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1 | INTRODUCTION

The aim of a multifractal analysis is to scrutinize very erratic signals. They are present in many practical situations such
as turbulence [29], physiology [34], biology [31], or geoscience [9]. The regularity of these signals can change widely from
a point to another. Information concerning the pointwise smoothness of signals can be grasped via its Holder spectrum,
which relies on the Holder spaces. A locally bounded function f belongs to A*(x,) (with « > 0 and x, € R") if there exist
a constant C and a polynomial P, of degree less than o such that

|f(x) = P, () < Clx = xol%, ¢y)
in a neighborhood of x,. The Holder exponent of f at x is defined as
h¢(xp) = supfa > 0 @ f € A%(xp)}-

As usual, f belongs to the uniform space A%(R") if, for any x,, Equation (1) is satisfied for any x, the constant C being
uniform [22]. For highly irregular functions f, one tries to globally characterize the local regularity of f using the spectrum
of regularity d:

df @ [0,00] = {—c0}U[0,n] h+ dimy{x € R" : hy(x) = h},

where dimy, stands for the Hausdorff dimension. Such an approach is particularly suitable for numerical signals, for
which the estimation of the Holder exponent at every point is not conceivable.

In practice, there is no method to systematically obtain the spectrum of regularity dy, but there exist many heuristic
methods, called multifractal formalisms, to estimate this spectrum (see, e.g., [16, 18, 30, 33]). Most of them are based on
the same argument and rely on the decomposition of f into its wavelet coefficients. Let us briefly introduce this approach.
In most of the cases, one tries, explicitly or not, to compute the function

n(q) = supfs : f € BYLRM},
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relying on the Besov spaces B;,fo(R”), using wavelets or an equivalent approach such as box-counting techniques.

Considering a heuristic argument, one can expect for the equality
dp(h) = igf{hq —-n(@}+n ()

to hold in most of the cases.
In practice, these methods give, at best, an upper bound [14], that is, if the locally bounded function f belongs to A*(R")
for some € > 0, one has

dg(h) < inf {hq —n(@)} + n,
q=qo

where g is the value satisfying 7(qo) = n. Moreover, since d is obtained through a Legendre transform from equality (2),
these methods only lead, at best, to the concave hull of the regularity spectrum, although there exist functions whose
associated spectrum is not concave (see, e.g., [21]).

To circumvent this problem, a method involving the types of histogram of discrete wavelet coefficients was introduced
[2]. This method relies on sequence spaces: the S” spaces. Since these spaces are the starting point of this work, let us
sketch some definitions. Let us set

A={G,j,k):1<i<2", jEN, ke{o,..,2/ —1}1},

and consider sequences (cﬁ)(i, jiyen Whose indices vary in A. For the sake of clarity, we shall omit any reference to the
index i in the following; for instance, the set{c; ; : (j, k) € E}hasto be understood as the set {cﬁC :(j,k)eE, 1<i< 2"}

Finally, the sequence (ci.l;?{)(i’ jJoen Will be denoted by c. Throughout this paper, v refers to a right-continuous increas-
ing function for which there exists a,;, € R such that v(a) = —x if a < ay;, and v(a) € [0, n] if a@ > ap,;,. With these
notations being fixed, one defines the S” space as follows:

S”:{c:VocERVs>0VC>0

A7 >0Vj > J, #E;(C,a)(c) < 20@+ai ),
where
E;(C,a)(c) ={k : |¢ji| > C27%}. (3)

If one considers the sequence ¢ as wavelet coefficients, it can be shown that these spaces allow to deal with non-concave
spectra of regularity both in theory and practice [3, 21].

The starting point of this paper is the following: the Besov spaces By, ;(R") can be generalized by replacing the dyadic
scales appearing in the definition by more general sequences; such spaces have applications in different fields (see, e.g.,
[6, 10, 11, 17, 25, 32]). For example, concerning the Holder spaces A%(R") (let us recall that we have A*(R") = Bg, ,(R")),
such a generalization leads to the following definition [23, 26]: given a sequence o = (0;);en satisfying some general
conditions, a locally bounded function f belongs to the space A%*(R") if there exists a constant C such that

Piélga lf = Pllzeo(xs2-iB) < Coj,

forany j € N and any x € R", where B denotes the unit ball centered at the origin and P, the set of polynomials of degree
at most . One can do the same with the S” spaces: the sequence (27%/) jen occurring in Equation (3) can be replaced by
a sequence (0;)jen-

In this work, we show that this generalization is mathematically sound. The first step consists in checking that the
topological properties holding for the usual S” spaces are preserved (see Section 2). Moreover, it is crucial to show that
different wavelet bases give rise to identical space (see Section 3). Since the S” spaces are strongly connected to Besov
spaces, it is also natural to link the spaces defined here with the generalised Besov spaces (see Section 4).
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These new spaces have been designed to detect the law of the iterated logarithm [19]; the efficiency of this approach
has been established in [20, 24]. A random variable X satisfies the law of the iterated logarithm if for every ¢, there exists
a positive random variable C such that

1X(t + h) — X(t)| < C|h|*/?+/loglog |h|-1,

for h small enough on an event of probability 1. For example, many financial models are derived from the Brownian
motion (e.g., the geometric Brownian motion used in the Black and Scholes model [13], the Hull and White one-factor
model [5], etc.) and thus satisfy such an inequality. As o; = 271/ 24/loglog 2/ defines an admissible sequence, the corre-
sponding generalized S” spaces should prove helpful to check for the existence of logarithmic corrections in order to test
if these models are well-founded in practical situations, as shown in [20]. Such results will be statistically validated in
a forthcoming work. These concepts could also help to formulate conjectures about the existence of corrections in the
Holderian behavior of functions [20, 24].

2 | DEFINITION AND FIRST PROPERTIES

Let us recall that ¢ = (¢j ) = (Cj'f;c)(i, jJoen stands here for a sequence of complex numbers.

Definition 1. For any « € R, let 0®) = (0'5.“)) jen be a sequence of positive real numbers. We define

sre = {c:Va €RVe>0VC >0

A >0Vj >J, #E;(C,0@)(c) < 20@+ai},
where
E(C,0@)e) = {k : lejul 2 Cof }.

To define a topology on these vector spaces, we use the same strategy as for the usual S” spaces [3]. For « € R and
B € R U {—o0}, we first define the metric spaces (E(c®, §), dg(a)ﬁ) by

E@®,8) = {c:3C,C’ > 0 #E;(C,0™) < C'2% for any j € N}
and set
dy@ g(c,d) = inf {c+C:C,C’=04#E(C, o) —d) < C'2f forany j € N}.
Let us give the basic properties of these spaces.
Proposition 1. We have the following properties:
1. the space E(c'®), B) is a vector space,
2. the sum is a continuous operation in (E (cr(“), B, do-(a)’ﬁ), while the product is not necessarily continuous,
3. the metric d, ) g is invariant by translation and satisfies the inequality
dy(@ p(Ac,0) < supfl, |4[}d,@ glc, 0),

forany A € C,
4. if B’ < B and if there exists J € N such that aga ) < oﬁa) forany j > J, then E(c@), B is included in E(c®, ),

85U8017 SUOWILLIOD A0 3ol [dde au Aq peuienob ae Sspie YO ‘8sn JOSe|nl 10} Aiq1T 8UIUO A8]1M U (SUORIPUOD-PUR-SWBIALIO A IM ATRIq 1 Ul |Uo//SdNY) SUORIPUOD pue SWe | 8y} 88S *[£202/80/62] U0 AriqTaulluO A8|IM ‘Yol melo uce Ariqiabel Jo AisieAlun Aq E£T00ZZ0Z BUeW/Z00T OT/I0P/LI0d" A3 1M Aiq puljuoy/Sdny Wwoly pepeojumoq ‘0 ‘9T92ZZST



MATHEMATISCHE KLEYNTSSENS and NICOLAY
NACHRICHTEN

5. suppose that

U(.a’)/oj.a) -0 as j— +oo

and ' < B. If the sequence (1,,)uen converges to A in C and if (c"™),,cy is a sequence of E(c®), ) which converges to
c € E(0@), B for dy@ g, then the sequences (Ayc™™),,cn converges to Ac for dy@ g-
Proof. The first four points are straightforward; let us remark that the product is not necessarily continuous because it
was already the case for the S” spaces [3]. It remains to prove the last point. From the properties of the metric d ) g, we
obtain

o g(Amc™, Ac) < sup{l, |43y g(c™ — ¢,0) + dy@ g((4n — A)c, 0).

So, it suffices to show that dc(a),,@((/lm — A)c, 0) converges to 0 as m — +oo. There exist C,C’ > 0 such that
#{ lejul > CU“")} < 2P,

forany j € N.Letussete > 0and M € Nsuchthat|4,, — 1| < 1,forany m > M. There existsJ > 0such that C'2F'7 < g2Pi
and CJEO‘ ) < Ea;.“), for any j > J. In this case, we have
#{k A — Dl > soﬁ."‘)} < #{ lejl = Co' )}

< g2,

for any j > J. Besides, we can suppose that [(4,,, — A)c; ;| < 505.“) forany j < J, k €{0,...,2/ —1}* and m > M. With this
hypothesis, we get

dg(a)’ﬁ((;{m — ), 0) < 2¢,
for any m > M. |
Proposition 2. The space E(c'%), ) is complete.

Proof. Let (c"™),,en be a Cauchy sequence of E(c'™, ). Let us first show that the sequence (CE-VZ))meN is a pointwise

Cauchy sequence for any fixed j, k. Letusset e >0, j € Nand ¢/ = inf{a(aﬁ.“) )~1,27Bi=1}, Since (¢'™),,cy is a Cauchy
sequence, there exists J > 0 such that, for any p,q > J,

#{k : |c§,pk) (q)| > s’o(a)} <2k,

(p) _ (q)

that is, |c .| < eforany k.

Therefore for any j, k, there exists ¢ such that c§ m)

asm — +oo. If ¢ > 0, there exists M such that

— Cjx asm — +oo. It remains to prove that ™ S cin E(c@, B)

Vj>0,Vp,q2 M, #{k 1)~ (q)|>ga(°‘)}sezﬁf,

which implies

Vp,q > M, c@e{d #{k b - j,k|ZEO'§a)}S£2ﬁjVjZO}.
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As these sets are closed for the pointwise convergence, we get that
Vp>M,ce {d : #{k 1P —djgl > wﬁ.“)} <efivj> 0}.
We thus have ¢ € E(c®, 8) (and ¢™ converges to c in E(c®, B)). O

The next theorem gives a link between the space 579" and the spaces E(c{®, 8). This will allow us to define a topology
0]
on S¥9".

Theorem 1. Suppose that a < o implies
aﬁ“,)/aﬁa) -0 as j— +oo.

For any sequence (a;),cn dense in R and any sequence (g,,)men Of Strictly positive real numbers which converges to 0, we
have

svot) = ﬂ ﬂ E(@), () + )

meN [eN

Proof. We directly have that 579" is included in E(c“, v(a)) + €,,,), for any m, | € N. Let us show that

m m E(0, v(a)) + €,,)

meN [eN

is a subset of S”"’(‘). Let ¢ be an element of the intersection and let « € R, € > 0, C > 0. For any m, [ € N, there exist
Cim>Cj,, > 0such that

#{k 2 lejul 2 Clno™ } < €, 200,

for any j € N. Let m € N be such that 2¢,, < ¢.
If v(a) = —o let us take I € N such that a; € (a, ap;n)- If v(ax) € R, let us take | € N such that o; > a and v(a) <

v(ay) < v(@) + €, In any case, there exists J; ,, € N such that Cl,maﬁ.a’) < CJE.O‘) and C} mz("(az)Hm)J' < 20(@+9)] for any
m > M and j > J; ,,. We thus have

#{k Dlejrl = CCI;“)} < #{k Slejrl = Cl’moﬁ.al)}

< 2@+,

for any j > J; ,,,, which implies ¢ € s O

Let us recall that if (E,,, d,,,) is a metric space for any m € N, then

+00
dm(e, f)
d:(ef)rm Y 2am—moll
mz=1 1+dp(e, )
is a metric on E = N,,enEy,,- Moreover, for any m € N, the projection iy, : (E,d) — (E,;,d,,) is continuous and the topol-
ogy induced by d is the weakest topology on E which satisfies this property. Finally, a sequence is a Cauchy sequence
(resp. converges to e) in (E, d) if and only if for any m € N, it is also a Cauchy sequence (resp. it also converges to e) in

(Epms> dpy)-
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Theorem 2. Under the hypothesis of Theorem 1, if we set

dm,l = d

o@D y(a))+en’

then the application

d:(e.d)es x S”()Hioio dp,(c, d)
- 2m+ll+dml(c d)

is @ metricon S*°". This application is invariant by translation and the space (S ot d) is a complete topological vector space.
The induced topology is independent of the sequences (¢t));en and (€;,)men-

Proof. We will prove that the product is continuous and that the topology is complete and independent of the sequences
(a))ien and (€,,)men, the other properties being straightforward.

First, let us show that if 1, - 1 in C and if c® — cin 579 then A,c® = Acin E(c™), () + €,,,), for any I, m € N.
Letussetl,m € N;ifv(a;) = —o0, then there exists p € N such that a, € (o, amin)- Ifv(a;) € R, there exist p, g € N such
thata, > o and v(ap) + ¢4 < v(a;) + ¢, In any case, we have ¢® - cin E(c™), v(a)) + €,,)andc € E(c'), v(ap) + &)
Using Proposition 1, we have 1,c® — Ac in E(c'®), v(a;) + ¢,,), which implies that the product is continuous.

Now, let us prove that the topology is independent of the sequences (a;),en and (g,,)men. We have to show that if
¢® - ¢ in §vo" , then ¢® = ¢ in E(c@,v(a) + ¢), for any o € R and ¢ > 0. Let a be a real number and ¢ > 0. Since

¢® = ¢in s there exist Cy p,, Cl’m > 0 such that

#{k : |c§k) —cjxl > clmg("‘l)} <], 20,

for any j € N. Let § be a strictly positive number and take m € N such that 2¢,, < €. Using the same arguments as in the
proof of Theorem 1, there exist [ € N and J; ,, € N such that Cl,maﬁ.a’) < 505“) and

Cl, 2W(a+em)j < §p(@)+e)j
,m - ’
for any j > J; ,,. We get

#{k 1 — el 2502"‘)} 5#{k 1) ¢l >clma("‘”}

< §20@+a)j

for any j > J; ,,. We have thus obtained d () 7,(a)ﬂ(c Ccj) < 26.

Jjk?

Finally, let us show that the topology is complete. Let (c®), oy be a Cauchy sequence of S o This sequence is also a
Cauchy sequence of E(c‘®, v(q;) + €,,), forany [, m € N. By Proposition 2, there exists a sequence ¢! such that (c®)), cn
converges to ™) in E(¢™), v(a;) + €,,), for any I, m. Similar arguments as in the first part of the proof of Proposition 2
show that if a sequence (c*), ey converges to c in E(c®, 8), then (cg.f’k) Juen converges to ¢ in C for any j, k. This implies

the equality ¢ = c(""1") valid for any m, m’,1,I' € N. O
Let us now give another definition of S* o by introducing a new notion.

Definition 2. The generalized profile of a sequence c is defined by

log #E;(1, 0(“+E))(c)
Veo) - @ € R lim limsup
’ =0t jtoo log 2J

This definition is well-founded if we suppose that for any a < o there exists J € N such that 05.“,) < 05.“) forany j > J.

85U8017 SUOWILLIOD A0 3ol [dde au Aq peuienob ae Sspie YO ‘8sn JOSe|nl 10} Aiq1T 8UIUO A8]1M U (SUORIPUOD-PUR-SWBIALIO A IM ATRIq 1 Ul |Uo//SdNY) SUORIPUOD pue SWe | 8y} 88S *[£202/80/62] U0 AriqTaulluO A8|IM ‘Yol melo uce Ariqiabel Jo AisieAlun Aq E£T00ZZ0Z BUeW/Z00T OT/I0P/LI0d" A3 1M Aiq puljuoy/Sdny Wwoly pepeojumoq ‘0 ‘9T92ZZST



KLEYNTSSENS and NICOLAY MATHEMATISCHE 7
NACHRICHTEN

The next proposition gives a few properties of the function v, ;) and leads to an alternative definition of S v.00,

!’
Proposition 3. Suppose that a < o' implies crg.“ ) /crg.“) — 0as j — +oo. We have the following properties:
L the function v, ;) is right-continuous and increasing; moreover, we have v, ,,(a) € [0, n] U {—oo},
2. the constant 1 appearing in the definition of v, ;) is arbitrary,
3. asequence c belongs to N ifand only if v, ;) (a) < v(a) forany a € R,

4. if forany a < 3, we have a?ﬁ )< og.a) forany j € N, then there exists c € §7° such that Veol) = V.

Proof. The two first properties are immediate. Let ¢ be a sequence of 57 and « € R. For any € > 0, there exists J € N
such that

#Ej(l,a(“”))(c) < 2(v(oz+e)+£)j’

for any j > J; we thus have v, ;) () < v(a).
Let ¢ be a sequence such that v, ;) <v and let « €R, ¢ > 0 and C > 0. There exist ¢’ > 0,J € N such that for any
¢’ < ¢ and j > J, we have

log #E;(1,0*<")(c)

log 2/ <v(a)+e,

which gives #E;(1, 0‘@*")) < 2@+, We can suppose that 05.“”") < CO'E.O‘) for any j > J, so that #E;(C,o®)(c) <
2(@)+e)j

Now, let us construct a sequence ¢ € s such that Ve o) = v. We can work in the one-dimensional case by setting
cﬂ = 0 for i # 1; let us thus suppose that n = 1. Let (a,,),nen be a dense sequence of [ctyin, +00) and let (c"™),,cn be a
sequence defined by

€k

m _ Jﬁi’zz for | 2”(“m)J | values of k
0 else '

Next, we define c by

0 ifk =0
Cip = . .
TEZ Uitk e 2., 2% — Lwith 1 €10, ..., j}

Let us set a < api,. We have

10g#{k Slejrl 2 a;“)}

Ve (@) = el—if(% limiup log 2/
]—) o0

and for any j, k, there exists m € {0, ..., j} such that

cip=c"™
Jk j—mk—2j—m

= (cﬁ.“’”) or 0).

So, using the last hypothesis, we get v, ,)(a) = —oco. To conclude, it remains to prove that v, ;) (a,,) = v(a,,) for any
m € N.
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Let m be a natural number and let € > 0. For any j > m, we have aﬁ.“’") > olomte)

[27@m)=m) | yalues of k. So, we obtain

and c; is equal to aj.a’") for

log| 2v(@m)(j=m) | log # { kel > aﬁam +e) }
limsup —— = < limsup -
jo+oo log2/ itoo log2)

k]

which gives v(a,,) < v, ,(»(a,,). Besides, we have, for any j > m,

J
. (am+e) j—1
#{k el > 0 }g 3 e
I=1
o <a,+e

J
< (@ +e)j Z o—Iv(ar)
=1
aa,te

< 2V(O¢m+5)jj,

which allows us to write v, ;¢)(@p) < V(). O

3 | ROBUSTNESS

Until now, we have considered the spaces 57 as sequence spaces, but we should keep in mind that such a sequence
represents wavelet coefficients and thus a function. To associate these spaces to functions, we have to check that the
definition does not depend on the chosen wavelet basis.

Let us briefly evoke the notion of wavelet basis. Under some general assumptions (for more precisions, see, e.g., [8, 27,
28]), there exist a function ¢ and 2" — 1 functions (¢(i))15i<2"’ called wavelets, such that

{p(x—k) 1 ke Zu{pDQ2ix—k): 1<i<2" k€ Z", j EN}

form an orthogonal basis of L*(R"). Any function f € L*(R") can be decomposed as follows,
flo) = Z Crolx —k)+ Z Z Z C;?(@b(i)(ij —k),
kezn JEN keZ 1<i<2n

where
c% =2 / F)PD@2Ix —k)dx
, -
and

Ce = / FOOB(x — k) dx.
Rn

Let us remark that we do not choose the L>(R") normalization for the wavelets, but rather an L®(R") normalization,
which is better fitted to the study of the Holderian regularity. On the torus R"/Z", we will use the periodized wavelets

P@Ix—k) =Y pOQ@I(x - ~k) (EN, ke{0,...2/ -1}
lezn

to form a basis of the one-periodic functions on R” which locally belong to L>(R") [7, 8]. The corresponding coefficients
@
c,

jx are naturally called the periodized wavelet coefficients.
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We will also need the notion of admissible sequence (see, e.g., [23]).

Definition 3. A sequence o = (0;);jen of real positive numbers is called admissible if there exists a positive constant C
such that

-1
C O'jSUj+1SCO'j,

for any j € N.
We set
oj — o
©. = inf Itk and ©; = sup Itk
—J keN O keN Ok
and define the lower and upper Boyd indices as follows:
log®, _ log® j
s(o) = lim - and s(o)= lim —
- Jj—+co log2/ j=+eo log2J

If o is an admissible sequence, for any € > 0, there exists a positive constant C such that

Oj+k
Ok

C-12i6@-9) < < 26+,

for any j,k € N.
Let us now state definitions and properties related to important classes of linear operators in the context of wavelet
bases [15, 28].

Definition 4. For y > 0, we set

o=(r+n+1)|j—J'|
(1 + 2inf{j,j’}|2—jk _ 2—j’k!|)y+n+1 ’

wy(j’ k;j’, k') =
forany j,j' € N,k €10,...,2) —1}and k' €{0,...,2/" — 1}.
We say that
A= (AU, KT KD) e
belongs to o, if and only if there exists C > 0 such that
|A(J5 k; jls k’)l S Cwy(.]’ k; j,5 k,)a
for any j, j’, k, k’. The infimum of these constants is denoted by || A]|, .
The matrix A is almost diagonal (resp. quasidiagonal) if A € o, for any y > 0 (resp. A is invertible and A, A~ € o,

for any y > 0).

It can be shown (see [28]) that the matrix of the operator which maps a C* orthonormal wavelet basis to another C*
orthonormal wavelet basis is quasidiagonal.

Definition 5. A property & is linear robust if the following properties hold:

* the set of ¢ such that 9(c) holds is a vector space;
* if 2(c) holds then, for any almost diagonal operator A, 2(Ac) holds.

Definition 6. A property & is robust if the following property holds: if (c) holds then, for any quasidiagonal operator
A, P(Ac) holds.
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Let us first generalize the following classical result of [28]: if y > |a| and A € 4, then there exists a constant C (which
only depends on the dimension n) such that

ekl < C27% Vj, k= |(Ac); | < CC|IAl,27% Vj, k. 4)

Lemma 1. Let o be an admissible sequence and y be a strictly positive number such that y > max{—s(o) — 1,5(o)}. If there
exists a constant C > 0 such that

lcjkl < Caj,

forany j, k, then there exists a constant C which depends on y, o and the dimension n such that for any matrix A € &47,, we
have

I(Ac)j k| < CCl\Ally0;,
forany j, k.

Proof. Let us set ¢ = y — max{—s(c) — 1,5(0)} > 0. Since the sequence o is admissible, there exists a constant C, ; > 0
such that

0; < Cy 27U DE@-9g
for any j < j’ and
e
0; < C, 2078,

for any j’ < j. Let A be a matrix of d,, and choose a constant D such that D > ||Al|,. Let us remark that

j' 201 400 2/-1
(A0 | <DCI YL Y wy (ks j ke + D0 Y w, (ks i, K)o |.
Jj=0 k=0 j=j'+1 k=0
If j < j’, we have
2i—1 2/1

1 y+n+1
w,(j,k; i, k) = __ 2=('=Dr+n+1)
];) y(.] J ) 1;0 <1+|k_2_0/_])k,|>

+o00 n+1
< z ( 1 __ ) 2=('=Ny+n+1)
E\1+ |k —2"0-Di/|

< 27U =Dr+n+1),

where C,, is a positive constant that only depends on the dimension 7.
If j > j’, we have

201 2/-1 1 y+n+1
Wik K = < 1 > 2G4t
k; LG ks j L k) gé TR

201 n+1
<y 1 1 2=(G=i"r+n)
= & T \1+ 2 Gk — k|

< C2-U=1N0r+m),

where CJ, is a positive constant only depending on the dimension n.
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Therefore, there exists a constant C}] > 0 only depending on the dimension #n such that
|(AC)j/,k/| < CC,’,{C},’UDO'J-/,
for any j’, k’. O

Let us remark that the constant C, ; isequal to1ifo; = 27%, which implies that the previous result is a generalization
of Equation (4).
The next theorem shows the robustness of the ¥ spaces.

Theorem 3. Suppose that a < a’ implies
UE.“,)/UE“) -0 as j— +oo.

. . O, . o .
If for any a € R, the sequence 0@ is admissible, then S*° " is a linear robust space. Besides, for any ¢ € S*° ", the function
Ve o) IS robust, that is, v, ;) = V4. 50 for any quasidiagonal matrix A.

Proof. Let A be an almost diagonal matrix and take c € 579 Letus prove that Ac belongs to 579 Leta € R,e > 0and
c>o. )
If ¢ < apn, then let &’ be an element of («, oty ). Since ¢ € SV"’('), there exists C’ > 0 such that |c ikl < c’ a;a ), for any

j.k. By Lemma 1, there exists a constant C > 0 depending on A, &’ and the dimension n such that |(Ac) ikl < c’ C‘aﬁa,),

for any j, k. By hypothesis, there exists J € N such that |(Ac); | < Ccrﬁ.a) forany j > J.
It remains to examine the case o > a,,;,. Let y be a strictly positive number such that

y > max {—s(c®) — 1,5(c®)}

and let C’ be the constant C||A||y from Lemma 1. For any j € N, let us define the set

: C @
Q} = {k . |cj,k| > Z_C,O-J }

Let us remark that we have Ac = AcV + Ac®, where

ci ifkeQ;
c(l)—{ Ik Qj and ¢

A ) else N ) else.

@ _ {Cj,k ifk f QJ

@)

and that |c;
J.k

implies

| < C/@C) 05“), for any j, k. Therefore, using Lemma 1, we get [(Ac®); | < C/2 ag.“) for any j, k, which

#{k ACOMPS CO’ECX)} < #{k L 1(ACD) 4] = %aﬁ“)}.

As in [15], let us define the §-neighborhood N¢(j, k) (8§ > 0) of [k/2/, (k + 1)/27) as the set of the couples (j/,k’) such
that

lj=J'1<dj

) .
kK] o pipm
20 20|~
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Let us recall that if (j/, k') & NY( j,k) then
wys-2(j, k; . K') < wea(j, ks ', k2798

Let us take (j, k) such that for any k¥’ € Q;/, we have (j', k') ¢ N®(j, k). If &’ < ap;p, for any constant C”’ large enough
and any constant § small enough, we get

IAD) il < D D) Allas—2was— (ks §', KDlejr o
j/ENk’EQj/

_is-1 . .
< NAllos2277 0 Y ws2(iks j' K le o
JJENK'EQ;r

.o !’
<NAlls-2770" Y Y wsaiks j kHCa)
j’eNk’er/

2i'-1

< NAlls22777C" 3 3 weea(oks K.
J'EN k'=0
Using the proof of the previous lemma, there exists a constant C’” depending on &, «’ and the dimension n such that
2."’ 2! ’ ’
Z Z ws—2(j, k; j', k’)cr;‘,x ) < C’”aﬁa ).

J'EN k=0

Since the sequences o(® and o) are admissible, there exists s > 0 such that o(*") /@ < 251, So, there exists J € N such
that

|(AcD); 1] < |All5-2C""C"27IC =968

C (w
< Zo’j R
for any j > J. We thus have

#{k DA™l > %oﬁ."‘)} <#{k :3(j’,k") € N°(j,k), k' € Q' }
!
< > #{k: %—k— _22512—1}
Jo1i=T1<8] KRy 22
< 2 Z (225j+1+1)l’l

J =T 1<8j K eQy

<) #HQ ¥ 4y,

Jili=1<8j
for any j > J. Since c belongs to 57" we have #Qj < 20(@+/2)]" for j/ large enough. We get
C . .
. 1 (@) ; 2)j(146)938
#{k : (Act ))j’k| > 39, } < 28 j2(0)+e/2)j(A+8)738jn

< 2(v(oc)+s/2)j 2(1+v(o¢)+£/2+3n)5j

< 20(@+e)],
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forany j > J (for large enough J). We thus have shown that the space 57 is linear robust. The second part of the theorem

©
is obtained by using Proposition 3 and the fact that ¢ belongs to §”ee©" " |

4 | SOME CONNECTIONS WITH GENERALIZED BESOV SPACES

Classical Besov spaces By, ,(R") were introduced at the end of the 1950s to fill the gaps between the Holder-Zygmund
spaces and the Sobolev spaces [4, 35]. In the context of the S” spaces, one works with periodic Besov spaces By, 4([0,1]").
These spaces can be characterized with wavelet coefficients [28]. The connections between the Besov spaces and the
SY spaces are given by the following theorem [3]: if bf)’q are the discrete counterparts of the B;,q([O, 1]™) spaces (see
Definition 7) then we have

n(p)—¢

s'c N Nboss -

p>0e>0

where n(p) = inf ., . {ap —v(a) + n}. Moreover, the inclusion becomes an equality if and only if v is concave.

The Besov spaces have been generalized with the help of the admissible sequences (see, e.g., [12]). A characteriza-
tion with wavelet coefficients is given in [1]. It is thus natural to study the connections between these spaces and the
575" spaces.

First, let us give the definition of the discrete counterparts of the generalized Besov spaces.

Definition 7. Let o be an admissible sequence and 0 < p,q < oo. The discrete counterpart of the generalized Besov space
B} 4([0,1]") is defined by
q/p 14

ba=fc:| X @zl Y | | <o
i€f0,...,2"~1},jEN kefo,...,2/ -1}

with the usual modification if p = oo and/or g = .

Letusremark thatby . = b}, . ifo; = 25/, The next theorem gives a condition under which the S”° © spaces are included
in an intersection of generalized Besov spaces.

Theorem 4. Forany a € R, let 0® be an admissible sequence and let us suppose that

o a < d implies 05.“/) /a;“)

¢ 5(6) 5 —c0asa > +oo.

—0asj— +oo,

For any p > 0, let 6P) be an admissible sequence. We have

(ejp)z—js/p )

Sv,a(.) C ﬂ m bp,oo

p>0¢e>0

if and only if for any p,e > 0 and for any o > o, there exists C > 0 such that
95_1’)2—]6/17 < Czjn/pz—jV(oc)/p(GE_“))—l, )

forany j.
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Proof. First, let us suppose that the inclusion is satisfied. For any & > oy, let ¢(® be a sequence defined by

@ = {aga) for |2¥(®)J | values of k
. .

else

We directly have that c@ belongs to S”"’O and thus, for any p, ¢ > 0, there exists C > 0 such that

1/p
(P)y—je/pp—jn/p @) p
0P 2I/p2 ;lcj’k| <C,

for any j. From the definition of the sequence c¢(*), we obtain
6P o-ic/p < Coin/po=iv@/p(g @)1,
J = J

for any j.

Now, let us suppose that Equation (5) is satisfied and let us show the required inclusion. Let ¢ be a sequence belonging

to 5”°" and let p,€ > 0.Since 5(c®) » —oco as @ — 400, there exists &’ > a;, such that the sequence (6(p)2 JE/PO'(“ ))

is bounded. We have

p . .
(ej@) 2795271 Y e 4|
k

p .
G R n D YRR LR Y

k: |cjk|<a(°‘) k:lej k|>c(°‘>

D rje/p N o (a® )\ 5—jer—j .
< (P25 ) + (60 22 Y ey,

k:lcj k|>o(a)

for any j € N. It remains to prove that the second term of the previous inequality is bounded.
Let 8 be a real number smaller than a,;, and let J be such that |c; | < 05.'8 ) for any j > J. We have

!
{ eyl 20 )} - {k 10 > eyl 20’5.“)},
for any j > J. Besides, for any 7 > 0, there exist y1, ..., ¥y € (8 —7,a’) such that

N

18.'T c Jlyi,vi + 7], [ ] CJ[ (i) (y,]

i=1
and

“ { |c(l) | > 0(m+n>} < 20+

for any j > J (with J large enough). Since v is a right-continuous function, there exists 7 > 0 such that v(y; + ) + 71 <
v(y;) + ¢/2 foranyi € {1, ..., N}. As a consequence, there exists a constant C’ > 0 such that

( e@))" - (Uﬁm)p 2004/
J J

™M=

p . .
(eﬁp)> LR D YR T L

k:lej k|>c7(“) i

1
<C'N,

for any j > J. O
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Let us recall that b;:,oo Cb) ifp'<pando j2_j"/ P < G;Z—jn/p/ for any j large enough; in particular, bgfoo C by if
o; < a} for j large enough [1, 12, 26]. Therefore, to get the equality in the previous theorem, we must choose the “largest”

sequences 6P satisfying the condition. To do so, we will introduce a new function 7. Let us first rewrite the condition on
the sequences 8(P). Under the hypothesis of Theorem 4, we have, for j sufficiently large,

-1
0P)y—je/p « Cpin/py—iva+n/2)/p (a(.“+’7/ 2)>
j = j
-1
o 0P)y—je/p < pin/py—ivia+n/2)/p (G(f"“)))
j = j

& 2P/ Dlngielp < on/p (g
- J J

lo (6(17)0.(05'“7))
o &\% 9
< v(a) £ lim inf limsuppn - p———— =
n=0+t p>0 j 1 log 2J]
Definition 8. The function 7 is defined by
log <8§.p)a§.a+n)>
5(0) — J lim inf limsupn — p————  if a > oy
V(C() - }7—>0+ p>0 _]—>+00p p log 2] min.,
-0 else

The function ¥ is a right-continuous increasing function such that 7(«) > 0 for any a > a,,;,. Besides, if ¥ is an
admissible profile (i.e., if ¥ < n) then we directly have

S'V’g(') C Sﬁ’g(')

Theorem 5. Under the hypothesis of Theorem 4, if ¥ <n and if for any o < oy, there exist p,e > 0 such that
2‘j”/P0§.“)6§.p)2_j€/P — +o00 as j — +oo, then we have

()

ﬂ ﬂ bpoo I e 57t

p>0¢e>0

Remark 1. Hypothesis 27"/ Poﬁ“)eﬁp )2-J¢/P - +co means that the sequence 6§p ) must be “sufficiently large.” Besides, if
we suppose that

(68P2me/p)

ﬂ ﬂ bP,cjo e Sﬁ’c(')’

p>0e>0

then for any a < ay,i,, there exist p, e > 0 such that

lim sup 2=in/pg@gPy—je/p — 4 .
jo7i

Jj—o+oo

Now, if there exists o < a,i, such that the limit superior is bounded for any p, €, let us define the sequence c such that for
(P)5—ji

©'P2 JE/P)J.
J

any j €N, cj, = UE.“) for one and only one k and c; ; = 0 otherwise. Obviously, ¢ belongs to ﬂp>0 ﬂ»o by but

the sequence c does not belong to S
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<9<p>2—js/p
Proof. Let c be a sequence belonging to ﬂp>0 N0 by !, For any p,¢ > 0, there exists Cp > Osuch that

p . .
<9§P)> y—jey=ijn Z lejklP < Cpe,
k

for any j.
If o < ayn, we have

) @ —in/paPnic/p (@) 7
#{k : lejul 2 07} <€y (27n/00 P 2Ielrg )

Let us take p, ¢ as in the hypothesis; there thus exists J > 0 such that |c; | < 05.“) for any j > J and for any k, that is,
VC’U(.)(O() = —00.
If o > otpyin, we have

2 : P . n\ P
#{k . |Cj,k| > o_§a+€/ )} < Cp,szjn (6517)) 9¢j <o,§0£+s/ ))

< 2in <6§P>)_p2€f (o) -’

for j large enough; we thus have v, ;) (a) < ?(a). This implies that ¢ belongs to §7:99. O

The previous theorem allows us to assert that if v = ¥ then

()

SV’O—(‘) = ﬂ ﬂ bp,oo

p>0e>0

J

The next corollary shows that when inequalities (5) are satisfied for 7, the previous implication becomes an equivalence.

Corollary 1. Under the hypothesis of the previous theorem, if for any p,e > 0 and for any a > a,;p, there exists C > 0 such
that

-1
0P)a=ic/p < Cc2in/po=i%@]/p (o(.“)) ,
j = J

forany j and if for any a < (3, we have Uﬁ.ﬁ ) < oga) for any j, then we have

(o)

)
svo) — ﬂ ﬂ bp,oo
p>0e>0
ifand only ifv = 7.
Proof. We directly have

(e‘.p)szE/P)

ﬂ ﬂ bp,ci: = Sﬁ’a(‘)’

p>0e>0

so that we can conclude using Proposition 3. O
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When v = 7, anatural question concerns the link between the topology of the space (S* o d) defined in Theorem 2 with
the topology induced by the intersection in the previous theorem. The canonical topology on the generalized Besov space
is the same as the topology on (S” 0 ,d), that is, it is metrizable, complete, and stronger than the p01ntw1se convergence.
If the intersection of the generalized Besov spaces can be written as a countable intersection of b « Spaces (i € N) then,
from the closed graph theorem, the topology t defined on S* " as the weakest topology such that each identity map
(SV’U('), ) b‘7 is continuous is equivalent to (S o) ,d). The next proposition gives some conditions on the sequences
QEP ) to have a countable intersection.

Proposition 4. If the function p > 0 — log,; 6(p ) is left continuous uniformly with respect to j then if p,,, (m € N) is a dense

sequence of 10, +oo[ and ife; (1 € N)isa sequence of strictly positive numbers converging to 0, we have

9(")2 JE/p> (epm)a=iea/om >

M ﬂbp, =N Nbpss

p>0¢>0 meN [eN

Proof. The inclusion of the first space in the second one is straightforward. Let us prove the other inclusion.
Let us take p > 0 and ¢ > 0. It suffices to find p,, and ¢; such that

( m)A—j ( .
Pm < pand 6P 2ietn/on > gPyiterm/p,

for j large enough. This is equivalent to ask

&l h h (Pm) (P
pmSpandE—p—m>p—m—E—<log2,6 logzjej ),

for j large enough. Since we can choose p,, < p such that

log,; 6(p)| < — 3p and — — 2 < i,

Q(Pm)
Pm P 3p

| 1082}
for any j € N, we can conclude by taking ¢; sufficiently small. O

To end this section, let us show that the preceding results are generalizations of what is known about the S” spaces.

For 0@ = 2= , let us find an admissible sequence Qﬁ.p ) such that for any p,¢ > 0 and for any a > a,,;,, there exists C > 0
such that
-1
0P)y—je/p < C2in/py-iv@)/p (U@)
J = J
that is,

0'P)y—je/p < Cpin—v(@+ap)/p.
; <

If we take Sg.p ) = 2/1(P)/P with
n(p) = inf {ap —v(a)}+n,
A>0min
we get P(a) = inf ). o{ap — n(p)} + n for any a > a,;, and the hypothesis of Corollary 1 and Proposition 4 are satisfied.
We thus obtain
(9(}’) 2-je/p ) n(p)—< 7(pm)—e;

=ﬂﬂbp,ojo j=mmbp,oi =ﬂﬂbpmf’;g

p>0e>0 p>0¢e>0 meN IeN

if and only if v = 7, that is, if v is concave.
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