𝑝𝑓𝑐 ) stands for the critical failure damage value and 𝑝𝑓𝑐 is the critical nonlocal failure plastic strain. Integrating
Eq. (A25), one gets:

𝐷𝑓 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if𝑟𝑓 ≤ 𝑝𝑓0 ;

1 −
[

1 −𝐻𝑓
𝜁𝑑+1
𝜁𝑓+1

(

𝑟𝜁𝑓+1𝑓 − 𝑝𝜁𝑓+1𝑓0

)]
1

𝜁𝑑+1 if𝑝𝑓0 ≤ 𝑟𝑓 ≤ 𝑝𝑓𝑐 ;

𝐷𝑓𝑐 if𝑝𝑓𝑐 ≤ 𝑟𝑓 .

(A27)

The onset at which failure starts on a given node is controlled by a criterion based on the equivalent plastic strain104 which
writes:

Φ𝑓 = 𝑝 − 𝑎 exp(−𝑏𝑇 ) − 𝑐 = 0, (A28)
where 𝑇 = tr(𝝉̂)

3𝜏𝑒𝑞
refers to the stress triaxiality, and where 𝑎, 𝑏 and 𝑐 are material constants. Once the failure onset is reached, the

evolution of the failure surface is defined by the Kuhn-Tucker condition:
Φ𝑓 − 𝑟 ≤ 0, 𝑟̇ ≥ 0, and 𝑟̇

(

Φ𝑓 − 𝑟
)

= 0, (A29)
where 𝑟 is a non-negative variable that allows to store the maximal failure criterion reached in the loading history. Using the
Kuhn-Tucker condition (Eq. A29), it is possible to define the evolution of the failure plastic strain as:

𝑝̇𝑓 =

{

0 if 𝑟̇ = 0,
𝑝̇ if 𝑟̇ > 0.

(A30)

Concerning the boundary conditions used for the nonlocal variables, the equivalence to periodic boundary condition56 is used
for both 𝑝̆ and 𝑝̆𝑓 at the SVE boundaries 𝜕𝜔:

{

[[𝒄g ⋅ 𝛁0𝑝̆𝑖]] ⋅𝑵 = 0,
[[ ̇̆𝑝𝑖]] = 0.

on 𝜕𝜔, 𝑝̆𝑖 = 𝑝̆, 𝑝̆𝑓 , (A31)

where [[∙]] represents the jump operator between matching material points at opposite faces of the SVE, i.e. [[∙]] = ∙
(

𝒙+
ref
)

−
∙
(

𝒙−
ref
).

At the internal boundary, 𝜕𝐼𝜔 composed by the set of interfaces between the fibers and the matrix with outward normal 𝑵𝐼 ,
the following conditions are used for the nonlocal variable 𝑝̆:

{

[[𝒄g ⋅ 𝛁0𝑝̆]] ⋅𝑵𝐼 = 0,
[[ ̇̆𝑝]] = 0.

on 𝜕𝐼𝜔. (A32)

where [[∙]] represents the jump operator at the interface between fibers and matrix [[∙]] = ∙matrix − ∙fiber , since they allow the
introduction of the length scale effect of the matrix response introduced by the fiber distribution56. However, for the nonlocal
variable 𝑝̆𝑓 , at the internal boundary 𝜕𝐼𝜔, the following condition is considered so that the damage can develop at the interface
between the fibers and the matrix:

𝛁0𝑝̆𝑓 ⋅𝑵𝐼 = 0, on 𝜕𝐼𝜔. (A33)

B : STATISTICAL PROPERTIES OF THE MICROSTRUCTURE

The generated microstructures were built using the algorithm developed in7, where the empirical statistical parameters of the
microstructures extracted from SEM images were use as dependent variables. Five different random variables are used for the
characterization of these microstructures: the fiber radius 𝑅, the nearest/neighbor net distance 𝑑1st , the orientation 𝜃1st of the
undirected line connecting these two fiber center points, the difference Δ𝑑 between the net distances to the second neighbor
(𝑑2nd) and the first /neighbor (𝑑1st), and the difference Δ𝜃 between the orientations of the second neighbor (𝜃2nd) and the first
nearest neighbor (𝜃1st). A schematic representation of these descriptors is shown in Fig. B2. Besides, their distribution, their
correlation was evaluated from the SEM images information. The fiber radius was found to be independent while the other
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FIGURE B2 Schematic representation of the statistical characteristics of the generated microstructure and its descriptors.

parameters had a correlation matrix 𝐑 as:

𝐑 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑑1st 𝜃1st Δ𝑑 Δ𝜃
𝑑1st 1.0 0.014 0.205 0.022
𝜃1st 1.0 0.002 0.020
Δ𝑑 symmetric 1.0 −0.005
Δ𝜃 1.0

⎞

⎟

⎟

⎟

⎟

⎠

. (B34)

However, since the distributions exhibit non-Gaussianity, the statistical dependence of these random variables were assessed by
their distance correlations matrix 𝐝𝐑 following105, which reads in this case

𝐝𝐑 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑑1st Θ1st Δ𝑑 Δ𝜃
𝑑1st 1.0 0.040 0.273 0.075
𝜃1st 1.0 0.048 0.046
Δ𝑑 symmetric 1.0 0.064
Δ𝜃 1.0

⎞

⎟

⎟

⎟

⎟

⎠

, (B35)

showing that two parameters should be considered as dependent.
Using the copula constructed from their cumulative distributions for the two dependent variables and using the inverse trans-

form sampling method based on their cumulative distribution for the three independent variables, a generator was constructed
in7, in which the targeted volume fraction can be tuned, see also4. In the present work, a targeted volume fraction of 40% was
set, and the resulting distributions of the microstructure descriptors are provided in Figs. B3 and B4.

C MFH MULTISCALE APPROACH

C.1 MFH resolution90

Assuming only the matrix phase can develop damage and making use of Eq. (31), at a given configuration 𝑛 + 1, the MFH
scheme satisfies:

Δ𝜺rI𝑛+1 = 𝑩𝜖 (I,𝑪SDr
0 ,𝑪Sr

I
)

∶ Δ𝜺r0𝑛+1, (C36)
where the equation relating the strain increments of the phases and the composite write:

Δ𝜺̄r𝑛+1 = 𝑣0Δ𝜺r0𝑛+1 + 𝑣IΔ𝜺rI𝑛+1. (C37)
Accounting for Eq. (C36) and multiplying Eq. (C37) by the strain concentration tensor 𝑩𝜖 one gets:

𝑣0Δ𝜺rI𝑛+1 + 𝑣I𝑩𝜖 (I,𝑪SDr
0 ,𝑪Sr

I
)

∶ Δ𝜺rI𝑛+1 = 𝑩𝜖 (I,𝑪SDr
0 ,𝑪Sr

I
)

∶ Δ𝜺̄r𝑛+1, (C38)
where 𝑩𝜖 is defined with the Mori-Tanaka assumption, Eq. 18. Eq. (C38) can be then rewritten:

Δ𝜺rI𝑛+1 + 𝑣0𝑺 ∶
[

(

𝑪SDr
0

)−1 ∶ 𝑪Sr
I − 𝑰

]

∶ Δ𝜺rI𝑛+1 = Δ𝜺̄r𝑛+1 . (C39)
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FIGURE B3 Probability density histograms for the parameters characterizing the fibers spatial properties of the generated
microstructures: (a) Nearest-neighbor orientation 𝜃1st distribution (b) Difference between nearest-neighbor orientations Δ𝜃 dis-
tribution (c) Nearest-neighbor net distance 𝑑1st distributions (d) Difference between the net distances to the second and to the
first nearest-neighbors Δ𝑑 distribution.
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FIGURE B4 Probability density histograms of fiber radius from the generated microstructures.

The stress residual vector 𝑭 = 0 writes:
𝑭 = 𝑪SDr

0 ∶
[

Δ𝜺rI𝑛+1 −
1
𝑣0

𝑺−1 ∶
(

Δ𝜺rI𝑛+1 − Δ𝜺̄r𝑛+1
)

]

− 𝑪Sr
I ∶ Δ𝜺rI𝑛+1, (C40)
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being possible to linearize it as:
d𝑭 = 𝜕𝑭

𝜕𝜺I
∶ dΔ𝜺rI +

𝜕𝑭
𝜕𝜺0

∶ dΔ𝜺r0 +
𝜕𝑭
𝜕𝜺̄

∶ dΔ𝜺̄r + 𝜕𝑭
𝜕𝑝̆0

d𝑝̆0. (C41)
For a given time step, the values of Δ𝜺̄r and 𝑝̆0 remain constant and Eq. (C41) yields: d𝑭 = 𝑱 ∶ d𝜺I, where 𝑱 writes:

𝐽 =𝑪SDr
0 𝑛+1 ∶

[

𝑰 − 𝑺−1] − 𝑪Sr
I𝑛+1

−
𝜕𝑪Sr

I𝑛+1

𝜕𝜺I
∶ Δ𝜺rIn+1−

𝑣I
𝑣0

(

𝜕𝑪SDr
0 𝑛+1

𝜕𝜺0
+

𝜕𝑪SDr
0 𝑛+1

𝜕𝐷0

𝜕𝐷0

𝜕𝜺0

)

∶

[

Δ𝜺rI𝑛+1 − 𝑺−1 ∶

(

Δ𝜺rI𝑛+1 − Δ𝜺̄r𝑛+1
)

𝑣0

]

−

𝑣I
𝑣20

𝑪SDr
0 𝑛+1 ⊗

(

Δ𝜺rI𝑛+1 − Δ𝜺̄r𝑛+1
)

∶∶
(

𝑺−1 ⊗ 𝑺−1) ∶∶
(

𝜕𝑺
𝜕𝜺0

+ 𝜕𝑺
𝜕𝐷0

𝜕𝐷0

𝜕𝜺0

)

−
𝑣I
𝑣0

𝑪SDr
0 𝑛+1 ∶ 𝑺−1.

(C42)

Appendix C.2 reports the derivatives of 𝑪S
𝑖 with respect to 𝜺𝑖 and Appendix C.3 details the derivative of the Eshelby tensor.

After convergence of the MFH resolution, constraining 𝑑𝑭 = 0, the strain increment of each phase coming from the variation
of dΔ𝜺̄r is written as:

𝜕𝜺I
𝜕𝜺̄

= −𝑱−1 ∶ 𝜕𝑭
𝜕𝜺̄

, and 𝜕𝜺I
𝜕𝑝̆0

= −𝑱−1 ∶ 𝜕𝑭
𝜕𝑝̆0

. (C43)
Using the equation relating the composite and the phases strain increments d𝜺̄r = 𝑣0d𝜺r0 + 𝑣Id𝜺rI , the set of equations for the
matrix phase writes:

𝜕𝜺0
𝜕𝜺̄

= 1
𝑣0

(

𝑰 − 𝑣1
𝜕𝜺I
𝜕𝜺̄

)

, and 𝜕𝜺0
𝜕𝑝̆0

= −
𝑣I
𝑣0

𝜕𝜺I
𝜕𝑝̆0

. (C44)

C.2 Derivatives of secant operators54

This Section will present the derivatives of the secant and damaged-enhanced secant operators. In order to simplify the notation
of the equations presented hereafter, the subscript referring to the phase is omitted.

Accounting for the isotropic nature of the secant operator, the derivative of 𝑪Sr writes:
𝜕𝑪Sr

𝜕𝜺
= 𝜕

𝜕Δ𝜺r
(

3𝜅r
𝑠𝑰

vol + 2𝜇r
𝑠𝑰

dev) ∶ 𝜕Δ𝜺r
𝜕𝜺

=
(

3𝑰vol 𝜕𝜅
r
𝑠

𝜕Γ
+ 2𝑰dev 𝜕𝜇

r
𝑠

𝜕Γ

)

⊗ 𝜕Γ
𝜕𝜺

, (C45)

where the derivative 𝜕Γ
𝜕𝜺

is developed in appendix C.4 and the derivatives of the bulk and shear moduli write:
𝜕𝜇r

𝑠

𝜕Γ
= −

6𝜇el2

(

1 + 6𝜇elΓ
)2
, and 𝜕𝜅r

𝑠

𝜕Γ
= −

2𝛽𝜅el2

(

1 + 2𝜅elΓ𝛽
)2
. (C46)

When accounting for damage, the derivative of the secant operator becomes:
d𝑪SDr

d𝜺 = 𝜕𝑪SDr

𝜕𝜺
+ 𝜕𝑪SDr

𝜕𝐷
𝜕𝐷
𝜕𝜺

= (1 −𝐷)𝜕𝑪
Sr

𝜕𝜺
− 𝑪Sr ⊗ 𝜕𝐷

𝜕𝜺
, (C47)

where 𝜕𝐷
𝜕𝜺

= 𝜕𝐷
𝜕Δ𝜺r

= 0.

C.3 Eshelby tensor derivatives54

This Section will present the Eshelby tensor derivatives for the elasto-plastic and the damage-enhanced elasto-plastic case. In
order to simplify the notation of the equations presented hereafter, the subscript referring to the phase is omitted.
Elasto-plasticity
In the case of elasto-plasticity, the Eshelby tensor derivative writes:

𝜕𝑺
𝜕Δ𝜺r

= 𝜕𝑺
𝜕𝜈

⊗
(

𝜕𝜈
𝜕𝜅r

𝑠

𝜕𝜅r
𝑠

𝜕Γ
+ 𝜕𝜈

𝜕𝜇r
𝑠

𝜕𝜇r
𝑠

𝜕Γ

)

𝜕Γ
𝜕Δ𝜺r

, (C48)

where the derivatives of the bulk and shear moduli are given in Eq. (C46) and the derivative 𝜕Γ
𝜕𝜺

is developed in Appendix C.4.
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Damage-enhanced elasto-plasticity
In the case in which damage is taken into account, the Eshelby tensor derivative writes:

𝜕𝑺
𝜕Δ𝜺r

= 𝜕𝑺
𝜕𝜈

⊗
[

𝜕𝜈
𝜕𝜅Dr

𝑠

(

−𝜕𝐷
𝜕𝜺r

𝜅r
𝑠 + (1 −𝐷)

𝜕𝜅r
𝑠

𝜕Γ
𝜕Γ
𝜕Δ𝜺r

)

+ 𝜕𝜈
𝜕𝜇Dr

𝑠

(

−𝜕𝐷
𝜕𝜺r

𝜇r
𝑠 + (1 −𝐷)

𝜕𝜇r
𝑠

𝜕Γ
𝜕Γ
𝜕Δ𝜺r

)]

, (C49)

where 𝜕𝐷
𝜕𝜺r

is given in Appendix C.2.

C.4 Algorithmic operators54

In order to simplify the notation of the equations presented hereafter, the subscript referring to the phase is omitted.
The algorithmic operator 𝑪alg writes:

𝑪alg = 𝜕𝝈̂
𝜕Δ𝜺

= 𝜕
𝜕Δ𝜺r

[

Δ𝝈̂r] ∶ 𝜕Δ𝜺r
𝜕Δ𝜺

= 𝜕Δ𝝈̂r

𝜕Δ𝜺r
. (C50)

Having:
Δ𝝈̂r

𝑛+1 =
[

𝑪el −
6𝜇elΓ

1 + 6𝜇elΓ
(

𝑰dev ∶ 𝑪el) −
2𝛽𝜅elΓ

1 + 2𝜅elΓ𝛽
(

𝑰vol ∶ 𝑪el)
]

∶ Δ𝜺r𝑛+1, (C51)
the term 𝜕

𝜕Δ𝜺r
writes:

𝜕
𝜕Δ𝜺r

[

Δ𝝈̂r] = 𝑪el − 6𝜇el

[

(

𝝈̂tr
𝑛+1 − 𝝈̂res

𝑛

)dev ⊗

( 𝜕Γ
𝜕Δ𝜺r

(

1 + 6𝜇elΓ
)2

)

+ Γ
1 + 6𝜇elΓ

(

2𝜇el𝐼dev)
]

− 2𝜅el𝛽

[

(

𝝈̂tr
𝑛+1 − 𝝈̂res

𝑛

)vol ⊗

( 𝜕Γ
𝜕Δ𝜺𝑟

(

1 + 2𝜅el𝛽Γ
)2

)

+ Γ
1 + 2𝛽𝜅elΓ

(

3𝜅el𝐼Vol)
]

.

(C52)

Making use of the developments carried out in54, the yield surface can be written as:

𝑓
(

𝝈̂tr ,Γ
)

=

⎛

⎜

⎜

⎜

⎝

(

𝝈̂tr
𝑛+1−𝝈̂

res
𝑛

1+6𝜇elΓ
+ 𝝈̂res

𝑛

)eq

𝜎𝑐

⎞

⎟

⎟

⎟

⎠

𝛼

− 3 𝑚𝛼 − 1
(𝑚 + 1) 𝜎𝑐

(

𝜙̂tr
𝑛+1 − 𝜙̂res

𝑛

1 + 2𝜅elΓ𝛽
+ 𝜙̂res

𝑛

)

− 𝑚𝛼 + 𝑚
𝑚 + 1

= 0. (C53)

It is then possible to compute the derivative of the yield surface with respect to the plastic multiplier Γ:
𝑑𝑓
𝑑Γ

=

[

− 𝛼
𝜎𝛼+1
𝑐

𝜕𝑅(Δ𝑝)
𝜕Δ𝑝

((

𝝈̂tr
𝑛+1 − 𝝈̂res

𝑛

1 + 6𝜇elΓ
+ 𝝈̂res

𝑛

)eq)𝛼

+ 3 𝑚𝛼 − 1
(𝑚 + 1)𝜎2

𝑐

𝜕𝑅(Δ𝑝)
𝜕Δ𝑝

(

𝜙̂tr
𝑛+1 − 𝜙̂res

𝑛

1 + 2𝜅elΓ𝛽
+ 𝜙̂res

𝑛

)]

𝜕Δ𝑝
𝜕Γ

+
𝜕𝑓
𝜕Γ

. (C54)

From Eq. (C53), it is possible to compute the derivative 𝜕Γ
𝜕Δ𝜺r

= 𝜕Γ
𝜕Δ𝜺

. To that end, one can write:

0 = 𝛿𝑓 =

⎛

⎜

⎜

⎜

⎜

⎜
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yielding:
𝜕Γ
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. (C56)
One finally finds:
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The term 𝑑𝑓
𝑑Γ

is obtained from Eq. (C54) and the terms 𝜕𝑓
𝜕Δ𝑝

, 𝜕Δ𝑝
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where:

𝟏 ∗= 𝛼

[(

𝝈̂tr
𝑛+1 − 𝝈̂res

𝑛

1 + 6𝜇elΓ
+ 𝝈̂res

𝑛

)eq]𝛼−1 3
2

[

𝐼dev∶𝑪el

1+6𝜇elΓ
∶
(

𝝈̂tr
𝑛+1−𝝈̂

res
𝑛

1+6𝜇elΓ
+ 𝝈̂res

𝑛

)dev
]

√

3
2

(

𝝈̂tr
𝑛+1−𝝈̂

res
𝑛

1+6𝜇elΓ
+ 𝝈̂res

𝑛

)dev
∶
(

𝝈̂tr
𝑛+1−𝝈̂

res
𝑛

1+6𝜇elΓ
+ 𝝈̂res

𝑛

)dev
;

𝟐 ∗= 𝜅el𝟏
1 + 2𝜅elΓ𝛽

.

(C61)

D EFFECTIVE RANDOM PARAMETER PROBABILITY DENSITY DISTRIBUTION
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FIGURE D5 Probability density function of the effective yield stress for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE cases.
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FIGURE D6 Probability density histogram of the effective fibre volume fraction for the 25×25𝜇m2 and 45×45𝜇m2 SVE cases.
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FIGURE D7 Probability density histogram of the effective aspect ratio for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE cases.
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FIGURE D8 Probability density histogram of the effective angle for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE cases.
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FIGURE D9 Probability density histogram of the exponent 𝛼̃, 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE cases.
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FIGURE D10 Probability density histogram of the effective Poisson's ratio for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE cases.
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FIGURE D11 Probability density histogram of the effective hardening parameter ℎ̃0 for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE
cases.
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FIGURE D12 Probability density histogram of the effective hardening parameter ℎ̃1 for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE
cases.
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FIGURE D13 Probability density histogram of the effective hardening parameter 𝑚̃0 for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE
cases.
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FIGURE D14 Probability density histogram of the effective parameter 𝛼̃Dam for the 25 × 25𝜇m2 and 45 × 45𝜇m2 SVE cases.
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E RESULTS OF THE 45 × 45 SQUARE MICROMETERS SVE MF-ROM

E.1 Statistical analysis of random effective parameters
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FIGURE E15 45 × 45𝜇m2 effective random parameters distributions and their cross-dependence for random picked identified
and generated 𝑣̃I, Ĩ, 𝐸̃0, 𝜈̃0, 𝜎̃0

𝑐 , ℎ̃0 and ℎ̃1.

Inverse identification 
Generated

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

෥m0
෪θ ෥m ෥α ෥𝝂p ෤ponset ෩Donset

෥α

෥m0 

෪θ

෥m

෥α

෥𝝂p

෤ponset

FIGURE E16 45 × 45𝜇m2 effective random parameters distributions and their cross-dependence for random picked identified
and generated 𝑚̃0, 𝜃, 𝑚̃, 𝜈̃𝑝, 𝛼̃, 𝑝̃onset , 𝐷̃onset and 𝛼̃Dam .
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F STOCHASTIC MF-ROM MESH CONVERGENCE STUDY
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FIGURE F18 Effect of the macroscale mesh size on a uniaxial loading test conducted on a 500x250𝜇m2 ply with the MF-ROM
defined using 25x25𝜇m2 SVEs. Results on the left are zoomed on the right.

A convergence study is performed for the stochastic MF-ROM by considering different sizes of the macroscale finite elements
ranging from 2𝜇m to 50𝜇m. To this end, we consider two ply realizations, one using 25x25𝜇m2 SVEs, Fig. F18 and another
using 45x45𝜇m2 SVEs, Fig. F19. As a reminder, the characteristic length 𝑙, see Eq. (14), of the nonlocal MFH formulation was
fixed to a value of 25 𝜇m for both SVE sizes. It clearly appears that for finite elements larger or close to the SVE size, i.e.32𝜇m
and 50𝜇m for the 25x25𝜇m2 SVEs and the 45x45𝜇m2 SVEs, and larger than the nonlocal length 𝑙 the results are outliers when
analyzing the maximum reached stress. For the other mesh sizes, the results are close, within a 0.3% in terms of the maximum
stress, which is well below the variability observed for different ply realizations, see e.g. in Fig. 36. The observed variability in
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FIGURE F19 Effect of the macroscale mesh size on a uniaxial loading test conducted on a 500x250𝜇m2 ply with the MF-ROM
defined using 45x45𝜇m2 SVEs. Results on the left are zoomed on the right.

the results is mainly explained by the variable step length of the path-following method, which yields slight inaccuracy when
performing the time integration.
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