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Abstract

The Merchant-Rankine approach is a practical design procedure which dlows to predict the
ultimate resistance of sway sted building frames with rigid structurd joints. In the present paper the
background and the traditiond field of gpplication of the Merchant-Rankine formula are first
described. Its extenson to the design of sed frames with so-cdled semi-rigid joints is then
presented and judtified. Findly its gpplication to sted-concrete sway compodite building frames is

investigated and first conclusions of thiswork are drawn.
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1. General

Low-rise sted buildings can often be idedised as a series of two-dimensiond frames, each of which
resss loading in its own plane primarily by flexure. Plastic theory provides an economical basis for

the design of such frames when these are fabricated using shapes of uniform cross-section. Inrigid-
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plagic andysis it is assumed that when the collgpse mechanism is formed, the deformations
experienced by the dructure are insufficient to ater sgnificantly the equations of equilibrium. The
resulting method of anadyss is straightforward to apply and is especidly appropriate therefore for

low-rise buildings

It is generdly agreed that first-order rigid-plastic hinge theory may be applied directly to the design
of frames up to three storeys, as far as the estimation of the collapse load is concerned. Of course
the limit of three Soreys is just a satement, that is valid in mogt - but not dl - the Stuations met in
design practice, when the columns are neither too dender, neither too flexible. Some criteria exist
which dlow for usng the firg-order plastic hinge theory. For instance, it is required in (ECCS 1984)
that (figure 1):

a The e factor, defined as =(INTEI jsnot larger than 1,6 in dl the columns;

b)  No plastic hinges develop between column end points;

0) Iyr'

produced by the axid forces in the columns due to sway is smaler than 1/10 of the storey

£]Q, /10R|, a inequality which means approximately that the additiona storey shear

shear Q- =H, +y P and therefore may be considered negligible.

In above expressons, the symbols have the following meaning:

Yo Column-dope of storey r caculated based on the stress resultants at collgpse obtained by
afirg-order plagtic hinge anaysis,

Yo : Initid out-of- plumb;

Hr : Total sum of factored externa horizonta working loads above sorey r;
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Pr : Totd sum of factored vertical working loads above storey r ;

| : Column depth;
El : Column flexurd diffness;
N : Factored axia working load in the column.

The regtriction €£16  and the requirement of no plagtic hinges between column end-points are
necessary to preclude locd ingtability of highly compressed dender columns. Above restriction (C)

makes the commonly termed P - D effect negligible.

In order to help the designer in his daly work, severad studies have been aimed at giving yet more
ample limits within which second-order effects can be neglected in plastic analyss of plane Sngle-
storey, single bay, pinned base frames (ECCS 1991). The limits are gpplicable to such topologicd
frames only, where vertica forces can be treated as distributed loading along the beams and/or

rafters asis usudly the case in building structures.

In Eurocode 3 (Eurocode 3 1992), the fidld of gpplication of the first order rigid-plagtic theory is
limited to dructures such that Vsi / Vo £ 0.1 where Vg and Vo are respectively defined as the
design vertica load acting on the frame and its dadtic critica ingability load. This criterionisusad in
Eurocode 3 as a boundary when classfying aframe as sway (P-D effects to be considered) or non+

sway (P-D effects to be disregarded); it is further discussed in Section 4.

For multi-storey frames of many storeys, firg-order plastic hinge analysis is no more permitted and
modifications are to be brought to assure safety, because of two different effects:

a) Changesin frame geometry are not accounted for in the first-order theory;



b) Frame collapse may be due to ingability, which is likely to prevent the structure from reaching

the ultimate plastic capacity provided by the first-order plastic hinge theory.

Then a more refined structura andlysis must be contemplated. In contrast to the concept of plagtic
hinge, where the materid yielding is assumed to concentrate into a Sngle cross-section, the one of
plagtic zone accounts for the actud goreading of materid yielding in the close vicinity and on both
sdes of the fully yielded cross-section. The ultimate strength theory, based on the concept of plagtic
zones, requires the use of very sophisticated nor+linear computer programs. It provides only adight
change in the results, compared to a second-order plagtic hinge theory. Therefore the latter is very
much preferred and numerous proposals have been made that are aimed at adopting the rigid-plastic
andysis to dlow for the reduction of ultimate load capacity due to both change in geometry and

frame ingahility.

Compared to rigid joints, semi-rigid beam-to-column joints would result in a larger flexibility of the
frame, and consequently in a larger sengtivity to globd frame buckling. Therefore it is generdly
agreed that multi-storey frames should make use of rigid joints. Should the joints be semi-rigid
anyway, then, at the beam-to-column interface, the plagtic capacity of the joint - which is generdly
less bending resistant that the beam section - must be subtituted for the plastic bending resistance of
the beam.

Fadtic andyss may be utilised in the globa analyss of structures or of their eements provided that
plastic hinge mechaniams be able to develop redly. Therefore the available rotation capacity of both
structura shapes and joints cannot be less than the rotation capacity required by the formation of

such mechaniams.



Idedlly it is desirable to obtain as close an estimate as possible of the true collapse load factor. One
of the easiest ways to do s0 is known as the Merchant-Rankine formula. The latter provides an
approached vaue of the ultimate load factor, computed based on the sole knowledge of both the
firg-order rigid-plagtic limit load factor and the dastic critical buckling load factor. The reevant
relation is quite Smilar to the one established for the axia resstance of a single eccentrically |oaded

column. Therefore column gtability and frame stability are examined in turn in this respect.

2. Column buckling by excess of bending in the loading plane

Let us condgder a dender pin-ended column made of a compact section, which is eccentricaly
loaded by a growing compressive force (figure 2.8). Its load-transverse deflection response is the
one plotted in figure 3. At the very fird beginning, the column bends dadticdly till the materid yidd
dress is reached in the most compressed fibre at mid-length (point A in figure 3). When the load is
further increased, the plastic zone progresses in depth and extends over a certain region close to
mid-length (figure 2.b). Possibly the direct stress on the convex side may yield too, especidly when
the load eccentricity issmadl (figure 2.¢). The load-deflection curve then grows non-linearly beyond
the dadtic region OA; the more extended the yielded zone the more the flexurd giffness of the
column is reduced, and the lesser the dope of the N-d curve. A neutra gate of equilibrium is
reached when the bending resistance is exhausted (peak C in figure 3); the Sructurd gability is no

more warranted and the column is prone to collapse.

Though the neutra equilibrium is preceded by stable plagtic srains, ingability is wel of concern at

collgpse; indeed there is no more possibility for a deflected shape to dlow equilibrium between



internal red stance and externd forces.

Because the determinative cross-section - the one located a mid-span - is actudly subject to
bending and compression, it is not able to exhibit the full bending resstance Mp of the section and to

develop an ided notiond plagtic hinge.

Usudly dastic column buckling approach assumes that the ultimate strength limit Sate is governed by
the onset of materid yielding in the most compressed fibre of the critica cross-section. That results
in the well-known secant formula. Such a solution is not fully satisfactory because it disregards any
plastic strength reserve. No doubt indeed that the latter exists with a magnitude, which depends on:

- Thereative eccentricity of the compressive force;

- The shape of the column cross section;

- Thetype of materid, especialy reflected by the stress-strain response curve.

A rather smple way of accounting for such a strength reserve is based on the assumption that a
plastic hinge develops dl a sudden in the determinative section at mid-length of the column, when the
moment loading amounts the relevant reduced plagtic bending resistance Mpn dlowing for the axid
force N (Vogd 1965). Then the column is no more stable because transforming into a plastic

mechanism; the corresponding collapse load N is drawn from equilibrium condition a mid-span:

N™ (e + d)=M 1)

where e is the load eccentricity and d the additiona deflection due to second-order effects. Because



of above assumption - sudden onset of the plagtic hinge -, the total deflection

(e+ d) can be computed dagticaly according as the well-known expression :

e+d=e/[1- N*/ N_] )

where Nk is the dadtic critical column buckling load. A further smplification conggsin disregarding
the influence of axid force on the plagtic bending capecity of the section (Ligtenberg 1965). Then

Eq. (1) writessmply:

N*e/[1- N*/Ng] = M, 3)

Another reasoning bases on asmplerigid-plastic design approach, according to which dadtic srains
as well as second-order effects are fully neglected. Collgpse should occur when the bending moment
produced by the eccentrically gpplied axid force of magnitude Ni reaches the full plastic bending

resistance M, of the section, wherefrom:

N e =M, 4

Formulae (3) and (4) result in:

N* = NgN; /(Ng + N;) (5.9

or:

UN* = 1N, + UNg (5.b)



This latter expresson is commonly known as the Rankine formula (Rankine 1866). It alows for a
fairly good assessment of the ultimate load N when the loading eccentricity is not too large. The
attractiveness of above gpproach lies in the theoretica background it gives to a Smilar expresson,
which was suggested to assess the detrimentd effect of the buckling by divergence on the collapse

load of sway multi-storey frames (Merchant 1954).

Ultimate loads computed in accordance to (5.b) for | and H sections subject to strong axis bending
are found in quite satisfactory agreement with those provided by a refined gpproach on the one hand
(Vogd 1965) and exact solutions on the other hand (J&ger 1937), provided the loading eccentricity

be not less than four times the central core radius.

3. Global frame buckling

By nature a framed gtructure is initidly geometricdly and materidly imperfect. More especidly the
columns exhibit an unavoidable out-of- plumb. When such aframe is subject not only to gravity loads
but dso to horizontd forces (wind loads, for ingtance), it deflects horizontadly since the very firg
beginning of the loading. Horizontd drifts provide lever ams to gravity loads wherefrom
second-order bending moments; the frame response in terms of 1oad-displacement relationship is
non-linear. The carrying capacity is given as the peak of the corresponding curve, where a neutral
date of equilibrium is reached. Because most of the vertica forces acting onto the frame are gravity
loads, their magnitude does not decrease while sway increases; therefore the peak load is the

ultimate load.



What is sad here above implies that the flexura tiffness of dl the structural ements composing the
frame is not subgantidly changed when the loading magnitude is progressively increased. That is
mogtly in contradiction with the true frame behaviour. In more than once daticaly indeterminate
frames plagtic hinges indeed develop usudly prior to complete loss of frame stability. They reduce
the flexurd diffness of the structurd dements - and therefore of the globd frame - and change the
bending moment distribution. Materid yielding and more especidly onset of plastic hingesresult in a

progressive deterioration of the frame stability.

Most of the complexity in sway frames arises because of the possble too large drift when laterd
load is gpplied. Let us consder, as an example, the four storeys frame of figure 4, which is loaded
by concentrated gravity forces a mid-span of the beams and wind forces applied horizontaly a
each storey. All the loads are increased proportionaly by means of aload factor | . The quditative
load factor - drift behaviour is plotted in figure 5:

- Straght line (1) is the linear dadiic rddion, in which ingability, change of geometry as well as
materid yielding are ignored; it is the firg-order elastic response.

- Curve (2) results from a second-order dagtic andys's, where the materid is assumed indefinitely
eladtic and due consderation paid to changes in geometry (P-D effects); its asymptotic load is
measured by the eagtic critical buckling load factor | 0 because collgpse results from frame
instability.

- Horizonta line (3) represents the first order rigid-plastic collapse load factor | p ; materid
yidding is accounted for while change in geometry is disregarded.

- When dlowance is made for change of geometry in the rigid-plastic theory, descending curve

(4) is obtained.



In an dadtic-plagtic analys's conducted on the initid frame geometry (firg-order analyss) plagtic
hinges develop successively; once the first hinge has developed (point 1 on curve (2)), the load-
deflection response follows the second-order eastic curve branch (5) relevant for the frame
fitted with a hinge a the location of the yet occurred plastic hinge. Each time an additiond hinge
develops, the frame giffness decreases accordingly and the behaviour adapts smilarly. The
frame response follows the curve (6) and peaks at load factor | ..

Should the change of geometry be now accounted for, then a continuous curve dightly lower
than curve (6) would be obtained. In addition following additiond effects should be included:

a) Spreading of yielding according as plastic zones ingtead of plagtic hinges,

b) Influence of possible resdud stresses and initia geometric imperfections;

¢) Materid drain hardening.

The two firgt of these factors tend to lower the pesk load whereas strain hardening tends to
raseit. On balance, there is atendency for a conservative estimate of the peak of the true load-
deflection curve. The collgpse mode of the frame illustrated in figure 4 is the one indicated on

figure 6; the numbers show the order of onset of plagtic hinges.

The process according to which the flexurd giffness deterioration contributes n controlling the

actud ultimate load (Wood 1958) helps very much in understanding the interaction between hinge

onset and ingtability. Thereforeit is useful to comment somewhat more.

The dadtic critical frame building load factor is termed | 0. It Will not be reached if one or more

plastic hinges occur(s) at load level(s) lower than | o p. Let us assume that afirgt plastic hinge occurs

a | =l1<l«, somewhere in the structure. When | increases beyond | 1, this hinge is prone to
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rotate, while being subject to a congant bending moment equa to the plagtic resstance of the
relevant section. Provided the rotation does not reverse, this section shal henceforth no more
contribute the flexurd giffness of the frame. Thus, once this plagtic hinge is formed, the frame has
become more flexible and its eadtic critical frame buckling load factor decreases from | ¢r,o down to
| er.1. The latter vaue can be computed, smilarly as | oo, after substitution of the plastic hinge by a
free hinge. Above reasoning process can be repeated a each time an additiona plastic hinge

developsin the Structure.

To which extent the stability may be deteriorated is highlighted by the example of figure 4. For this
frame, the firg-order rigid-plastic mechanism shoud require ten plastic hinges and the relevant
plagtic load factor would be | , = 1.79. On the other hand, the dadtic critical buckling load factor of
the origind frame is | <0 = 16,92; this large value should let expect that second-order effects can
be disregarded in service conditions (| = 1). Vduesof | «, of the frame where some plastic hinges

- innumber i - have occurred are givenin figure 7.

When the load factor is progressively increased, plagtic hinges successively develop in the Structure

with the result of adecreasein the dadtic critica load factor of the evolutive frame.

Understandably the onset of only some of the ten plastic hinges may be sufficient to deteriorate the
frame flexurd iffness to such an extent that the decreasing eadtic critica load multiplier | i
overtakes the increasing load factor | . That will prevent the frame from reeching the rigid-plastic
firg-order collgpse load. For the building structure represented in fgure 4 plastic hinges occur

successvely as shown in figure 6 before collapse produces at aload factor of about 1.63. Thus it
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can be concluded that the loss in strength due to second-order effects, when compared to

firg-order plastic collapse load (figure 8), amounts approximately: (1.79 - 1.63)/1.79 = 6%.

Of course the number of plagtic hinges that are yet formed when collgpse occurs depends very much
on the globd relative denderness of the frame. Should the latter be smdl enough - what would mean
that the P-D effects can be disregarded - then there is no sSgnificant interaction between yielding and

ingability and the collapse load factor iscloseto | p.

4. Merchant-Rankine-Wood formula

It has been postulated Merchant 1954) that Eq. (5.b), established for a column, has a genera
vdidity and can be generdized with aview to assess the ultimate buckling load of dastoplastic sway
frames. Although suggested by Merchant as a purely empirica formula, it has been shown (Horne
1963) to have some degree of theoreticd judtification. Another demondiration of this validity was

provided based on theoretical consderations (Witteveen 1975).

Using the concept of load multiplier introduced in previous section, Merchant's basic idea leads to

write

1 1
=T + T (6.9
p o

1
Iy
or.

I

NI (6.b)

with

| v : ultimate collapse load factor ;



| p: fird-order rigid-plastic load factor ;

| « : eladtic critical frame buckling load factor (equa to | ¢r,0in Section 3).

All the forces composing the frame loading are thus assumed to increase proportiondly indeed. EQ.
(6.b) is thus likely to account for the interaction between dadtic critical buckling load (line OA in

figure 9) and the first-order rigid-plagtic load multiplier (line BC in figure 9).

According to the limit states design philosophy, the religbility of a specified frame at the ultimate limit
load is warranted when the ultimate load multiplier | y isat least equa to the design load factor ¢,
the vaue of which is given in codes or standards. Becauise collgpse of unbraced multi- storey frames
involves interaction between dastic buckling and onset and spreading of materid yielding, | visaso

termed elasto-plastic frame buckling load factor.

Should the frame be very giff againg Sdes-way, then | « ismuch larger than | , with the result of a
low ( o/l «) ratio. Then a minor influence of the geometric second-order effects is expectable; the

ultimate load will be close to the firgt-order rigid-plastic load.

In contragt, a flexible sway frame is characterised by a large vaue of the ( o/l «) ratio. It shdl
collapse according to a nearly eadtic buckling mode at a loading magnitude, which approaches the

dadtic hifurcation load.

Merchant and his collaborators have analysed a large number of single bay frames, with one or two

storeys (Merchant 1955 and 1956) by means of stability functions (Livedey et d 1956). The results
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are plotted in figure 10 and compared to those drawn from Eqg. (6.a.), which is most often found
safe. Comparisons with accurately caculated eagtic-plagtic falure loads (Saem 1958) and with
experimentd results (Low 1959) show that Eq. (6.9) gives areasonable estimate of failure loads for
multi-gtorey frames with sgnificant Sde loads, and a conservetive estimate for multi-storey frames
with side loads, which are small compared to sSmultaneoudy applied verticd loads. That isillustrated
in figure 11 which shows vaues of the falure load factor | J/l p derived from testson 3,5 and 7
storey model frames ow, 1959); the lower sraight line AB represents the Merchant-Rankine
formula and it is seen that al experimental points lie on or above this line. In figure 11, the radia

graight lines are quoted invalues of | of| p.

Similar comparisons (Ariaratnam 1959) and (Zandonini 1991) show adso that Eq. (6.8) provides
generdly an unsafe estimate of the fallure load factor for multi-storey frames with a very large ratio

of horizontd to verticd loads, such aloading pattern is not common in practice.

In another study Jaspart 1991), the relative accuracy of the Merchant- Rankine formula has been
linked to both the ratio of horizontd to vertical loading and the type of first-order plastic mechanism.
It is worthwhile stressing that a pane mechanism develops mainly in frames subject to predominant
gde loads. Usudly such frames do not fulfil the design requirements under non factored loads and
the Merchant-Rankine gpproach is of course not applicable in such conditions. Design studies
(Anderson 1982) show however that Eq. (6.9) provides a safe estimate of the non-linear easto-
plagtic falure load, | v, for frames which satisfy a servicegbility limit of 1/300 on sway, and are

designed so that the first-order plastic collapse is associated to the formation of a panel mechanism.
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Strain hardening tends to raise plagtic hinge vaues above the vaues caculated from the yield stress.
Therefore most practica frames of only afew storeysin height attain a collgpse aload at least equa
to the theoretica rigid-plastic collapse load. When theratio | o/ p iscommonly greater than 10, the
resdua diffness due to materia drain-hardening more than compensates for the effects of changes

of geometry. A detailed study has been made of the effects of strain hardening (Horne et d |, 1967).

In addition to the effect of strain hardening, it is found that even a smdl amount of iffness from

cladding is sufficient to compensate for changes of geometry.

To dlow in a generd treatment for the minimum benefit effects to be expected from both strain-
hardening and cladding, a modification of the Merchant-Rankine formula was suggested (Wood

1968 and 1974) in the smple form :

— IP
Iu_o.9+(|p/|c,)7’Ip 0

intherange | o/l p 3 4. Thisformulais represented by respectively the lines CD and AC in figure
10. Wood has recommended that his formula should not be used in practice for vaues of ratio
(I o/l p) lower than 4 and that a second-order eagtic-plagtic andysis is carried out in this range.
When | o/l « £ 0.1, |uislimitedto | p, what means that the frame can be designed according to
the smple firg-order plagtic hinge theory. A clear and immediate relaionship may be established
between this criterion and the one, expressed in Section 1, which limits the gpplication of the firg-
order rigid-plastic theory to the domain Vs / Ve £ 0.1 according to Eurocode 3 (Eurocode 3

1992).
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Theuse of Eq. (7) iscommonly restricted to frames in buildings, in which the cladding has not been

specificaly designed as amain structurd dement and provided that (ECCS 1984):

1) Theframeisbraced perpendicular to its own plane;

2) The average bay width in the plane of the frame is not less then the greatest height of one Sorey;

3) Theframe does not exceed 10 Soreysin height;

4) The sway a each storey, due to non factored wind load does not exceed 1/300 of the storey
height;

5) The capacities of the columns are based on the onset of yielding in extreme fibres,

6) | piscdculated with storey shears given by Q- = Hr + 'y oPr, the terms being defined in above
Section 1;

7) lallp3 4

For bare frames, or for framesin which specific account is taken of the cladding's structura strength
or giffness, the collgpse load factor | « may be calculated by Eq..(6.b) provided that conditions (1)

- (7) are dso stisfied.

It is generaly considered that above criterion (3) is abnormally redtrictive. It is nevertheless kept as a

safeguard because alack of information in this respect.

When using such a smplified design gpproach as the Merchant- Rankine-Wood formula, it isusudly
not necessary to care for the buckling check of individua columns between the storeys. It was

indeed shown by Merchant that the axia force in the columns is generdly controlling the sway
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buckling of the globd frame. The latter is thus governed by the gravity loads, which are ditributed
ondl the beams of each storey. Indeed checkerboard load distributions produce beam deflections,
which are not consstent with the sway buckling mode of the frame. However alocd checkerboard

loading islikely to be determinative for the column of the upper storeys.

5. Generalisation to frames using semi-rigid joints

The Merchant- Rankine-Wood approach thus substitutes the complex straightforward assessment of
the ultimate load factor | 4 by the more smple computation of both the dadtic critica buckling load
| « and the first-order rigid plagtic load factor | p. Methods alowing for the appraisal of | « and

| p are avalable for along time for frames usng rigid connections (Jaspart 1991).

Compared to rigid joints, semi-rigid joints would result in a larger flexibility of the frame and
consequently in alarger sengtivity to globd frame buckling. Though it is generdly agreed that multi-
dorey frames should preferably make use of rigid joints, the generdization of the Merchant-

Rankine-Wood approach to frames usng semi-rigid joints may appear questionable.

A so-cdled semi-rigid joint exhibits a behaviour between that of arigid joint, which requires a full
rotationd continuity, and a pinned joint, which is not able to trandfer bending moment. There are
severd sources of deformability taking place mainly in the connection properly and in the column
web pand. For practice purposes, they are usualy not discriminated and the resulting globa
behaviour is then characterized by a single response curve plotting the joint moment M versus the
relaive rotation f between both column and beam axes. Actualy such acurveis non linear; it can

normaly be described by the initid diffness Ki, the drain-hardening giffness K, and the
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pseudo- plastic moment capacity My (fgure. 12 - curve a). Because a semi-rigid connection may be a
wesk point, it is a possible location for a pseudo-plastic hinge. The question arises whether the
actua joint behaviour presents some similarity with a compact section subject to bending. It may be
answered pogitively having in mind that the concept of plastic hinge is, for its own, an idedisation of
the pure flexura behaviour of a section. Therefore it is quite judtified to refer to a rigid-plagtic joint
behaviour, which is fully described by the magnitude of above pseudo-plastic moment My (fgure 12
- curve b). Indeed the initid diffness of the joint is not likely to influence the | p load factor asfar as
a firgt-order plagtic hinge theory is concerned. In addition strain-hardening in the joint behaviour is
accounted for, smilaly to maerid dran-hardening, by means of the correction factor 0.9

introduced in Eq. (7) yet.

Of course the plastic moment resistance to be used at the beam end shdl be chosen equa ether to
the plastic capacity My of the beam or to the pseudo-plastic moment My of the joint, according to

which is the lesser; indeed the plagtic hinge may occur either in the beam or in the joint.

The assessment of | p is arather tedious task for multi-storey frames. Should the designer not have

access to adequate computer programs, then a smplified procedure may be used aternatively

(Jaspart 1991).

The dadtic criticad frame buckling load factor refers to the linear dastic andyss and thus to the
bifurcation theory of frame buckling. The beam-to-column joints shal consequently be characterized
by ther initid diffness K; (figure 12). Of course above factor can be determined based on a

dructurd andysis conducted with a computer. Alternaively, its assessment in the frame of a
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preliminary design islargely facilitated by following procedure (Jaspart 1988 and 1991):

a) Theactud complete structure with semi-rigid jointsis transformed into an equivalent substitute
sngle bay frame with rigid joints;

and then, either :

b) A Grinter frameis derived from the equivadent subtitute frame with rigid joints;

c) Anequivdent Grinter frameis determined aimed &t the stiffness-digtribution method;

or

b) Simplified procedures for the assessment of | «, which are avalable in the literature, are
gpplied to the sngle bay frame with rigid joints.

Of course, step (a) is by-passed when the frame hasrigid joints.

Comparisons between the Merchant-Rankine-Wood formula and results of numerical Smulations

for multi-storey frames with semi-rigid joints are presented in figure 13 (Jaspart 1988 and 1991).

They confirm that, when used within its application range, the Merchant-Rankine-Wood formula

gives

- A good esimate of the collgpse load factor as far as the collgpse mechanism is a combined
one,

- A dightly conservetive estimate of | v when a partid beam mechanism is governing.

6. Generalisation to composite frames

More recently the generdisation of the Merchant-Rankine and Wood approaches to sway sted-
concrete compodte building frames has been contemplated at the University of Liege Makut

2001). This work takes place in the framework of an European project on the "Applicability of
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composite structures to sway frames' funded by ECSC (European Commission for Sted and Coal)
and in which saverd European partners are dso involved (Univergties of Aachen and Bochum in
Germany, ProfilARBED in Luxembourg, CTICM in France, Universty of Pisa and European Joint

Research Centrein Italy and LABEIN in Spain).

The vaidation of the Merchant-Rankine and Wood approaches is achieved through comparisons
with numericad smulations carried out with the non-lineer finite e ement program FINELG (FINELG
1999) developed a the University of Liége. The results of such numericd smulationsisillugtrated in
figures 15 ac in the case of a three-bays and four-gtoreys frame (figure 14) with sted columns and
composite floors (reinforced floor dab connected by means of shear studsto asted | profile), which

isloaded asindicated in table 1.

In the preliminary study (Makut 2001), the numerica smulaions have been performed on a
parametrical bads by varying the vaues of the two following parameters, which dgnificantly
influence the frame behaviour: the rotationd stiffness and the resstance of the column bases and the

sted grade.

The diagrams presenting the results of the comparison between two series of numerical smulations
and the Merchant-Rankine gpproach are shown in figures 18 and 19 respectively. As the drain-
hardening effects have not been taken into condderation in the FEM andyss, only the Merchant-

Rankine curve is reported in figures 18 and 19.

From the two figures, the generd agreement between the Merchant-Rankine approach and the



numerica smulations is seen to be rather good (maximum difference of 6%). Hence as a firg
preliminary conclusion, the leve of interaction between ingtability and pladticity effects in composite

frames seems, roughly spesking, to be smilar to the one met for sed frames.

However, from a closer examination of the results, it gppears that the gpplication of the Merchant-
Rankine formulain combination with the fully eadtic critica ingtability load factor | ¢ uncracked l€BASIN
most cases to an unsafe evauation of the ultimate resistance of the frames. The fully eadtic criticd
ingtability load factor has to be consdered as the one obtained by assuming than both condtitutive
materids (sed and concrete) behave in a fully éagtic way and, in particular, that the concrete
remains uncracked. The results of the computations based on this assumption are identified as

“uncracked” in figures 18 and 19.

This concluson is in direct contradiction with what is observed for stedl frames (see Sections 4 and
5), a least as long as beam and combined yield mechanisms are associated to the rigid-plastic load

factor |  of the frames, what is the case for the composite structures considered in the parametric

study.

In fact it seems that this discrepancy results from the empiricad nature of the Merchant-Rankine
gpproach. This one has been developed for sway sted building frames where the loss of stability is
related to the onset of plastic hingesin the structure while, in composite structures, another source of
deformability exists and develops well before the apparition of the firgt plagtic hinge: the cracking of

the concrete.
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This effect, which is specific to composite congtruction, tends to increase the latera deflection of the
frame and consequently to amplify the second- order effects and reduce the ultimate resistance of the
frames. In other words, for an equa number of hinges formed at a given load leve in a ged frame
and in a composite frame respectively, larger latera displacements will be reported in the composite

one.

In order to integrate this detrimenta effect into the Merchant- Rankine approach, Magkut suggeststo
subdtitute the critical “uncracked” ingtability load factor | cruncracked Dy @ “cracked” one, noted
| ocracked . This modification alows to increase the calculated ultimate load factors, as seen in figures
18 and 19, and therefore to eiminate, or at least reduce, the unsafe character of an “uncracked”

Merchant- Rankine approach.

Further studies on different types of structures and loading conditions would be required to vaidate

the presented approach. Thiswork is planned for this academic year at the University of Liége.

7. Conclusions

In the present paper, the scope of the well-known Merchant-Rankine approach is extended to stedl
building frames to semi-rigid joints whileitsinitid fied of gpplication was limited to frames with rigid
joints. In a recent study, its generdisation to composite congtruction has been considered. From
preliminary investigations carried out a the Universty of Liege, this extenson may reasongbly be
contemplated, but further validation works are required before a practica application in design

offices.
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TABLES

Table 1l Applied loads

Perm. loads (kN/m) | Var. loads (kN/m) | Wind (kN)
Levd +4, ext. beams 38,110 21,375
7,088
Levd +4, int. beam 37,333 21,375
Levels +3,+2, ext. beams 14,176
32,720 22,500
Levd +1, ext. beams 14,682
Leves+3,+2, int. beams 14,176
32,264 22,500
Levd +1, int. beam 14,682
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