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Abstract
In this work, we introduce a generalization of the 𝑆𝜈 spaces underlying a multi-
fractal formalism for non-concave spectra.We prove among other things that the
essential topological properties of the 𝑆𝜈 spaces can be transposed in this context;
in particular, these new spaces are metric.
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1 INTRODUCTION

The aim of a multifractal analysis is to scrutinize very erratic signals. They are present in many practical situations such
as turbulence [29], physiology [34], biology [31], or geoscience [9]. The regularity of these signals can change widely from
a point to another. Information concerning the pointwise smoothness of signals can be grasped via its Hölder spectrum,
which relies on the Hölder spaces. A locally bounded function 𝑓 belongs toΛ𝛼(𝑥0) (with 𝛼 ≥ 0 and 𝑥0 ∈ 𝐑𝑛) if there exist
a constant 𝐶 and a polynomial 𝑃𝑥0 of degree less than 𝛼 such that

|𝑓(𝑥) − 𝑃𝑥0(𝑥)| < 𝐶|𝑥 − 𝑥0|𝛼, (1)

in a neighborhood of 𝑥0. The Hölder exponent of 𝑓 at 𝑥0 is defined as

ℎ𝑓(𝑥0) = sup{𝛼 ≥ 0 ∶ 𝑓 ∈ Λ𝛼(𝑥0)}.
As usual, 𝑓 belongs to the uniform space Λ𝛼(𝐑𝑛) if, for any 𝑥0, Equation (1) is satisfied for any 𝑥, the constant 𝐶 being
uniform [22]. For highly irregular functions𝑓, one tries to globally characterize the local regularity of𝑓 using the spectrum
of regularity 𝑑𝑓:

𝑑𝑓 ∶ [0,∞] → {−∞} ∪ [0, 𝑛] ℎ ↦ dim{𝑥 ∈ 𝐑𝑛 ∶ ℎ𝑓(𝑥) = ℎ},

where dim stands for the Hausdorff dimension. Such an approach is particularly suitable for numerical signals, for
which the estimation of the Hölder exponent at every point is not conceivable.
In practice, there is no method to systematically obtain the spectrum of regularity 𝑑𝑓 , but there exist many heuristic

methods, called multifractal formalisms, to estimate this spectrum (see, e.g., [16, 18, 30, 33]). Most of them are based on
the same argument and rely on the decomposition of 𝑓 into its wavelet coefficients. Let us briefly introduce this approach.
In most of the cases, one tries, explicitly or not, to compute the function

𝜂(𝑞) = sup{𝑠 ∶ 𝑓 ∈ 𝐵
𝑠∕𝑞
𝑞,∞(𝐑

𝑛)},
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relying on the Besov spaces 𝐵𝑠∕𝑞𝑞,∞(𝐑𝑛), using wavelets or an equivalent approach such as box-counting techniques.
Considering a heuristic argument, one can expect for the equality

𝑑𝑓(ℎ) = inf
𝑞
{ℎ𝑞 − 𝜂(𝑞)} + 𝑛 (2)

to hold in most of the cases.
In practice, thesemethods give, at best, an upper bound [14], that is, if the locally bounded function 𝑓 belongs toΛ𝜀(𝐑𝑛)

for some 𝜀 > 0, one has

𝑑𝑓(ℎ) ≤ inf
𝑞≥𝑞0{ℎ𝑞 − 𝜂(𝑞)} + 𝑛,

where 𝑞0 is the value satisfying 𝜂(𝑞0) = 𝑛. Moreover, since 𝑑𝑓 is obtained through a Legendre transform from equality (2),
these methods only lead, at best, to the concave hull of the regularity spectrum, although there exist functions whose
associated spectrum is not concave (see, e.g., [21]).
To circumvent this problem, a method involving the types of histogram of discrete wavelet coefficients was introduced

[2]. This method relies on sequence spaces: the 𝑆𝜈 spaces. Since these spaces are the starting point of this work, let us
sketch some definitions. Let us set

Λ = {(𝑖, 𝑗, 𝑘) ∶ 1 ≤ 𝑖 < 2𝑛, 𝑗 ∈ 𝐍, 𝑘 ∈ {0, … , 2𝑗 − 1}𝑛},
and consider sequences (𝑐(𝑖)

𝑗,𝑘
)(𝑖,𝑗,𝑘)∈Λ whose indices vary in Λ. For the sake of clarity, we shall omit any reference to the

index 𝑖 in the following; for instance, the set {𝑐𝑗,𝑘 ∶ (𝑗, 𝑘) ∈ 𝐸}has to be understood as the set {𝑐
(𝑖)

𝑗,𝑘
∶ (𝑗, 𝑘) ∈ 𝐸, 1 ≤ 𝑖 < 2𝑛}.

Finally, the sequence (𝑐(𝑖)
𝑗,𝑘
)(𝑖,𝑗,𝑘)∈Λ will be denoted by 𝑐. Throughout this paper, 𝜈 refers to a right-continuous increas-

ing function for which there exists 𝛼min ∈ 𝐑 such that 𝜈(𝛼) = −∞ if 𝛼 < 𝛼min and 𝜈(𝛼) ∈ [0, 𝑛] if 𝛼 ≥ 𝛼min. With these
notations being fixed, one defines the 𝑆𝜈 space as follows:

𝑆𝜈 =
{
𝑐 ∶ ∀𝛼 ∈ 𝐑 ∀𝜀 > 0 ∀𝐶 > 0

∃𝐽 > 0 ∀𝑗 ≥ 𝐽, #𝐸𝑗(𝐶, 𝛼)(𝑐) ≤ 2(𝜈(𝛼)+𝜀)𝑗},
where

𝐸𝑗(𝐶, 𝛼)(𝑐) = {𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶2−𝛼𝑗}. (3)

If one considers the sequence 𝑐 as wavelet coefficients, it can be shown that these spaces allow to deal with non-concave
spectra of regularity both in theory and practice [3, 21].
The starting point of this paper is the following: the Besov spaces 𝐵𝑠𝑝,𝑞(𝐑𝑛) can be generalized by replacing the dyadic

scales appearing in the definition by more general sequences; such spaces have applications in different fields (see, e.g.,
[6, 10, 11, 17, 25, 32]). For example, concerning the Hölder spaces Λ𝛼(𝐑𝑛) (let us recall that we have Λ𝛼(𝐑𝑛) = 𝐵𝛼∞,∞(𝐑𝑛)),
such a generalization leads to the following definition [23, 26]: given a sequence 𝜎 = (𝜎𝑗)𝑗∈𝐍 satisfying some general
conditions, a locally bounded function 𝑓 belongs to the space Λ𝜎,𝛼(𝐑𝑛) if there exists a constant 𝐶 such that

inf
𝑃∈𝛼 ‖𝑓 − 𝑃‖𝐿∞(𝑥+2−𝑗𝐵) < 𝐶𝜎𝑗,

for any 𝑗 ∈ 𝐍 and any 𝑥 ∈ 𝐑𝑛, where 𝐵 denotes the unit ball centered at the origin and𝛼 the set of polynomials of degree
at most 𝛼. One can do the same with the 𝑆𝜈 spaces: the sequence (2−𝛼𝑗)𝑗∈𝐍 occurring in Equation (3) can be replaced by
a sequence (𝜎𝑗)𝑗∈𝐍.
In this work, we show that this generalization is mathematically sound. The first step consists in checking that the

topological properties holding for the usual 𝑆𝜈 spaces are preserved (see Section 2). Moreover, it is crucial to show that
different wavelet bases give rise to identical space (see Section 3). Since the 𝑆𝜈 spaces are strongly connected to Besov
spaces, it is also natural to link the spaces defined here with the generalised Besov spaces (see Section 4).
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KLEYNTSSENS and NICOLAY 3

These new spaces have been designed to detect the law of the iterated logarithm [19]; the efficiency of this approach
has been established in [20, 24]. A random variable 𝑋 satisfies the law of the iterated logarithm if for every 𝑡, there exists
a positive random variable 𝐶 such that

|𝑋(𝑡 + ℎ) − 𝑋(𝑡)| ≤ 𝐶|ℎ|1∕2√log log |ℎ|−1,
for ℎ small enough on an event of probability 1. For example, many financial models are derived from the Brownian
motion (e.g., the geometric Brownian motion used in the Black and Scholes model [13], the Hull and White one-factor
model [5], etc.) and thus satisfy such an inequality. As 𝜎𝑗 = 2−𝑗∕2

√
log log 2𝑗 defines an admissible sequence, the corre-

sponding generalized 𝑆𝜈 spaces should prove helpful to check for the existence of logarithmic corrections in order to test
if these models are well-founded in practical situations, as shown in [20]. Such results will be statistically validated in
a forthcoming work. These concepts could also help to formulate conjectures about the existence of corrections in the
Hölderian behavior of functions [20, 24].

2 DEFINITION AND FIRST PROPERTIES

Let us recall that 𝑐 = (𝑐𝑗,𝑘) = (𝑐
(𝑖)

𝑗,𝑘
)(𝑖,𝑗,𝑘)∈Λ stands here for a sequence of complex numbers.

Definition 1. For any 𝛼 ∈ 𝐑, let 𝜎(𝛼) = (𝜎(𝛼)
𝑗
)𝑗∈𝐍 be a sequence of positive real numbers. We define

𝑆𝜈,𝜎
(⋅)
=
{
𝑐 ∶ ∀𝛼 ∈ 𝐑 ∀𝜀 > 0 ∀𝐶 > 0

∃𝐽 > 0 ∀𝑗 ≥ 𝐽, #𝐸𝑗(𝐶, 𝜎(𝛼))(𝑐) ≤ 2(𝜈(𝛼)+𝜀)𝑗},
where

𝐸𝑗(𝐶, 𝜎
(𝛼))(𝑐) =

{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶𝜎(𝛼)𝑗 }.

To define a topology on these vector spaces, we use the same strategy as for the usual 𝑆𝜈 spaces [3]. For 𝛼 ∈ 𝐑 and
𝛽 ∈ 𝐑 ∪ {−∞}, we first define the metric spaces (𝐸(𝜎(𝛼), 𝛽), 𝑑𝜎(𝛼),𝛽) by

𝐸(𝜎(𝛼), 𝛽) =
{
𝑐 ∶ ∃𝐶, 𝐶′ > 0 #𝐸𝑗(𝐶, 𝜎

(𝛼)) ≤ 𝐶′2𝛽𝑗 for any 𝑗 ∈ 𝐍}
and set

𝑑𝜎(𝛼),𝛽(𝑐, 𝑑) = inf
{
𝐶 + 𝐶′ ∶ 𝐶, 𝐶′ ≥ 0 #𝐸𝑗(𝐶, 𝜎(𝛼))(𝑐 − 𝑑) ≤ 𝐶′2𝛽𝑗 for any 𝑗 ∈ 𝐍}.

Let us give the basic properties of these spaces.

Proposition 1. We have the following properties:

1. the space 𝐸(𝜎(𝛼), 𝛽) is a vector space,
2. the sum is a continuous operation in (𝐸(𝜎(𝛼), 𝛽), 𝑑𝜎(𝛼),𝛽), while the product is not necessarily continuous,
3. the metric 𝑑𝜎(𝛼),𝛽 is invariant by translation and satisfies the inequality

𝑑𝜎(𝛼),𝛽(𝜆𝑐, 0) ≤ sup{1, |𝜆|}𝑑𝜎(𝛼),𝛽(𝑐, 0),
for any 𝜆 ∈ 𝐂,

4. if 𝛽′ ≤ 𝛽 and if there exists 𝐽 ∈ 𝐍 such that 𝜎(𝛼
′)

𝑗
≤ 𝜎(𝛼)

𝑗
for any 𝑗 ≥ 𝐽, then 𝐸(𝜎(𝛼′), 𝛽′) is included in 𝐸(𝜎(𝛼), 𝛽),
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4 KLEYNTSSENS and NICOLAY

5. suppose that

𝜎
(𝛼′)
𝑗
∕𝜎
(𝛼)
𝑗
→ 0 as 𝑗 → +∞

and 𝛽′ < 𝛽. If the sequence (𝜆𝑚)𝑚∈𝐍 converges to 𝜆 in 𝐂 and if (𝑐(𝑚))𝑚∈𝐍 is a sequence of 𝐸(𝜎(𝛼), 𝛽) which converges to
𝑐 ∈ 𝐸(𝜎(𝛼

′), 𝛽′) for 𝑑𝜎(𝛼),𝛽 , then the sequences (𝜆𝑚𝑐(𝑚))𝑚∈𝐍 converges to 𝜆𝑐 for 𝑑𝜎(𝛼),𝛽 .

Proof. The first four points are straightforward; let us remark that the product is not necessarily continuous because it
was already the case for the 𝑆𝜈 spaces [3]. It remains to prove the last point. From the properties of the metric 𝑑𝜎(𝛼),𝛽 , we
obtain

𝑑𝜎(𝛼),𝛽(𝜆𝑚𝑐
(𝑚), 𝜆𝑐) ≤ sup{1, |𝜆𝑚|}𝑑𝜎(𝛼),𝛽(𝑐(𝑚) − 𝑐, 0) + 𝑑𝜎(𝛼),𝛽((𝜆𝑚 − 𝜆)𝑐, 0).

So, it suffices to show that 𝑑𝜎(𝛼),𝛽((𝜆𝑚 − 𝜆)𝑐, 0) converges to 0 as𝑚 → +∞. There exist 𝐶, 𝐶′ ≥ 0 such that

#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶𝜎(𝛼′)𝑗

} ≤ 𝐶′2𝛽′𝑗,

for any 𝑗 ∈ 𝐍. Let us set 𝜀 > 0 and𝑀 ∈ 𝐍 such that |𝜆𝑚 − 𝜆| < 1, for any𝑚 ≥ 𝑀. There exists 𝐽 ≥ 0 such that𝐶′2𝛽′𝑗 ≤ 𝜀2𝛽𝑗
and 𝐶𝜎(𝛼

′)
𝑗

≤ 𝜀𝜎(𝛼)
𝑗
, for any 𝑗 ≥ 𝐽. In this case, we have

#
{
𝑘 ∶ |(𝜆𝑚 − 𝜆)𝑐𝑗,𝑘| ≥ 𝜀𝜎(𝛼)𝑗 } ≤ #{𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶𝜎(𝛼′)𝑗

}
≤ 𝜀2𝛽𝑗,

for any 𝑗 ≥ 𝐽. Besides, we can suppose that |(𝜆𝑚 − 𝜆)𝑐𝑗,𝑘| < 𝜀𝜎(𝛼)𝑗 for any 𝑗 < 𝐽, 𝑘 ∈ {0, … , 2𝑗 − 1}𝑛 and𝑚 ≥ 𝑀. With this
hypothesis, we get

𝑑𝜎(𝛼),𝛽((𝜆𝑚 − 𝜆)𝑐, 0) ≤ 2𝜀,
for any𝑚 ≥ 𝑀. □

Proposition 2. The space 𝐸(𝜎(𝛼), 𝛽) is complete.

Proof. Let (𝑐(𝑚))𝑚∈𝐍 be a Cauchy sequence of 𝐸(𝜎(𝛼), 𝛽). Let us first show that the sequence (𝑐(𝑚)
𝑗,𝑘
)𝑚∈𝐍 is a pointwise

Cauchy sequence for any fixed 𝑗, 𝑘. Let us set 𝜀 > 0, 𝑗 ∈ 𝐍 and 𝜀′ = inf {𝜀(𝜎(𝛼)
𝑗
)−1, 2−𝛽𝑗−1}. Since (𝑐(𝑚))𝑚∈𝐍 is a Cauchy

sequence, there exists 𝐽 > 0 such that, for any 𝑝, 𝑞 ≥ 𝐽,
#
{
𝑘 ∶ |𝑐(𝑝)

𝑗,𝑘
− 𝑐

(𝑞)

𝑗,𝑘
| ≥ 𝜀′𝜎(𝛼)

𝑗

} ≤ 𝜀′2𝛽𝑗,

that is, |𝑐(𝑝)
𝑗,𝑘
− 𝑐

(𝑞)

𝑗,𝑘
| ≤ 𝜀 for any 𝑘.

Therefore, for any 𝑗, 𝑘, there exists 𝑐𝑗,𝑘 such that 𝑐
(𝑚)

𝑗,𝑘
→ 𝑐𝑗,𝑘 as𝑚 → +∞. It remains to prove that 𝑐(𝑚) → 𝑐 in 𝐸(𝜎(𝛼), 𝛽)

as𝑚 → +∞. If 𝜀 > 0, there exists𝑀 such that

∀𝑗 ≥ 0, ∀𝑝, 𝑞 ≥ 𝑀, #{𝑘 ∶ |𝑐(𝑝)
𝑗,𝑘
− 𝑐

(𝑞)

𝑗,𝑘
| ≥ 𝜀𝜎(𝛼)

𝑗

} ≤ 𝜀2𝛽𝑗,
which implies

∀𝑝, 𝑞 ≥ 𝑀, 𝑐(𝑞) ∈ {𝑑 ∶ #{𝑘 ∶ |𝑐(𝑝)
𝑗,𝑘
− 𝑑𝑗,𝑘| ≥ 𝜀𝜎(𝛼)𝑗 } ≤ 𝜀2𝛽𝑗 ∀𝑗 ≥ 0}.
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KLEYNTSSENS and NICOLAY 5

As these sets are closed for the pointwise convergence, we get that

∀𝑝 ≥ 𝑀, 𝑐 ∈ {𝑑 ∶ #{𝑘 ∶ |𝑐(𝑝)
𝑗,𝑘
− 𝑑𝑗,𝑘| ≥ 𝜀𝜎(𝛼)𝑗 } ≤ 𝜀2𝛽𝑗 ∀𝑗 ≥ 0}.

We thus have 𝑐 ∈ 𝐸(𝜎(𝛼), 𝛽) (and 𝑐(𝑚) converges to 𝑐 in 𝐸(𝜎(𝛼), 𝛽)). □

The next theorem gives a link between the space 𝑆𝜈,𝜎(⋅) and the spaces 𝐸(𝜎(𝛼), 𝛽). This will allow us to define a topology
on 𝑆𝜈,𝜎(⋅) .

Theorem 1. Suppose that 𝛼 < 𝛼′ implies

𝜎
(𝛼′)
𝑗
∕𝜎
(𝛼)
𝑗
→ 0 as 𝑗 → +∞.

For any sequence (𝛼𝑙)𝑙∈𝐍 dense in 𝐑 and any sequence (𝜀𝑚)𝑚∈𝐍 of strictly positive real numbers which converges to 0, we
have

𝑆𝜈,𝜎
(⋅)
=
⋂
𝑚∈𝐍

⋂
𝑙∈𝐍

𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚).

Proof. We directly have that 𝑆𝜈,𝜎(⋅) is included in 𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚), for any𝑚, 𝑙 ∈ 𝐍. Let us show that⋂
𝑚∈𝐍

⋂
𝑙∈𝐍

𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚)

is a subset of 𝑆𝜈,𝜎(⋅) . Let 𝑐 be an element of the intersection and let 𝛼 ∈ 𝐑, 𝜀 > 0, 𝐶 > 0. For any 𝑚, 𝑙 ∈ 𝐍, there exist
𝐶𝑙,𝑚, 𝐶

′
𝑙,𝑚

≥ 0 such that

#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶𝑙,𝑚𝜎(𝛼𝑙)𝑗

} ≤ 𝐶′
𝑙,𝑚
2(𝜈(𝛼𝑙)+𝜀𝑚)𝑗,

for any 𝑗 ∈ 𝐍. Let𝑚 ∈ 𝐍 be such that 2𝜀𝑚 < 𝜀.
If 𝜈(𝛼) = −∞ let us take 𝑙 ∈ 𝐍 such that 𝛼𝑙 ∈ (𝛼, 𝛼min). If 𝜈(𝛼) ∈ 𝐑, let us take 𝑙 ∈ 𝐍 such that 𝛼𝑙 > 𝛼 and 𝜈(𝛼) <

𝜈(𝛼𝑙) < 𝜈(𝛼) + 𝜀𝑚. In any case, there exists 𝐽𝑙,𝑚 ∈ 𝐍 such that 𝐶𝑙,𝑚𝜎
(𝛼𝑙)

𝑗
≤ 𝐶𝜎(𝛼)

𝑗
and 𝐶′

𝑙,𝑚
2(𝜈(𝛼𝑙)+𝜀𝑚)𝑗 ≤ 2(𝜈(𝛼)+𝜀)𝑗 for any

𝑚 ≥ 𝑀 and 𝑗 ≥ 𝐽𝑙,𝑚. We thus have

#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶𝜎(𝛼)𝑗 } ≤ #{𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶𝑙,𝑚𝜎(𝛼𝑙)𝑗

}
≤ 2(𝜈(𝛼)+𝜀)𝑗,

for any 𝑗 ≥ 𝐽𝑙,𝑚, which implies 𝑐 ∈ 𝑆𝜈,𝜎(⋅) . □

Let us recall that if (𝐸𝑚, 𝑑𝑚) is a metric space for any𝑚 ∈ 𝐍, then

𝑑 ∶ (𝑒, 𝑓) ↦

+∞∑
𝑚=1

2−𝑚
𝑑𝑚(𝑒, 𝑓)

1 + 𝑑𝑚(𝑒, 𝑓)

is a metric on 𝐸 = ∩𝑚∈𝐍𝐸𝑚. Moreover, for any𝑚 ∈ 𝐍, the projection 𝑖𝑚 ∶ (𝐸, 𝑑) → (𝐸𝑚, 𝑑𝑚) is continuous and the topol-
ogy induced by 𝑑 is the weakest topology on 𝐸 which satisfies this property. Finally, a sequence is a Cauchy sequence
(resp. converges to 𝑒) in (𝐸, 𝑑) if and only if for any 𝑚 ∈ 𝐍, it is also a Cauchy sequence (resp. it also converges to 𝑒) in
(𝐸𝑚, 𝑑𝑚).
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6 KLEYNTSSENS and NICOLAY

Theorem 2. Under the hypothesis of Theorem 1, if we set

𝑑𝑚,𝑙 = 𝑑𝜎(𝛼𝑙),𝜈(𝛼𝑙)+𝜀𝑚
,

then the application

𝑑 ∶ (𝑐, 𝑑) ∈ 𝑆𝜈,𝜎
(⋅)
× 𝑆𝜈,𝜎

(⋅)
↦

+∞∑
𝑚=1

+∞∑
𝑙=1

1

2𝑚+𝑙

𝑑𝑚,𝑙(𝑐, 𝑑)

1 + 𝑑𝑚,𝑙(𝑐, 𝑑)

is ametric on 𝑆𝜈,𝜎(⋅) . This application is invariant by translation and the space (𝑆𝜈,𝜎(⋅) , 𝑑) is a complete topological vector space.
The induced topology is independent of the sequences (𝛼𝑙)𝑙∈𝐍 and (𝜀𝑚)𝑚∈𝐍.

Proof. We will prove that the product is continuous and that the topology is complete and independent of the sequences
(𝛼𝑙)𝑙∈𝐍 and (𝜀𝑚)𝑚∈𝐍, the other properties being straightforward.
First, let us show that if 𝜆𝑢 → 𝜆 in 𝐂 and if 𝑐(𝑢) → 𝑐 in 𝑆𝜈,𝜎(⋅) , then 𝜆𝑢𝑐(𝑢) → 𝜆𝑐 in 𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚), for any 𝑙, 𝑚 ∈ 𝐍.

Let us set 𝑙, 𝑚 ∈ 𝐍; if 𝜈(𝛼𝑙) = −∞, then there exists𝑝 ∈ 𝐍 such that 𝛼𝑝 ∈ (𝛼𝑙, 𝛼min). If 𝜈(𝛼𝑙) ∈ 𝐑, there exist𝑝, 𝑞 ∈ 𝐍 such
that𝛼𝑝 > 𝛼𝑙 and 𝜈(𝛼𝑝) + 𝜀𝑞 < 𝜈(𝛼𝑙) + 𝜀𝑚. In any case, we have 𝑐(𝑢) → 𝑐 in𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚) and 𝑐 ∈ 𝐸(𝜎(𝛼𝑝), 𝜈(𝛼𝑝) + 𝜀𝑞).
Using Proposition 1, we have 𝜆𝑢𝑐(𝑢) → 𝜆𝑐 in 𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚), which implies that the product is continuous.
Now, let us prove that the topology is independent of the sequences (𝛼𝑙)𝑙∈𝐍 and (𝜀𝑚)𝑚∈𝐍. We have to show that if

𝑐(𝑢) → 𝑐 in 𝑆𝜈,𝜎(⋅) , then 𝑐(𝑢) → 𝑐 in 𝐸(𝜎(𝛼), 𝜈(𝛼) + 𝜀), for any 𝛼 ∈ 𝐑 and 𝜀 > 0. Let 𝛼 be a real number and 𝜀 > 0. Since
𝑐(𝑢) → 𝑐 in 𝑆𝜈,𝜎(⋅) , there exist 𝐶𝑙,𝑚, 𝐶′𝑙,𝑚 ≥ 0 such that

#
{
𝑘 ∶ |𝑐(𝑢)

𝑗,𝑘
− 𝑐𝑗,𝑘| ≥ 𝐶𝑙,𝑚𝜎(𝛼𝑙)𝑗

} ≤ 𝐶′
𝑙,𝑚
2(𝜈(𝛼𝑙)+𝜀𝑚)𝑗,

for any 𝑗 ∈ 𝐍. Let 𝛿 be a strictly positive number and take𝑚 ∈ 𝐍 such that 2𝜀𝑚 < 𝜀. Using the same arguments as in the
proof of Theorem 1, there exist 𝑙 ∈ 𝐍 and 𝐽𝑙,𝑚 ∈ 𝐍 such that 𝐶𝑙,𝑚𝜎

(𝛼𝑙)

𝑗
≤ 𝛿𝜎(𝛼)

𝑗
and

𝐶′
𝑙,𝑚
2(𝜈(𝛼𝑙)+𝜀𝑚)𝑗 ≤ 𝛿2(𝜈(𝛼)+𝜀)𝑗,

for any 𝑗 ≥ 𝐽𝑙,𝑚. We get

#
{
𝑘 ∶ |𝑐(𝑢)

𝑗,𝑘
− 𝑐𝑗,𝑘| ≥ 𝛿𝜎(𝛼)𝑗 } ≤ #{𝑘 ∶ |𝑐(𝑢)

𝑗,𝑘
− 𝑐𝑗,𝑘| ≥ 𝐶𝑙,𝑚𝜎(𝛼𝑙)𝑗

}
≤ 𝛿2(𝜈(𝛼)+𝜀)𝑗,

for any 𝑗 ≥ 𝐽𝑙,𝑚. We have thus obtained 𝑑𝜎(𝛼),𝜈(𝛼)+𝜀(𝑐(𝑢)𝑗,𝑘 , 𝑐𝑗,𝑘) ≤ 2𝛿.
Finally, let us show that the topology is complete. Let (𝑐(𝑢))𝑢∈𝐍 be a Cauchy sequence of 𝑆𝜈,𝜎

(⋅) . This sequence is also a
Cauchy sequence of𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚), for any 𝑙, 𝑚 ∈ 𝐍. By Proposition 2, there exists a sequence 𝑐(𝑚,𝑙) such that (𝑐(𝑢))𝑢∈𝐍
converges to 𝑐(𝑚,𝑙) in 𝐸(𝜎(𝛼𝑙), 𝜈(𝛼𝑙) + 𝜀𝑚), for any 𝑙, 𝑚. Similar arguments as in the first part of the proof of Proposition 2
show that if a sequence (𝑐𝑢)𝑢∈𝐍 converges to 𝑐 in 𝐸(𝜎(𝛼), 𝛽), then (𝑐

(𝑢)

𝑗,𝑘
)𝑢∈𝐍 converges to 𝑐𝑗,𝑘 in 𝐂 for any 𝑗, 𝑘. This implies

the equality 𝑐(𝑚,𝑙) = 𝑐(𝑚′,𝑙′), valid for any𝑚,𝑚′, 𝑙, 𝑙′ ∈ 𝐍. □

Let us now give another definition of 𝑆𝜈,𝜎(⋅) by introducing a new notion.

Definition 2. The generalized profile of a sequence 𝑐 is defined by

𝜈𝑐,𝜎(⋅) ∶ 𝛼 ∈ 𝐑 ↦ lim
𝜀→0+

lim sup
𝑗→+∞

log#𝐸𝑗(1, 𝜎
(𝛼+𝜀))(𝑐)

log 2𝑗
.

This definition is well-founded if we suppose that for any 𝛼 < 𝛼′ there exists 𝐽 ∈ 𝐍 such that 𝜎(𝛼
′)

𝑗
≤ 𝜎(𝛼)

𝑗
for any 𝑗 ≥ 𝐽.
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KLEYNTSSENS and NICOLAY 7

The next proposition gives a few properties of the function 𝜈𝑐,𝜎(⋅) and leads to an alternative definition of 𝑆𝜈,𝜎
(⋅) .

Proposition 3. Suppose that 𝛼 < 𝛼′ implies 𝜎(𝛼
′)

𝑗
∕𝜎
(𝛼)
𝑗
→ 0 as 𝑗 → +∞. We have the following properties:

1. the function 𝜈𝑐,𝜎(⋅) is right-continuous and increasing; moreover, we have 𝜈𝑐,𝜎(⋅) (𝛼) ∈ [0, 𝑛] ∪ {−∞},
2. the constant 1 appearing in the definition of 𝜈𝑐,𝜎(⋅) is arbitrary,
3. a sequence 𝑐 belongs to 𝑆𝜈,𝜎(⋅) if and only if 𝜈𝑐,𝜎(⋅) (𝛼) ≤ 𝜈(𝛼) for any 𝛼 ∈ 𝐑,
4. if for any 𝛼 < 𝛽, we have 𝜎(𝛽)

𝑗
< 𝜎

(𝛼)
𝑗

for any 𝑗 ∈ 𝐍, then there exists 𝑐 ∈ 𝑆𝜈,𝜎(⋅) such that 𝜈𝑐,𝜎(⋅) = 𝜈.

Proof. The two first properties are immediate. Let 𝑐 be a sequence of 𝑆𝜈,𝜎(⋅) and 𝛼 ∈ 𝐑. For any 𝜀 > 0, there exists 𝐽 ∈ 𝐍
such that

#𝐸𝑗(1, 𝜎
(𝛼+𝜀))(𝑐) ≤ 2(𝜈(𝛼+𝜀)+𝜀)𝑗,

for any 𝑗 ≥ 𝐽; we thus have 𝜈𝑐,𝜎(⋅) (𝛼) ≤ 𝜈(𝛼).
Let 𝑐 be a sequence such that 𝜈𝑐,𝜎(⋅) ≤ 𝜈 and let 𝛼 ∈ 𝐑, 𝜀 > 0 and 𝐶 > 0. There exist 𝜀′ > 0, 𝐽 ∈ 𝐍 such that for any

𝜀′′ < 𝜀′ and 𝑗 ≥ 𝐽, we have
log#𝐸𝑗(1, 𝜎

(𝛼+𝜀′′)(𝑐)

log 2𝑗
≤ 𝜈(𝛼) + 𝜀,

which gives #𝐸𝑗(1, 𝜎(𝛼+𝜀
′′)) ≤ 2(𝜈(𝛼)+𝜀)𝑗. We can suppose that 𝜎(𝛼+𝜀

′′)
𝑗

≤ 𝐶𝜎(𝛼)
𝑗

for any 𝑗 ≥ 𝐽, so that #𝐸𝑗(𝐶, 𝜎(𝛼))(𝑐) ≤
2(𝜈(𝛼)+𝜀)𝑗.
Now, let us construct a sequence 𝑐 ∈ 𝑆𝜈,𝜎(⋅) such that 𝜈𝑐,𝜎(⋅) = 𝜈. We can work in the one-dimensional case by setting

𝑐
(𝑖)

𝑗,𝑘
= 0 for 𝑖 ≠ 1; let us thus suppose that 𝑛 = 1. Let (𝛼𝑚)𝑚∈𝐍 be a dense sequence of [𝛼min, +∞) and let (𝑐(𝑚))𝑚∈𝐍 be a

sequence defined by

𝑐
(𝑚)

𝑗,𝑘
=

{
𝜎
(𝛼𝑚)

𝑗+𝑚
for ⌊2𝜈(𝛼𝑚)𝑗⌋ values of 𝑘

0 else
.

Next, we define 𝑐 by

𝑐𝑗,𝑘 =

{
0 if 𝑘 = 0

𝑐
(𝑗−𝑙)

𝑙,𝑘−2𝑙
if 𝑘 ∈ {2𝑙, … , 2𝑙+1 − 1} with 𝑙 ∈ {0, … , 𝑗}

.

Let us set 𝛼 < 𝛼min. We have

𝜈𝑐,𝜎(⋅) (𝛼) = lim
𝜀→0+

lim sup
𝑗→+∞

log#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝜎(𝛼)𝑗 }
log 2𝑗

and for any 𝑗, 𝑘, there exists𝑚 ∈ {0,… , 𝑗} such that

𝑐𝑗,𝑘 = 𝑐
(𝑚)

𝑗−𝑚,𝑘−2𝑗−𝑚

= (𝜎
(𝛼𝑚)

𝑗
or 0).

So, using the last hypothesis, we get 𝜈𝑐,𝜎(⋅) (𝛼) = −∞. To conclude, it remains to prove that 𝜈𝑐,𝜎(⋅) (𝛼𝑚) = 𝜈(𝛼𝑚) for any
𝑚 ∈ 𝐍.
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8 KLEYNTSSENS and NICOLAY

Let 𝑚 be a natural number and let 𝜀 > 0. For any 𝑗 ≥ 𝑚, we have 𝜎(𝛼𝑚)
𝑗

≥ 𝜎(𝛼𝑚+𝜀)
𝑗

and 𝑐𝑗,𝑘 is equal to 𝜎
(𝛼𝑚)

𝑗
for⌊2𝜈(𝛼𝑚)(𝑗−𝑚)⌋ values of 𝑘. So, we obtain

lim sup
𝑗→+∞

log⌊2𝜈(𝛼𝑚)(𝑗−𝑚)⌋
log 2𝑗

≤ lim sup
𝑗→+∞

log#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝜎(𝛼𝑚+𝜀)𝑗

}
log 2𝑗

,

which gives 𝜈(𝛼𝑚) ≤ 𝜈𝑐,𝜎(⋅) (𝛼𝑚). Besides, we have, for any 𝑗 ≥ 𝑚,

#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝜎(𝛼𝑚+𝜀)𝑗

} ≤
𝑗∑

𝑙 = 1

𝛼𝑙 ≤ 𝛼𝑚 + 𝜀
2𝜈(𝛼𝑙)(𝑗−𝑙)

≤ 2𝜈(𝛼𝑚+𝜀)𝑗
𝑗∑

𝑙 = 1

𝛼𝑙 ≤ 𝛼𝑚 + 𝜀
2−𝑙𝜈(𝛼𝑙)

≤ 2𝜈(𝛼𝑚+𝜀)𝑗𝑗,
which allows us to write 𝜈𝑐,𝜎(⋅) (𝛼𝑚) ≤ 𝜈(𝛼𝑚). □

3 ROBUSTNESS

Until now, we have considered the spaces 𝑆𝜈,𝜎(⋅) as sequence spaces, but we should keep in mind that such a sequence
represents wavelet coefficients and thus a function. To associate these spaces to functions, we have to check that the
definition does not depend on the chosen wavelet basis.
Let us briefly evoke the notion of wavelet basis. Under some general assumptions (for more precisions, see, e.g., [8, 27,

28]), there exist a function 𝜙 and 2𝑛 − 1 functions (𝜓(𝑖))1≤𝑖<2𝑛 , called wavelets, such that

{𝜙(𝑥 − 𝑘) ∶ 𝑘 ∈ 𝐙𝑛} ∪
{
𝜓(𝑖)(2𝑗𝑥 − 𝑘) ∶ 1 ≤ 𝑖 < 2𝑛, 𝑘 ∈ 𝐙𝑛, 𝑗 ∈ 𝐍}

form an orthogonal basis of 𝐿2(𝐑𝑛). Any function 𝑓 ∈ 𝐿2(𝐑𝑛) can be decomposed as follows,

𝑓(𝑥) =
∑
𝑘∈𝐙𝑛

𝐶𝑘𝜙(𝑥 − 𝑘) +
∑
𝑗∈𝐍

∑
𝑘∈𝐙𝑛

∑
1≤𝑖<2𝑛

𝑐
(𝑖)

𝑗,𝑘
𝜓(𝑖)(2𝑗𝑥 − 𝑘),

where

𝑐
(𝑖)

𝑗,𝑘
= 2𝑛𝑗 ∫

𝐑𝑛
𝑓(𝑥)𝜓(𝑖)(2𝑗𝑥 − 𝑘) 𝑑𝑥

and

𝐶𝑘 = ∫
𝐑𝑛
𝑓(𝑥)𝜙(𝑥 − 𝑘) 𝑑𝑥.

Let us remark that we do not choose the 𝐿2(𝐑𝑛) normalization for the wavelets, but rather an 𝐿∞(𝐑𝑛) normalization,
which is better fitted to the study of the Hölderian regularity. On the torus 𝐑𝑛∕𝐙𝑛, we will use the periodized wavelets

𝜓
(𝑖)
𝑝 (2

𝑗𝑥 − 𝑘) =
∑
𝑙∈𝐙𝑛

𝜓(𝑖)(2𝑗(𝑥 − 𝑙) − 𝑘) (𝑗 ∈ 𝐍, 𝑘 ∈ {0, … , 2𝑗 − 1}𝑛)

to form a basis of the one-periodic functions on 𝐑𝑛 which locally belong to 𝐿2(𝐑𝑛) [7, 8]. The corresponding coefficients
𝑐
(𝑖)

𝑗,𝑘
are naturally called the periodized wavelet coefficients.
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KLEYNTSSENS and NICOLAY 9

We will also need the notion of admissible sequence (see, e.g., [23]).

Definition 3. A sequence 𝜎 = (𝜎𝑗)𝑗∈𝐍 of real positive numbers is called admissible if there exists a positive constant 𝐶
such that

𝐶−1𝜎𝑗 ≤ 𝜎𝑗+1 ≤ 𝐶𝜎𝑗,
for any 𝑗 ∈ 𝐍.

We set

Θ
𝑗
= inf
𝑘∈𝐍

𝜎𝑗+𝑘

𝜎𝑘
and Θ𝑗 = sup

𝑘∈𝐍

𝜎𝑗+𝑘

𝜎𝑘

and define the lower and upper Boyd indices as follows:

𝑠(𝜎) = lim
𝑗→+∞

logΘ
𝑗

log 2𝑗
and 𝑠(𝜎) = lim

𝑗→+∞

logΘ𝑗

log 2𝑗
.

If 𝜎 is an admissible sequence, for any 𝜀 > 0, there exists a positive constant 𝐶 such that

𝐶−12𝑗(𝑠(𝜎)−𝜀) ≤ 𝜎𝑗+𝑘
𝜎𝑘

≤ 𝐶2𝑗(𝑠(𝜎)+𝜀),
for any 𝑗, 𝑘 ∈ 𝐍.
Let us now state definitions and properties related to important classes of linear operators in the context of wavelet

bases [15, 28].

Definition 4. For 𝛾 > 0, we set

𝑤𝛾(𝑗, 𝑘; 𝑗
′, 𝑘′) =

2−(𝛾+𝑛+1)|𝑗−𝑗′|
(1 + 2inf {𝑗,𝑗′}|2−𝑗𝑘 − 2−𝑗′𝑘′|)𝛾+𝑛+1 ,

for any 𝑗, 𝑗′ ∈ 𝐍, 𝑘 ∈ {0, … , 2𝑗 − 1} and 𝑘′ ∈ {0, … , 2𝑗′ − 1}.
We say that

𝐴 =
(
𝐴(𝑗, 𝑘; 𝑗′, 𝑘′)

)
𝑗,𝑗′,𝑘,𝑘′

belongs to𝒜𝛾 if and only if there exists 𝐶 ≥ 0 such that
|𝐴(𝑗, 𝑘; 𝑗′, 𝑘′)| ≤ 𝐶𝑤𝛾(𝑗, 𝑘; 𝑗′, 𝑘′),

for any 𝑗, 𝑗′, 𝑘, 𝑘′. The infimum of these constants is denoted by ‖𝐴‖𝛾.
The matrix 𝐴 is almost diagonal (resp. quasidiagonal) if 𝐴 ∈ 𝒜𝛾 for any 𝛾 > 0 (resp. 𝐴 is invertible and 𝐴,𝐴−1 ∈ 𝒜𝛾

for any 𝛾 > 0).

It can be shown (see [28]) that the matrix of the operator which maps a 𝐶∞ orthonormal wavelet basis to another 𝐶∞
orthonormal wavelet basis is quasidiagonal.

Definition 5. A property𝒫 is linear robust if the following properties hold:

∙ the set of 𝑐 such that𝒫(𝑐) holds is a vector space;
∙ if𝒫(𝑐) holds then, for any almost diagonal operator 𝐴,𝒫(𝐴𝑐) holds.

Definition 6. A property𝒫 is robust if the following property holds: if𝒫(𝑐) holds then, for any quasidiagonal operator
𝐴,𝒫(𝐴𝑐) holds.
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10 KLEYNTSSENS and NICOLAY

Let us first generalize the following classical result of [28]: if 𝛾 > |𝛼| and 𝐴 ∈ 𝒜𝛾 then there exists a constant 𝐶̃ (which
only depends on the dimension 𝑛) such that

|𝑐𝑗,𝑘| ≤ 𝐶2−𝛼𝑗 ∀𝑗, 𝑘 ⇒ |(𝐴𝑐)𝑗,𝑘| ≤ 𝐶𝐶̃‖𝐴‖𝛾2−𝛼𝑗 ∀𝑗, 𝑘. (4)

Lemma 1. Let 𝜎 be an admissible sequence and 𝛾 be a strictly positive number such that 𝛾 > max{−𝑠(𝜎) − 1, 𝑠(𝜎)}. If there
exists a constant 𝐶 > 0 such that

|𝑐𝑗,𝑘| ≤ 𝐶𝜎𝑗,
for any 𝑗, 𝑘, then there exists a constant 𝐶̃ which depends on 𝛾, 𝜎 and the dimension 𝑛 such that for any matrix 𝐴 ∈ 𝒜𝛾, we
have

|(𝐴𝑐)𝑗,𝑘| ≤ 𝐶𝐶̃‖𝐴‖𝛾𝜎𝑗,
for any 𝑗, 𝑘.

Proof. Let us set 𝜀 = 𝛾 − max{−𝑠(𝜎) − 1, 𝑠(𝜎)} > 0. Since the sequence 𝜎 is admissible, there exists a constant 𝐶𝛾,𝜎 > 0
such that

𝜎𝑗 ≤ 𝐶𝛾,𝜎2−(𝑗′−𝑗)(𝑠(𝜎)−𝜀)𝜎𝑗′ ,
for any 𝑗 ≤ 𝑗′ and

𝜎𝑗 ≤ 𝐶𝛾,𝜎2(𝑗−𝑗′)(𝑠(𝜎)+𝜀)𝜎𝑗′ ,
for any 𝑗′ ≤ 𝑗. Let 𝐴 be a matrix of𝒜𝛾 and choose a constant 𝐷 such that 𝐷 > ‖𝐴‖𝛾. Let us remark that

|(𝐴𝑐)𝑗′,𝑘′ | ≤ 𝐷𝐶⎛⎜⎜⎝
𝑗′∑
𝑗=0

2𝑗−1∑
𝑘=0

𝑤𝛾(𝑗, 𝑘; 𝑗
′, 𝑘′)𝜎𝑗 +

+∞∑
𝑗=𝑗′+1

2𝑗−1∑
𝑘=0

𝑤𝛾(𝑗, 𝑘; 𝑗
′, 𝑘′)𝜎𝑗

⎞⎟⎟⎠.
If 𝑗 ≤ 𝑗′, we have

2𝑗−1∑
𝑘=0

𝑤𝛾(𝑗, 𝑘; 𝑗
′, 𝑘′) =

2𝑗−1∑
𝑘=0

(
1

1 + |𝑘 − 2−(𝑗′−𝑗)𝑘′|
)𝛾+𝑛+1

2−(𝑗
′−𝑗)(𝛾+𝑛+1)

≤
+∞∑
𝑘=0

(
1

1 + |𝑘 − 2−(𝑗′−𝑗)𝑘′|
)𝑛+1

2−(𝑗
′−𝑗)(𝛾+𝑛+1)

≤ 𝐶𝑛2−(𝑗′−𝑗)(𝛾+𝑛+1),
where 𝐶𝑛 is a positive constant that only depends on the dimension 𝑛.
If 𝑗 > 𝑗′, we have

2𝑗−1∑
𝑘=0

𝑤𝛾(𝑗, 𝑘; 𝑗
′, 𝑘′) =

2𝑗−1∑
𝑘=0

(
1

1 + |2−(𝑗−𝑗′)𝑘 − 𝑘′|
)𝛾+𝑛+1

2−(𝑗−𝑗
′)(𝛾+𝑛+1)

≤
2𝑗−1∑
𝑘=0

1

2𝑗−𝑗′

(
1

1 + |2−(𝑗−𝑗′)𝑘 − 𝑘′|
)𝑛+1

2−(𝑗−𝑗
′)(𝛾+𝑛)

≤ 𝐶′𝑛2−(𝑗−𝑗′)(𝛾+𝑛),
where 𝐶′𝑛 is a positive constant only depending on the dimension 𝑛.
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KLEYNTSSENS and NICOLAY 11

Therefore, there exists a constant 𝐶′′𝑛 > 0 only depending on the dimension 𝑛 such that

|(𝐴𝑐)𝑗′,𝑘′ | ≤ 𝐶𝐶′′𝑛 𝐶𝛾,𝜎𝐷𝜎𝑗′ ,
for any 𝑗′, 𝑘′. □

Let us remark that the constant 𝐶𝛾,𝜎 is equal to 1 if 𝜎𝑗 = 2−𝛼𝑗, which implies that the previous result is a generalization
of Equation (4).
The next theorem shows the robustness of the 𝑆𝜈,𝜎(⋅) spaces.

Theorem 3. Suppose that 𝛼 < 𝛼′ implies

𝜎
(𝛼′)
𝑗
∕𝜎
(𝛼)
𝑗
→ 0 as 𝑗 → +∞.

If for any 𝛼 ∈ 𝐑, the sequence 𝜎(𝛼) is admissible, then 𝑆𝜈,𝜎(⋅) is a linear robust space. Besides, for any 𝑐 ∈ 𝑆𝜈,𝜎(⋅) , the function
𝜈𝑐,𝜎(⋅) is robust, that is, 𝜈𝑐,𝜎(⋅) = 𝜈𝐴𝑐,𝜎(⋅) for any quasidiagonal matrix 𝐴.

Proof. Let𝐴 be an almost diagonal matrix and take 𝑐 ∈ 𝑆𝜈,𝜎(⋅) . Let us prove that𝐴𝑐 belongs to 𝑆𝜈,𝜎(⋅) . Let 𝛼 ∈ 𝐑, 𝜀 > 0 and
𝐶 > 0.
If 𝛼 < 𝛼min, then let 𝛼′ be an element of (𝛼, 𝛼min). Since 𝑐 ∈ 𝑆𝜈,𝜎

(⋅) , there exists 𝐶′ > 0 such that |𝑐𝑗,𝑘| ≤ 𝐶′𝜎(𝛼′)𝑗
, for any

𝑗, 𝑘. By Lemma 1, there exists a constant 𝐶̃ > 0 depending on 𝐴, 𝛼′ and the dimension 𝑛 such that |(𝐴𝑐)𝑗,𝑘| ≤ 𝐶′𝐶̃𝜎(𝛼′)𝑗
,

for any 𝑗, 𝑘. By hypothesis, there exists 𝐽 ∈ 𝐍 such that |(𝐴𝑐)𝑗,𝑘| < 𝐶𝜎(𝛼)𝑗 for any 𝑗 ≥ 𝐽.
It remains to examine the case 𝛼 ≥ 𝛼min. Let 𝛾 be a strictly positive number such that

𝛾 > max
{
−𝑠(𝜎(𝛼)) − 1, 𝑠(𝜎(𝛼))

}
and let 𝐶′ be the constant 𝐶̃‖𝐴‖𝛾 from Lemma 1. For any 𝑗 ∈ 𝐍, let us define the set

𝑄𝑗 =

{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝐶

2𝐶′
𝜎
(𝛼)
𝑗

}
.

Let us remark that we have 𝐴𝑐 = 𝐴𝑐(1) + 𝐴𝑐(2), where

𝑐
(1)

𝑗,𝑘
=

{
𝑐𝑗,𝑘 if 𝑘 ∈ 𝑄𝑗
0 else

and 𝑐
(2)

𝑗,𝑘
=

{
𝑐𝑗,𝑘 if 𝑘 ∉ 𝑄𝑗
0 else.

,

and that |𝑐(2)
𝑗,𝑘
| < 𝐶∕(2𝐶′) 𝜎(𝛼)

𝑗
, for any 𝑗, 𝑘. Therefore, using Lemma 1, we get |(𝐴𝑐(2))𝑗,𝑘| ≤ 𝐶∕2 𝜎(𝛼)𝑗 for any 𝑗, 𝑘, which

implies

#
{
𝑘 ∶ |(𝐴𝑐)𝑗,𝑘| ≥ 𝐶𝜎(𝛼)𝑗 } ≤ #

{
𝑘 ∶ |(𝐴𝑐(1))𝑗,𝑘| ≥ 𝐶2 𝜎(𝛼)𝑗

}
.

As in [15], let us define the 𝛿-neighborhood 𝑁𝛿(𝑗, 𝑘) (𝛿 > 0) of [𝑘∕2𝑗, (𝑘 + 1)∕2𝑗) as the set of the couples (𝑗′, 𝑘′) such
that

⎧⎪⎪⎨⎪⎪⎩
|𝑗 − 𝑗′| ≤ 𝛿𝑗
|||| 𝑘2𝑗 − 𝑘′2𝑗′ |||| ≤ 22𝛿𝑗2−𝑗

.
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12 KLEYNTSSENS and NICOLAY

Let us recall that if (𝑗′, 𝑘′) ∉ 𝑁𝛿(𝑗, 𝑘) then

𝑤2𝛿−2(𝑗, 𝑘; 𝑗
′, 𝑘′) ≤ 𝑤𝛿−2(𝑗, 𝑘; 𝑗′, 𝑘′)2−𝑗𝛿−1 .

Let us take (𝑗, 𝑘) such that for any 𝑘′ ∈ 𝑄𝑗′ , we have (𝑗′, 𝑘′) ∉ 𝑁𝛿(𝑗, 𝑘). If 𝛼′ < 𝛼min, for any constant 𝐶′′ large enough
and any constant 𝛿 small enough, we get

|(𝐴𝑐(1))𝑗,𝑘| ≤ ∑
𝑗′∈𝐍

∑
𝑘′∈𝑄𝑗′

‖𝐴‖2𝛿−2𝑤2𝛿−2(𝑗, 𝑘; 𝑗′, 𝑘′)|𝑐𝑗′,𝑘′ |
≤ ‖𝐴‖2𝛿−22−𝑗𝛿−1 ∑

𝑗′∈𝐍

∑
𝑘′∈𝑄𝑗′

𝑤𝛿−2(𝑗, 𝑘; 𝑗
′, 𝑘′)|𝑐𝑗′,𝑘′ |

≤ ‖𝐴‖2𝛿−22−𝑗𝛿−1 ∑
𝑗′∈𝐍

∑
𝑘′∈𝑄𝑗′

𝑤𝛿−2(𝑗, 𝑘; 𝑗
′, 𝑘′)𝐶′′𝜎

(𝛼′)

𝑗′

≤ ‖𝐴‖2𝛿−22−𝑗𝛿−1𝐶′′ ∑
𝑗′∈𝐍

2𝑗
′−1∑
𝑘′=0

𝑤𝛿−2(𝑗, 𝑘; 𝑗
′, 𝑘′)𝜎

(𝛼′)

𝑗′
.

Using the proof of the previous lemma, there exists a constant 𝐶′′′ depending on 𝛿, 𝛼′ and the dimension 𝑛 such that

∑
𝑗′∈𝐍

2𝑗
′
−1∑

𝑘′=0

𝑤𝛿−2(𝑗, 𝑘; 𝑗
′, 𝑘′)𝜎

(𝛼′)

𝑗′
≤ 𝐶′′′𝜎(𝛼′)

𝑗
.

Since the sequences 𝜎(𝛼) and 𝜎(𝛼′) are admissible, there exists 𝑠 > 0 such that 𝜎(𝛼′)∕𝜎(𝛼) ≤ 2𝑠𝑗 . So, there exists 𝐽 ∈ 𝐍 such
that

|(𝐴𝑐(1))𝑗,𝑘| ≤ ‖𝐴‖2𝛿−2𝐶′′𝐶′′′2−𝑗(𝛿−1−𝑠)𝜎(𝛼)𝑗
≤ 𝐶
4
𝜎
(𝛼)
𝑗
,

for any 𝑗 ≥ 𝐽. We thus have

#

{
𝑘 ∶ |(𝐴𝑐(1))𝑗,𝑘| ≥ 𝐶2 𝜎(𝛼)𝑗

}
≤ #{𝑘 ∶ ∃(𝑗′, 𝑘′) ∈ 𝑁𝛿(𝑗, 𝑘), 𝑘′ ∈ 𝑄𝑗′}
≤ ∑
𝑗′∶|𝑗−𝑗′|≤𝛿𝑗

∑
𝑘′∈𝑄𝑗′

#

{
𝑘 ∶

|||| 𝑘2𝑗 − 𝑘′2𝑗′ |||| ≤ 22𝛿𝑗2−𝑗
}

≤ ∑
𝑗′∶|𝑗−𝑗′|≤𝛿𝑗

∑
𝑘′∈𝑄𝑗′

(22𝛿𝑗+1 + 1)𝑛

≤ ∑
𝑗′∶|𝑗−𝑗′|≤𝛿𝑗 #𝑄𝑗′ (2

2𝛿𝑗+1 + 1)𝑛,

for any 𝑗 ≥ 𝐽. Since 𝑐 belongs to 𝑆𝜈,𝜎(⋅) , we have #𝑄𝑗′ ≤ 2(𝜈(𝛼)+𝜀∕2)𝑗′ for 𝑗′ large enough. We get

#

{
𝑘 ∶ |(𝐴𝑐(1))𝑗,𝑘| ≥ 𝐶2 𝜎(𝛼)𝑗

}
≤ 2𝛿𝑗2(𝜈(𝛼)+𝜀∕2)𝑗(1+𝛿)23𝛿𝑗𝑛

≤ 2(𝜈(𝛼)+𝜀∕2)𝑗2(1+𝜈(𝛼)+𝜀∕2+3𝑛)𝛿𝑗
≤ 2(𝜈(𝛼)+𝜀)𝑗,
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KLEYNTSSENS and NICOLAY 13

for any 𝑗 ≥ 𝐽 (for large enough 𝐽).We thus have shown that the space 𝑆𝜈,𝜎(⋅) is linear robust. The second part of the theorem
is obtained by using Proposition 3 and the fact that 𝑐 belongs to 𝑆𝜈𝑐,𝜎(⋅) ,𝜎

(⋅)

. □

4 SOME CONNECTIONSWITH GENERALIZED BESOV SPACES

Classical Besov spaces 𝐵𝑠𝑝,𝑞(𝐑𝑛) were introduced at the end of the 1950s to fill the gaps between the Hölder–Zygmund
spaces and the Sobolev spaces [4, 35]. In the context of the 𝑆𝜈 spaces, one works with periodic Besov spaces 𝐵𝑠𝑝,𝑞([0, 1]𝑛).
These spaces can be characterized with wavelet coefficients [28]. The connections between the Besov spaces and the
𝑆𝜈 spaces are given by the following theorem [3]: if 𝑏𝑠𝑝,𝑞 are the discrete counterparts of the 𝐵𝑠𝑝,𝑞([0, 1]𝑛) spaces (see
Definition 7) then we have

𝑆𝜈 ⊆
⋂
𝑝>0

⋂
𝜀>0

𝑏

𝜂(𝑝)−𝜀

𝑝

𝑝,∞ ,

where 𝜂(𝑝) = inf𝛼≥𝛼min {𝛼𝑝 − 𝜈(𝛼) + 𝑛}. Moreover, the inclusion becomes an equality if and only if 𝜈 is concave.
The Besov spaces have been generalized with the help of the admissible sequences (see, e.g., [12]). A characteriza-

tion with wavelet coefficients is given in [1]. It is thus natural to study the connections between these spaces and the
𝑆𝜈,𝜎

(⋅) spaces.
First, let us give the definition of the discrete counterparts of the generalized Besov spaces.

Definition 7. Let 𝜎 be an admissible sequence and 0 < 𝑝, 𝑞 ≤∞. The discrete counterpart of the generalized Besov space
𝐵𝜎𝑝,𝑞([0, 1]

𝑛) is defined by

𝑏𝜎𝑝,𝑞 =
{
𝑐 ∶

⎛⎜⎜⎜⎝
∑

𝑖∈{0,…,2𝑛−1},𝑗∈𝐍

(𝜎𝑗2
−𝑗𝑛∕𝑝)𝑞

⎛⎜⎜⎝
∑

𝑘∈{0,…,2𝑗−1}𝑑

|𝑐𝑗,𝑘|𝑝⎞⎟⎟⎠
𝑞∕𝑝⎞⎟⎟⎟⎠

1∕𝑞

< ∞
}

with the usual modification if 𝑝 = ∞ and/or 𝑞 = ∞.

Let us remark that 𝑏𝜎𝑝,𝑞 = 𝑏𝑠𝑝,𝑞 if 𝜎𝑗 = 2𝑠𝑗 . The next theorem gives a condition under which the 𝑆𝜈,𝜎(⋅) spaces are included
in an intersection of generalized Besov spaces.

Theorem 4. For any 𝛼 ∈ 𝐑, let 𝜎(𝛼) be an admissible sequence and let us suppose that

∙ 𝛼 < 𝛼′ implies 𝜎(𝛼
′)

𝑗
∕𝜎
(𝛼)
𝑗
→ 0 as 𝑗 → +∞,

∙ 𝑠(𝜎(𝛼)) → −∞ as 𝛼 → +∞.

For any 𝑝 > 0, let 𝜃(𝑝) be an admissible sequence. We have

𝑆𝜈,𝜎
(⋅)
⊆
⋂
𝑝>0

⋂
𝜀>0

𝑏
(𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝)𝑗

𝑝,∞

if and only if for any 𝑝, 𝜀 > 0 and for any 𝛼 ≥ 𝛼min, there exists 𝐶 > 0 such that
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 𝐶2𝑗𝑛∕𝑝2−𝑗𝜈(𝛼)∕𝑝(𝜎(𝛼)

𝑗
)−1, (5)

for any 𝑗.
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14 KLEYNTSSENS and NICOLAY

Proof. First, let us suppose that the inclusion is satisfied. For any 𝛼 ≥ 𝛼min, let 𝑐(𝛼) be a sequence defined by

𝑐(𝛼) =

{
𝜎
(𝛼)
𝑗

for ⌊2𝜈(𝛼)𝑗⌋ values of 𝑘
0 else

.

We directly have that 𝑐(𝛼) belongs to 𝑆𝜈,𝜎(⋅) and thus, for any 𝑝, 𝜀 > 0, there exists 𝐶 > 0 such that

𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝2−𝑗𝑛∕𝑝

(∑
𝑘

|𝑐(𝛼)
𝑗,𝑘
|𝑝)1∕𝑝 < 𝐶,

for any 𝑗. From the definition of the sequence 𝑐(𝛼), we obtain

𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 𝐶2𝑗𝑛∕𝑝2−𝑗𝜈(𝛼)∕𝑝(𝜎(𝛼)

𝑗
)−1,

for any 𝑗.
Now, let us suppose that Equation (5) is satisfied and let us show the required inclusion. Let 𝑐 be a sequence belonging

to 𝑆𝜈,𝜎(⋅) and let 𝑝, 𝜀 > 0. Since 𝑠(𝜎(𝛼)) → −∞ as 𝛼 → +∞, there exists 𝛼′ ≥ 𝛼min such that the sequence (𝜃(𝑝)𝑗 2−𝑗𝜀∕𝑝𝜎(𝛼
′)

𝑗
)𝑗

is bounded. We have (
𝜃
(𝑝)

𝑗

)𝑝
2−𝑗𝜀2−𝑗𝑛

∑
𝑘

|𝑐𝑗,𝑘|𝑝

≤ (𝜃(𝑝)
𝑗

)𝑝
2−𝑗𝜀2−𝑗𝑛

⎛⎜⎜⎜⎝
∑

𝑘∶|𝑐𝑗,𝑘|<𝜎(𝛼′)𝑗

|𝑐𝑗,𝑘|𝑝 + ∑
𝑘∶|𝑐𝑗,𝑘|≥𝜎(𝛼′)𝑗

|𝑐𝑗,𝑘|𝑝⎞⎟⎟⎟⎠
≤ (𝜃(𝑝)

𝑗
2−𝑗𝜀∕𝑝𝜎

(𝛼′)
𝑗

)𝑝
+
(
𝜃
(𝑝)

𝑗

)𝑝
2−𝑗𝜀2−𝑗𝑛

∑
𝑘∶|𝑐𝑗,𝑘|≥𝜎(𝛼′)𝑗

|𝑐𝑗,𝑘|𝑝,
for any 𝑗 ∈ 𝐍. It remains to prove that the second term of the previous inequality is bounded.
Let 𝛽 be a real number smaller than 𝛼min and let 𝐽 be such that |𝑐𝑗,𝑘| < 𝜎(𝛽)𝑗 for any 𝑗 ≥ 𝐽. We have{

𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝜎(𝛼′)𝑗

}
=
{
𝑘 ∶ 𝜎

(𝛽)

𝑗
> |𝑐𝑗,𝑘| ≥ 𝜎(𝛼′)𝑗

}
,

for any 𝑗 ≥ 𝐽. Besides, for any 𝜂 > 0, there exist 𝛾1, … , 𝛾𝑁 ∈ (𝛽 − 𝜂, 𝛼′) such that

[𝛽, 𝛼′] ⊂

𝑁⋃
𝑖=1

[𝛾𝑖, 𝛾𝑖 + 𝜂],
[
𝜎
(𝛼′)
𝑗
, 𝜎
(𝛽)

𝑗

]
⊂

𝑁⋃
𝑗=1

[
𝜎
(𝛾𝑖+𝜂)

𝑗
, 𝜎
(𝛾𝑖)

𝑗

]
and

#
{
𝑘 ∶ |𝑐(𝑖)

𝑗,𝑘
| ≥ 𝜎(𝛾𝑖+𝜂)

𝑗

} ≤ 2(𝜈(𝛾𝑖+𝜂)+𝜂)𝑗,
for any 𝑗 ≥ 𝐽 (with 𝐽 large enough). Since 𝜈 is a right-continuous function, there exists 𝜂 > 0 such that 𝜈(𝛾𝑖 + 𝜂) + 𝜂 <
𝜈(𝛾𝑖) + 𝜀∕2 for any 𝑖 ∈ {1, … ,𝑁}. As a consequence, there exists a constant 𝐶′ > 0 such that

(
𝜃
(𝑝)

𝑗

)𝑝
2−𝑗𝜀2−𝑗𝑛

∑
𝑘∶|𝑐𝑗,𝑘|≥𝜎(𝛼′)𝑗

|𝑐𝑗,𝑘|𝑝 ≤
𝑁∑
𝑖=1

(
𝜃
(𝑝)

𝑗

)𝑝
2−𝑗𝜀2−𝑗𝑛

(
𝜎
(𝛾𝑖)

𝑗

)𝑝
2(𝜈(𝛾𝑖)+𝜀∕2)𝑗

≤ 𝐶′𝑁,
for any 𝑗 ≥ 𝐽. □
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KLEYNTSSENS and NICOLAY 15

Let us recall that 𝑏𝜎′
𝑝′,∞

⊂ 𝑏𝜎𝑝,∞ if 𝑝′ ≤ 𝑝 and 𝜎𝑗2−𝑗𝑛∕𝑝 ≤ 𝜎′
𝑗
2−𝑗𝑛∕𝑝

′ for any 𝑗 large enough; in particular, 𝑏𝜎′𝑝,∞ ⊂ 𝑏𝜎𝑝,∞ if
𝜎𝑗 ≤ 𝜎′𝑗 for 𝑗 large enough [1, 12, 26]. Therefore, to get the equality in the previous theorem, we must choose the “largest”
sequences 𝜃(𝑝) satisfying the condition. To do so, we will introduce a new function 𝜈̃. Let us first rewrite the condition on
the sequences 𝜃(𝑝). Under the hypothesis of Theorem 4, we have, for 𝑗 sufficiently large,

𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 𝐶2𝑗𝑛∕𝑝2−𝑗𝜈(𝛼+𝜂∕2)∕𝑝(𝜎(𝛼+𝜂∕2)

𝑗

)−1
⇔ 𝜃

(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 2𝑗𝑛∕𝑝2−𝑗𝜈(𝛼+𝜂∕2)∕𝑝(𝜎(𝛼+𝜂)

𝑗

)−1
⇔ 2𝑗𝜈(𝛼+𝜂∕2)∕𝑝2−𝑗𝜀∕𝑝 ≤ 2𝑗𝑛∕𝑝(𝜃(𝑝)

𝑗
𝜎
(𝛼+𝜂)

𝑗

)−1
⇔ 𝜈(𝛼) ≤ lim

𝜂→0+
inf
𝑝>0
lim sup
𝑗→+∞

𝑛 − 𝑝
log
(
𝜃
(𝑝)

𝑗
𝜎
(𝛼+𝜂)

𝑗

)
log 2𝑗

.

Definition 8. The function 𝜈̃ is defined by

𝜈̃(𝛼) =

⎧⎪⎨⎪⎩
lim
𝜂→0+

inf
𝑝>0
lim sup
𝑗→+∞

𝑛 − 𝑝
log
(
𝜃
(𝑝)

𝑗
𝜎
(𝛼+𝜂)

𝑗

)
log 2𝑗

if 𝛼 ≥ 𝛼min
−∞ else

.

The function 𝜈̃ is a right-continuous increasing function such that 𝜈̃(𝛼) ≥ 0 for any 𝛼 ≥ 𝛼min. Besides, if 𝜈̃ is an
admissible profile (i.e., if 𝜈̃ ≤ 𝑛) then we directly have

𝑆𝜈,𝜎
(⋅)
⊂ 𝑆𝜈̃,𝜎

(⋅)
.

Theorem 5. Under the hypothesis of Theorem 4, if 𝜈̃ ≤ 𝑛 and if for any 𝛼 < 𝛼min, there exist 𝑝, 𝜀 > 0 such that
2−𝑗𝑛∕𝑝𝜎

(𝛼)
𝑗
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 → +∞ as 𝑗 → +∞, then we have

⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ ⊂ 𝑆𝜈̃,𝜎
(⋅)
.

Remark 1. Hypothesis 2−𝑗𝑛∕𝑝𝜎(𝛼)
𝑗
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 → +∞means that the sequence 𝜃(𝑝)

𝑗
must be “sufficiently large.” Besides, if

we suppose that

⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ ⊂ 𝑆𝜈̃,𝜎
(⋅)
,

then for any 𝛼 < 𝛼min, there exist 𝑝, 𝜀 > 0 such that

lim sup
𝑗→+∞

2−𝑗𝑛∕𝑝𝜎
(𝛼)
𝑗
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 = +∞.

Now, if there exists 𝛼 < 𝛼min such that the limit superior is bounded for any 𝑝, 𝜀, let us define the sequence 𝑐 such that for

any 𝑗 ∈ 𝐍, 𝑐𝑗,𝑘 = 𝜎
(𝛼)
𝑗

for one and only one 𝑘 and 𝑐𝑗,𝑘 = 0 otherwise. Obviously, 𝑐 belongs to
⋂
𝑝>0

⋂
𝜀>0
𝑏
(𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝)𝑗

𝑝,∞ but

the sequence 𝑐 does not belong to 𝑆𝜈̃,𝜎(⋅) .
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16 KLEYNTSSENS and NICOLAY

Proof. Let 𝑐 be a sequence belonging to
⋂
𝑝>0

⋂
𝜀>0
𝑏

(
𝜃(𝑝)2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ . For any 𝑝, 𝜀 > 0, there exists 𝐶𝑝,𝜀 > 0 such that

(
𝜃
(𝑝)

𝑗

)𝑝
2−𝑗𝜀2−𝑗𝑛

∑
𝑘

|𝑐𝑗,𝑘|𝑝 ≤ 𝐶𝑝,𝜀,

for any 𝑗.
If 𝛼 < 𝛼min, we have

#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝜎(𝛼)𝑗 } ≤ 𝐶𝑝,𝜀

(
2−𝑗𝑛∕𝑝𝜃

(𝑝)

𝑗
2−𝑗𝜀∕𝑝𝜎

(𝛼)
𝑗

)−𝑝
.

Let us take 𝑝, 𝜀 as in the hypothesis; there thus exists 𝐽 > 0 such that |𝑐𝑗,𝑘| < 𝜎(𝛼)𝑗 for any 𝑗 ≥ 𝐽 and for any 𝑘, that is,
𝜈𝑐,𝜎(⋅) (𝛼) = −∞.
If 𝛼 ≥ 𝛼min, we have

#
{
𝑘 ∶ |𝑐𝑗,𝑘| ≥ 𝜎(𝛼+𝜀∕2)𝑗

} ≤ 𝐶𝑝,𝜀2𝑗𝑛
(
𝜃
(𝑝)

𝑗

)−𝑝
2𝜀𝑗
(
𝜎
(𝛼+𝜀∕2)

𝑗

)−𝑝
≤ 2𝑗𝑛(𝜃(𝑝)

𝑗

)−𝑝
2𝜀𝑗
(
𝜎
(𝛼+𝜀)
𝑗

)−𝑝
,

for 𝑗 large enough; we thus have 𝜈𝑐,𝜎(⋅) (𝛼) ≤ 𝜈̃(𝛼). This implies that 𝑐 belongs to 𝑆𝜈̃,𝜎(⋅) . □

The previous theorem allows us to assert that if 𝜈 = 𝜈̃ then

𝑆𝜈,𝜎
(⋅)
=
⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ .

The next corollary shows that when inequalities (5) are satisfied for 𝜈̃, the previous implication becomes an equivalence.

Corollary 1. Under the hypothesis of the previous theorem, if for any 𝑝, 𝜀 > 0 and for any 𝛼 ≥ 𝛼min, there exists 𝐶 > 0 such
that

𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 𝐶2𝑗𝑛∕𝑝2−𝑗𝜈̃(𝛼)∕𝑝(𝜎(𝛼)

𝑗

)−1
,

for any 𝑗 and if for any 𝛼 < 𝛽, we have 𝜎(𝛽)
𝑗

≤ 𝜎(𝛼)
𝑗

for any 𝑗, then we have

𝑆𝜈,𝜎
(⋅)
=
⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞

if and only if 𝜈 = 𝜈̃.

Proof. We directly have

⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ = 𝑆𝜈̃,𝜎
(⋅)
,

so that we can conclude using Proposition 3. □
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KLEYNTSSENS and NICOLAY 17

When 𝜈 = 𝜈̃, a natural question concerns the link between the topology of the space (𝑆𝜈,𝜎(⋅) , 𝑑) defined inTheorem2with
the topology induced by the intersection in the previous theorem. The canonical topology on the generalized Besov space
is the same as the topology on (𝑆𝜈,𝜎(⋅) , 𝑑), that is, it is metrizable, complete, and stronger than the pointwise convergence.
If the intersection of the generalized Besov spaces can be written as a countable intersection of 𝑏𝜎(𝑖)𝑝,∞ spaces (𝑖 ∈ 𝐍) then,
from the closed graph theorem, the topology 𝜏 defined on 𝑆𝜈,𝜎(⋅) as the weakest topology such that each identity map
(𝑆𝜈,𝜎

(⋅)
, 𝜏) ↦ 𝑏𝜎

(𝑖)

𝑝,∞ is continuous is equivalent to (𝑆𝜈,𝜎(⋅) , 𝑑). The next proposition gives some conditions on the sequences
𝜃
(𝑝)

𝑗
to have a countable intersection.

Proposition 4. If the function 𝑝 > 0 ↦ log2𝑗 𝜃
(𝑝)

𝑗
is left continuous uniformly with respect to 𝑗 then if 𝑝𝑚 (𝑚 ∈ 𝐍) is a dense

sequence of ]0, +∞[ and if 𝜀𝑙 (𝑙 ∈ 𝐍) is a sequence of strictly positive numbers converging to 0, we have

⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ =
⋂
𝑚∈𝐍

⋂
𝑙∈𝐍

𝑏

(
𝜃
(𝑝𝑚)

𝑗
2−𝑗𝜀𝑙∕𝑝𝑚

)
𝑗

𝑝𝑚,∞
.

Proof. The inclusion of the first space in the second one is straightforward. Let us prove the other inclusion.
Let us take 𝑝 > 0 and 𝜀 > 0. It suffices to find 𝑝𝑚 and 𝜀𝑙 such that

𝑝𝑚 ≤ 𝑝 and 𝜃(𝑝𝑚)
𝑗

2−𝑗(𝜀𝑙+𝑛)∕𝑝𝑚 ≥ 𝜃(𝑝)
𝑗
2−𝑗(𝜀+𝑛)∕𝑝,

for 𝑗 large enough. This is equivalent to ask

𝑝𝑚 ≤ 𝑝 and 𝜀
𝑝
−
𝜀𝑙
𝑝𝑚

≥ 𝑛

𝑝𝑚
−
𝑛

𝑝
−
(
log2𝑗 𝜃

(𝑝𝑚)

𝑗
− log2𝑗 𝜃

(𝑝)

𝑗

)
,

for 𝑗 large enough. Since we can choose 𝑝𝑚 ≤ 𝑝 such that
| log2𝑗 𝜃(𝑝𝑚)𝑗

− log2𝑗 𝜃
(𝑝)

𝑗
| < 𝜀

3𝑝
and 𝑛

𝑝𝑚
−
𝑛

𝑝
<
𝜀

3𝑝
,

for any 𝑗 ∈ 𝐍, we can conclude by taking 𝜀𝑙 sufficiently small. □

To end this section, let us show that the preceding results are generalizations of what is known about the 𝑆𝜈 spaces.
For 𝜎(𝛼)

𝑗
= 2−𝛼𝑗, let us find an admissible sequence 𝜃(𝑝)

𝑗
such that for any 𝑝, 𝜀 > 0 and for any 𝛼 ≥ 𝛼min, there exists 𝐶 > 0

such that

𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 𝐶2𝑗𝑛∕𝑝2−𝑗𝜈(𝛼)∕𝑝(𝜎(𝛼)

𝑗

)−1
,

that is,

𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝 ≤ 𝐶2𝑗(𝑛−𝜈(𝛼)+𝛼𝑝)∕𝑝.

If we take 𝜃(𝑝)
𝑗
= 2𝑗𝜂(𝑝)∕𝑝 with

𝜂(𝑝) = inf
𝛼≥𝛼min{𝛼𝑝 − 𝜈(𝛼)} + 𝑛,

we get 𝜈̃(𝛼) = inf𝑝>0{𝛼𝑝 − 𝜂(𝑝)} + 𝑛 for any 𝛼 ≥ 𝛼min and the hypothesis of Corollary 1 and Proposition 4 are satisfied.
We thus obtain

𝑆𝜈 =
⋂
𝑝>0

⋂
𝜀>0

𝑏

(
𝜃
(𝑝)

𝑗
2−𝑗𝜀∕𝑝

)
𝑗

𝑝,∞ =
⋂
𝑝>0

⋂
𝜀>0

𝑏

𝜂(𝑝)−𝜀

𝑝

𝑝,∞ =
⋂
𝑚∈𝐍

⋂
𝑙∈𝐍

𝑏

𝜂(𝑝𝑚)−𝜀𝑙
𝑝𝑚

𝑝𝑚,∞

if and only if 𝜈 = 𝜈̃, that is, if 𝜈 is concave.
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