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Dairy cows have various strategies for dealing with heat stress, including a change in

behaviour. The aim of this study was to propose a deep learning-based model for recog-

nising cow behaviours and to determine critical thresholds for the onset of heat stress at

the herd level. A total of 1000 herd behaviour images taken in a free-stall pen were allo-

cated with labels of five behaviours that are known to be influenced by the thermal

environment. Three YOLOv5 architectures were trained by the transfer learning method.

The results show the superiority of YOLOv5s with a mean average precision of 0.985 and an

inference speed of 73 frames per second on the testing set. Further validation demon-

strates excellent agreement in herd-level behavioural parameters between automated

measurement and manual observation (intraclass correlation coefficient ¼ 0.97). The

analysis of automated behavioural measurements during a 10-day experiment with no to

moderate heat stress reveals that lying and standing indices were most responding to heat

stress and the test dairy herd began to change their behaviour at the earliest ambient

temperature of 23.8 �C or temperature-humidity index of 68.5. Time effects were observed

to alter the behavioural indicators values rather than their corresponding environmental

thresholds. The proposed method enables a low-cost herd-level heat stress alert without

imposing any burden on dairy cows.

© 2023 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Homeotherms, including dairy cows, constantly maintain

thermal equilibrium with their environments through ther-

moregulation (Kadzere, Murphy, Silanikove, & Maltz, 2002).

Heat stress is defined as the demand made by the
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environment for heat dissipation (Silanikove, 2000). It is trig-

gered when the thermal environment exceeds the upper

critical threshold of the thermoneutral zone, inducing a vari-

ety of physiological and behavioural responses to reduce heat

production and increase heat dissipation (Becker, Collier, &

Stone, 2020). Due to the lack of real-time, large-scale, and

automated measurement of animal-based indicators, heat
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Nomenclature

AIC Akaike information criterion

AP Average precision

CI Comfort index (%)

CSI Cow stress index (%)

drinking% Percentage of cows drinking

eating% Percentage of cows eating

FN False negative

FP False positive

FPS Frames per second

IoU Intersection over Union

lying% Percentage of cows lying

mAP Mean average precision

Pr Precision

R Recall

RH Relative humidity (%)

SUI Stall-use index (%)

Ta Ambient temperature (�C)
THI Temperature-humidity index

tN Total inference time (s)

TP True positive

YOLO You Only Look Once
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mitigation in practice has long depended on environmental

indicators and their critical thresholds (Shu, Wang, Guo, &

Bindelle, 2021). Environmental indicators, however, do not

reflect the actual response of the animal, making it difficult to

evaluate the effectiveness of cooling measures (Collier, Dahl,

& VanBaale, 2006).

Dairy cows take a series of behavioural changes to cope

with heat stress. As environmental temperature increases,

cows will spend more time standing to increase surface area

for better heat dissipation (Cook, Mentink, Bennett, & Burgi,

2007). However, this may result in a significant reduction in

sleeping time, posing a potential risk to cow welfare (Becker

et al., 2020). Cows will drink more frequently under heat

stress but with less water each time (Gal�an et al., 2018). Cows

will also reduce feed intake and subsequent rumination to

reduce metabolic heat production (Collier, Renquist, & Xiao,

2017). Therefore, recognising changes in behavioural pat-

terns ascribable to heat stress can help quantify the true

response of cows.

Recently, deep learning-based methods have allowed the

automated recognition of basic cow behaviours such as lying,

standing, and drinking with an accuracy of up to 0.976

(Fuentes, Yoon, Park, & Park, 2020; Wu et al., 2021). Further

quantification of the results with association to animal

growth, health, and welfare, and the extent to which they can

be used to improve decisionmaking have been highlighted for

future work (Chen, Zhu, & Norton, 2021). Tsai, Hsu, Ding,

Rustia, and Lin (2020) analysed how drinking time and fre-

quency were affected by heat stress after detecting drinking

behaviour with a convolutional neural network. Still, further

application of deep learning techniques is required so that the

detection of multiple behaviours enables a more compre-

hensive analysis of when heat stress is triggered.
Although progress has been made in computer vision-

based individual identification in free-stall barns (Xiao, Liu,

Wang, & Si, 2022), issues such as lack of colour pattern and

occlusion still lead to poor identification. On the other hand,

detections from deep learning methods provide an opportu-

nity to calculate herd-level behavioural indices which have

been commonly used for evaluating cow comfort. For

example, cow lying index, which is defined as the number of

cows lying in the stall divided by the total number of cows, has

been calculated automatically with a computer vision-based

system (Porto, Arcidiacono, Anguzza, & Cascone, 2013).

Other indices related to free-stall usage and cow comfort

would require knowing whether the cow is standing on the

stall bed andwhether the cow is eating or drinking. Therefore,

a detailed behavioural recognition method that addresses the

above questions is still required to compute these indices in

an automated way.

Scan sampling, as a commonmethod in animal research, is

often used to record herd-level behavioural indices at pre-

determined intervals. Traditionally, scan sampling requires

manual checks through direct observations or video

recording, both of which are time- and labour-consuming.

With the help of automated behaviour recognition, video

frames can be processed in real time. However, continuous

processing and storing of data would be a waste of time and

memory. Scan sampling is still of great value, especially for

behaviours that basically follow continuous and diurnal pat-

terns, such as lying and standing. The sampling interval

should always be determined in accordance with specific

purposes. For example, studies or regular checks aimed at

ascertaining standing and lying patterns may use sampling

intervals of 30 or even 60 min (Mitloehner, Morrow-Tesch,

Wilson, Dailey, & McGlone, 2001).

By combining deep learning and scan sampling methods,

the onset of heat stress is promising to be determined at the

herd level with thememory and power of local devices greatly

saved. Therefore, the aim of this study was (1) to train and

validate a deep learning-based model to recognise cow be-

haviours and further calculate herd-level behavioural in-

dicators, and (2) to develop critical thresholds of heat stress at

herd level based on behavioural indicators.
2. Materials and methods

All protocols involving animals were approved by the Experi-

mental Animal Care and Committee of Institute of Animal

Sciences, Chinese Academy of Agricultural Sciences (approval

number IAS2021-220).

2.1. Experimental design

The experiment was conducted on a free-stall dairy farm in

May 2021 in Shandong, China, which has a temperate conti-

nental monsoon climate with hot and humid summers. The

experiment consisted of two periods, in which the first three

days in early May were designed to collect data for training

behaviour recognition models while the other ten days during

mid-Maywhen the environment got warmerwere designed to
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Table 1 e Definition of the target cow behaviours.

Behaviour Definition

Drinking Standing by a water trough with

mouth in the trough

Eating Standing with neck in a feeding

rack

Lying Lying in total lateral or sternal

recumbency within a stall

Standing-in Standing with two or more feet

touching a stall bed

Standing-out Standing or walking outside the

stall but not eating
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explore how the onset of heat stress can be determined

through automated behaviour recognition.

2.1.1. Housing, animals, and management
The barn had four pens with a 4-row head-to-head design

andwas covered by a double-pitched roof (gradient 15%). The

experimental pen (11 m � 96 m, oriented along the

northesouth axis) housed 79 lactating Holstein-Friesian

dairy cows with 128 stalls and 128 headlocks. The pen

could be evenly divided into eight areas, with each having a

feeding zone of 16 headlocks and a parallel resting zone of

10e20 stalls with or without a water trough (see

Supplementary Material Fig. S1). At the beginning of the

experiment, the cows had a mean ± SD milk yield of

30.4 ± 11.8 kg day�1, parity of 2.8 ± 1.4, and days in milk of

273.1 ± 117.3. The cows were milked three times daily at

08:30, 16:30, and 00:00 h in a parlour that was about 20 m

away from the barn. All cows were observed to return to the

pen within 1 h of departure. A total mixed ration was deliv-

ered three times daily after milking. Clean drinking water

was delivered in five troughs. Both feed and water were

provided ad libitum to all cows. Electronic fans (1.1 m in

diameter; capacity: 25000 m3 h�1 each; see Fig. S1) were

turned on when the indoor temperature reached 20 �C
whereas sprinklers remained closed during the experiment.

Stalls were sand-bedded to a depth of about 150 mm and

raked once daily while the cows were away for morning

milking.

2.1.2. Behavioural and environmental measurement
Cow behaviour was recorded using eight closed-circuit video

cameras (DS-2CD3T86FWDV2; Hikvision, Hangzhou, China)

which were evenly spaced and placed opposite the pen's
longitudinal axis at a height of about 6 m and an angle of

about 45� downward (see Fig. S1). Each camera was able to

capture a feeding zone with 16 headlocks and a parallel

resting zone, allowing the complete side view of the pen to be

captured. The eight cameras were linked, synchronised, and

controlled using an eight-channel video recording system

(DS-7808N-K2; Hikvision, Hangzhou, China). It is recom-

mended that video recordings taken between 08:00 and

15:00 h is best for representing daily behavioural pattern in

summer (Uzal Seyfi, 2013). Besides, behavioural assessment

should be performed at least 1 h after cows return from

morning milking to avoid being affected by intensive feeding

(Overton, Sischo, Temple, & Moore, 2002). Accordingly, video

recording was performed from 10:30 to 15:00 h on each test

day as adapting the previous recommendations to the actual

schedule.

Environmental parameters including ambient temperature

(Ta, �C) and relative humidity (RH, %) were measured at an

interval of 10min using a total of six Kestrel 5000 environment

meters and Kestrel 5400 heat stress trackers (accuracy: ±0.4 �C
Ta, ±1% RH; Nielsen-Kellerman, Boothwyn, PA, USA; see

Fig. S1). These sensors were evenly distributed in the pen and

were fixed at a height of 2.2 m. The measurements from all

sensors were averaged for representing the global environ-

ment inside the pen. The temperature-humidity index (THI)

was calculated according to Eq. (1) (NRC, 1971).
THI¼ð1:8�Taþ32Þ� ð0:55� 0:005�RHÞ � ð1:8�Ta� 26Þ (1)

2.2. Development of behaviour recognition model

2.2.1. Data preparation
Video frames from the first three-day experiment were

extracted at an interval of 6 min by using a self-written pro-

gram in Python. This interval was set for increasing the het-

erogeneity of the training data since the cows changed their

behaviour less frequently. The extracted frames were in JPG

format andwere further corrected for distortion, cropped, and

resized using OpenCV. The final images for training and

evaluation had a resolution of 1920 by 1080 pixels. Finally, a

total of 1000 imageswere chosen after eliminating low-quality

frames (e.g., lens covered by flies).

To maintain the good quality of training data, all cows

presented in all images were annotated as per the definition

presented in Table 1. Five target behaviours known to be

influenced by the thermal environmentwere carefully defined

to be exclusive, meaning that the cows were not able to

perform two behaviours simultaneously. “Standing-in” was

previously subdivided into “perching” and “standing” based

on whether all four feet or just two feet touched a stall (Cook,

Bennett,&Nordlund, 2005). However, this was abandoned due

to insufficient data in each subgroup. The annotation tool

LabelImg (https://github.com/tzutalin/labelImg) was used to

allocate the appropriate class to each cow per image with a

bounding box. A total of 1000 annotated images were

randomly split into a training set (60%), a validation set (20%),

and a testing set (20%). A detailed description of the behaviour

recognition dataset with regards to the number of labels per

class is given in Table 2.

2.2.2. Deep learning algorithm and transfer learning
YOLO (You Only Look Once) is a popular one-stage framework

for object detection. Unlike two-stage methods (e.g., Faster R-

CNN), one-stage methods skip the region proposal stage, and

regard object detection as a regression task with class proba-

bility and coordinates of the bounding box as the outcome. As

a result, one-stage methods have much higher inference

speeds and relatively lower accuracy.

YOLOv5 is a recent popular version of the YOLO-series of

algorithms. Adapting from YOLOv4, YOLOv5 uses Focus

structure with CSPdarknet53 as the backbone and introduces

Spatial Pyramid Pooling method, mosaic training, self-

https://github.com/tzutalin/labelImg
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Table 2 e Overview of the behaviour recognition dataset. Images were extracted using 6-min scan sampling from 10:30 to
15:00 h during the three-day experiment.

Dataset Number of cow labels

Drinking Eating Lying Standing-in Standing-out Total

Training (600 images) 164 269 3326 509 2682 6950

Validation (200 images) 49 73 1237 170 836 2365

Testing (200 images) 40 103 1152 186 769 2250

Total 253 445 5715 865 4287 11565
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adversary training, and multi-channel feature. It has been

reported that YOLOv5 has a much higher inference speed and

smaller size compared with its previous versions without

sacrificing accuracy (Yang et al., 2020). Thus, YOLOv5 was

chosen to recognise cow behaviour in the present study.

Specifically, three architectures were trained, with size

increasing from YOLOv5s, YOLOv5m, to YOLOv5l.

Deep learningmethods require a lot of time andmemory to

train on a large number of images. Transfer learning, which

involves transferring previously learned knowledge from a

related task, is expected to accelerate the training process and

usually produce better results than training from scratch. The

pre-trained weights used in this study were provided by the

authors of YOLOv5 based on the COCO dataset which is a

benchmark object detection dataset published by Microsoft

(Lin et al., 2014).

The training of the different YOLOv5 architectures was

performed in Python 3.8 language with Pytorch 1.8.0. on a 64-

bit versionWindows 11 laptop with NVIDIA GeForce RTX 3060

GPU and 6 GB video memory. The batch size was set to 8 and

the epoch was set to 100. Hyperparameters were set as

default.

2.2.3. Performance evaluation
In object detection tasks, an Intersection over Union (IoU)

threshold has to be given first to determine whether a pre-

dicted bounding box should be classified as positive or nega-

tive. The IoU is the overlap of the predicted and ground-truth

bounding boxes divided by their union, as expressed in Eq. (2):

IoU¼ Prediction∩Ground truth
Prediction∪Ground truth

(2)

In this study, an IoU threshold of 0.5 was adopted by

convention. Thus, a detection with an IoU �0.5 was classified

as true positive (TP), a detectionwith an IoU <0.5 was classified

as false positive (FP), and a ground truth presented but failed

to be detected is classified as false negative (FN).

Afterward, the precision (Pr), recall (R), and average preci-

sion (AP) were calculated according to Eqs. (3)e(5). The Pr in-

dicates the proportion of the predicted bounding boxes being

correctly detected whereas the R indicates the proportion of

the ground-truth bounding boxes being correctly detected.

The ideal object detector should have high Pr and R at the

same time. However, there is a trade-off between the two

metrics depending on the confidence threshold. Confidence

represents the probability (0e1) of a bounding box containing

an object and the predictions with class probabilities lower

than a given confidence threshold will be removed. A very

high confidence threshold will discourage the model from
making positive predictions, thus increasing Pr and

decreasing R, and vice versa. The AP is a commonly recom-

mended metric since it summarises the Pr along with the R at

all possible confidence thresholds. This was done by default

setting the confidence threshold to 0.001.

Pr¼ TP
TPþ FP

(3)

R¼ TP
TPþ FN

(4)

AP¼
Z1

0

PrðRÞdR (5)

In such a multi-class task, the mean average precision

(mAP) was used to evaluate the overall performance, as

expressed in Eq. (6):

mAP¼ 1
C

XC
i¼1

APi (6)

where C takes 5, indicating 5 classes (i.e., “Drinking”, “Eating”,

“Lying”, “Standing-in”, “Standing-out”). In addition, frames

per second (FPS) was used to indicate the inference speed, as

expressed in Eq. (7):

FPS¼ N
tN

(7)

where tN is the total inference time (s) on N images.

Unlike AP calculations, where all potential confidence

thresholds are required, the confidence threshold for actual

inference must be tuned and specified for better detection.

The confidence threshold for inference on the testing set was

determined by checking the global maximum on the F1 con-

fidence curve. The F1 score is the harmonic mean of Pr and R,

as expressed in Eq. (8):

F1 score¼ 2� Pr� R
Prþ R

(8)

2.3. Behavioural indicator calculation and heat stress
determination

2.3.1. Behaviour recognition
The video frames were further extracted using 30-min scan

sampling from 10:30 to 15:00 h since this method has been

validated to be effective and efficient for analysing cow

behaviour (Mattachini, Riva, & Provolo, 2011; Uzal Seyfi, 2013).

Consequently, 10 scan samples were obtained for each of the

13 test days, each containing eight images from eight

https://doi.org/10.1016/j.biosystemseng.2023.01.009
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cameras. The proposed behaviour recognition model was

applied to all images per scan sample.

2.3.2. Detection filtering
The eight cameras captured all 128 headlocks in the feeding

zone, but partially overlapped at the far end of the view (i.e.,

resting zone) due to the fact that faraway objects naturally

appear smaller than closer ones. However, it is important to

count each cow only once when calculating herd-level

behavioural indicators. Thus, processing had to be done to

filter each detection per image per camera to ensure that only

the detections located within the area of interest were coun-

ted. As shown in Fig. 1, the area of interest was predetermined

for each camera by using a polygon that covered the entire

floor of the feeding zone and its parallel resting zone. The

filteringwas based on Jordan Curve Theorem (Hales, 2007). For

each predicted bounding box, a ray was first drawn horizon-

tally to the right of the centre of its lower boundary line. This

was to ensure that the cows stood or liedwithin the area. If the

number of intersections was odd then the centre was inside

the polygon and the predicted bounding box was kept. This

filtering was based on the coordinates of the polygon and

those of the lower centres of the bounding boxes using a self-

written program in Python. The filtered number of detections

per class per image was therefore obtained.

2.3.3. Behavioural parameters
The number of detections for each behavioural class per scan

was determined after merging the results into each scan

sample. The herd-level behaviour distribution of each scan

was naturally calculated by dividing the number of detections

for each behavioural class by the total number of detections.

Except for the percentage of cows lying, several herd-level

behavioural indices have often been used for characterising

lying and standing behaviours. With the automated mea-

surements, comfort index (CI), stall-use index (SUI), and cow

stress index (CSI) were calculated according to Eqs. (9 - 11)

(Mattachini et al., 2011; Overton et al., 2002):

CI¼ lying = ðlyingþ standingeinÞ (9)

SUI¼ lying = ðlyingþ standingeinþ standingeoutÞ (10)

CSI¼ðstandingeinþ standingeoutÞ =n (11)

where n denotes the total number of cows.

To further evaluate the proposed behaviour recognition

model, the scan samples from the first three-day recording

were manually observed to count the frequency of each
Fig. 1 e Schematic of detection filtering taking one camera for e

interest and only the bounding boxes with their lower centres
behaviour. The manual results of behavioural parameters

including the percentage of all five target behaviours aswell as

advanced lying and standing indices (i.e., CI, SUI, and CSI) were

then calculated. The intraclass correlation coefficient was

computed to assess the agreement between manual and

automated methods using the icc function from the “irr”

package (R version 3.4.4; https://R-project.org).

2.3.4. Threshold development
Since the proposed model worked well in recognising herd-

level behavioural parameters, the remaining 10-day data

were further used to explore the herd-level behavioural

pattern with respect to the onset of heat stress. A total of six

herd-level behavioural parameters, including the percentages

of cows drinking (drinking%), eating (eating%), and lying (lying

%), as well as CI, SUI, and CSI, were used as animal-based in-

dicators, whereas Ta and THI were used as environmental

indicators. Data from 11:00 to 14:30 h were used for further

analyses since their behavioural results show a clear associ-

ation with environmental indicators.

All statistical analyses in this section were performed

using R software. Spearman's rank correlation analysis was

performed using the cor function to explore how these in-

dicators were associated with each other. Piecewise regres-

sion models were used to fit the response of animal-based

indicators to environmental indicators and locate the break-

point at which this response changed in trend. The piecewise

models were built with the “segmented” package which

works by updating the existing models with two or more

breakpoints based on Davies test (Muggeo, 2008). Therefore,

basic piecewise models were built by updating simple linear

regression models fitted with the lm function. The models are

written as Eq. (12):

Yi ¼b0 þ b1Xi þ b2

�
Xi �Xbp

�
Xk þ εi;Xk ¼

�
0 if X � Xbp

1 if X>Xbp
(12)

where Yi is the animal-based indicators, b0 is the population

intercept, b1 is the left slope, Xi is the environmental in-

dicators, b2 is the difference between the right slope and left

slope, Xbp is the breakpoint, Xk is the dummy variable, and εi is

the random residual for the i-th observation.

If the basic piecewise models converged, advanced piece-

wise models with the random effect of time of day were built

to separate the profiles of different hours. Otherwise, the re-

sults would be shown with simple linear regression models.

Advanced piecewise models were built by updating linear

mixed models fitted with the lme function included in the

“nlme” package. The random effect of time of day was
xample. The predefined red polygon represents the area of

in the area are kept.
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Fig. 2 e Comparison of training loss and validation mean

average precision (mAP) for three YOLOv5 architectures.
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included for every model parameter, including intercept,

slope difference, and breakpoint. For j-th time of day, the

model can be written as Eq. (13):

Yij ¼b0j þb1jXij þ b2j

�
Xij �Xbpj

�
Xk þ εij;Xk ¼

�
0 if X � Xbpj

1 if X>Xbpj
(13)

where each parameter is given by the sum of fixed and

randomeffects (e.g., b0j is the sumof fixed term b0 and random

term dj).

3. Results and discussion

3.1. Performance of behaviour recognition

Figure 2 showing the training process of three YOLOv5 archi-

tectures indicates a faster convergence always in the valida-

tion mAP than the training loss. As expected, the training

converged earlier as the network deepens in size. As shown in

Table 3, the mAP on the testing set was roughly close among

YOLOv5 models, in which “Drinking” was consistently the

most difficult to detect, probably due to the most limited data

to train. This is somehow inevitable when using such an

imbalanced dataset with “Standing-out” being almost 16

times more represented than “Drinking”. In the case of FPS,

models with smaller sizes showmuch higher inference speed,

with YOLOv5s increasing by 32.7% compared with YOLOv5m,

and by 65.9% compared with YOLOv5l. Other algorithms

commonly used for object detection were not compared since
Table 3 e Performance comparison of three YOLOv5 architectu

Model Average precision

Drinking Eating Lying Standin

YOLOv5s 0.944 0.995 0.995 0.995

YOLOv5m 0.963 0.995 0.995 0.995

YOLOv5l 0.956 0.995 0.995 0.994

mAP ¼ mean average precision; FPS ¼ frames per second.
the YOLOv5 algorithms have already shown extremely good

performance. In fact, YOLOv5 has been reported to have a

dramatic increase in inference speed compared with YOLOv3

and YOLOv4 (Lv et al., 2022). Our results show that all three

YOLOv5 architectures should be effective and capable of being

deployed on mobile terminals. Anyway, we simply chose the

YOLOv5s model for further application due to its ability to

further compress the weight size while maintaining accuracy.

The F1 confidence curve indicates that the F1 score of all

behavioural classes peaked at a confidence threshold of 0.696

(Fig. 3(a)). Thus, further evaluation and application were per-

formed with confidence threshold set to 0.696. The confusion

matrix shown in Fig. 3(b) indicates that the major misclassi-

fication was marked between drinking and standing-out be-

haviours and between standing-in and lying behaviours, with

1 out of 40 “Drinking” labels being misclassified as “Standing-

out” and 4 out of 186 “Standing-in” labels being misclassified

as “Lying”, respectively. The example results shown in Fig. 3(c)

demonstrate a good ability in dealing with occlusion caused

by facilities or other cows.

When calculating herd-level behavioural parameters for

the 30 scan samples from the first three-day recording, the

intraclass correlation coefficient between manual and auto-

mated methods was 0.97. Moreover, the overall linear rela-

tionship shows that only 11 out of 240 observations were

classified to be outliers by the 95% prediction limits (Fig. 4).

Collectively, these results demonstrate an excellent agree-

ment between manual and automated methods in obtaining

herd-level behavioural parameters. Of note, given that the

view provided by our cameras might be difficult to show the

relationship between a cow's head and the trough when there

was a strong occlusion, both the ground truth and detections

could have underestimated the incidence of drinking, thereby

affecting the calculated behavioural parameters. For example,

the drinking% and the SUI would be underestimated whereas

the CSI would be overestimated. This bias should cause

negligible effects on the current results since such occlusion

happened in only five scan samples (a total of eight occluded

cows) during the entire 13 test days and drinking played a

limited role in the equation compared with standing and

lying. However, it may have a stronger impact on behavioural

parameter calculation when facing a higher farming density

andmore occlusions. A top-view camera, as presented by Tsai

et al. (2020), could be a solution to eliminating this measure-

ment bias. Another possible way is to introduce new labels

describing cow behaviour in the drinking area. This is of in-

terest since it can be very crowded in drinking areas during

hot seasons and cows would even compete for troughs

(McDonald, von Keyserlingk, & Weary, 2020).
res.

mAP FPS Size (M)

g-in Standing-out

0.994 0.985 73 13.7

0.995 0.988 55 40.2

0.995 0.987 44 88.5
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Fig. 3 e Detailed performance of the YOLOv5s model. (a) F1 confidence curve with the black vertical dashed line indicating

the best F1 score at a confidence threshold of 0.696. (b) Confusion matrix (normalised by column) with confidence threshold

set to 0.696. (c) Example results of behavioural recognition with confidence threshold set to 0.696.
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3.2. Behavioural pattern under heat stress conditions

As shown in Fig. 5, the 10-day experiment conducted in mid-

May well captured the beginning of heat stress with daily

mean Ta rising from 14.7 to 25.8 �C and daily mean THI rising

from 58.4 to 74.4. The heat stress threshold for high-producing

dairy cows (�35 kg day�1) has been updated to a daily mean

THI of 68 by Collier, Laun, Rungruang, and Zimbleman (2012).

According to their revised THI thresholds, the study herd first

stayed within the thermoneutral zone and then experienced

mild to moderate heat stress during the 10-day experiment.

The 100% bar chart presents the herd-level behavioural

pattern from 10:30 to 15:00 h (Fig. 6). The complete statistics

used for plotting can be found in Table S1 (supplementary

material). As expected, lying consistently occupied the

largest proportion. Lying has long been used for indicating

cow comfort and welfare, and cows should spend most idle

time lying (Tucker, Jensen, de Passill�e, H€anninen, & Rushen,

2021). Besides, cows had the lowest lying% and a relatively

high eating% at 10:30 h compared with other scan samples,
indicating that the effect of intensive feeding was still lasting

2 h after leaving for themorningmilkingwhichwas scheduled

at 08:30 h. Afterward, the lying% raised dramatically until it

peaked at 11:00 h when the majority of cows were resting on

their stall beds. The lying% then followed a decreasing trend

from 11:00 to 14:30 h, whichwas right opposite to the rising Ta

and THI. These patterns are consistent with Overton et al.

(2002) and Mattachini et al. (2011), who found that a herd

needs 2e3 h after leaving for milking to finish feeding and

return to rest, and increasing environmental temperature will

decrease the lying% during idle time. Therefore, the eight scan

samples from 11:00 to 14:30 h were used for further analyses

exploring the effect of heat stress on cow behaviour due to a

clear relationship between cow behaviour and thermal envi-

ronment during this period.

The spaghetti plot shows the temporal pattern of six herd-

level behavioural indicators with regard to two environmental

indicators (Fig. 7). The complete statistics used for plotting can

be found in Table S1 (supplementary material). Consistent

with lying%, indices describing lying behaviour (i.e., CI and
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Fig. 4 e Comparison of herd-level behavioural parameters

measured half-hourly by manual and automated methods

from 10:30 to 15:00 h during the three-day experiment.

Drinking% ¼ percentage of cows drinking; Eating

% ¼ percentage of cows eating; Lying% ¼ percentage of

cows lying; Standing-in% ¼ percentage of cows standing-

in; Standing-out% ¼ percentage of cows standing-out;

CI ¼ comfort index; SUI ¼ stall-use index; CSI ¼ cow stress

index.

Fig. 6 e Herd-level behaviour distribution measured half-

hourly by the proposed automated method, as well as the

corresponding ambient temperature (Ta, �C) and
temperature-humidity index (THI), averaged during the 10-

day experiment.
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SUI) increased to a peak at 11:00 h and followed an overall

decreasing trend until 14:30 h. The only difference between

lying%, CI, and SUI was the calculation of the denominator.

Neither CI nor SUI takes eating into account for calculation. An

increasing eating% would therefore lower the denominator

and finally increase their results. This leads to fluctuations in

CI and SUI from 11:30 to 12:00 h and from 13:30 to 14:00 h.

Moreover, CSI, as an index describing idle standing behaviour,

showed an almost horizontally symmetrical trajectory to SUI.
Fig. 5 e Overall variation of indoor ambient temperature

(Ta, �C), relative humidity (RH, %), and temperature-

humidity index (THI) during the 10-day experiment with a

measurement interval of 10 min.
These trends of lying%, SUI, and CSI are comparable with

Mattachini et al. (2011) whomanually observed cow behaviour

through video recording with a 60-min scan sampling. Once

again, this demonstrates the effectiveness of our proposed

automated method for behaviour recognition.

Generally, lying and standing indices (i.e., lying%, CI, SUI,

and CSI) and drinking% had strong correlations with Ta and

THI (all P < 0.01), whereas eating% did not appear to have any

correlation (both P > 0.05) (Fig. 8). Of note, Ta had a stronger

correlation with cow behaviour than THI with exception of

drinking% and eating%. A better correlation of Tawith animal-

based indicators was also observed in our previous study

when physiological indicators were used (Shu et al., 2022). To

some extent, Ta seems to better describe environmental stress

than THI in this specific environmental condition, probably

because the effect of RH not yet playing an important role at

the very beginning of summer.

Among lying and standing indices, CI correlated the

weakest with Ta (r ¼ �0.360, P < 0.001) and THI (r ¼ �0.322,

P ¼ 0.002), whereas SUI correlated the strongest with Ta

(r ¼ �0.744, P < 0.001) and THI (r ¼ �0.673, P < 0.001). Similarly,

CI was found less susceptible to environmental temperature

compared with lying% and SUI by Overton, Moore, and Sischo

(2003), and the strongest correlation coefficient was found

between SUI and Ta (�0.762) by Mattachini et al. (2011). It is

well known that cows will change their drinking and feeding

patterns to better copingwith heat stress (Kadzere et al., 2002).

The positive correlation of drinking% with Ta (r ¼ 0.357,

P < 0.001) and THI (r ¼ 0.393, P < 0.001) observed in this study

might be attributed to increased visit to the trough and

increased time per visit, as previously identified by Tsai et al.

(2020) and McDonald et al. (2020). Moreover, eating patterns

can change through different strategies by cowswith different

production stages (Eslamizad, Lamp, Derno, & Kuhla, 2015) or

social ranks (Olofsson, 1999). Thus, the small to no effect of

heat stress on eating% is probably due to heterogeneous

strategies taken among the herd. Indeed, some cows may
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Fig. 7 e Herd-level behavioural indicators measured half-

hourly by the proposed automated method, as well as the

corresponding ambient temperature (Ta, �C) and
temperature-humidity index (THI), averaged during the 10-

day experiment. Drinking%¼ percentage of cows drinking;

Eating% ¼ percentage of cows eating; Lying% ¼ percentage

of cows lying; CI ¼ comfort index; SUI ¼ stall-use index;

CSI ¼ cow stress index.
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reduce their feed intake with a longer eating time (Eslamizad

et al., 2015; Herbut et al., 2021). Anyway, eating% alone ap-

pears to be insufficient to quantify eating behaviour, andmore
Fig. 8 e Spearman's rank correlation coefficients between

herd-level behavioural indicators measured half-hourly by

the proposed automated method from 10:30 to 15:00 h

during the 10-day experiment and ambient temperature

(Ta, �C) and temperature-humidity index (THI). Drinking

% ¼ percentage of cows drinking; Eating% ¼ percentage of

cows eating; Lying% ¼ percentage of cows lying;

CI ¼ comfort index; SUI ¼ stall-use index; CSI ¼ cow stress

index.
data from longer duration or smaller sampling intervals are

required to evaluate its ability as a herd-level heat stress

indicator.

3.3. Critical threshold for determining the onset of heat
stress

The basic linear and piecewise models visualised in Fig. 9

show the benefit of using lying%, SUI, and CSI for indicating

the onset of heat stress. Their statistical results presented in

Table 4 indicate that the lowest upper critical Ta was associ-

ated with SUI and CSI (both 23.8 �C), and the lowest upper

critical THI was associated with lying% (68.5). The slope dif-

ferenceswere always higherwith Ta thanwith THI, once again

suggesting the superiority of Ta in representing the stress

imposed by the current environment. As for the behavioural

indicators that were not converged in the piecewise regres-

sion, drinking% and CI were positively and negatively related

to environmental indicators, respectively, whereas eating%

appeared to be independent of Ta and THI. These results are

consistent with those from the correlation analysis.

Several studies have compared cow behaviour in different

environmental classes (e.g., THI classes), and the upper limit

of the class at which significance occurred was stated as a

critical point. For example, a THI of 68 was determined since

the THI class <68 had a significantly lower percentage of cows

standing compared with other predetermined THI classes

(Allen, Hall, Collier,& Smith, 2015). However, thismethodmay

be arbitrary and can lose information. Moreover, piecewise or

segmentedmodels, are used for developing critical thresholds

due to their indicative parameters (i.e., slope and breakpoint).

For example, Heinicke, Hoffmann, Ammon, Amon, and Amon

(2018) determined a THI threshold (67) for total lying/standing

time, number of lying/standing bouts, and lying bout duration.

Our results, however, cannot be compared directly with theirs

since THI and behavioural indicators were summarised as

daily averages in their study.

The advanced piecewise models with THI as the predictor

all failed to converge. The profiles of the advanced piecewise

models with Ta as the predictor and lying%, SUI, and CSI as the

outcomes are shown in Figs. 10e12. For each behavioural in-

dicator, Ta breakpoints were roughly the same at different

times of day, with differences only being observed since the

ten thousandth place. The rounded Ta breakpoints among

times of day were 23.88, 23.70, and 23.65 �C, for lying%, SUI,

and CSI, respectively. The behavioural pattern can be found on

the Y-axis with standing increasing and lying decreasing from

11:00 to 14:30 h. According to these findings, accumulated heat

load over the observed period of time did notmake cowsmore

sensitive to heat stress at a particular time point. In a recent

chamber study, the critical Ta threshold of respiration rate

was found to be lower in the afternoon than in the morning,

indicating that cows were more sensitive after longer expo-

sure to heat stress (Zhou, Aarnink, Huynh, van Dixhoorn, &

Groot Koerkamp, 2022). Anyway, more data is required to

confirm our results since the subgroup sample size used in the

analysis might not support a precise localisation of break-

points. To sum up, any attempt to integrate behavioural in-

dicators for heat stress evaluation should carefully consider

the temporal pattern.
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Fig. 9 e Automated measurements of herd-level behavioural indicators and their fitted profiles from linear regression

(green) and piecewise regression (red) models with (a) ambient temperature and (b) temperature-humidity index as the

predictor, respectively. Breakpoints are marked as a black triangle above the x-axis. Drinking% ¼ percentage of cows

drinking; Eating% ¼ percentage of cows eating; Lying% ¼ percentage of cows lying; CI ¼ comfort index; SUI ¼ stall-use

index; CSI¼ cow stress index. (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)
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3.4. Strength and limitations

To the best of our knowledge, this is the first study to deter-

mine heat stress based on herd-level behavioural recognition.

Although individual measurements can help identify animals

with the greatest risks and thereby customise heat abatement,

this can be costly in free-stall barns since individual mea-

surement and abatement require a lot of improvement on the

existing facilities. In many cases, even if individual mea-

surements have been done, the data have to be summarised to

reflect the herd mean (Levit et al., 2021). Indeed, as long as

heat abatement is implemented at the herd level, information

on the individual level is not necessary for decision making

(Winckler, 2019).

With the help of computer vision and scan sampling, our

work offers a low-cost herd-level heat stress alert without

imposing any burden on dairy cows. Besides, the effectiveness

of heat abatement can be tracked by introducingmore flexible

scan sampling or even continuous measurement when
necessary. It should be noted that cows would take advantage

of nights when the temperature is thermally comfortable to

relieve their accumulated heat load throughout the daytime

(Allen et al., 2015). However, such nighttime behavioural data

is missing in this study. Future works with reliable nighttime

recording and transfer learning techniques are required to

develop a behavioural recognition model that can work day

and night as well as to customise heat stress thresholds for

nighttime hours. By doing so, it is promising to develop a

comprehensive protocol for heat stress detection, mitigation,

and evaluation.

Our method is best suited for intensive farms where fa-

cilities and animals are highly standardised. From the facility

perspective, our method for camera mounting can be directly

applied in similar settings, but further evaluation in other

designs (e.g., 4-row tail-to-tail) is required. In addition, our

solution requires fewer cameras than the top-view method

(Porto, Arcidiacono, Anguzza, & Cascone, 2015), because it

includes more cattle in each view. Top-view cameras, as

https://doi.org/10.1016/j.biosystemseng.2023.01.009
https://doi.org/10.1016/j.biosystemseng.2023.01.009


Table 4 e Parameter estimates (mean ± SE) of basic piecewise regression models with ambient temperature (Ta, �C) and
temperature-humidity index (THI) as the predictor, respectively. Behavioural indicators were measured half-hourly by the
proposed automated method from 11:00 to 14:30 h during the 10-day experiment.a

Predictor Outcome Intercept Breakpoint Left slope Right slope AIC

Linear Piecewise

Ta Drinking% �1.1 ± 1.1 N/A 0.12 ± 0.04 N/A 309.6 N/A

Eating% 8.1 ± 2.9 N/A �0.01 ± 0.12 N/A 464.9 N/A

Lying% 84.0 ± 7.9 24.0 ± 1.3 �0.43 ± 0.37 �2.21 ± 0.42 534.0 527.8

CI 98.4 ± 3.0 N/A �0.44 ± 0.12 N/A 471.3 N/A

SUI 89.5 ± 6.7 23.8 ± 1.0 �0.33 ± 0.32 �2.35 ± 0.36 516.0 502.2

CSI 9.7 ± 6.2 23.8 ± 1.0 0.29 ± 0.29 2.07 ± 0.31 499.3 486.4

THI Drinking% �6.1 ± 2.4 N/A 0.11 ± 0.03 N/A 306.1 N/A

Eating% 7.1 ± 6.5 N/A 0.01 ± 0.09 N/A 464.9 N/A

Lying% 85.2 ± 35.6 68.5 ± 3.3 �0.14 ± 0.56 �1.32 ± 0.23 544.4 542.4

CI 110.8 ± 6.8 N/A �0.32 ± 0.09 N/A 472.5 N/A

SUI 105.5 ± 20.8 70.7 ± 2.1 �0.35 ± 0.31 �1.43 ± 0.27 534.0 530.9

CSI �5.1 ± 18.9 70.7 ± 2.3 0.32 ± 0.28 1.23 ± 0.24 517.9 515.8

AIC ¼ Akaike information criterion; Drinking% ¼ percentage of cows drinking; Eating% ¼ percentage of cows eating; Lying% ¼ percentage of

cows lying; CI ¼ comfort index; SUI ¼ stall-use index; CSI ¼ cow stress index.
a N/A indicates that piecewise regression failed to converge. Intercept and left slope, in this case, represent the parameters of simple linear

regressions.
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stated before, can also be supplemented in specific areas (e.g.

troughs) to provide more reliable recordings. From the animal

perspective, cows raised on intensive farms are typically

grouped by common influencing factors (e.g., productivity,

lactation stage, and parity) and thus behave relatively homo-

geneously against heat stress. This will help to shrink within-

herd variation, allowing abatement measures based on herd

means to be useful for the majority of cows. This also allows
Fig. 10 e Automated measurements of the percentage of cows

regression with ambient temperature as the predictor. Random e

difference, and breakpoint. Breakpoints are marked as a black
precision management by customising herd-level heat stress

thresholds with respect to different levels of heat sensitivity.

Of note, any extrapolation and interpretation of the deter-

mined critical thresholds should carefully consider the impact

of different management or facility conditions on cow

behaviour, such as overstocking, milking frequency, and

bedding materials (Hart, McBride, Duffield, & DeVries, 2013;

Ito, Chapinal, Weary, & von Keyserlingk, 2014).
lying and their fitted profile from advanced piecewise

ffects of time of day (h) were introduced for intercept, slope

triangle above the x-axis.
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Fig. 11 e Automated measurements of stall-use index and their fitted profile from advanced piecewise regression with

ambient temperature as the predictor. Random effects of time of day (h) were introduced for intercept, slope difference, and

breakpoint. Breakpoints are marked as a black triangle above the X-axis.

Fig. 12 e Automated measurements of cow stress index and their fitted profile from advanced piecewise regression with

ambient temperature as the predictor. Random effects of time of day (h) were introduced for intercept, slope difference, and

breakpoint. Breakpoints are marked as a black triangle above the X-axis.
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4. Conclusions

This study has proposed a YOLOv5-based method for recog-

nising cow behaviourwith excellentmAP and inference speed.

The ability of the proposed model in measuring herd-level

behavioural indicators has been validated in comparison to

manual observation. The automated measurements taken

during the 10-day experiment reveal that lying and standing

indices (i.e., lying%, SUI, and CSI) were most responding to

heat stress and the test dairy herd began to change their

behaviour at the earliest Ta of 23.8 �C or THI of 68.5. Collec-

tively, the model and results presented in this paper have

achieved a low-cost heat stress alert for the study herd

without imposing any burden on dairy cows. Further study

usingmultiple herds with varying characteristics is promising

to customise herd-level heat stress thresholds.
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