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in the UK Biobank and eMERGE datasets
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Summary
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive associa-

tion signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however,

new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive

interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore,

the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic

architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic se-

lection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations be-

tween 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta’s D statistics) in long-range LD (>0.25 cM).

Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large geno-

type-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1)

members of highly conserved gene families with complex roles inmultiple pathways, (2) essential genes, and/or (3) genes that were asso-

ciated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved

nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate

diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Introduction

Genome-wide scans are a foundation for understanding

complex traits because they elucidate how genomic varia-

tion affects phenotypic variation. However, the nature of

biological systems suggests that relationships between ge-

notypes and phenotypes are often more complex than

can be detected with the methods usually employed.1

Extant phenotypic variation is a consequence of evolu-

tionary processes and environmental effects, resulting in

allele-frequency changes within a population.2 The ex-

plained phenotypic variation is due to a combination of

additive and non-additive effects that together define

broad-sense heritability.3 Non-additive effects, including

higher-order interactions or epistasis, can be interpreted

as dependencies or complex relationships between genes

or other sources of genetic variation that influence the pre-

sentation of a phenotype. Studies in model organisms

demonstrate that epistatic interactions are a key factor

driving phenotypic complexity, but the role of epistasis

in phenotypic determination in humans remains
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elusive.4,5 When studies that statistically test for interac-

tion of genetic variants do identify higher-order interac-

tions, they are often hard to replicate for reasons such as

but not limited to model instability, insufficient model

complexity as a result of missing variables, limited statisti-

cal power in replication datasets, changes in allele fre-

quency, variation in contextual factors, and lack of inter-

pretability of identifiable models.6 Hence, the role of

non-additive effects in the context of disease mechanisms

remains a challenge to elucidate.

Using evolutionary processes to model genetics of com-

plex traits can enrich our ability to detect epistasis.4 Evolu-

tionary processes can produce genomic patterns of varia-

tion such as linkage disequilibrium (LD) or non-random

associations of alleles.7 Because the patterns observed are

due to past events, leveraging LD patterns to recapitulate

evolutionary processes can enhance understanding of bio-

logical mechanisms. For example, strong LD (R2 > 0.8)

observed in conserved genomic regions across ancestry

groups might indicate a functional relationship among

variants of fundamental cellular phenomena.8 Loci can
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remain in strong LD for many reasons, including physical

proximity and functionality as a ‘‘supergene.’’ The mode of

inheritance known as a supergene occurs as a result of

genomic rearrangement that strives to preserve or lock

beneficial alleles across more than one gene.9 This phe-

nomenon of multiple tightly linked loci regulating a sys-

tem of discrete phenotypes has been observed across the

animal kingdom in functionally related genes that clearly

contribute to a shared phenotype.10,11 Conversely, the

phenomenon whereby a single gene influences multiple

phenotypic traits is referred to as pleiotropy. Recent work

has found pleiotropy to be highly prevalent,12 if not ubiq-

uitous, in human genotype-phenotype mapping. Pleiot-

ropy and epistasis are inherent properties of biomolecular

networks and are critical to understanding the genetics un-

derlying common human disease.13

Ohta’sD statistics14were developed toparse LD inorder to

determine the contributionof epistasis frompopulation sub-

division. By partitioning the LD between a pair of loci into

components within and between populations, one can esti-

mate the components attributable to differences in allele fre-

quencies among subpopulations and to epistatic selection.

Other theoretical evaluations of LD for structured popula-

tions do not take into account population subdivision, and

they have been designed to address specific evolutionary

circumstances rather than a general model as in Ohta’s

statistics.15 SNPs in strong LD are typically pruned out of

genomic analyses to reduce the burden of testing

‘‘redundant’’ variants.16 Genome-wide association studies

(GWASs) leverageLDby testing associationsbetweenpheno-

types and tag SNPs,which functionas identifiableproxies for

causal SNPs. Experiments inmodel systemshave shown that

variants under high selection in evolutionarily conserved re-

gions undergo epistatic selection, possibly as a means of

genomic regulation.17 Although the levels of evolutionary

conservation in many non-coding regions are comparable

to those of protein-coding regions, non-coding regions

have a higher abundance of small-effect-size variants

that can have a significant cumulative impact on pheno-

types.18 Other studies hypothesize a role for epistatic

selection in these highly conserved regions.The conse-

quences of epistatic selection in these regions might affect

structure, function, and the evolution of proteins through

physical interactions, as well as changes in long-range regu-

latory activity by way of three-dimensional chromatin

conformation.19–21

In humans, the biological mechanisms related to regions

under epistatic selection remain unknown, and thus there

has been a long-standing debate about the role of epistasis

in disease systems. If these disease systems are assumed to

be in flux, then evolution can be thought of as continu-

ously ‘‘tinkering’’ or adding variation to solve problems.22

Phillips et al. describe this as something of a house of cards,

in which removing one central component can bring the

entire house down, given that one locus may be interact-

ing with many other genes.23 This intrinsic structural de-

pendency predicated on an iterative accumulation of small
576 The American Journal of Human Genetics 110, 575–591, April 6,
changes can be considered the byproduct of 3.5 billion

years of descent with modification, as opposed to an intri-

cate piecemeal system.24 Some alleles have stronger effects

on the overall genetic system, and these can be captured as

‘‘main effects’’ in statistical models. In contrast, other al-

leles contribute more subtle effects throughmodes of regu-

lation such as transcription, splicing, and epistasis.23 Uni-

variate and multivariate approaches with interaction

effects can be used in tandem to yield greater insights

into genetic disease mechanisms than can be obtained

with either approach alone.

There has been little study of the effects of epistatic inter-

actions between regions of long-range LD, especially in

cases where the LD spans chromosomes. Previous work

has found an association between tightly linked SNPs in

interchromosomal interactions and aging-related pheno-

types such as premature death.25 Genomic interactions

in three-dimensional space are influenced by chromosome

topology and transcriptional programs.26,27 Recent work

in mouse and human cell models has shown that certain

three-dimensional interchromosomal interactions are a

prerequisite for proper physiological gene-expression pro-

grams and therefore exhibit conservation.28

Thus, the main objective of this study was to uncover as-

sociations of disease phenotypes with long-range epistatic

interactions between evolutionarily conserved regions in

strong LD. On the basis of the pervasiveness of epistasis

and what is known about epistatic selection and interchro-

mosomal interactions, we hypothesize that uncovering

long-range, high-LD interactions due to epistatic selection

can help uncover genetic mechanisms underlying com-

mon diseases.29
Methods

Selection of epistatic SNP pairs in the UKBB dataset
The UKBB contains genotype data for a total of 488,377 partici-

pants and electronic health records (EHRs) for nearly 400,000

participants. At the time of recruitment, participants provide in-

formation about their sociodemographic, lifestyle, and health-

related factors. Physical measures (such as blood pressure and

anthropometry) are also collected from all participants upon

recruitment. UKBB genomic data are based on genome build

GRCh37 (released in 2009). UKBB genotype data are imputed to

the Haplo-type Reference Consortium (HRC) panel.30

To identify SNP pairs that were in LD as a result of epistatic selec-

tion, we calculated Ohta’s D statistics for genome-wide SNP pairs

in the European-ancestry population of the 1000 Genomes phase

III dataset (n ¼ 503), across subpopulations EAS (East Asian), SAS

(South Asian), AFR (African), EUR (European), and American

(AMR). As a first step, we calculated pairwise LD across all SNP pairs

and selected the pairs with R2> 0.3 by using PLINK v. 2.0. Next, we

determined which SNP pairs were in long-range LD by selecting

pairs that are in LD and are located at least 250,000 base pairs

(approximately 0.25 cM) apart for intrachromosomal models.

We considered all independent SNPs for each chromosome

for interchromosomal models. We then filtered the results to

include only the SNP pairs with strong LD by setting a threshold
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of R2 R 0.7 and minor-allele frequency >0.1 for both variants.

This yielded 186,119 unique SNPs under epistatic selection; these

made up 7,586,336 pairwise SNP-SNPmodels when we considered

long-range interactions and LD. These models included 817,892

interchromosomal models. We then tested the pairwise models

for epistatic selection by calculating Ohta’s D statistics by using

the ohtadstats R package,31 which provided D and D0 statistics

(D2
IT, D

2
IS, D

2
ST, D

02
IS, and D02

ST) for all models along with the ra-

tios of d2is_mat to d2st_mat (ratio1) and dp2st_mat to dp2is_mat

(ratio2). Finally, we selected the models for which both ratio1 and

ratio2 were greater than 1, suggesting epistatic selection. This

yielded 5,625,845 SNP-SNP models comprising 136,019 unique

SNPs. We then tested the association of these models with pheno-

types in the UKBB dataset.

Testing of long-range epistatic SNP-SNP models for

phenotypic associations
We tested the 5,625,845 SNP-SNP models for associations with 23

complex-disease outcomes with minimum cases of n ¼ 100 in the

UKBB European ancestry population of unrelated individuals

(n ¼ 384,331). Phenotype definitions for each disease were based

on the presence or absence of ICD9/ICD10 codes in EHRs and in-

clusion criteria outlined by PheCode. We conducted epistasis asso-

ciation tests by using the FastEpistasis module in PLINK v1.9 to

identify epistatic SNP-SNP models that were significantly associ-

ated with each phenotype. FastEpistasis is a software tool that

computes tests of epistasis for a large number of SNP pairs as an

efficient parallel extension to the PLINK epistasis module.

Epistatic effects are tested by normal linear regression of a binary

response on the marginal effects of each SNP and an interaction

effect of the SNP pair, where SNPs are coded as additive effects, tak-

ing values 0, 1, or 2. The test for epistasis reduces to testing

whether the interaction term is significantly different from zero.

Mapping of SNP-SNP models to cytoband regions
For biological interpretability, we mapped all 5,625,845 SNP-SNP

models to cytoband regions to produce cytoband-cytoband

(cyto-cyto) models. Cytoband annotation was done with the

UCSC Genome Browser build 37 SNP-to-cytoband map files. We

also annotated the SNPs to genes by using the software tool Bio-

filter.32 In addition to mapping the SNPs to the closest upstream

or downstream gene, we used the UCSC browser to manually

determine which nearby genes were likely to engage in long-range

interactions. We then tested the significance of the cyto-cyto

models with Bonferroni correction to a threshold of 1.1 3 10�6

on the basis of the total number of unique cyto-cyto mappings

(n ¼ 44,860 unique cyto-cyto pairs). The 5,625,845 SNP-SNP

models were binned into the unique cyto-cyto pairs, and the

model in each bin with the smallest p value meeting the Bonfer-

roni threshold was selected as a significant cyto-cyto pair. A total

of 15 cyto-cyto pairs based on the UKBB data were determined

to be significant across 8 of 23 phenotypes.

Testing for replication in the eMERGE dataset
The eMERGE is a consortium of 12 United States academicmedical

centers that have contributed EHR and genotype data of approxi-

mately 100,000 individuals into a central repository. The eMERGE

phase III genomic data uses genome build GRCh37 (released in

2009). All eMERGE samples have been imputed to the HRC panel

via the Michigan imputation server. We extracted phenotype data

in the form of diagnosis codes from the EHRs; individuals were
The Ame
defined as cases or controls on the basis of the occurrence or

absence of ICD9/10 code(s) grouped as per PheCode criteria. We

extracted disease status from the eMERGE data for the eight phe-

notypes that had significant associations with epistatic SNP pairs

in the UKBB data. We tested all SNP-SNP models that mapped to

the 15 statistically significant cyto-cyto models for associations

with 23 disease phenotypes in the eMERGE dataset of unrelated

individuals of European ancestry. We tested all SNP-SNP models

that mapped to each significant cyto-cyto model because the

causal SNPs are not known.We used a Bonferroni correction based

on the 15 tested cyto-cyto models (0.05/15). One of the 15 cyto-

cyto models reached statistical significance after adjustment for

multiple hypothesis testing with a p value threshold of 3.53 10�3.
Network analysis
To probe molecular mechanisms that might explain the epistatic

interactions between the top gene pairs from our analysis, we

created biological-process gene networks with HumanBase.33 We

selected the interacting genes, the biological process terms that

best described each gene in the pair one at a time, and all five

data types to generate molecular networks of interaction. We im-

plemented a 0.1 threshold for minimum interaction confidence

and a maximum-number-of-genes threshold of 15 per network.

For each gene in the network, a score was generated to indicate

the average weight of connections to the epistatic gene pair; we

refer to these genes to as ‘‘query genes.’’ Focusing on the first-

and second-degree neighbors interacting with the query genes,

we further evaluated the networks in which the query genes had

the highest connection scores. Genes interacting with both query

genes are green nodes, and genes interacting with one of the two

query genes are yellow nodes. Networks were generated for each

top model gene pair. Networks for molecular interactions in

relevant biological processes between FLRT2 3 PDE4D and

FLRT23 RBFOX1 are in Figures S2A–S2D. Relevant biological pro-

cesses for TRPS1 or LRRC4C were not available in HumanBase, so

no networks were generated for this interaction.
Investigation of pleiotropic results
The replicating cyto-cyto models (Table 2) from UKBB and

eMERGE were evaluated for pleiotropy. For each of the models,

we looked in the rest of the UKBB and eMERGE results to see

whether any other phenotypes were also significantly associated

in at least one of these datasets. This gave us a set of phenotypes

that were different from the ones shown in Table 2 but that

were also significantly linked to the same models in either UKBB

or eMERGE. Of these phenotypes, we did a deeper literature search

to find a clinical link between themodel and phenotype in Table 2

and the newly identified phenotype. On the basis of this, we re-

ported onemodel and one locus of interest with literature support:

19q13.33 and 19p13.2, linked to MS and AD, and 14q31.3, linked

to T2D and psoriasis.
Investigation of epistatic interactions between essential

genes
To determine whether genes within our near-significant and sig-

nificant top models were considered ‘‘essential’’ genes, we used

the Full Spectrum of Intolerance to Loss-of-Function (FUSIL) data-

base34 and essential-gene annotations.35 We identified the func-

tions and associated diseases for each essential gene by conducting

a literature search.
rican Journal of Human Genetics 110, 575–591, April 6, 2023 577



Figure 1. Study workflow
The first part of this study extracted epistatic SNP-SNP interaction models from the 1000 Genomes dataset on the basis of Ohta’s D sta-
tistics. The second part of the study tested associations of each pair of SNPs across 23 complex phenotypes in the UKBB dataset via
FastEpistasis. Significant models were tested for replication in the eMERGE dataset. Replicating models were characterized further in
the third part of the study.
Main effects analysis of top models
We tested each SNP in pairs showing significance across the

eMERGE and UKBB datasets in univariate tests for association

with their corresponding phenotypes. For this, we first identified

proxy SNPs that were in LD (R2 > 0.5) with, and located within

1 MB in either direction of, each significant SNP, by using the

1000 Genomes LD panel as a reference. Including sex, age, and

the first five principal components as covariates, we then used

PLINK v. 1.90Beta4.5 to perform a logistic regression for each

SNP. Principle components for both datasets were generated

from the individuals in each dataset. A Bonferroni threshold on

the number of SNPs (the sum of the significant SNPs and the proxy

SNPs) tested per phenotype was calculated based. We identified

potential nearby association signals by using LocusZoom plots.36
Results

Study overview

A workflow schematic of the study is provided in Figure 1.

From a cohort of 384,331 individuals in the UK BioBank

(UKBB), 23 different case-control cohorts were created for

a range of complex diseases on the basis of the PheCode

system.37,38 We selected phenotypes from diverse disease

domains, including cardiovascular, neurological, immune,

rheumatic, pulmonary, ocular, gastrointestinal, dermato-

logic, and neoplastic diseases to investigate the role of epis-

tasis in independent pathologies affecting different tissues.
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We considered minimum case count when selecting phe-

notypes. The mean age of the individuals in the UKBB da-

taset was 57.07 years (standard deviation ¼ 8.07; 55.3% fe-

male). Except for breast cancer, all the phenotypes selected

for our analysis included both males and females. We

tested for associations between the 23 disease phenotypes

and 5,625,845 epistatic SNP-SNP models. Models were

determined by pairwise tests using Ohta’s D statistics

(described in detail in methods). Although other methods

do leverage biological information to identify epistatic in-

teractions, they lack the evolutionary insights that Ohta’s

statistics provide on the basis of linkage-disequilibrium ar-

chitecture. Associations that were significant after Bonfer-

roni correction were tested for replication in the eMERGE

consortium dataset (n ¼ 50,646; 50.5% female; mean age

68.15 years, standard deviation ¼ 18.96 years).39 All indi-

viduals in the eMERGE and UKBB cohorts were of Euro-

pean ancestry. Information about the case-control count

for each phenotype can be found in Table S1. Further de-

tails of the analysis are provided in the methods section.

Association testing of epistatic interactions with

complex phenotypes

A total of 5,625,845 epistatic, long-range, high-LDSNP-SNP

models was tested for association with each of 23 different

phenotypes in the UKBB dataset via the FastEpistasis test,

which models marginal and interaction effects of SNPs.40
2023



Table 1. SNP-SNP interactions and disease associations identified by FastEpistasis test in the UKBB dataset

Phenotype Chr A SNP A Chr B SNP B p value

Acute pulmonary heart disease 12 12:6287428 10 10:93068004 9.60 3 10�6

AD 6 6:32648500 6 6:32364667 6.47 3 10�7*

COPD 15 15:81121350 3 3:16237372 2.06 3 10�6

T2D 16 16:7788521 14 14:86160697 2.29 3 10�7*

Essential hypertension 12 12:112230036 12 12:111962581 4.89 3 10�6

Fibromyalgia 20 20:45562611 13 13:39174411 1.79 3 10�6

Glaucoma 9 9:133944198 7 7:119526478 7.68 3 10�7*

Hepatic infection 13 13:39174411 8 8:30793179 1.57 3 10�6

Herpes 1 1:78446761 1 1:78092479 2.42 3 10�7*

Hyperplasia of prostate 15 15:38271345 4 4:24167431 1.10 3 10�7*

Hyperplasia of hrostate 17 17:66168247 8 8:63904818 2.46 3 10�7*

Idiopathic hroctocolitis 3 3:51689306 3 3:51215148 2.14 3 10�6

Iron deficiency 1 1:201268216 1 1:201002649 4.94 3 10�7*

Iron deficiency 22 22:45594814 4 4:156510640 5.27 3 10�8*

Ischemic heart disease 12 12:6287428 10 10:93068004 1.06 3 10�5

MDD 15 15:58475374 2 2:26628863 5.68 3 10�6

Cancer of digestive organs 4 4:48783587 4 4:48493237 3.48 3 10�6

MS 19 19:49194880 19 19:13514610 2.96 3 10�7*

MS 6 6:32648500 6 6:32364667 4.96 3 10�10*

Pancreatitis 20 20:45562611 13 13:39174411 1.79 3 10�6

Psoriasis 12 12:114954298 9 9:130002630 4.53 3 10�7*

Psoriasis 14 14:86260029 5 5:58499153 2.87 3 10�7*

Psoriasis 4 4:79179009 3 3:134787497 1.64 3 10�7*

Schizophrenia 11 11:39275165 8 8:116432183 5.53 3 10�7*

SCZ 9 9:95674613 5 5:146534330 3.30 3 10�7*

Tonsilitis 3 3:164060391 3 3:163803419 1.42 3 10�6

Ulcerative colitis 3 3:51689306 3 3:51215148 2.17 3 10�6

Viral infection 12 12:105965951 6 6:67707841 2.76 3 10�6

Breast cancer 4 4:155839500 4 4:150941758 1.02 3 10�5

Associations between 5,625,845 SNP pairs and 23 phenotypes were tested via FastEpistasis in the UKBB dataset. For Bonferroni correction, SNPs were mapped to
cytoband regions, and adjustment was made for the total number of unique cytoband-cytoband pairs (0.05/44,860 ¼ 1.13 10�6). An asterisk denotes significant
p values after Bonferroni correction. Shown here are the top SNP-SNP models of each unique chromosomal pairing across all phenotypes.
FastEpistasis is capable of parallelizing high-dimensional

pairwise tests for genome-wide SNPs in the PLINKmodule,

thus reducing computational time substantially. We map-

ped each SNP to a chromosome cytoband region forming

what we refer to as a cytoband-cytoband (cyto-cyto) model.

Each chromosome arm is divided into regions, or cytoge-

netic bands (cytobands), that can be seen under a micro-

scope when specific stains are used.41 The SNPs mapped

to cytobands are labeled according to their distance from

the centromere on the p or q arm of the chromosome. We

evaluated the epistatic associations under the framework

of cyto-cyto models because the underlying hypothesis of
The Ame
epistasis was driven by identifying regions of chromosomal

interaction rather than specific participating SNPs. Inter-

pretation of specific SNP-SNP interactions is difficult

because of local LD substructures; however, these are

implicitly considered in SNP-to-cytoband mapping. After

applying Bonferroni correction to adjust for the number

of unique cyto-cyto models (0.05/44,860 ¼ 1.1 3 10�6),

we selected the SNP-SNP model most significant for each

unique cytoband-cytoband mapping in cases where multi-

ple models reached statistical significance. In the UKBB

data, 15 out of 44,860 unique cyto-cyto models spanning

9 of the 23 phenotypes reached statistical significance
rican Journal of Human Genetics 110, 575–591, April 6, 2023 579
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(Table 1). All UKBB FastEpistasis summary statistics can be

found in the supplemental files.

We next tested all SNP-SNP pairs mapping to each of the

15 significant cyto-cyto models for associations with their

corresponding phenotypes in the eMERGE dataset. The

Bonferroni-corrected threshold for eMERGE was adjusted

for the 15 cytoband-cytoband models tested (p value ¼
0.05/15 ¼ 3.3 3 10�3). Only one of the 15 cyto-cyto

models reached statistical significance in both UKBB and

eMERGE datasets; this model was associated with type 2

diabetes. Several other models met our near-significance

p value threshold of 0.01 in eMERGE. Two associated

with multiple sclerosis, one associated with psoriasis, and

one associated with schizophrenia. The statistically signif-

icant and near-significant models are referred to hereafter

as ‘‘top models’’ and are shown in Table 2. A graphical rep-

resentation of the top models is shown in Figure 2, high-

lighting the intrachromosomal and interchromosomal

interactions between genes in the cytoband regions. All

eMERGE top-model FastEpistasis summary statistics can

be found in supplemental files. Below we discuss these

models in detail.

Type 2 diabetes

Chromosome 16:p13.33 chromosome 14:q31.3 (eMERGE

p value ¼ 0.001344) was a statistically significant interac-

tion model that was associated with type 2 diabetes. The

interacting SNPs in the UKBB dataset map to the intergenic

region 66,427 bp downstream of FLRT2 (MIM: 604807)

and the intergenic region 25,181 bp downstream of

RBFOX1 (MIM: 605104), respectively. RBFOX1, one of

three mammalian paralogs of the RBFOX gene family, reg-

ulates tissue-specific alternative splicing and post-tran-

scriptional regulation in the brain and heart.42 FLRT2 is

part of the FLRT gene family encoding membrane proteins

involved in the regulation of cell adhesion and repulsion,

cell migration, cell signaling, and axon guidance.43

FLRT2 interacts dynamically with various proteins, espe-

cially during developmental events.43

Psoriasis

FLRT2 (chromosomal region 14:q31.3) was also found to

be associated with near significance with psoriasis through

an interaction with the intronic region of PDE4D (MIM:

600129) on chromosomal region 5q11.2 (chromosome

5:q11.2; eMERGE p value ¼ 0.004205). PDE4D is part of

the cyclic nucleotide phosphodiesterase family of enzymes

that hydrolyze the intracellular second messenger cAMP, a

key signal transduction molecule in numerous biological

processes.44 RBFOX1 has been associated with neurode-

generative and cardiometabolic traits.45

Schizophrenia

An interaction between TRPS1 (MIM: 604386) on chromo-

somal region 8q23.3 and LRRC4C (MIM: 608817) on

region 11p12 was associated with schizophrenia with

near significance (eMERGE p value ¼ 0.007327). The SNP

on chromosome 8 is 531,181 bp upstream of TRPS1,

whereas the SNP on chromosome 11 falls in intron 1 of

LRRC4C. TRPS1 is a transcriptional repressor that binds
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Figure 2. Models that were significant on the basis of the UKBB data and replicated in the eMERGE data
Interchromosomal and intrachromosomal interactions and disease associations of the top models that replicated in both datasets are
shown.
to GATA-regulated genes during different stages of embry-

onic development to influence chondrocyte proliferation

and differentiation.46 LRRC4C encodes a post-synaptic

adhesion molecule that binds with the conserved family

of netrin G ligand (NGL) proteins to regulate synaptic

organization.47

Multiple sclerosis

A near-significant association of MS with intrachromoso-

mal interaction model for chromosomal region 6:p21.32

(eMERGE p value ¼ 0.003616) mapped to the human

leukocyte antigen (HLA) region (chromosome 6:p21.3),

which is well characterized in the literature for its dynamic

role encoding cell-surface proteins responsible for regula-

tion of the immune system.48 MS, as well as numerous

other conditions, including Alzheimer’s disease (AD),

type 1 diabetes, and rheumatic heart disease, have been

linked to the HLA region.49–52 This highlights the strong

genetic effect that combinations of alleles in the HLA re-

gion have on disease susceptibility and protection. These

results are promising and could serve to substantiate previ-

ous findings; however, a focus on results on theHLA region

is out of the scope of this study, given the current chal-

lenges in sequencing the HLA region for interpretation.

A second near-significant intrachromosomal interaction

model between CACNA1A (MIM: 601011) in chromo-

somal region 19q13.33 and FUT2 (MIM: 182100) in

chromosomal region 19p13.2 was associated with MS

(eMERGE p value ¼ 0.003466). FUT2 determines blood-

group secretor status. Being homozygous for the inactive

‘‘non-secretor’’ allele confers susceptibility and resistance

to certain infections53 FUT2 non-secretor status has been
The Ame
shown to result in significantly increased lymphocyte infil-

tration levels during infection.54

Network analysis to predict molecular mechanisms

linking epistatic gene pairs in MS

Three biological-process gene networks for the intrachro-

mosomal interaction between FUT2 and CACNA1A (chro-

mosome 19) are shown in Figure 3. CACNA1A is part of a

family of genes that provide instructions for making cal-

cium channels, so we generated networks for both ‘‘cal-

cium-ion transport’’ and ‘‘calcium-mediated signaling’’

pathways. FUT2 and CACNA1A both had connection

scores of 0.46 in the ‘‘calcium-ion transport’’ network

and 0.24 in the ‘‘calcium-mediated signaling’’ network,

suggesting that calcium-ion transport better describes the

functional context of their interaction. This is further re-

flected by the high number of high-confidence interac-

tions between primary neighbor nodes connected to

both genes in the ‘‘calcium-ion transport’’ network, in

contrast to the lower number and lower confidence of in-

teractions between primary neighbor nodes and query

genes in the ‘‘calcium-mediated signaling’’ network.

Because FUT2 is responsible for the composition and func-

tional properties of glycans in bodily secretions, we also

generated a ‘‘proteoglycan biosynthetic process’’ network;

however, the low confidence scores and the low number

of primary neighbor nodes connecting both genes in this

network do not seem to support a molecular-interaction

hypothesis for FUT2 and CACNA1A in the proteoglycan

biosynthetic process as strongly. Networks were generated

for top models in Figure S2.
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Figure 3. A biological-function network analysis of FUT2 and CACNA1A interaction
Biological-function networks are shown for different selected processes potentially involving the FUT2 3 CACNA1A interaction (near-
significant association with MS and AD). The interaction confidence scale reflects the strength of the edge weights. FUT2 and CACNA1A
are both green nodes, as are all nodes directly connected to both query genes (primary neighbors). Yellow nodes are secondary neighbors,
connected to one query gene or the other.
(A) The calcium-ion transport process has many first-degree nodes common to FUT2 and CACNA1A, as well as high-confidence edges,
suggesting a strong fit as a process common to both genes.
(B) The calcium-mediated signaling network has more secondary neighbors, suggesting a less strong fit.
(C) The proteoglycan biosynthetic process network has few primary neighbors to both genes, and the edges have low interaction con-
fidence, suggesting this is less likely to be a biological process linking FUT2 and CACNA1A.
Evaluating models of pleiotropy

We identified two epistatic models that were associated

with more than one disease and thus exhibited a poten-

tially pleiotropic effect, as discuss below.

Chromosome 19 in Alzheimer’s disease and multiple sclerosis

The chromosome 19 interaction between CACNA1A and

FUT2 is also a pleiotropic model, associated with Alz-

heimer’s disease in addition to MS. In the UKBB dataset,

the association of this model with AD was near significant,

with p value ¼ 1.79 3 10�6 (see supplemental informa-

tion). In eMERGE, the model was statistically significantly

associated with AD (p value ¼ 1.27 3 10�4 (see supple-

mental information). CACNA1A is one of the strongest

known genetic risk factors for a variety of neurodevelop-

mental and neurodegenerative conditions, including

familial AD, trinucleotide repeat conditions, and SCZ;

however, its role in the pathogenesis of these conditions

is largely unknown.55,56 The SNP in chromosomal region

19q13.33 falls in an intergenic region between FUT2 and

pseudogene SEC1P.

Chromosome 14q31.3 in type 2 diabetes and psoriasis

Our findings implicate FLRT2 in two interchromosomal in-

teractions, a psoriasis-associated interaction with PDE4D

(chromosome 5) and a T2D-associated interaction with

RBFOX1 (chromosome 16). Although the shared etiology

of diabetes and psoriasis is unknown, a breadth of work

has shown overlap between T2D and psoriasis by way of

shared lipid abnormalities, heightened insulin resistance,

and cardiovascular risk biomarkers.57 To evaluate whether
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this region is predisposed to pleiotropic activity, we identi-

fiedfiveMendelian traits and syndromes (Figure 4) linked to

genes within 14q31.3 on the basis of theOnlineMendelian

Inheritance inMan (OMIM) database.58 Krabbe disease was

(KRB [MIM: 245200]) linked toGALC (MIM: 606890); Leber

congential amaurosis 3 and retinitis pigmentosa 94 (LCA3

[MIM: 604232]) were linked to SPATA7 (MIM: 609868); in-

tellectual development disorder (MRT56 [MIM: 617125])

was linked to ZC3H14, and Bardet-Biedl Syndrome 8

(BBS8 [MIM: 615985]) and retinitis pigmentosa 51 (MIM:

613464) were linked to TTC8 (MIM: 6081320.

Univariate analysis to test whether interacting SNPs

function as main effects

Individual SNPs in each significant cyto-cyto model were

tested in a univariate regression framework to determine

whether they function as main effects for their respective

phenotype(s). In addition to the SNPs used for deter-

mining the p values for the cyto-cyto models, we tested

any proxy SNPs that were also in LD (R2 R 0.5) and within

1 MB upstream or downstream of the representative SNPs.

The plots in Figures S1A–S1J depict the results of the uni-

variate analyses of the SNPs in each model; the chromo-

some containing the lowest p values for each model is

shown. Bonferroni correction was based on the number

of proxy SNPs tested. No statistically significant main ef-

fects were found, although the results for chromosome 6

overlapped with GWAS hits for various traits, as expected

given the dynamic nature of the HLA region. Summary
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Figure 4. Evidence of pleiotropy on chro-
mosomal region 14q31.3
Chromosomal region 14q31.3 interacts
with region 16p13.3 to affect T2D and
with region 5q11.2 to affect psoriasis. To
determine a clinical basis for the pleiotropy
observed on chromosomal region 14q31.3,
we used Online Mendelian Inheritance in
Man (OMIM) to identify Mendelian condi-
tions known to be associated with this
region.
statistics for main-effects analysis can be found in the sup-

plemental information.

Epistasis in essential gene families

Essential genes are critical for the survival of organisms un-

der most conditions and commonly drive cell growth and

proliferation. The vast majority of human genes are non-

essential but still confer some degree of selective advan-

tage. Out of 19,850 known human genes, 3,915 are consid-

ered essential genes.35 Essential genes are likely to encode

hub proteins that are widely expressed in most tissues,

making themwell-suited as dynamic genes active in the in-

teractome.59 On the basis of a previous study of essential

genes by Ji et al. and the Full Spectrum of Intolerance

to Loss-of-Function (FUSIL) database, we determined

whether the genes in our top models function as essential

genes. Six of the seven genes in our top models, LRRC4C

being the exception, have been classified as essential

genes.34,35 Figure 5 depicts the essential genes, categorized

by their functional designations from FUSIL, as well as

their essential functions in growth and development.
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Discussion

We hypothesized that long-range

epistatic interactions in chromosomal

regions with high LD are implicated

in mechanisms underlying complex

diseases. To test this, we looked for as-

sociations between 23 complex disease

phenotypes and 5,625,845 epistatic

pairs of SNPs with strong, long-range

LD. Although we tested associations

for specific pairs of SNPs, we inter-

preted the results in the context of

the cytoband regions containing the

SNPs. There is substantial debate in

the genomics community about how

to best link non-coding and intergenic

SNPs to corresponding functional

genes. Our approach using cytoband

regions enabled us to make functional

hypotheses about non-coding or inter-

genic SNPs on the basis of the nearby

genes that were most likely to have sig-

nificant effects on the phenotypes in
question. Interestingly, none of the SNPs in our topmodels

had significant effects on the phenotypes of interest in uni-

variate analyses (Figure S1), indicating that the phenotypic

associations were driven by interactions between the SNPs

rather than by the main-effect contribution of each SNP

alone. The genes linked to top models seem to be particu-

larly enriched for dynamic roles as part of large, conserved

gene families active during development.

Mechanistic insights on genes with linked complex

disorders

FLRT2 and RBFOX1 in type 2 diabetes

Previous studies support a role for RBFOX1 in regulating

gene expression in beta cells through neuron-like alterna-

tive-splicing regulation.60,61 One explanation for this is

that it could be because a highly innervated pancreas

causes increased neuron-specific transcriptional programs.

Another explanation could be that neurons share many

phenotypic traits with pancreatic beta cells given that

both use similar exocytotic machinery to secrete insulin

and neurotransmitters.60,62 Because FLRT2 is known to
n Genetics 110, 575–591, April 6, 2023 583



Figure 5. Epistatic interactions map to essential-gene families
Six out of seven genes from our significant and near-significant results function as essential genes; LRRC4C is not shown because it is not
considered an essential gene. FUT2 is also viable but has phenotypic abnormality. TRPS1 and RBFOX1 are also developmental lethal.
Molecular-mechanism panels were created with BioRender.com.
interact with proteins such as ADGRL3, FGFR2, and

UNC5D tomediate various cell-signaling pathways, we hy-

pothesize that the interaction between chromosomes 14

and 16 regulates transcriptomic activity in T2D through

an alternative-splicing program.63

FLRT2 and PDE4D 3 in psoriasis

Individuals with psoriasis are known to have elevated

expression of PDE4D mRNA in peripheral-blood mononu-

clear cells.64 Apremilast, an oral small-molecule inhibitor

of PDE4D, is used for treating psoriasis and other chronic

inflammatory disorders such as asthma and Behçet’s dis-

ease through inhibition of the Th17 pathway.65–67 Our re-

sults corroborate the established proinflammatory link

between PDE4D and psoriasis; however, the mechanistic

basis for an association between a PDE4D-FLRT2 interac-

tion and psoriasis is unknown.

Given the role of FLRT2 in modulating cortical migra-

tion during the development of the nervous system, Akita

et al. proposed an analogous guidance function for FLRT2

in vascular development.68 FLRT2 is one of the primary li-

gands that binds and activates the adhesion G-protein-

coupled receptor LPHN2, which acts as a repulsive guid-

ance receptor that controls blood-vessel structure and

function in model systems.69 FLRT2 has also been identi-

fied as an autoantigen, or cell-surface target, of anti-endo-

thelial cell antibodies in the vascular systems of individuals

with systemic lupus erythematosus.70 Once FLRT2 acti-

vates LPHN2, it elicits the synthesis of cAMP, which is hy-

drolyzed by PDE4D.44,71 Our results together with the pre-

vious findings suggest that interaction between PDE4D

and FLRT2 has a proinflammatory effect in individuals

with psoriasis and that it might act through an autoim-
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mune pathology in the vascular system. Further functional

experiments are needed to clarify the mechanism.

TRPS1 and LRRC4C in schizophrenia

There is no previous evidence that TRPS1 and LRRC4C

interact to influence schizophrenia; however, LRRC4C has

been implicated in brain disorders, including schizo-

phrenia, bipolar disorder, autism spectrum disorder, and

developmental delay.72,73 Mouse models have shown that

mice lacking NGL-1 exhibit hyperactivity and anxiolytic-

like behavior as a result of the widespread excitation of neu-

rons in the brain. This suggests that LRRC4C plays a role in

the suppression or dampening of neuronal activity.47 We

hypothesize that TRPS1 acts as a repressor of LRRC4C;

this hypothesis is supported by a previous analysis of

GTEx bulk tissue-expression data74 showing that LRRC4C

(ENSG00000148948.7) is highly expressed in brain tissues,

whereas TRPS1 (ENSG00000104447.12) is expressed at

lower levels in brain tissue than in any other tissues.

FUT2 and CACNA1A in multiple sclerosis

Previous work highlights the role of lymphocyte-medi-

ated calcium-influx patterns observed in autoimmune

conditions, including MS.75 Thus, a genetic interaction be-

tween FUT2 and CACNA1A could elucidate a calcium-

dependent autoimmune mechanism. We conducted post-

hoc network analysis by using HumanBase to identify

pathways or functions that would explain the context of

the molecular interaction between CACNA1A and FUT2

(Figure 2). The gene connections in networks generated

for known pathways involving each gene (calcium-ion

transport, calcium-mediated signaling, and proteoglycan

biosynthetic process) suggested that the ‘‘calcium-ion

transport’’ network best explains the FUT2 and CACNA1A
2023
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interaction. This supports previous findings of ion-chan-

nel dysfunction in MS.76 The primary neighbors connect-

ing both genes in the ‘‘calcium-ion transport’’ network

provide supporting evidence for various mechanistic hy-

potheses of MS. BTNL3, associated with high-density lipo-

protein (HDL) cholesterol levels, is posited to play a role in

reduced brain atrophy and demyelination in MS.77,78

Unexpectedly, the ‘‘calcium-ion transport’’ network also

included OPRPN and ODF1. OPRPN encodes the PROL1

protein, which functions in penile erection. ODF1 encodes

the protein that forms the outer dense fibers surrounding

the sperm tail.79 Variation in both genes has been linked

to infertility in men, and previous work has shown a

higher incidence of infertility in men with MS.80 MC5R

in the ‘‘calcium-ion transport’’ network encodes the mela-

nocortin 5 receptor, which exerts immunomodulatory ef-

fects by converting primed T cells to regulatory T (Treg)

cells.81 Reduced Treg cell signaling in chronic inflammation

can lead to an increase in the number of autoimmune an-

tigen-presenting cells that ultimately cause a self-destruc-

tive central nervous system environment in MS. Our

network analysis does not define direct links between the

aforementioned genes and MS, but it does shed light on

potential molecular components of the respective pheno-

types seen in MS.

Pleiotropy and epistasis as drivers of subtle phenotypic

heterogeneity in related conditions

Despite substantial evidence in support of pleiotropy, there

is no empirical basis for pleiotropy in humans.82,83 Our

analysis yields top interaction models that are associated

with multiple phenotypes, suggesting a potential pleio-

tropic etiology for certain clinical pathologies. We hypoth-

esize molecular mechanisms that could explain our results

supporting epistatic and pleiotropic relationships.

CACNA1A 3 FUT2 in Alzheimer’s disease and multiple scle-

rosis

Chromosome 19 has long been linked to AD in the GWAS

literature as a result of variation in genes such as APOE

(19q13.32), ABCA7 (19q13,3), and CD33 (19q13.41).84

We found chromosome 19’s CACNA1A and FUT2 interac-

tion to potentially play a pleiotropic role in mediating

AD and MS.

Located within 2 MB upstream of CACNA1A are TRMT1

and LDLR, which are both linked to AD and MS.85–87 The

SNP in the intron of CACNA1A might regulate that gene

in tandem with the SNP in chromosomal region

19q13.33, or the interaction might be regulating other

genes via longer-range effects. FUT2 has been associated

with autoimmune-dysregulation markers such as vitamin

B deficiency, elevated cholesterol levels, type 1 diabetes,

and dysregulated gut microbiota, all of which have been

linked to AD and MS.77,88–92 Previous work has aimed to

detect overlap between autoimmune pathways related to

MS pathology and blood lipid pathways related to AD pa-

thology, but no common mechanism for MS and AD pa-

thologies has been identified.93 We hypothesize that a
The Ame
shared cardiometabolic and autoimmune molecular etiol-

ogy underpins both AD and MS through the CACNA1A

and FUT2 interaction. Functional experiments are needed

for validation and elucidation of the mechanism.

FLRT2 in type 2 diabetes and psoriasis

Chromosome 14q31.3, encoding FLRT2, was identified as

a top locus in interaction models for psoriasis and diabetes

in our FastEpistasis analysis. Given the previously identi-

fied comorbid relationship and shared etiological factors

between psoriasis and diabetes, we evaluated chromo-

somal region 14q31.3 to identify association with other

cardiometabolic and autoimmune conditions. Using the

OMIM database, we identified five Mendelian traits.

Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy

with a wide range of clinical variability. Although BBS indi-

viduals have a high propensity toward T2D due to obesity,

it is unclear whether diabetes is a comorbidity or a risk in-

dependent of obesity. However, recent mouse models of

BBS do support the dysregulation of the immune and he-

matopoietic systems as obesity-independent drivers of

T2D.94 Krabbe disease, a rare autosomal-recessive lyso-

somal storage disease, has phenotypic overlap with MS in

that its hallmark is demyelination caused by the buildup

of unmetabolized lipids throughout the central nervous

system.95 Retinitis pigmentosa (RP), a genetic retinopathy

that causes vision loss over time, presents varying types of

vision loss (e.g., night vision, central vision, or color

vision) and severity in different individuals. How lipid dys-

regulation plays a role in RP disease pathology is not well

understood. A previous study found RP to be a result of

abetalipoproteinemia.96,97 An understanding of energy

metabolism in retinal cells is critical to uncovering the

vascular changes that drive the different stages of RP.98

Leber congenital amaurosis (LCA) is a group of rare mono-

genic diseases that frequently result in rapid or progressive

vision loss accompanied by other symptoms such as intel-

lectual disability, hearing loss, and cataracts. Lipid changes

are not known to be associated with LCA.

The genetic association between chromosomal region

14q31.3 and these conditions suggest that lipid dysregula-

tion, a known link in BBS and Krabbe disease and an un-

known link in RP and LCA, may be the mechanism con-

necting psoriasis and T2D and driving some of these

conditions. We hypothesize that epistatic interactions

can ‘‘modify’’ and manifest variable expressivity such

that the nature of the same condition can vary among in-

dividuals. For example, some individuals with BBS who

have alleles supporting an interaction involving FLRT2

may have a higher risk of developing diabetes than indi-

viduals with BBS who do not have those alleles. We can

only speculate as to why alleles in chromosomal region

14q31.3 might predispose individuals to cardiometabolic

dysregulation in the context of complex and Mendelian

conditions. However, our data support the hypothesis

that genetic heterogeneity manifests as phenotypic hetero-

geneity and epistatic interactions may explain some

portion of the inter-individual variability.
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Epistasis regulates function in conserved essential gene

families

Given the fundamental cellular roles that essential genes

play during and after development, epistasis might be a

highly conserved mode of genetic regulation, especially

in the context of disease etiology. Epistatic selection might

be occurring at higher rates among essential genes, giving

rise to diverse clinical outcomes beyond the development

phase. Figure 5 demonstrates the essential-gene status of

genes in our top models. Six out of seven genes are essen-

tial genes; variation in FUT2 is considered developmentally

viable but phenotypically abnormal, and variation in

RBFOX1 and TRPS1 is considered developmentally lethal.

When we evaluated the diseases associated with each

essential gene, we found that all the essential genes except

FLRT2 are associated with at least two or more related con-

ditions that differ only by a subset of symptoms. A prime

example is CACNA1A, which is implicated in a variety of

neurological conditions, ranging from autism spectrum

disorder and cerebellar atrophy to epileptic encephalopa-

thy.99 Similarly, FUT2 has been associated with inflamma-

tory bowel conditions, including Crohn disease and ulcer-

ative colitis.100 Syndromes are sets of complex symptoms

that often co-occur, indicating a specific condition. On

the basis of the results of this study, we hypothesize that

epistatic variation is a driving factor that differentiates

certain sets of overlapping symptoms into distinct pathol-

ogies, much like syndromes. These results complement our

findings in Figure 4, that epistatic selection in a region

could be modulating related etiologies (much like

14q31.3) and leading to phenotypic heterogeneity of the

same underlying mechanism(s). Functional studies are

needed to test the molecular interactions of the essential

genes in our top models to further characterize their role

beyond development and in adulthood disease.

Study limitations and future directions

In this study, we propose biological mechanisms that

could explain the statistical association of pairwise

epistatic SNP models with complex diseases. Functional

validation of the molecular mechanisms proposed remains

as a future work. In vitro knock-out experiments in relevant

clinical cell lines or in vivo experiments in disease-specific

animal models with orthologous gene pairs might yield

additional information on the interacting genes and their

influence on phenotypic manifestation of the associated

disease markers. Understanding the effects of over- or un-

der-expression of genes as a result of manipulation of inter-

acting SNP/gene pairs can shed light on the interactions

within and across biological pathways, and this under-

standing can be translated into health insights into disease

etiology. We also acknowledge that higher-order interac-

tions beyond pairwise SNP-SNP models might play an

important role in complex disease etiology. Our study

focused on genome-wide pairwise interactions; higher-or-

der tests were out of scope as a result of computational

limitations.
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We leveraged Ohta’s D statistics to (1) identify epistatic in-

teractions between distant genomic regions that exhibit

strong LD—such regions are typically excluded from

genomic analyses—and (2) test association of these inter-

actions with a range of complex diseases. After testing

associations of 5,625,845 SNP-SNP pairs with complex dis-

eases, we identified five interactions with disease associa-

tions that replicated in the UKBB and eMERGE datasets

(Table 2). Most of the interactions were interchromosomal,

which is surprising given that most long-range genomic

and high-throughput chromosome conformation analyses

are limited to single chromosomes.101 Associations be-

tween specific epistatic interactions and conditions,

including T2D, psoriasis, MS, schizophrenia, and AD,

were identified. (Figure 2). Furthermore, we identified

epistatic interactions with a pleiotropic basis. In particular,

chromosomal region 14:q31.3 had long-range interactions

with chromosome 5 (associated with psoriasis) and chro-

mosome 16 (associated with T2D). We conclude that

psoriasis and T2D most likely share an etiology based on

dysregulation of lipid metabolism with an autoimmune

component. Our post-hoc analysis of chromosomal region

14q31.3 showed that five otherMendelian conditions with

lipid dysregulation as a potential shared mechanism are

also associated with the same cytoband (Figure 4). We

conclude from these findings that epistatic interactions

might function at a subtle level to modify phenotypic pre-

sentation. For example, some individuals with the interac-

tion between chromosome 14 and chromosome 5 might

present a lipid-autoimmune phenotype leading to psoria-

sis. Similarly, individuals with the interaction between

chromosome 14 and chromosome 16 might present a

lipid-cardio metabolic phenotype leading to T2D, whereas

other individuals might present lipid-ocular conditions

such as RP. Different variants within the interacting

genes might function differently, adding another layer

of fine modulation. This is just one example of how

epistatic genetic variation might drive variation of disease

phenotypes.

Our epistatic gene models appeared to be enriched with

members of highly conserved gene families with dynamic

and essential roles. For example, TRPS1 has been associated

with a rare autosomal condition called Tricho-rhino-

phalangeal syndrome type 1 (Figure 5), which causes

highly variable symptoms including hypermobility,

craniofacial abnormalities, and hyperhidrosis.102 We hy-

pothesize that epistatic gene interactions modulate the

combination of symptoms that are expressed in among in-

dividuals. Our results suggest that epistasis can be thought

of as ‘‘fine-tuning,’’ in which interactions manifest variable

expressivity such that the same pathology can present as

distinct conditions in different individuals. This is known

to occur in Mendelian traits, but there is not a concrete ba-

sis for this phenomenon in complex traits.

It is likely that a combination of main effects, small-ef-

fect variants, and interaction effects determines disease
2023



pathology. In this study we evaluated interaction effects

and marginal effects of the same loci and determined

that associations with disease were driven by interaction

effects only. Further work to model these effects in tandem

is needed to provide a more complete understanding of

disease risks and mechanisms. Our findings highlight the

challenges that remain in leveraging genomics in human

health. A stronger emphasis on evaluating genetic interac-

tions is needed if we are to better understand clinical risk

associations and inform personalized medicine solutions.
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40. Schüpbach, T., Xenarios, I., Bergmann, S., and Kapur, K.

(2010). FastEpistasis: A high performance computing solu-

tion for quantitative trait epistasis. Bioinformatics 26,

1468–1469. https://doi.org/10.1093/bioinformatics/btq147.

41. Dolan, M. (2011). The role of the Giemsa stain in cytoge-

netics. Biotech. Histochem. 86, 94–97. https://doi.org/10.

3109/10520295.2010.515493.

42. Damianov, A., Ying, Y., Lin, C.H., Lee, J.A., Tran, D., Va-

shisht, A.A., Bahrami-Samani, E., Xing, Y., Martin, K.C.,

Wohlschlegel, J.A., and Black, D.L. (2016). Rbfox proteins

regulate splicing as part of a large multiprotein complex

LASR. Cell 165, 606–619. https://doi.org/10.1016/j.cell.

2016.03.040.
2023

https://doi.org/10.1186/s12711-018-0404-z
https://doi.org/10.1038/nrg3627
https://doi.org/10.1016/j.cels.2018.11.004
https://doi.org/10.1016/j.cels.2018.11.004
https://doi.org/10.1093/genetics/135.2.541
https://doi.org/10.7554/eLife.78981
https://doi.org/10.1073/pnas.1213423109
https://doi.org/10.1073/pnas.1213423109
https://doi.org/10.1126/science.860134
https://doi.org/10.1038/nrg2452
https://doi.org/10.1038/nrg2452
https://doi.org/10.1073/pnas.8597
https://doi.org/10.1007/s11357-011-9374-6
https://doi.org/10.1073/pnas.1205759109
https://doi.org/10.1371/journal.pone.0038983
https://doi.org/10.1083/jcb.201806052
https://doi.org/10.1083/jcb.201806052
https://doi.org/10.1371/journal.pone.0080754
https://doi.org/10.1371/journal.pone.0080754
https://doi.org/10.1038/ng.3643
https://doi.org/10.5334/jors.250
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref32
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref32
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref32
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref32
https://doi.org/10.1038/ng.3259
https://doi.org/10.1038/ng.3259
https://doi.org/10.1038/s41467-020-14284-2
https://doi.org/10.1038/s41467-020-14284-2
https://doi.org/10.1073/pnas.1613195113
https://doi.org/10.1093/bioinformatics/btab186
https://doi.org/10.1371/journal.pone.0175508
https://doi.org/10.1371/journal.pone.0175508
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1002/gepi.22167
https://doi.org/10.1002/gepi.22167
https://doi.org/10.1093/bioinformatics/btq147
https://doi.org/10.3109/10520295.2010.515493
https://doi.org/10.3109/10520295.2010.515493
https://doi.org/10.1016/j.cell.2016.03.040
https://doi.org/10.1016/j.cell.2016.03.040


43. Li, J., Shinoda, Y., Ogawa, S., Ikegaya, S., Li, S., Matsuyama,

Y., Sato, K., and Yamagishi, S. (2021). Expression of FLRT2

in postnatal central nervous system development and

after spinal cord injury. Front. Mol. Neurosci. 14, 756264.

https://doi.org/10.3389/fnmol.2021.756264.

44. Ong, W.K., Gribble, F.M., Reimann, F., Lynch, M.J., Houslay,

M.D., Baillie, G.S., Furman, B.L., and Pyne, N.J. (2009). The

role of the PDE4D cAMP phosphodiesterase in the regulation

of glucagon-like peptide-1 release. Br. J. Pharmacol. 157, 633–

644. https://doi.org/10.1111/j.1476-5381.2009.00194.x.

45. Zhao, W.W. (2013). Intragenic deletion of RBFOX1 associ-

ated with neurodevelopmental/neuropsychiatric disorders

and possibly other clinical presentations. Mol. Cytogenet.

6, 26. https://doi.org/10.1186/1755-8166-6-26.

46. Wang, Y., Lin, X., Gong, X., Wu, L., Zhang, J., Liu, W., Li, J.,

and Chen, L. (2018). Atypical GATA transcription factor

TRPS1 represses gene expression by recruiting CHD4/

NuRD(MTA2) and suppresses cell migration and invasion

by repressing TP63 expression. Oncogenesis 7, 96. https://

doi.org/10.1038/s41389-018-0108-9.

47. Choi, Y., Park, H., Kang, S., Jung, H., Kweon, H., Kim, S.,

Choi, I., Lee, S.Y., Choi, Y.E., Lee, S.H., and Kim, E. (2019).

NGL-1/LRRC4C-mutant mice display hyperactivity and

anxiolytic-like behavior associated with widespread suppres-

sion of neuronal activity. Front. Mol. Neurosci. 12, 250.

https://doi.org/10.3389/fnmol.2019.00250.

48. Dendrou, C.A., Petersen, J., Rossjohn, J., and Fugger, L.

(2018). HLA variation and disease. Nat. Rev. Immunol. 18,

325–339. https://doi.org/10.1038/nri.2017.143.

49. Patsopoulos, N.A., Barcellos, L.F., Hintzen, R.Q., Schaefer, C.,

van Duijn, C.M., Noble, J.A., Raj, T., Gourraud, P.A., ANZ-

gene, and Gourraud, P.A., et al. (2013). Fine-mapping the ge-

netic association of the major histocompatibility complex in

multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 9,

e1003926. https://doi.org/10.1371/journal.pgen.1003926.

50. Lu, R.-C., Yang, W., Tan, L., Sun, F.-R., Tan, M.-S., Zhang, W.,

Wang, H.-F., and Tan, L. (2017). Association of HLA-DRB1

polymorphism with Alzheimer’s disease: a replication and

meta-analysis. Oncotarget 8, 93219–93226. https://doi.org/

10.18632/oncotarget.21479.

51. Jiang, Z., Ren, W., Liang, H., Yan, J., Yang, D., Luo, S., Zheng,

X., Lin, G.-W., Xian, Y., Xu, W., et al. (2021). HLA class I

genes modulate disease risk and age at onset together with

DR-DQ in Chinese patients with insulin-requiring type 1 dia-

betes. Diabetologia 64, 2026–2036. https://doi.org/10.1007/

s00125-021-05476-6.

52. Auckland, K., Mittal, B., Cairns, B.J., Garg, N., Kumar, S.,

Mentzer, A.J., Kado, J., Perman, M.L., Steer, A.C., Hill,

A.V.S., and Parks, T. (2020). The human leukocyte antigen lo-

cus and rheumatic heart disease susceptibility in South

Asians and Europeans. Sci. Rep. 10, 9004. https://doi.org/

10.1038/s41598-020-65855-8.

53. Azad, M.B., Wade, K.H., and Timpson, N.J. (2018). FUT2

secretor genotype and susceptibility to infections and

chronic conditions in the ALSPAC cohort. Wellcome

Open Res. 3, 65. https://doi.org/10.12688/wellcomeo-

penres.14636.2.

54. Santos-Cortez, R.L.P., Chiong, C.M., Frank, D.N., Ryan, A.F.,

Giese, A.P.J., Bootpetch Roberts, T., Daly, K.A., Steritz, M.J.,

Szeremeta, W., Pedro, M., et al. (2018). FUT2 Variants Confer

Susceptibility to Familial Otitis Media. Am. J. Hum. Genet.

103, 679–690. https://doi.org/10.1016/j.ajhg.2018.09.010.
The Ame
55. Psychiatric GWAS Consortium Bipolar Disorder Working

Group (2011). Large-scale genome-wide association analysis

of bipolar disorder identifies a new susceptibility locus near

ODZ4. Nat. Genet. 43, 977–983. https://doi.org/10.1038/

ng.943.

56. Grosso, B.J., Kramer, A.A., Tyagi, S., Bennett, D.F., Tifft, C.J.,

D’Souza, P., Wangler, M.F., Macnamara, E.F., Meza, U., and

Bannister, R.A. (2022). Complex effects on CaV2.1 channel

gating caused by a CACNA1Avariant associatedwith a severe

neurodevelopmental disorder. Sci. Rep. 12, 9186. https://doi.

org/10.1038/s41598-022-12789-y.

57. Brazzelli, V., Maffioli, P., Bolcato, V., Ciolfi, C., D’Angelo, A.,

Tinelli, C., and Derosa, G. (2021). Psoriasis and diabetes,

a dangerous association: evaluation of insulin resistance,

lipid abnormalities, and cardiovascular risk biomarkers.

Front. Med. 8, 605691. https://doi.org/10.3389/fmed.2021.

605691.

58. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., and

McKusick, V.A. (2005). Online Mendelian Inheritance in

Man (OMIM), a knowledgebase of human genes and genetic

disorders. Nucleic Acids Res. 33, D514–D517. https://doi.

org/10.1093/nar/gki033.

59. Goh, K.-I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., and

Barabási, A.L. (2007). The human disease network. Proc.

Natl. Acad. Sci. USA 104, 8685–8690. https://doi.org/10.

1073/pnas.0701361104.

60. Juan-Mateu, J., Rech, T.H., Villate, O., Lizarraga-Mollinedo,

E., Wendt, A., Turatsinze, J.V., Brondani, L.A., Nardelli, T.R.,

Nogueira, T.C., Esguerra, J.L.S., et al. (2017). Neuron-en-

riched RNA-binding proteins regulate pancreatic beta cell

function and survival. J. Biol. Chem. 292, 3466–3480.

https://doi.org/10.1074/jbc.M116.748335.

61. Nutter, C.A., Jaworski, E., Verma, S.K., Perez-Carrasco, Y., and

Kuyumcu-Martinez, M.N. (2017). Developmentally regu-

lated alternative splicing is perturbed in type 1 diabetic skel-

etal muscle. Muscle Nerve 56, 744–749. https://doi.org/10.

1002/mus.25599.

62. Arntfield, M.E., and van der Kooy, D. (2011). b-Cell evolution:

How the pancreas borrowed from the brain: The shared

toolbox of genes expressed by neural and pancreatic endo-

crine cells may reflect their evolutionary relationship. Bio-

essays 33, 582–587. https://doi.org/10.1002/bies.201100015.

63. Wei, K., Xu, Y., Tse, H., Manolson, M.F., and Gong, S.G.

(2011). Mouse FLRT2 interacts with the extracellular and

intracellular regions of FGFR2. J. Dent. Res. 90, 1234–1239.

https://doi.org/10.1177/0022034511415272.

64. Schafer, P.H., Truzzi, F., Parton, A., Wu, L., Kosek, J., Zhang,

L.H., Horan, G., Saltari, A., Quadri, M., Lotti, R., et al.

(2016). Phosphodiesterase 4 in inflammatory diseases: Ef-

fects of apremilast in psoriatic blood and in dermalmyofibro-

blasts through the PDE4/CD271 complex. Cell. Signal. 28,

753–763. https://doi.org/10.1016/j.cellsig.2016.01.007.

65. Chen, Y., Li, Z., Li, H., Su, W., Xie, Y., Pan, Y., Chen, X., and

Liang, D. (2020). Apremilast Regulates the Teff/Treg Balance

to Ameliorate Uveitis via PI3K/AKT/FoxO1 Signaling

Pathway. Front. Immunol. 11, 581673. https://doi.org/10.

3389/fimmu.2020.581673.

66. Schett, G., Sloan, V.S., Stevens, R.M., and Schafer, P. (2010).

Apremilast: A novel PDE4 inhibitor in the treatment

of autoimmune and inflammatory diseases. Ther. Adv.

Musculoskelet. Dis. 2, 271–278. https://doi.org/10.1177/

1759720X10381432.
rican Journal of Human Genetics 110, 575–591, April 6, 2023 589

https://doi.org/10.3389/fnmol.2021.756264
https://doi.org/10.1111/j.1476-5381.2009.00194.x
https://doi.org/10.1186/1755-8166-6-26
https://doi.org/10.1038/s41389-018-0108-9
https://doi.org/10.1038/s41389-018-0108-9
https://doi.org/10.3389/fnmol.2019.00250
https://doi.org/10.1038/nri.2017.143
https://doi.org/10.1371/journal.pgen.1003926
https://doi.org/10.18632/oncotarget.21479
https://doi.org/10.18632/oncotarget.21479
https://doi.org/10.1007/s00125-021-05476-6
https://doi.org/10.1007/s00125-021-05476-6
https://doi.org/10.1038/s41598-020-65855-8
https://doi.org/10.1038/s41598-020-65855-8
https://doi.org/10.12688/wellcomeopenres.14636.2
https://doi.org/10.12688/wellcomeopenres.14636.2
https://doi.org/10.1016/j.ajhg.2018.09.010
https://doi.org/10.1038/ng.943
https://doi.org/10.1038/ng.943
https://doi.org/10.1038/s41598-022-12789-y
https://doi.org/10.1038/s41598-022-12789-y
https://doi.org/10.3389/fmed.2021.605691
https://doi.org/10.3389/fmed.2021.605691
https://doi.org/10.1093/nar/gki033
https://doi.org/10.1093/nar/gki033
https://doi.org/10.1073/pnas.0701361104
https://doi.org/10.1073/pnas.0701361104
https://doi.org/10.1074/jbc.M116.748335
https://doi.org/10.1002/mus.25599
https://doi.org/10.1002/mus.25599
https://doi.org/10.1002/bies.201100015
https://doi.org/10.1177/0022034511415272
https://doi.org/10.1016/j.cellsig.2016.01.007
https://doi.org/10.3389/fimmu.2020.581673
https://doi.org/10.3389/fimmu.2020.581673
https://doi.org/10.1177/1759720X10381432
https://doi.org/10.1177/1759720X10381432


67. Afra, T.P., Razmi, T.M., and Dogra, S. (2019). Apremilast in

Psoriasis and Beyond: Big Hopes on a Small Molecule. Indian

Dermatol. Online J. 10, 1–12. https://doi.org/10.4103/idoj.

IDOJ_437_18.

68. Akita, T., Kumada, T., Yoshihara, S.i., Egea, J., and Yamagishi,

S. (2016). Ion channels, guidance molecules, intracellular

signaling and transcription factors regulating nervous and

vascular system development. J. Physiol. Sci. 66, 175–188.

https://doi.org/10.1007/s12576-015-0416-1.

69. Camillo, C., Facchinello, N., Villari, G., Mana, G., Gioelli,

N., Sandri, C., Astone, M., Tortarolo, D., Clapero, F., Gays,

D., et al. (2021). LPHN2 inhibits vascular permeability

by differential control of endothelial cell adhesion.

J. Cell Biol. 220, e202006033. https://doi.org/10.1083/jcb.

202006033.

70. Shirai, T., Fujii, H., Ono, M., Nakamura, K., Watanabe, R., Ta-

jima, Y., Takasawa, N., Ishii, T., and Harigae, H. (2012). A

novel autoantibody against fibronectin leucine-rich trans-

membrane protein 2 expressed on the endothelial cell sur-

face identified by retroviral vector system in systemic lupus

erythematosus. Arthritis Res. Ther. 14, R157. https://doi.

org/10.1186/ar3897.
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H. (2001). Trichorhinophalangeal Syndrome Type I Clinical

and Molecular Characterization of 3 Members of a Family

and 1 Sporadic Case. Arch. Dermatol. 137, 1437–1442.

https://doi.org/10.1001/archderm.137.11.1437.
rican Journal of Human Genetics 110, 575–591, April 6, 2023 591

https://doi.org/10.3390/ijms22147319
https://doi.org/10.3390/ijms22147319
https://doi.org/10.15252/embr.202050785
https://doi.org/10.15252/embr.202050785
https://doi.org/10.1016/j.pediatrneurol.2009.08.011
https://doi.org/10.1016/j.pediatrneurol.2009.08.011
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref96
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref96
http://refhub.elsevier.com/S0002-9297(23)00091-5/sref96
https://doi.org/10.1097/00004397-200010000-00008
https://doi.org/10.1097/00004397-200010000-00008
https://doi.org/10.15252/emmm.201910473
https://doi.org/10.1038/ejhg.2015.21
https://doi.org/10.1038/ejhg.2015.21
https://doi.org/10.1155/2017/4148651
https://doi.org/10.1038/s41598-019-47832-y
https://doi.org/10.1001/archderm.137.11.1437

	Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eM ...
	Introduction
	Methods
	Selection of epistatic SNP pairs in the UKBB dataset
	Testing of long-range epistatic SNP-SNP models for phenotypic associations
	Mapping of SNP-SNP models to cytoband regions
	Testing for replication in the eMERGE dataset
	Network analysis
	Investigation of pleiotropic results
	Investigation of epistatic interactions between essential genes
	Main effects analysis of top models

	Results
	Study overview
	Association testing of epistatic interactions with complex phenotypes
	Type 2 diabetes
	Psoriasis
	Schizophrenia
	Multiple sclerosis

	Network analysis to predict molecular mechanisms linking epistatic gene pairs in MS
	Evaluating models of pleiotropy
	Chromosome 19 in Alzheimer’s disease and multiple sclerosis
	Chromosome 14q31.3 in type 2 diabetes and psoriasis

	Univariate analysis to test whether interacting SNPs function as main effects
	Epistasis in essential gene families

	Discussion
	Mechanistic insights on genes with linked complex disorders
	FLRT2 and RBFOX1 in type 2 diabetes
	FLRT2 and PDE4D 3 in psoriasis
	TRPS1 and LRRC4C in schizophrenia
	FUT2 and CACNA1A in multiple sclerosis

	Pleiotropy and epistasis as drivers of subtle phenotypic heterogeneity in related conditions
	CACNA1A × FUT2 in Alzheimer’s disease and multiple sclerosis
	FLRT2 in type 2 diabetes and psoriasis

	Epistasis regulates function in conserved essential gene families
	Study limitations and future directions
	Conclusion

	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	Web resources
	References




