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Unified sensitivity analysis of unstable or low
voltages caused by load increases or contingencies

F. Capitanescu, T. Van Cutsem, Senior Member, IEEE

Abstract— This paper deals with the analysis of situations
where load increases and/or contingencies cause transmission
voltages to become unstable or unacceptably low. Simple sen-
sitivities are proposed to determine the relative efficiency of
candidate remedial actions, which are parameter changes likely to
strengthen the system. To this purpose, the sensitivities of the bus
voltage magnitude experiencing the largest drop are considered.
In the neighborhood of a loadability limit or a critical point, it is
shown that these sensitivities and those based on eigenvalue and
eigenvector computation are essentially the same. However, the
proposed analysis can also deal with low but stable situations.
The accuracy of the proposed sensitivities is demonstrated on the
models of two real systems, in which the parameters of concern
are bus power injections.

Index Terms— voltage stability, voltage security analysis, sen-
sitivity analysis, bifurcation, eigenanalysis, quasi steady-state
simulation

I. INTRODUCTION

A. Voltage security assessment

VOLTAGE security has become an important aspect of
power system planning, operational planning and real-

time operation [1], [2], [3]. Many Transmission System Op-
erators (TSOs) quote voltage problems as a limiting factor to
the secure operation of their systems.

Over the last 15 years, significant efforts have been directed
towards the development of efficient analysis and diagnosis
tools for voltage stability and security analysis [4], [5].

There are roughly speaking three main categories of Voltage
Security Assessment (VSA) methods [3]:

• Contingency Analysis: at a given operating point, the
system response to credible disturbances is assessed.
Within the context of long-term voltage stability (the
main focus of this paper), contingencies involve basically
the tripping of transmission and generation equipments.

• Loadability Margins: some parameters are smoothly
changed until the system reaches instability or unaccept-
able operating conditions. The most typical parameter
change is a load demand increase. Generation decrease
near the load centers can be also considered. In both
cases generation is increased in a remote area, which
leads to power flow increases on the transmission system.
Loadability margins can be computed in the current “N”
configuration. However, since many voltage instability
incidents were triggered by disturbances, it is of interest
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to compute post-contingency loadability margins. The
latter indicate how much the system can be stressed after
the contingency has taken place.

• Secure Operation Margins: some parameters are
smoothly changed in the pre-contingency configuration,
until the system response to the contingency becomes
unacceptable. Secure operation margins are very
meaningful for real-time operation where they refer
to parameters that operators either observe or control.
There is also a clear distinction between pre-contingency
actions/controls taken in reaction to the increased power
transfer, and post-contingency controls taken in response
to the disturbance.

The most widely used tool for contingency analysis is
probably the post-contingency load flow. The divergence of
the latter may reveal the loss of a long-term equilibrium
and, hence, a long-term voltage instability problem. As is
well-known, this static method does not take into account
the system dynamics, and may diverge for numerical rea-
sons. In addition, in case of divergence, one is left without
information on where to act on the system. For dynamic
studies, the benchmark method is obviously the multi-time-
scale simulation of short- and long-term dynamics. However,
such simulations remain heavy in terms of computing time,
data maintenance and output processing. Quasi steady-state
simulation is based on time-scale decomposition. This long-
term simulation method consists in neglecting the short-term
dynamics, replaced by their equilibrium equations. It offers
better accuracy and richer interpretations than static methods,
while preserving computational efficiency.

The simplest method for determining a loadability limit con-
sists in repeated load flows, performed for increasing values
of the system stress, until divergence is met. Avoiding the
uncertainty of load flow divergence, the continuation power
flow allows to trace the solution path passing through the
loadability limit. Another straightforward technique consists
in simulating the system dynamic response to a ramp increase
of demand. Optimization methods, on the other hand, aim at
directly obtaining the limit as the solution of an optimization
problem whose objective is to maximize the system stress.
When the base case is infeasible (i.e. in a post-contingency
voltage unstable situation), the objective can be changed into
minimal load curtailment.

B. Identification of remedial actions

Besides security margin computation, it is important to
determine which are the best actions to restore a given level of
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security. This question is probably more important in the open
market environment where the decision to reschedule genera-
tion or curtail load must be taken by the TSO in a transparent
and widely accepted manner. This paper proposes to compute
sensitivities that allow to rank the candidate remedial actions
according to their relative efficiency to strengthen the system.

Sensitivities computed from the Jacobian matrix of the
system load flow [6] or long-term equilibrium [8] equations
have been used for a long time. Within the context of VSA,
sensitivities have been proposed as voltage stability indicators
[7], [5], although in practice the latter are not likely to be as
meaningful as load power margins. They have been proposed
also to detect the crossing of a loadability limit [8]. To this
purpose, the sensitivities of the total reactive power generation
to the reactive loads (more precisely their sign) turn out to be
a very convenient system-wide index [9], [8], [3].

A central contribution to this problem has been provided by
[10], where a general formula is obtained for the sensitivity of
a loadability margin to parameters. This formula involves the
left eigenvector relative to the zero eigenvalue of the Jacobian
matrix computed at a saddle-node bifurcation. It has been
subsequently applied to various parameters in [11].

This formula was derived within the context of loadability
limit computation. An extension to the analysis of post-
contingency unstable scenarios was proposed in [8], with
sensitivity and eigenvector computations performed along the
system trajectory. This latter technique has been applied, in
corrective mode, to the determination of the minimal load
shedding [12] and, in preventive mode, to the improvement
of secure operation margins [13].

Another early approach to the diagnosis of voltage insta-
bility relies on the modal analysis of the reduced Jacobian
of reactive power with respect to voltages [14]. Information
is retrieved from eigenvectors or participation factors relative
to real dominant eigenvalues. This approach can suggest
instability modes at normal operating points. However, owing
to nonlinearities, the analysis is more reliable when performed
near loadability limits or at critical points [15], i.e. at points
where the Jacobian has an (almost) zero eigenvalue. The
corresponding eigenvector is included in the eigenvector of
the unreduced Jacobian, and the latter can be considered.

The two approaches above identify the best remedial actions
from the eigenvector of an (almost) zero eigenvalue.

C. Motivation of this work

The motivation of this work is twofold.
First, dominant eigenvalue computation methods (e.g. de-

rived from the simultaneous iteration algorithm [2], [3]) work
well in most cases; however, they may experience problems
when the initial estimate of the dominant eigenvalue is not
accurate enough. This is especially true when the loadability
limit corresponds to a “breaking point” where a generator
switches under reactive power limit [16], [3] in which case
the real dominant eigenvalue jumps from a negative to a large
positive value [3].

Second, in practice, voltages are often requested to stay
above some thresholds (corresponding for instance to under-

voltage tripping of equipments). In some cases, these mini-
mum voltage limits can be more constraining than voltage sta-
bility limits. If so, the system response to a load increase (resp.
a contingency) will be unacceptable well before the loadability
limit is reached (resp. the post-contingency evolution becomes
unstable). At the last acceptable operating point, voltages are
low but stable and the Jacobian eigenvalues are still on the
stable side; hence, the eigenvector computation does not apply.

A unified approach that encompasses the low voltage, the
zero eigenvalue and the breaking point situations is thus of
interest [18]. To this purpose, we propose to replace the
eigenvector computation by a simple sensitivity calculation
which provides very close results, but is non iterative and
can still be computed when the system reaches low but stable
voltages.

This sensitivity computation is intended to be coupled with
continuation power flows or time simulation (multi time-
scale or quasi steady-state). It can also be used at the last
converged solution of repeated load flows. In principle, it is
not intended to be used with optimization methods, insofar as
the dual variables (LaGrange multipliers) relative to the load
flow equality constraints provide the sought eigenvector.

The paper is organized as follows. Section II derives the
proposed sensitivities, compares them to the eigenvector-based
approach and discusses several implementation aspects as well
as extensions. Various simulation results are given in Section
III. Comments on the use of the sensitivities and conclusions
are offered in Sections IV and V, respectively.

D. Notation
Arrays are shown with bold letters. All vectors are column

vectors.

II. PROPOSED SENSITIVITY METHOD

A. Principle
It is well known that long-term voltage instability develops

as a progressive fall of transmission voltages. If snapshots are
taken along an unstable system trajectory and if bus voltage
magnitudes are sorted out, a most affected area can be easily
pointed out. Depending upon the instability “mode”, this area
may be more or less extended.

Within the context of remedial actions, it makes sense to
act on the controls that will prevent the lowest transmission
voltage to fall. We therefore propose:

• to consider the bus experiencing the largest voltage drop
(due to the load increase when computing loadability
limits, or the contingency when performing contingency
analysis). We will refer to the latter as the weakest bus.
Let us assume that this is the `-th one;

• to identify the remedial actions able to increase the
voltage magnitude V` of the weakest bus, by computing
the sensitivities

∂V`

∂p
=

[

∂V`

∂p1

∂V`

∂p2

. . .
∂V`

∂pn

]T

(1)

where p is the vector of candidate controls. In the sequel
we will mainly concentrate on bus power injections, but
extension to other controls can be envisaged.
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B. Sensitivity computation

We recall hereafter a general sensitivity formula [6], [17]
allowing to compute (1).

Let the system be characterized by the equilibrium equa-
tions:

f(x,p) = 0 (2)

where x is the n-dimensional vector of state variables.
For a small change in p, a linearization of (2) yields:

fxdx + fpdp = 0 (3)

where fx (respectively fp) is the Jacobian matrix of f with
respect to x (respectively p). Both matrices are sparse. As-
suming that fx is nonsingular, one easily obtains:

dx = −f−1

x
fpdp (4)

Let η(x) be a quantity of interest, function of the state
variables x. A small change dp induces a small change dx
which in turn causes the following change in η:

dη =
∑

i

∂η

∂xi

dxi = dxT ∂η

∂x
= −dpT fT

p

(

f−1

x

)T ∂η

∂x

Hence, the sensitivities of η to p are given by:

∂η

∂p
= −fT

p

(

fT
x

)−1 ∂η

∂x
(5)

In practice, these sensitivities are obtained by solving a linear
system with fT

x
as matrix of coefficients and ∂η/∂x as right-

hand side, and pre-multiplying the solution by fT
p

.
In the particular case of sensitivities (1):

η = V` and hence
∂η

∂x
= e` (6)

where e` is the unit vector with ei = 0, ∀i 6= ` and e` = 1.

C. Relationship with eigenvectors

We now show that, when computed near a Saddle-Node Bi-
furcation (SNB) point, the sensitivities (1) provide essentially
the same control ranking as the eigenvector-based formula
proposed in [10], [11] and used in many publications. We
also show that they can be used to compute the sensitivity of
margins to parameters.

Consider the computation of a loadability limit in which
the parameters p are smoothly changed into p + µd where d

is a given participation vector. The loadability margin µ? is
the maximum value of µ such that (2) still has a solution. In
the absence of inequality constraints (stemming mainly from
generator reactive power limits), p + µ?d corresponds to an
SNB point and we have:

f(x,p + µ?d) = 0 (7)
wT

c fx = 0 (8)

where (8) expresses that fx is singular, i.e. it has a zero
eigenvalue, λc = 0, whose left eigenvector is wc.

The loadability margin µ? is a measure of the system
robustness at the base case operating point corresponding to
µ = 0. When µ? is deemed too small, it is of interest to
determine which parameters p should be changed in order to

increase µ? efficiently. It is easily shown [10], [11], [3] that
the sensitivity of µ? to p is given by:

∂µ?

∂p
= −

fT
p
wc

wT
c fpd

= −
n

nT d
(9)

where n = fT
p
wc is, in the parameter space, the normal vector

to the bifurcation surface characterized by (7, 8) 1.
Let us assume that fx has all distinct eigenvalues, so that

its inverse can be decomposed into:

f−1

x
=

n
∑

i=1

viw
T
i

λi

(10)

where vi (respectively wi) is the right (respectively left)
eigenvector relative to λi. Introducing (6, 10) into (5) yields:

∂V`

∂p
=−

n
∑

i=1

fT
p
wiv

T
i e`

λi

= −
∑

i6=c

fT
p
wiv

T
i e`

λi

−
fT
p
wcv

T
c e`

λc

= −
∑

i6=c

fT
p
wiv

T
i e`

λi

− n
vT

c e`

λc

(11)

Now, as µ approaches µ?, λc goes to zero, and the magnitude
of the second term in (11) becomes larger and larger. In other
words:

for µ → µ? :
∂V`

∂p
→ −k n = k′ ∂µ?

∂p
(12)

where the scalars k and k′ are given respectively by:

k =
vT

c e`

λc

k′ = (nT d) k (13)

It results that ∂V`/∂p, n and ∂µ?/∂p become collinear.
Hence, under the above assumptions, these three vectors
basically provide the same information about the relative
efficiency of the various controls.

The equivalence can be made further explicit by rewriting
(9) as follows:

∂µ?

∂p
= −

−k n

−k nT d
' −

∂V`

∂p
[

∂V`

∂p

]T

d

when µ ' µ? (14)

which shows that, beyond ranking, the proposed sensitivities
can be substituted for the eigenvector to compute the sensitiv-
ity of margins to parameters.

D. On the choice of the weakest bus `

In theory, the above result holds true whatever the bus `. In
practice, however, the eigenvalue λc is close but not equal to
zero. Therefore, the contribution of the first term in (11) may
not be negligible. This is even more true when the system size
increases, i.e. when the sum extends over a larger number of
eigenvalues. In order the last term to be dominant, the value
of k = vT

c e` should be as large as possible. e` being a unit

1the sensitivity with respect to a parameter other than an injection can be
obtained by adding this parameter to p and assigning a zero value to the
corresponding component of d
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vector, it is easily seen that bus ` should correspond to the
largest entry of the right eigenvector vc.

At first glance, we are thus brought back to an eigenvector
computation. Luckily, the following property, already quoted
in [10], allows to avoid this computation.

Consider the variation dx caused by dµ. Introducing
dp = dµ d and (10) into (4) yields:

dx = −

n
∑

i=1

vi

wT
i fpd

λi

dµ =



−
∑

i6=c

vi

wT
i fpd

λi

− vc

nT d

λc



 dµ

(15)
As µ approaches µ?, the second term becomes dominant and
the variation becomes

dx ' k′′ dµ vc where k′′ =
nT d

λc

(16)

Hence, as µ approaches µ?, the state variable experiencing
the largest rate of change |∂x/∂µ| corresponds to the largest
component of vc.

Since voltage magnitudes are the state variables likely to
drop the most in voltage unstable scenarios, the weakest bus
can be taken as the bus with the largest rate of decrease of the
voltage magnitude.

To summarize, choosing bus ` as the one experiencing the
largest voltage drop does not only make sense by itself but also
allows the ∂V`/∂p sensitivities to better match the ∂µ?/∂p

sensitivities obtained from eigenvectors.
Note finally that the choice of the weakest bus is not critical

inasmuch as it corresponds to a large component of vc, which
reinforces the dominant character of the second term in (11).

E. Sensitivity normalization

When the aim is to display at which system buses to act,
it is convenient to consider normalized sensitivities, obtained
by dividing the ∂V`/∂p vector by its component of largest
magnitude. This is especially true when the objective is to
improve an insufficient loadability margin. Indeed, since the
sensitivities have to be computed near the SNB where fx has
an almost zero eigenvalue λc, the components of ∂V`/∂p

assume very large values. In this case, the information brought
by the normalized sensitivities is the relative merit and sign
of the various control actions.

When the objective is to estimate the amount of control
needed to restore feasibility, according to formula (14), either
absolute or normalized sensitivities can be used, since this is
just a matter of multiplying the ∂V`/∂p vector by a scaling
factor, and this vector appears at both the numerator and
denominator of (14).

Now, when the objective is to estimate the amount of control
needed to increase a low but stable voltage, formulae (5, 6)
are used. In this case, the absolute values of the sensitivities
are considered.

F. Extension to contingency analysis

Within the context of contingency analysis it is of interest
to identify the best remedial actions to stabilize the post-
contingency evolution of the system. To this purpose, an

extension of the above computations was proposed in [8],
based on a system portrait in the space of load powers. The
method consists in identifying the so-called critical point
of the system trajectory. This point is characterized by a
singular Jacobian fx but is not a long-term equilibrium, i.e.
it satisfies (8) but not (7). At the critical point, the normal
vector n to the bifurcation surface is computed and the latter is
linearly approximated by its tangent hyper plane. This allows
to estimate how much each injection should be varied in order
to restore a long-term equilibrium to the system. It is easily
shown that the injection change is inversely proportional to
the component of n, i.e. the larger the component, the smaller
the injection change.

The method has been validated in [12] within the context
of minimal load shedding and furthermore used for pre-
contingency security enhancement in [13], [18].

According to (12), the sensitivities ∂V`/∂p computed at the
critical point can be substituted for the normal vector n.

G. Point of linearization
When dealing with voltage unstable situations, the above

derivations have shown the necessity to compute the sensi-
tivities ∂V`/∂p at the point where fx has an (almost) zero
eigenvalue λc.

In continuation power flows, this point can be identified as
corresponding to the crossing of the loadability limit, which is
revealed by the decrease of load power along the solution path.
In practice, the Jacobian matrices and the ∂V`/∂p sensitivities
can thus be computed at the first point of the path where a
decrease in load power is observed. In repeated load flows,
the computation can be performed at the last converged point,
provided that the latter is close enough to the loadability limit.

When using time simulation (for computing a loadability
limit or simulating a contingency), the sign of sensitivities can
be used to identify the point of the system trajectory where
fx has an eigenvalue λc closest to zero [3], [8]. Indeed, it is
easily seen from (11) that when an eigenvalue λc changes
from a negative to a positive value, the sensitivities have
larger and larger magnitudes, suddenly change sign, and then
have decreasing magnitudes. The Jacobian matrices and the
sensitivities can be computed at the first point where this
change in sign “through infinity” occurs.

In fact, this property applies to the sensitivity of any quantity
η provided that vT

c ∂η/∂x is large enough so that the second
term in (11) is dominant. For already explained reasons, this
is the case for V`, the voltage magnitude experiencing the
largest rate of decrease. According to our experience, this is
always the case when η is chosen as the total reactive power
production Qg (of generators and compensators) and p as the
reactive powers of all loads. The ∂Qg/∂p sensitivities are thus
also a good choice.

When crossing a breaking point, the same change in sign
takes place, although the sensitivities do not go through
infinity [3]. Hence, their magnitudes are significantly smaller
in the neighborhood of a breaking point than around an SNB
point. Nevertheless, as for an SNB, the linearization can be
performed at the first point after sensitivities have changed
sign, as proposed and validated in [12], [13].
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III. NUMERICAL RESULTS

Quasi Steady-State (QSS) simulation has been used in the
simulations reported hereafter. The Jacobian matrix fx relates
to the long-term equilibrium equations as detailed in [3], [8].

A. Test systems

The results presented in this section relate to two real power
systems, whose model is first outlined.

The first system is the one operated by RTE, the French
Transmission System Operator (formerly EDF). Although its
network is rather dense and meshed, much attention is paid
to voltage security in the Western and Southeast regions
where load centers are farther away from generation. The QSS
model includes 1715 buses, of which 1203 are transmission
buses at the EHV (400 and 225-kV) level. Voltage dependent
loads are fed through two transformers in cascade. The upper
ones correspond to the real EHV-HV transformers feeding
the HV (90- and 63-kV) sub-transmission system, while the
lower ones are equivalent accounting for HV-MV distribution
transformers. The QSS simulation focuses on the long-term
dynamics of 1024 Load Tap Changers, 176 overexcitation
limiters and 15 secondary voltage controllers represented in
the Western and Southeast regions.

The second system is operated by Hydro-Québec (HQ). It is
characterized by great distances (more than 1000 km) between
the large hydro generation areas of James Bay (JB), Churchill
Falls (CF) and Manic-Outardes (MO), and the main load center
around Montréal and Québec City (MQ). A large part of
the 735-kV transmission system is located in two corridors.
The system is limited by angle stability in the North and
voltage stability in the South, near the MQ area. Besides static
var compensators and synchronous condensers, the automatic
shunt reactor switching devices play an important role in
voltage control. They operate with delays upon measurement
of low or high voltages. The post-contingency evolution of the
system is much influenced by these controls.

In both systems, loads are represented by an exponential
model

P = Po(V/Vo)
α Q = Qo(V/Vo)

β (17)

with various values of α and β according to the nature of
loads.

B. Validation of sensitivities in loadability limit computation

We first present results dealing with the determination of
loadability limits on the RTE system.

To this purpose, the Po and Qo coefficients in (17) are
smoothly increased linearly with time. For the whole system,
a ramp of 10000 MW / 4000 Mvar over 1000 s is considered,
compensated by French generators. A ∂Qg/∂Q` sensitivity
computed along this trajectory is shown in Fig. 1. The sign
change described in Section II.G is easily seen at t = 930 s.

The bus experiencing the largest drop is located in the
Southeast region and its voltage is taken as V` (Fig. 1 refers to
this bus in fact). The sparse Jacobian matrix fx and therefrom
the vectors of sensitivities ∂µ?/∂p and ∂V`/∂p are computed
at the first point after the sign changes.
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Fig. 1. Evolution of a ∂Qg/∂Q` sensitivity during load increase

Figure 2 shows the largest components relative to active
and reactive power injections, respectively. Each sub-vector
has been normalized so that its largest component is equal
to 1 (see Section II.E). As can be seen, there is a very good
agreement between the eigenvector-based sensitivities (solid
lines) and the proposed simpler sensitivities (dashed lines).
Both lead to very close rankings of bus injections. This result
is noteworthy considering that fx is a 4470×4470 matrix and,
hence, 4469 eigenvalues contribute to the first term of (11).
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Fig. 2. RTE system : ranking of active and reactive bus power injections
near SNB point

C. Validation of sensitivities in contingency analysis : RTE
system

We show next the validity of the proposed sensitivities to
diagnose situations where the system is unstable (or has very
little security margin) following contingencies. In this case, the
normal vector n and the ∂V`/∂p sensitivities are computed at
the critical point of the post-contingency system evolution (see
Section II.F).

We consider a contingency whose secure operation margin
is 4800 MW (of national load increase). In the shown example,
the load is first increased by 4900 MW, then the contingency
is applied, which causes long-term voltage instability. Sensi-
tivities of the type shown in Fig. 1 indicate that the critical
point is crossed 130 s after the contingency occurrence.

Figure 3 shows the normalized components of n and
∂V`/∂p, relative to the active powers of 19 influencing gen-
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erators for this contingency. This information is of interest
in congestion management when it is relevant to optimally
modify the generation scheme. Here too, the two rankings are
in very good agreement, with only a small discrepancy for
generators 2 to 6.
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Fig. 3. RTE system : ranking of active power generations near critical point

D. Validation of sensitivities in contingency analysis : HQ
system

1) Contingency C1: We first consider a 735-kV line trip-
ping contingency in the JB corridor. Figure 4 shows the time
evolution of the voltage which drops the most under the effect
of the contingency. The system is stabilized by the tripping
of several shunt inductors. However, the system is insecure
since a pre-contingency load increase of only 160 MW would
lead to post-contingency instability (which is below the usual
thresholds used by HQ). The usual change in sign of ∂Qg/∂Q`

is observed 20 s after the contingency occurrence while the
reverse change is observed 143 s later, indicating that the
system has come back above the critical point owing to the
shunt reactor trippings. This is confirmed by the values of the
dominant eigenvalue λc shown in Fig. 4.
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Fig. 4. Voltage at a 735-kV bus after contingency C1

The n and ∂V`/∂p vectors are computed at the first met
critical point. The corresponding ranking of 84 active power
generations is shown in Fig. 5. The agreement is perfect
with the two curves hardly discernible. Positive sensitivities
indicate generators that should have their production increased;

expectedly, they are located either close to the MQ load area
or in the CF-MO corridor not affected by the contingency.
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Fig. 5. HQ system: ranking of active power generations for contingency C1

2) Contingency C2: We next consider a 735-kV line trip-
ping contingency in the CF-MO corridor, under stressed op-
erating conditions, leading to the unstable voltage evolution
shown in Fig. 6. This case is severe in the sense that the
∂Qg/∂Q` sensitivities change sign right after the contingency.
As indicated in Fig. 6, the dominant eigenvalue does not pass
smoothly through zero but rather jumps to a relatively large
value (0.551 to be compared with 0.006 in Fig. 4). In the
absence of a better linearization point, the sensitivity analysis
is performed at this point.

The corresponding ranking is shown in Fig. 7. For some
generators, the normalized components of n and ∂V`/∂p

are somewhat different. This is attributable to the fact the
second term in (11) is less dominant in this example than in
the previous one. However, no generator experiences a major
change of its ranking.

Note finally that, in view of the assumptions underlying
the use of n, the ∂V`/∂p sensitivities appear as an equally
acceptable, while more “transparent” ranking criterion.
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Fig. 6. Voltage at a 735-kV bus after contingency C2

E. Influence of weakest bus `

It has been explained in Section II.D why it is appropriate
to chose V` as the voltage magnitude with the largest rate of
decrease, at least when computing a loadability limit.
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Fig. 7. HQ system: ranking of active power generations for contingency C2

Figure 8 compares the generator rankings provided by
∂V`/∂p for four different choices of bus `. It relates to the
contingency analysis example of Section III.D.1, relative to
the RTE system.
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Fig. 8. ∂V`/∂p sensitivities for different choices of the weakest bus `

Bus 0 undergoes the largest voltage drop between the pre-
contingency and the critical points and is thus considered as
the best choice. This bus was used for the comparison of Fig. 3,
and it leads indeed to almost the same ranking as n. Bus 1 is
located near bus 0, in the area affected by the contingency. As
can be seen, it yields almost the same ranking. Buses 2 and
3 are located at some distance, in different directions, from
bus 0. The ranking of generators 16, 17 and 18 is affected
when choosing bus 3, while a totally erroneous ranking is
obtained when using bus 2.

These results show that the choice of bus ` is not critical pro-
vided that it is located in that part of the system experiencing
the largest voltage drops under the effect of the contingency
or the load increase.

F. Analysis of low but stable voltages

The example below illustrates the ability of the proposed
sensitivities to diagnose unstable cases as well as low but
stable voltage situations.

We consider the effect of a (generator tripping) contingency
on the RTE system at four pre-contingency load levels. Fig-
ure 9 shows the time evolution of the transmission voltage

V` most affected by the contingency. The curves relate to
different pre-contingency load increases above the base case,
as indicated in the figure.
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Fig. 9. Post-contingency voltage evolution at four pre-contingency load levels

Thus, if the load increase is larger than 8300 MW, the sys-
tem response is unstable. To identify at which buses remedial
actions should be taken, the ∂V`/∂p sensitivities are computed
at the critical point of this unstable trajectory. This leads to
the ranking of the 20 most effective reactive power injections
shown with solid line in Fig. 10.
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Fig. 10. Ranking of reactive power injections to stabilize or increase post-
contingency voltages

If the load is increased by 7960 MW, the system is stable
but the voltage settles down at 0.87 pu. If this value is deemed
too low, the ∂V`/∂p sensitivities point out at which buses to
act in order to raise this (stable but) low voltage. Note that
in this case, no critical point is crossed along the trajectory
and, hence, the sensitivities are computed at the final operating
point. Their values are shown in Fig. 10 for the 20 reactive
power injections best ranked in the unstable case.

Similarly, the figure shows the ranking determined at the
final operating point when the load is increased by 7600
(respectively 6790) MW, which leads to a post-contingency
voltage above 0.90 (respectively 0.95) pu.

The curves clearly show that the best buses to act on change
when the requirement changes from stabilizing the system to
obtaining higher and higher post-contingency voltages.

One can also observe that the smaller the pre-contingency
load level, the larger the differences from one reactive power
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injection to another.

IV. ON THE USE OF THE SENSITIVITIES

The standard practice is to operate power systems in a
secure way with respect to credible (typically N-1 and some
pre-defined N-2) contingencies and to deal with more severe
(N-2 or higher) contingencies through emergency control
(system protection schemes). Thus, N-1 contingencies are
usually involved in preventive pre-contingency control while
N-2 or higher contingencies are counteracted by emergency
post-contingency controls.

As regards pre-contingency preventive control, the sensi-
tivities can be used to reschedule generation (and in some
cases, shed load) in order to make the system secure with
respect to N-1 contingencies. One possibility is to use the
sensitivities to rank the controls and then iteratively determine
the total change in controls using nonlinear simulation [12].
Alternatively, linear inequality constraints can be derived from
the sensitivities and embedded in an optimization formulation
[13], [18].

As regards emergency post-contingency control, the sensi-
tivities can be used to identify the most effective load shedding
locations in an unacceptable post-contingency situation, as
detailed in [12]. This information can be used in the design
of an undervoltage load shedding scheme.

The above analyses are performed beforehand, i.e. before
the contingency occurs, by simulating the impact of the con-
tingency. As regards the possibility of computing the proposed
sensitivities after the occurrence of a disturbance, the main
obstacle lies in the fact that this computation involves a
full network model. Today’s SCADA systems cannot provide
the dynamic evolution of the whole system state and wide
area measurements cannot ensure full system observability.
Now, as far as long-term voltage stability is of concern, an
alternative would consist in identifying the disturbance and
performing a faster than real-time QSS simulation to obtain the
expected system evolution, starting from the pre-contingency
state provided by the EMS state estimator.

V. CONCLUSION

This paper has revisited the use of sensitivities to identify
which parameter changes are most effective to deal with
unstable or low voltages. The emphasis is put on bus power
injections, although other controls can be considered as well.

The proposed sensitivities focus on the weakest bus voltage,
identified in practice as the one experiencing the largest drop
due to the load increase or the contingency.

In voltage unstable cases, it has been shown that the
proposed simple sensitivities, computed in the neighborhood
of a saddle-node bifurcation or a critical point, yield essentially
the same bus power ranking as the eigenvector computation
proposed in previous works on the subject.

With respect to the latter, the sensitivity computation offers
three advantages:

• efficiency: both approaches require a single computation
and factorization of the Jacobian fx. However, the pro-
posed sensitivities require to solve a single sparse linear

system, while the eigenvector computation requires to
solve a sequence of such systems;

• reliability: eigenvector computation may experience con-
vergence problems when the dominant eigenvalue does
not go smoothly through zero but rather “jumps” from
a negative to a (non negligible) positive value (e.g.
around breaking points). On the other hand, the proposed
sensitivities can always be computed which make them
very reliable for practical applications;

• extension to low but stable voltage problems where eigen-
vector analysis does not apply in principle.

The sensitivities can be used in planning, operational plan-
ning (day ahead) and real time, complementing the existing
analysis methods at a very little computational cost.
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Cañizares, Editor), 2002, ISBN 0780378695

[6] J. Peshon, D.S. Piercy, W.F. Tinney, O.J. Tveit, “Sensitivity in power
systems”, IEEE Trans. on Power Apparatus and Systems, vol. PAS-87,
1968

[7] “Indices predicting voltage collapse including dynamic phenomena”,
Report of CIGRE Working Group 38.02.11, (J. Van Hecke, convenor),
1994

[8] T. Van Cutsem, Y. Jacquemart, J.-N. Marquet, P. Pruvot, “A compre-
hensive analysis of mid-term voltage stability”, IEEE Trans. on Power
Systems, Vol. 10, 1995, pp. 1173-1182

[9] M. Begovic, A. Phadke, “Control of voltage stability using sensitivity
analysis”, IEEE Trans. on Power Systems, Vol. 7, 1992, pp. 114-123

[10] I. Dobson, “Observations on the geometry of saddle-node bifurcation
and voltage collapse in electric power systems”, IEEE Trans. on Circuits
and Systems-I, Vol. 39, No 3, 1992, pp. 240-243

[11] S. Greene, I. Dobson, F. Alvarado, “Sensitivity of the loading margin
to voltage collapse with respect to arbitrary parameters”, IEEE Trans. on
Power Systems, Vol. 12, 1997, pp. 262-272

[12] C. Moors, T. Van Cutsem, “Determination of optimal load shedding
against voltage instability”, Proc. 13th Power System Computation Con-
ference, Trondheim (Norway), July 1999, pp. 993-1000

[13] F. Capitanescu, T. Van Cutsem, “Preventive control of voltage security:
a multi-contingency sensitivity-based approach”, IEEE Trans. on Power
Systems, Vol. 17, 2002, pp. 358-364

[14] B. Gao, G.K. Morison, P. Kundur, “Voltage stability evaluation using
modal analysis”, IEEE Trans. on Power Systems, Vol. 7, 1992, pp. 1529-
1542

[15] G.K. Morison, B. Gao, P. Kundur, “Voltage stability analysis using static
and dynamic approaches”, IEEE Trans. on Power Systems, vol. 8, 1993,
pp. 1159-1171

[16] I. Dobson and L. Lu, “Immediate change in stability and voltage collapse
when generator reactive power limits are encountered”, IEEE Trans. on
Circuits and Systems I: Fundamental Theory and Applications, Vol. 39,
No 9, 1992, pp. 762-766

[17] N. Flatabo, R. Ognedal, T. Carlsen, “Voltage stability condition in a
power system calculated by sensitivity methods”, IEEE Trans. on Power
Systems, Vol. 5, No 4, 1990, pp. 1286-1293



9

[18] F. Capitanescu, “Preventive assessment and enhancement of power
system voltage stability: an integrated approach of voltage and thermal
security”, Ph.D. thesis, University of Liege, December 2003

Florin Capitanescu graduated in Electrical Power Engineering from
the University “Politehnica” of Bucharest (Romania) in 1997. He re-
ceived the D.E.A. and the Ph.D. degrees from the University of Liège
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