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Abstract

Background: Longitudinal analysis of multivariate individual-specific microbiome
profiles over time or across conditions remains a daunting task. The vast majority
of statistical tools and methods available to study the microbiota are based upon
cross-sectional data. Over the past few years, several attempts have been made to
model the dynamics of bacterial species over time or across conditions. However,
the field needs novel views on how to incorporate individual-specific microbial
associations in temporal analyses when the focus lies on microbial interactions.

Results: Here, we propose a novel data analysis framework, called MNDA, to
uncover taxon neighbourhood dynamics that combines representation learning
and individual-specific microbiome co-occurrence networks. We show that
tracking local neighbourhood dynamics in microbiome interaction or
co-occurrence networks can yield complementary information to standard
approaches that only use microbial abundances or pairwise microbial interactions.
We use cohort data on infants for whom microbiome data was available at 6 and
9 months after birth, as well as information on mode of delivery and diet changes
over time. In particular, MNDA-based prediction models outperform traditional
prediction models based on individual-specific abundances, and enable the
detection of microbes whose neighbourhood dynamics are informative of clinical
variables. We further show that similarity analyses of individuals based on
microbial neighbourhood dynamics can be used to find subpopulations of
individuals with potential relevance to clinical practice. The annotated source
code for the MNDA framework can be downloaded from:
https://github.com/H2020TranSYS/microbiome dynamics

Conclusions: MNDA extracts information from matched microbiome profiles and
opens new avenues to personalized prediction or stratified medicine with
temporal microbiome data.

Keywords: Microbial neighbourhood dynamics; Longitudinal microbiome
analysis; Representation learning; Individual-specific networks

1 Background
The human gut is a complex ecosystem where microbes interact amongst themselves

and with the host [1]. Dysbiosis, defined as an imbalance in the microbiome of the

human gut, has been linked to several complex diseases [2]. It may be reflected

by alterations in microbial co-abundance [3] or by changes in how microbes in a

community interact with each other. Microbiome interaction (or co-occurrence net-

work) has been shown to potentially exhibit rich information about various health

conditions [1]. Disease specificity has been demonstrated for conditions such as in-
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flammatory bowel disease and obesity [3]. Furthermore, the gut microbiome involves

a dynamic ecosystem, with microbial co-occurrences or interactions changing over

time [4], potentially providing information about health-to-disease transitions [5, 6].

Variations in the human gut microbial ecosystem can be caused by multiple factors,

including a sudden change in diet [7] or drug intake, exemplified by metformin [8],

a medicine to prevent or treat Type 2 diabetes, and antibiotics [9]. Microbial per-

turbations may have short- or long-term health effects. For instance, perturbations

to the microbiome during infancy have been associated with the development of

chronic illnesses in later life, including infectious diseases and asthma or allergies

[10, 11, 12].

Two important and highly studied determinants of early-life microbiome estab-

lishment are birth mode and infant diet. C-section delivery provides a barrier in

the dispersal of maternal fecal and vaginal microbes during delivery and has been

linked to various non-communicable diseases and least in part as a consequence of

its perturbation in early-life microbial colonization [13, 14, 15]. In addition, the shift

from infant feeding (breastfeeding and/or formula) to a more diverse diet consisting

of a wide variety of substrates in complementary foods which largely takes place

between 6-9 months post-partum, has been associated with a rapid diversification

and maturation of the intestinal microbiome [14]

Capturing time-related patterns in data can be achieved via time series analysis

(TSA) or longitudinal analysis (LDA). Such analyses involve time course data, and

extract additional information from the data compared to cross-sectional studies.

The latter involves analysing data limited to a single time point only. The terms

time series and longitudinal analyses are sometimes used interchangeably. However,

there is a subtle difference, and some methods developed for TSA may not transfer

well to LDA contexts. Whereas time series data refer to a sequence of data points,

collected at multiple time points or intervals, longitudinal data refer to a subject’s

or object’s measurement(s) taken over time. Standard statistical LDA approaches

cannot simply be transferred as such to the microbiome field. This is because of the

characteristics of metagenomics data. The noisiness, compositionality, and sparse-

ness of the data pose a big challenge in modelling microbial structure; the complexity

of multivariate repetitive data for each individual adds to this challenge. In general,

methods for microbiome time course data typically aim to address either one or a

combination of the following questions (see also [16]). Is there a temporal trend?

What is the similarity between multiple time-course profiles? Which microbial com-

munity members co-evolve? For examples of microbiome LDA analyses that address

such questions, we refer to references in [17].

The construction and interpretation of personalized networks have obtained re-

newed attention in the context of precision medicine. For instance, Menche et al.

[18] used a template network structure derived from knowledge about protein in-

teractions and, for each individual, superimposed the individual’s gene expression

scores on nodes. For personalized networks derived in this way, node values are

specific to individuals, but edge values are constant across individuals based on

reference data. In contrast, we define an individual-specific network (ISN) as a net-

work, for which both nodes and edges can be allocated to a single individual, and

that can be seen as a realization of a new measure to describe within-individual
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activity. An example of an ISN that only uses data from a single individual would

be a beta-cell interaction network for beta-cells residing in an individual’s tissue

sample and edges defined by changes in intracellular calcium concentrations [19].

One procedure to construct ISNs from reference data was proposed by [20, 21] and

has been applied to several scenarios [22]. In [22], the authors compare and eval-

uate Kuijjer’s LIONESS (Linear Interpolation to Obtain Network Estimates for

Single Samples) method [20] and ssPCC (single sample network based on Pearson

correlation) [23] for metabolomics measurements and two independent groups of

individuals (for instance cases and controls). In ssPCC methodology [23] only the

perturbation that an individual causes to an interaction network, when adding the

individual to the pool of samples, is considered. In contrast, LIONESS constructs an

individual-specific network for each individual of interest from perturbations that

subtracting the individual from a pool of individuals causes on the population-based

interaction network. Given that the development of individual-specific networks is

recent, and given the challenges involved with compositional data, only a few ap-

plications exist with microbiome data. For instance, Mac Aogáin et al. [24] used

LIONESS on microbiome abundances as nodes and Pearson correlations as edge

strengths. Individual-specific interactions (edges) are taken as new predictors in

models for the time to the next exacerbation in a chronic airway disease. Until now,

Individual-specific edges were not used to understand the dynamics of individual-

specific microbial interaction profiles. An interesting individual-specific approach to

the temporal analysis of microbiome data was introduced by Yu et al [25]. Their

method builds on an earlier work, particularly the individual-specific edge-network

analysis (iENA) framework [26], with disease prediction as the objective. iENA

overcomes a critical practical difficulty of the ENA framework: typically, there are

not enough longitudinal samples available for the same individual. Their adaption

to microbiome data selects microbial interactions (edges) as biomarkers with only

a limited number of samples from each individual. Selection is based on a strategy

based on edge pairs, and edge strength is based on a form of correlation as a mea-

sure of association. An additional application on faecal microbiomes can be found

at [27].

For the first time, we here use Kuijjer’s LIONESS method to study microbial

dynamic patterns via individual-specific microbiome networks. As explained in the

Methods Section, their method relies on reference data, i.e., a collection of samples

that can be pooled to compute a microbiome co-occurrence network. Several strate-

gies exist for constructing a pooled-data microbiome co-occurrence network. These

strategies either rely on Pearson-like correlations or on graphical models and the

inference of sparse variance-covariance matrices. For an overview and discussion of

common co-occurrence network strategies, we refer to [28, 29]. Generally speaking,

a microbiome co-occurrence network takes microbial taxa as nodes and evidence

for microbial association as edge strength. In the literature, the microbial associa-

tion is often called ”co-occurrence” or sometimes ”interaction”. Pooled-sample or

population-based models have shown their utility to increase our understanding

of underlying characteristics of individuals or to derive personalized predictions

[30, 31]. However, from the perspective of personalised medicine, if association

networks were available for each individual separately, then descriptions of such
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networks would readily be individual-specific. Moreover, taking those individual-

specific networks as new units of analysis, one would use more information from

the data than is typically done. Such analyses may involve association models to

understand mechanisms, prediction models to estimate the risk of disease or treat-

ment non-response, identification of endotypes, or, more generally, homogeneous

subgroups of individuals that may be targeted together during drug development

processes.

In this work, we develop a novel approach to study individual-specific micro-

bial neighbourhood dynamics over time or across conditions. We illustrate the ap-

proach on microbial data from newborns with measurements at 6 and 9 months over

time. We first describe the study design, and the components needed to compute

individual-specific microbiome networks. Second, we introduce a new microbiome

analysis framework, based on representation learning, that we call multiplex net-

work differential analysis (MNDA). MNDA generates new representations of local

microbiome interaction neighbourhoods that can be used in supervised or unsuper-

vised models, or to identify stable or unstable microbial taxa over time or across

interventions. Finally, we present and discuss the results of various microbiome dy-

namic analyses via MNDA. These analyses broadly fall into three broad classes.

The first class covers dynamic analyses of global networks, where a global network

refers to a microbiome co-occurrence network constructed on a pooled set of indi-

viduals. These individuals may share the point in time at which data are considered

for microbiome analysis, or some other—for instance, clinical—characteristic. The

second class captures dynamic changes of microbiome ISNs. These analyses include

comparing fluctuations in microbiome ISNs over time and tracking each individ-

ual in an embedding space. We use microbial neighbourhood dynamics to identify

subgroups of individuals that are similar in terms of their microbial interaction

dynamics, which provides a different viewpoint than the classical Dirichlet multino-

mial mixture (DMM) clustering [32]. The third class of analyses aim to enhance the

interpretation of findings: topologies of microbial association networks are studied

within and between individuals and are linked to infant delivery mode and infant’s

diet changes between months 6 and 9.

2 Methods
2.1 Study Design and Microbiome Profiling

The LucKi Gut cohort is an ongoing study monitoring gut microbiota development

throughout infancy and early childhood [33]. Pregnant women from the South Lim-

burg area in the Netherlands were recruited via mother and childcare professionals,

through the study website and through Facebook. Women were eligible to partici-

pate if they gave birth at > 37 weeks of completed gestation. Study questionnaires

and faecal samples of the infant were collected at different time points, e.g., 1-2

weeks, 4 weeks, 8 weeks, 4, 5, 6, 9, 11 and 14 months. Parents were instructed to

collect infant faeces from diapers and freeze them immediately at –20◦C in their

home freezer inside a cool transport container (Sarstedt, Hilden, Germany). Sam-

ples were transported to the laboratory, preserving the cold chain. Metagenomic

DNA was extracted with a custom extraction protocol involving mechanical and

enzymatic lysis [34]
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Microbiome profiling was performed by next-generation sequencing of the 16S

rRNA V3-V4 hypervariable gene region. Thereafter, a DADA2-based pipeline was

used to identify Amplicon Sequence Variants ASVs [34]. Lastly, a centered log ratio

(CLR) transformation of data using the ALDEx2 R package was performed to

account for the compositional nature of microbiome data, whenever appropriate

[35]. Additional details are provided in earlier publications [36].

The current study focuses on months 6 and 9 after delivery. These moments in an

infant’s life are recognized milestones in the maturation of microbial communities,

possibly influenced by change of diet during 6-9 months after birth. For this reason,

we include dietary information on infants in applications of our new framework.

Diet type was encoded as {0, 1, 2}, with ”0” representing breast milk exclusively,

”2” representing exclusively solid food, and ”1” indicating a mix of both. We refer

to a diet as persistent if it does not change during 6-9 months. Furthermore, we also

had information about the mode of delivery (either C-section or vaginal delivery)

available at months 6 and 9. We used this information in prediction models and

stratified analyses.

2.2 Data Pre-processing and Exploratory Analysis

Selecting informative individuals and taxa and filtering out random noise was

achieved with the following prevalence filter: only amplicon sequence variants with

a prevalence exceeding 15% survived the filtering. Prevalence indicates the percent-

age of samples in which a microbe was detected. The average sequencing depth

was 57392 read counts, while the range was [11123, 105921], with an interquartile

range of 25346. Pre-processing was done on the merged data of 155 newborns across

months 6 and 9. No infants were removed. Out of 1144 taxa, only 95 (8%) remained

after data pre-processing. These 95 taxa were considered for subsequent analyses.

In addition, we defined two new classes of microbes: appearing or disappearing mi-

crobes – taxa that meet the 15% threshold at month 9 (appearing), or at month 6

(disappearing), but were filtered out by joint-time point pre-processing.

Basic exploratory analysis involved computation of α-diversity (within-sample di-

versity), at each time point. In the spirit of a CoDA analysis, we used Aitchison’s

distance (Euclidean distance on CLR-transformed abundances), as implemented in

the vegan R package [37]. We also investigated β-diversity or between-sample diver-

sity. In particular, CoDA ordination was implemented via PCA on CLR-transformed

compositions. We used the implementation of Le Cao et al. [38]

2.3. Global Microbial Network Construction

For the remainder of this manuscript, we refer to a global network as a network

computed over a set of independent individuals. For instance, such a set can refer

to all infants at month 6 after birth. We computed a global network for each time

point, by selecting microbial taxa as nodes and calculating association strength via

microbial sssociation graphical model analysis (MAGMA) [39] on all newborns at

each timepoint (81 at timepoint 6m and 74 at 9m). MAGMA uses copula Gaus-

sian graphical models for which marginals are modeled with zero-inflated negative

binomial generalized linear models, and sparseness is induced via a graphical Lasso

strategy. From a practical point of view, we used the rmagma R package to derive
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MAGMA-networks (https://gitlab.com/arcgl/rmagma). To optimize its internal pe-

nalization parameter, we used the rotation information criterium (RIC) [40]. For

more details about the adopted MAGMA analysis, see Additional file 1 – Global

Network Construction.

We preferred MAGMA over commonly used correlation-based measures due to its

theoretical advantages [38] and its flexibility to adjust for confounders. In the case of

microbiome data, characterized by zero-inflation, high heterogeneity and overdisper-

sion, Pearson correlation as a measure of association may give rise to false positives,

as shown by Friedman and Alm 2012 [41]. For an overview of microbial co-occurrence

network methods, we refer to [29]. Notably, MAGMA was not included in this mini

review. MAGMA has the advantage of yielding a sparse microbiome co-occurrence

network, acting as a natural sparsifier. It targets direct associations, removing in-

direct ones. As illustrated by Kishore et al. [42], there are remarkable differences

in microbial co-occurrence networks across inference methods. We also selected

SparCC [ref https://doi.org/10.1371/journal.pcbi.1002687 same as before!]as an al-

ternative to MAGMA, to assess the impact on conclusions of the selected microbial

co-occurrence network inference method. Even though SparCC can better handle

spurious associations compared to its predecessor correlation-based microbial co-

occurrence network inference methods, it may fail to generate a positive definite

covariance matrix. In practice, we applied FastSpar’s C++ implementation. The

microbiome dynamics analysis results with SparCC, parallel to MAGMA, are pre-

sented and discussed in Additional file 3 – SparCC Analyses. We emphasize that

pre-processed data entered MAGMA and SparCC analyses with default options. No

data transformation was performed prior to MAGMA/SparCC, as those analyses

frameworks internally accommodate compositional data.

2.4 Individual-Specific Network Construction

We used Kuijjer et al.’s LIONESS method [20] to infer individual-specific net-

works from global microbiome co-occurrence networks, as implemented in [21]. Each

individual-specific edge weight measures the impact of the individual observation on

a global network edge. In particular, the edge weights of the nth ISN (for individual

n) were computed as

wij
n = Nwij − (N − 1)wij

−n (1)

where wij and wij
−n are the edge weights of a global network (Section 2.3) and

the nth leave-one-out network, respectively, for any pair of microbes (i ̸= j). N

is the total number of individuals in a reference population (Figure 1). For large

populations (N −→ ∞) and under a weight homogeneity condition, the average

individual-specific edge weights wij
n (n = {1, ...,m}) converges to the corresponding

global edge weights. Namely, the global network can be seen as a weighted average

of the ISNs. Weight homogeneity means that the proportion of the weights between

individuals is constant between global (wij) and LOO (wij
−n) networks ([20] Suppl.

5.2). We considered our 69 paired infants at month 6 and at month 9 after birth as

two distinct populations. We do that by only considering the paired infants in both

timepoints. Since in this work we are only interested in unidirectional strengths of
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microbial associations, we replaced all individual-specific edge weights with their

absolute values. Notably, even when population-based edge weights, wij and wij
−n ,

are positive, the derived individual-specific weight wij
n may be negative. This occurs

when wij <
(N−1)wij

−n

N .

2.5 Multiplex Network Differential Analysis

The ISNs constructed in the previous section can be paired into 69 multiplex

networks (i.e., networks with multiple layers of matching nodes [43, 44]). Each

multiplex refers to a single individual; within each multiplex, a layer refers to an

individual-specific network at a particular time. More generally, we assume as input

to a representation learning algorithm, a number of multiplexes that represent an

object, for which matched data are available. Matching may be performed on the

basis of repeated measures over time for the same individual (as it is the case for our

study example), but it may also refer to matched samples where two individuals are

matched according to shared characteristics. In both scenarios, the availability of

individual-specific edges offers the opportunity to investigate local neighbourhood

stability.

To capture how the local neighbourhoods of microbial taxa change over time,

we proposed the following algorithm, which we term multiplex network differen-

tial analysis (MNDA). First, multiplexes were formed. For our LucKi subcohort,

ISNs derived in Section 2.4 at months 6 and 9 are paired. Each ISN has 95 nodes,

representing the 95 microbial taxa retained in the study, after data pre-processing

(Section 2.2). One individual and its multiplex ISN structure is shown in Figure

2A. Second, we developed a network representation algorithm, based on a shal-

low encoding-decoding neural network (EDNN) that forms the core of the MNDA

framework (Figure 2B). For the implementation, we used the Keras R package. A

graphical flow is given in Figure 2B. The inputs and outputs to the EDNN are

vectors, one for each node in a layer of a multiplex. The input vector at the en-

coder side uses the edge information of each node’s immediate (graph distance 1)

neighbours. A binary such vector for a particular microbial taxon for individual 1 at

months 9 would be a vector of ones and zeros indicating which are the direct neigh-

bouring taxa based on the individual’s ISN at month 9. This assumes a binary ISN

(i.e. an unweighted network with edges that are either present or not). It is worth

mentioning that, in this method, we do not consider self-loops (i.e. the node itself

is not seen as a direct neighbour of itself), which makes our model generalizable

to accepting new nodes. A non-binary (weighted) input vector would be a vector

for which the ones in the binary vector are replaced by their actual edge strengths.

It is here that an additional argument can be made in favour of microbiome co-

occurrence network inference methods that lead to sparse networks. MAGMA will

generate a sparse weighted network, avoiding the need to work with fully connected

networks. Fully connected networks may complicate the interpretability and are less

computationally tractable than sparse networks.

The output vector of EDNN, what needs to be predicted at the decoder side,

is a representation of more distant neighbours likely to be reached by a random

walk. In particular, for a specific (seed) taxon, both binary or weighted versions of

such an output vector would refer to probabilities that a microbial taxon is reached
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by a fixed-length random walk starting from the seed taxon. Binary and weighted

versions differ in the way these probabilities are computed (see next – A customized

implementation of repetitive weighted random walks). As activation functions for

the hidden neurons and output neurons, we used ReLU and the Logistic functions,

respectively. The dimension of the hidden space is equal to the number of hidden

units, and was chosen to be equal to 10 since this resulted in the least mean squared

error of EDNN compared to the other choices (i.e. 2, 5, 10, 15, 20). Third, after

having learned the local structure of multiplex network layers and having created

representations in a 10-dimensional embedding space, we tracked the positions of

the same microbial taxon at months 6 and 9. We formed these pairs for all 95 taxa

(Figure 2A), and do this for every individual. We then computed a distance between

paired taxa (see next – A new measure of microbial dynamics).

A customized implementation of repetitive weighted random walks

To obtain the node visit probabilities at the decoder side of our MNDA framework,

we developed a fixed-length weighted random walk algorithm. Accordingly, the walker

is restricted to take a limited number of steps to a predefined fixed length. This

enables us to characterise the local structures of the ISN. More specifically, we start

”walks” from each node and compute the probability of visiting all the other nodes

during the walk. We tried different values for walker length (≤ 10) to keep the walks

local. We finally chose a walk length of 5 that resulted in the smallest mean square

error for EDNN. It is worth mentioning that the results were fairly stable across

walk lengths. To calculate the node visit probabilities, we repeated the walking

process 100 times for each node.

Since the degree of co-occurrences of microbes may be highly variable, we proposed

to use a weighted random walk algorithm to take the edge weights into account. To

move from node i and determine the next step in a simple random walk algorithm,

all the neighbouring nodes have the same probability of visit P (i −→ j) = 1
∥Ni∥ ,

where Ni is the set of neighbours (distance 1) of node i with operator ∥.∥ counting

its members. In the weighted version of this algorithm, the probability of moving

from node i to node j is proportional to the edge weight wij linking node i to node

j:

P (i −→ j) =
wij

Σj∈Ni |wij |
(2)

Although the idea of weighted random walks is not new, to our knowledge, no

customized code was available for their use in our framework. Our code is provided

as part of a GitHub repository that covers the workflows used in this manuscript

(https://github.com/H2020TranSYS/microbiome dynamics).

A new measure of microbial dynamics

The low-dimensional learnt local structure of the multiplex network layers can be

analysed further by computing the angle θ between embedded vectors of belonging

to the same microbial taxon at different time points, or the corresponding cosine

similarity cos(θ). In a positive space, the smaller θ ∈ (0, π
2 ), the larger cos(θ)

and thus the larger the similarity between vectors. Even though it is not a genuine

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.22.525058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525058
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yousefi et al. Page 9 of 25

distance metric, the cosine distance dcos(., .) is often used as a complement of cosine

similarity in a positive space, and defined as 1− cos(θ) (without any restrictions on

θ):

dcos(A,B) = 1− A.B

|A|.|B|
=

Σn
i=1AiBi√

Σn
i=1A

2
i

√
Σn

i=1B
2
i

(3)

with Ai and Bi (i ∈ {1, ..., n}) components of A and B, respectively, and A, B

time-specific representations of the same microbial taxon as vectors in the derived

embedding space. In contrast, the normalized angle between A andB (called angular

distance) is a metric but is defined as 2θ
π in positive space and θ

π else. As cosine

similarity varies in the range [−1, 1], cosine distances vary in the range [0, 2].

Simulation study

We conducted a simulation study to evaluate the ability of MNDA to capture the

neighbourhood variation in a multiplex network. To this end, we constructed a

graph with node degree and weight distributions similar to our microbiome graphs.

Then we created a perturbed copy of this graph with a few (m) distinct randomly

selected (”control”) nodes having different neighbouring nodes. This resulted in

a multiplex network with control nodes whose neighbourhood varies. We expect

that in the embedding space all the nodes are very close to each other except for

the control nodes. Additional file 3: Figure S7a shows the embedding space for a

simulated 2-layer multiplex network; observations are in line with the aforemen-

tioned expectation. To quantify this observation, we first sorted the cosine distance

between the node pairs and select the m most distant pairs. Next, we calculated

the Jaccard index between the pre-set varying nodes and MNDA-based detected

nodes and observed that it almost always equals one. Hence, our proposed measure

can, with a high degree of confidence, detect nodes whose neighbourhoods change

from one graph to the other. To further assess the robustness of our method under

the noise, we added uniformly distributed noise, ranging between min = 0 and

max ∈ {e−10, ..., e−2}, to the adjacency matrix of each graph. The Jaccard index

was calculated and plotted against different noise levels in Additional file 3: Figure

S7b (red diagram).

As for comparison, we used a method based on the eigenvectors of the Laplacian

matrix of the graphs, which is a typical approach to measure the distance between

graphs. We represented the nodes of each graph layer to the eigenvector space of

their Laplacian matrix and used the cosine distance between the node pairs. Com-

pared to MNDA, only a few varying nodes were identified by this method (Jaccard

index = 0.3). To investigate the robustness of MNDA against random perturbation

or noise in the edge weights, we added uniform noise with different ranges to the

adjacency matrices of each layer and assessed its performance in prioritising the

dynamics. As shown in Additional file 3: Figure S7, MNDA is reasonably robust to

such uniform noise and consistently performs better than the eigen decomposition-

based method.
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3 Results
3.1 Exploratory Data Analysis

In general, it is well known that the dominant gut microbial phyla are Firmicutes,

Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia,

with the two phyla Firmicutes and Bacteroidetes representing 90% of the adult gut

microbiota [45]. Moreover, the most prevalent phylum for our retained 95 micro-

bial taxa across 6 and 9 months is Firmicutes (53 out of 95). Bacteroidetes (14),

Actinobacteria (15), and Proteobacteria (13) are (almost) equally represented. TM7

and Verrucomicrobia phyla are represented by a single microbe each (Figure 3). The

fractional relative abundances differ between time points. Actinobacteria is the most

abundant phylum at m6, while Firmicutes has the greatest share at m9. Fractional

relative abundances per phylum, order, class, and family are provided in Additional

file 3 – Figure S1 A–D, respectively.

Microbiome diversity was assessed via α- and β-diversity on the 69 paired new-

borns. Violin plots of α-diversity grouped per timepoint, delivery type, and diet are

depicted in Figure 4. Violin plots combine classical box plotting with kernel den-

sity graphs. We found evidence for a significant difference in α-diversity between

months 6 and 9. Specifically, the paired Mann-Whitney U test shows a low p-value

(3.843∗10−8), rejecting the hypothesis of no difference between the timepoints. This

is in agreement with figures 6A and B, where we can see the increased connection

strength at timepoints 9m compared to 6m. Figure 5 shows CoDa ordination plots

grouped per timepoint, delivery type, and diet. These plots do not exhibit marked

differences between different mode of delivery or diet, while the first principal com-

ponent provides separation between the timepoints.

3.2 Cross-Sectional Global Network Analyses

Figure 4A and B show two global microbiome networks obtained via MAGMA,

one per time point, with edge strengths replaced by their absolute values. Micro-

bial taxa are organized according to their phyla. Additional file 2: Figures S1–S3

show similar plots but with microbes organized (coloured) according to order, class,

and family, respectively. The size of the node is proportional to relative microbial

abundance. The stronger the edge strength, the thicker the edge line that connects

corresponding nodes in these networks. Notably, these networks are not fully con-

nected. This sparsification is due to the graphical Lasso in the MAGMA microbial

network computation.

Stronger absolute correlations can be observed in the global MAGMA network at

month 9 compared to month 6 (Figure 6A). In Figures 6C–F, we grouped microbes of

the same phylum into a meta-node and depicted the connections based on the global

network co-occurrences. Hence, a node represents a phylum, with a size related to

the number of taxa in the phylum, with the exact number indicated in the node

itself. The microbes for each phylum can have connections with microbes of the same

phylum (indicated by self-loops) or with microbes in different phyla. Edge thickness

for edges between phyla is related to the strength of phylum-phylum associations,

normalized to account for potential differences in phylum sizes. In particular, for

unweighted MAGMA edges (Figure 6C,D), the number of edges η between two
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phyla P1 and P2, with respective sizes n1 and n2, was benchmarked against the

maximum number of edges n1n2:

η̂norm =
η

n1n2
(4)

For phylum self-loops, e.g., in a phylum P of size n, the denominator in (4) was

adapted to n(n−1)
2 . This normalized count has a natural interpretation of a percent-

age. We obtained the unweighted MAGMA network by binarizing the MAGMA

output, with a 1 for every non-zero entry. For weighted MAGMA edges (Figure

6E,F), the connection strength η between two phyla P1 and P2 was defined as a

normalized sum of edge weights, with the same normalizing factor as for binary

networks. Note that in this scenario, the interpretation of η̂norm as a percentage is

no longer possible, since η is not normalised for its maximum value.

Firmicutes is the largest phylum, with 51 microbes, and shows limited intra-

phylum and inter-phylum associations. Proteobacteria and Bacteroides are medium-

sized phyla, with 13 and 14 taxa, respectively (Section 3.1), and have strong

intra-phylum connectivity. In particular, intra-phylum association strength for Bac-

teroides is close to 20% in the binary global networks (Figure 6C,D) in both time-

points, meaning that almost one-fifth of all the possible Bacteroides interactions are

present. The strongest binary associations are inter-phylum, appearing at month 9

(between Firmicutes, TM7, and Proteobacteria). Only one microbe (lowest annota-

tion: Class TM7-3 ) belongs to the TM7 phylum, with a moderate – and decreasing

in time – association with the Actinobacteria phylum. Similarly, one microbe (Akker-

mansia muciniphila) belongs to the Verrucomicrobia phylum and shows increased

connections with Firmicutes and Bacteroides phyla at 9m. While these phyla asso-

ciations may be strong in binary global networks, their corresponding association

strengths in weighted global networks remains rather limited.

The corresponding global microbiome networks obtained with SparCC are in-

cluded in Additional file 3: Figure S4 and S5. Note that no binarization is available

for SparCC, i.e., is a weighted network. The same pre-processing steps of MAGMA

network, i.e., prevalence and abundance filters, are applied to SparCC microbial

network. We notice that intra-phylum connections are stronger than inter-phyla.

SparCC connections are, on average, stronger than in the weighted MAGMA’s

counterparts. As for MAGMA, Proteobacteria and Bacteroides yield stronger intra-

phylum connectivity than Firmicutes. Only one microbe (lowest annotation: Class

TM7-3 ) belongs to the TM7 phylum, and shows increased connections with Firmi-

cutes, Proteobacteria, and Verrucomicrobia phyla at 9m. Moreover, it is interesting

to note that for both MAGMA and SparCC networks, the connections involving

Proteobacteria’s taxa are stronger at timepoint 9m.

3.3 Longitudinal Analysis: Neighbourhood Dynamics in Global Networks

We applied MNDA to a multiplex network with two layers, each consisting of the

global microbiome co-occurrence networks at month 6 and month 9, and computed

cosine distances between all possible pairs of microbial taxa in the embedding space

(Section 3.2). The measures of dissimilarity can be used to cluster taxa pairs. Pairs
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Table 1 The list of highly dynamical microbes with their corresponding genus-species names.

Microbial taxa*

Appearing at
M9

Akkermansia muciniphila, Bifidobacterium sp., Coprobacillus cateniformis, Coprococcus sp.,
Dorea sp., Clostridium hathewayi, Clostridium perfringens, Haemophilus parainfluenzae,
Oscillospira sp., Parabacteroides distasonis, Streptococcus sp., Veillonella dispar

Disappearing at
M9

Enterococcus sp., Klebsiella sp., Parabacteroides distasonis, Staphylococcus aureus,
Streptococcus sp., Trabulsiella sp., Veillonella dispar

High
neighborhood
dynamics

Bacteroides ovatus, Bacteroides ovatus, Bacteroides sp., Bifidobacterium longum,
Escherichia coli, Faecalibacterium prausnitzii, Faecalibacterium prausnitzii,
Parabacteroides sp., SMB53 sp., Streptococcus sp.

Low
neighborhood
dynamics

Akkermansia muciniphila, Bacteroides sp., Bacteroides sp., Bacteroides sp.,
Bifidobacterium longum, Bifidobacterium sp., Bifidobacterium sp., Bifidobacterium sp.,
Enterobacteriaceae unclassified, Coprococcus sp., Escherichia coli, Faecalibacterium prausnitzii,
Haemophilus parainfluenzae, Klebsiella sp., Lachnospira sp., Roseburia sp.,
Rikenellaceae unclassified,Ruminococcus gnavus, Ruminococcaceae unclassified, SMB53 sp.,
Staphylococcus epidermidis, Streptococcus luteciae, Veillonella dispar, Veillonella sp.

*Note that the same species name can occur multiple times as multiple amplicon sequence variants
(ASVs) can belong to the same species.

may involve components from the same layer or different layers of the network. How-

ever, neural networks usually have a non-convex cost function; thus, reruns of the

EDNN can lead to different outcomes. Therefore, multiple repeats of MNDA were

used as inputs to a novel implementation of robust clustering (see next – a novel

implementation of ensemble consensus clustering). This led to two robust clusters,

shown in Figure 7A as cluster 1 and cluster 2. The confusion table capturing how

many matched months 6-9 pairs of microbial taxa belong to the same cluster or

are spread over two clusters, is given in Figure 7B. Corresponding transition prob-

abilities (Pi−→j = P (cluster j at 9m | cluster i at 6m)) are visualized in Figure

7C. These show that the majority of microbes have a similar global network neigh-

bourhood dynamic. For 24 out of 95 microbial taxa this is not the case. These are

listed in Additional file 3: Table SI, with their corresponding genus-species names.

The two microbial taxa with similar global neighbourhoods, yet different from those

microbes in cluster 1, are Bacteroides uniformis and Blautia sp.

We identified microbes with high or low neighbourhood dynamics by sorting the

robust co-clustering similarities for each time-matched pair of taxa. In particular,

we selected the first larger jumps at both extreme ends of the similarities, respec-

tively, as shown in Additional file 3: Figure S8A. A complete list of microbes with

extreme neighbourhood dynamics is given in Figure 5D and Table I, which also

lists appearing and disappearing microbes (defined in Section 2.2 – pre-processing).

Notably, rather than using co-clustering similarities to rank taxa in terms of their

dynamics, we could also have ranked taxa directly via their corresponding cosine

distances in the MNDA embedding space, averaged across multiple MNDA runs,

and re-ranked. This procedure led to similar results (not shown).

Overall, Firmicutes’ microbes constitute the vast majority of appearing (69%)

and disappearing (57%) microbes, i.e., microbes that would pass the 15% prevalence

threshold only at month 9 (appearing), or at month 6 (disappearing). Microbes with

high (low) neighbourhood dynamics constitute 11% (25%) of 95 original microbes.

Phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomi-

crobia deliver respectively 1.6% (6.6%), 1.8% (1.8%), 0.6% (1.6%), 0.7% (2.8%),

and 0.0% (25%) of high (low) dynamic microbes in terms of their global network

neighbourhoods.
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A novel implementation of ensemble consensus clustering

Many clustering methods can be made more robust by consensus clustering (CC).

Here, we propose a CC framework to achieve robustness by repeatedly applying

MNDA (50 repetitions) and subsequent clustering of microbes based on their co-

sine distance. As mentioned before, cosine distance is computed across all pairs

of possible microbes, spanning data on months 6 and 9. The adopted clustering

strategy is k-means; the number of clusters k is determined by maximising the Sil-

houette index. For M microbes, of which dynamics need to be tracked across time

points, we calculate the 2M × 2M matrix of co-clustering. Matrix entries are the

frequencies a pair of microbes (a single microbe at two time points or two microbes

at some point in time) jointly belong to the same cluster among all clusterings.

This co-clustering matrix can be viewed as a robust similarity matrix on the basis

of which we can define a robust ”distance” between any pair of nodes in the origi-

nal MNDA embedding space. The more distant two nodes in the embedding space

are, the more their local neighbourhoods differ. Hence, when two nodes refer to the

same microbe, measured at different time points, high co-cluster similarity implies

low local neighbourhood dynamics for that particular microbial taxon, considering

its global microbiome co-occurrence neighbourhoods at months 6 and 9. We im-

plemented consensus clustering proposed by Monti et. al [46] on the co-clustering

matrix to obtain the optimum number of clusters along with the clustering results.

As depicted in Additional file 3: Figure S8B, the algorithm suggests two clusters

of microbes by calculating the area under the curve of the empirical cumulative

distribution. For additional details we refer to Monti et al. [46].

3.4 Longitudinal Analysis: Neighbourhood Dynamics in Individual-Specific Microbiome

Networks

An alternative view on microbiome data is given by ISNs, which provide edge in-

formation at an individual-specific level. Hence, where in Section 3.4, time-course

analyses involved comparing global microbiome co-occurrence networks at each time

point, here, we do so at an individual-specific level (Figure 8A). We used the same

MNDA framework, but instead of submitting a single multiplex network (Section

3.3), we submited 69 multiplex ISNs simultaneously. We show how our new notion of

microbiome neighbourhood dynamics (explained in Section 2.5), when assessed on

a per-individual level, may offer complementary views compared to standard data

views. The most standard data view analyses (transformed) microbial abundances

for study subjects; data is organized according to a matrix depicted in (Figure

8B), where the microbial abundances of both timepoints are considered as features

(node-oriented approach). Since the rise of individual-specific network construction

techniques (outlined in the Background Section), data records may additionally (or

only) involve information about individual-specific edges (presence or absence, or

edge strength on an interval scale). Such an edge-oriented data format is depicted in

(Figure 8C), where the features are the microbial co-occurrences of both timepoints

(edge-oriented approach). With the newly proposed MNDA framework, dynamics

across time points is investigated in an embedding space and each individual can be

assigned a vector of cosine distances. As features, each cosine distance captures ISN

local neighbourhood dynamics across time points (Figure 8D – dynamic-oriented
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approach). The similar data formats between Figure 8B, 8C, and 8D allow adopting

similar association modelling or prediction modelling strategies, yet interpretations

will differ. It is noteworthy that our proposed method results in the least feature

size as we have one feature for each taxon independent of the number of time points.

MNDA-induced prediction outperforms other methods and complements stan-

dard approaches. To support this statement, we developed prediction models for

mode of delivery (C-section versus vaginal) and diet type (persistent versus non-

persistent – as defined in Section 2.1). In particular, we applied support vector

machines (SVM) with radial basis function (RBF) kernels to the data organized

in each of the aforesaid structures (Figure 8). In the training phase, we balanced

the classes’ size via under-sampling of the majority class. To reduce the dimension-

ality of the data, we used a forward feature selection framework. We repeated the

modelling process, each time leaving out a single individual, as part of a leave-one-

out cross-validation. The left-out individual was used to test the trained model.

The entire process was repeated 100 times; AUCs were averaged across repeats and

standard errors computed. The results are reported in Figure 9. MNDA-informed

prediction models consistently outperform models that only either use microbial

abundance or MAGMA individual-specific edge weights as input features. The ad-

vantage of using individual-specific edges is context-dependent: depending on the

timepoint and the phenotype, the classification performances vary. The edges at m9

have the best performance among MAGMA individual-specific edge weights with

AUC of 0.57 and 0.64 for mode of delivery and diet. However, it is underperforming

compared to directly using CLR-transformed microbial abundances at m9.

ISN dynamic analysis highlights microbes not identified via global network anal-

yses. Important discriminative microbes for diet type or mode of delivery were

identified by counting the number of times a microbe was selected by the adopted

forward feature selection algorithm, mentioned above, out of 69 runs (every run had

one individual being considered as validation sample) and 100 repeats. It generates

a ranking of microbial importance: the higher the selection count, the higher the

microbe’s importance. Results over 50 generated embedding spaces were summa-

rized via summing 345,000 repeats per microbe, giving rise to a robust final ranking

of important discriminative microbes. We emphasize that the selection of microbes

in discriminative models was based on a measure of local neighbourhood dynamics

across time points. A list of top discriminators in this sense is provided in Table

II, using annotations of genus-species names. Among these taxa, Lachnospira sp.

and Bifidobacterium sp. have low neighborhood dynamics; besides, Streptococcus

luteciae and Ruminococcus sp. are important microbes for both delivery and diet

types. The latter neighbourhood dynamics analysis did not account for differences

between infants by diet during months 6 and 9, nor delivery mode. Specifically,

Streptococcus luteciae had previously been reported to be associated with infant

feeding [47]; moreover, its association with the delivery type can be explained by

its relation to the skin bacterium.

Stratified analyses confirm the differential dynamic behaviour of identified dis-

criminators in Table II. When a microbe is highly discriminative for diet type and

discrimination is based on ISN local neighbourhood dynamics over time, then the

change over time of its immediate ”interaction” partners should also be markedly
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Table 2 The list of top ranked discriminator microbes (genus-species names) for delivery type and
diet mode.

Microbe ASVs

Delivery
type

Streptococcus luteciae, Trabulsiella sp., Ruminococcus sp., Ruminococcus sp.,
Parabacteroides distasonis, Lachnospira sp., Bifidobacterium sp.

Diet Mode
Bacteroides ovatus, Clostridium citroniae, Bacteroides ovatus, Bifidobacterium bifidum,
Ruminococcus sp., Streptococcus luteciae, unclassified Lachnospiraceae.

different between dietary strata; and the same for mode of delivery. In Figure 10, we

focus on the microbial taxa of Table II (dark nodes) and their distance-1 neighbours

to investigate how the edge weights change over time. For each class of delivery mode

(C-section or vaginal delivery) and diet mode (persistent or non-persistent) we ob-

tained two subnetworks for each time point, month 6 and month 9, by averaging

ISNs from infants belonging to the same class per time point. Then, we subtract the

edge weights of networks in month 6 from the edge weights of networks in month 9,

resulting in four networks for each class. In Figure 10, the presented edges strengths

indicate the differences between averaged edge strengths between time points for

each class (red for average edge weight at 9m larger than at 6m and green for the

reverse). Each node is annotated with its genus-species name. For further compar-

ison of these difference networks within the delivery mode and diet, we refer to

Additional file 3: Figure S9. We observe that the differences in co-expression net-

works over time show that the connections at 6M are much stronger than at 9M for

C-section delivery. Furthermore, we observe that a change in diet between the two

timepoints results in clear differences in co-expression networks (Figure 10C), while

the networks are apparently more stable when infants have a more stable dietary

pattern.

Specifically for the diet mode, intra-class variation of ISNs restricted to the same

considered taxa in Figure 10 is illustrated via so-called graph filtration curves (Fig-

ure 11) [48]. These curves provide a more refined or complementary view to the

averaged ISN representations in Figure 10: Each individual’s contribution to the

average can be shown. These filtration curves show that the largest variation be-

tween the two timepoints is observed for non-persistent diet (i.e. the variation in the

diet mode is correlated with the dynamics of the microbial co-occurrence). Hence,

our analysis confirms that dietary shifts have a stronger impact on dynamics of

local neighbourhood microbial co-occurnences than observed between groups char-

acterized by different modes of delivery.

3.5 Local Neighbourhood Dynamics to Identify Between-Individual Heterogeneity

MNDA-based similarity measures can be used to cluster individuals into homoge-

neous groups according to similar microbial neighbourhood dynamics. Using ISNs to

define neighbourhoods, we observed that clusters of individuals significantly differed

from those obtained via Dirichlet multinomial mixtures methodology (DMM) [32].

More specifically, DMM clustering on pooled data across time points revealed two

clusters. These are depicted in Figure 12, together with corresponding transition

information as infants grew older. In contrast to DMM, MNDA-induced clustering

groups individuals according to their dynamics-similarity in microbial interaction

patterns. Robust clustering was performed, as described in Section 3.3 – a novel
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implementation of ensemble consensus clustering. This analysis also highlightes two

clusters, roughly of the same size (33 and 36 individuals). We used a Chi-square

statistic to evaluate the degree of non-random correspondence between MNDA- or

DMM-clusterings. This gave rise to a permutation-based p-value of 0.2814. It is

worth noting that, unlike DMM, MNDA results in communities that do not change

over time; they are based on dynamic information across time points. Microbial

abundance changes over time and dynamics of microbial interactions are two dis-

tinct reflections of the same process.

4 Discussion
4.1 The Value of Individual-Specific Dynamic Microbial Networks

Environmental factors may play a critical role in human complex diseases [49, 50].

One of these critical factors, the gut microbiome, has received special attention in

recent years, for instance in the context of disease development and progression

[51, 52]. Even though many studies have shown the resilience of the gut microbiota

and its stability over time, the gut microbiota is subject to dramatic shifts due to

person-oriented interventions such as changes in diet or medication use.

In this work, we proposed a novel work analysis framework, referred to as MNDA,

to capture the dynamics of gut microbial co-occurrence, within and across individu-

als. The approach is built on the concept of individual-specific microbiome networks,

with microbial taxa as nodes and individual-specific connecting edges defined via

microbial interactions. Microbiome ISNs were embedded in a common space. The co-

sine distance of the same node (microbe) between two timepoints in the embedding

space was taken to quantify local node-neighbourhood dynamics. This information

was subsequently exploited to stratify individuals into different homogeneous sub-

populations, revealing new aspects of population heterogeneity from the microbiome

interactome perspective. The proposed strategy was illustrated on data from the

LucKi cohort [33], containing microbiome profiles of 69 newborns collected at two

different time points (6 and 9 months after birth). Via comparison with baseline

techniques in the field, we motivated the potential of microbiome ISNs in micro-

biome time-course analyses.

Numerous studies have been performed on microbial longitudinal taxon abun-

dance data, amongst others, in association with clinical outcomes. However, these

studies typically ignore microbial interactions, the dynamics of which could also

be highly informative. Taking such microbial co-occurrences into account when

modelling temporal dynamics in bacterial communities, generalised Lotka-Volterra

models [53, 54] and dynamic Bayesian network models [17, 55] have been developed.

Even though these methods may describe the development of dynamic microbial

networks, data are aligned by assuming that patterns are similar across individuals,

yet exhibit different rates of change in accordance with demographic and clini-

cal variables. Individual-specific microbe neighbourhoods in ISNs are ignored. Also,

these methods typically require a large number of timepoints, which may not always

be available in microbial cohorts dealing with humans.

Our MNDA framework was exemplified on time course data with two time points.

We selected cosine distance as a measure of microbial neighbourhood dynamics

across two time points, as we aimed to capture the amount of similarity between
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two data points in a two-dimensional subspace of the MNDA embedding space.

Cosine distance is linked to, but not the same as, angular distance, which varies

in the range [0, 1]. Angular distance is a true metric but requires the computation

of arccos(.). When cosine distance between data points in the MNDA embedding

space is small (or equivalently, cosine similarity is high), then the two points will

be located in the same general direction from the origin. In other words, one can

be seen as a scaled-up version of the other.

4.2 The Value of Advanced Representation Learning

At the heart of MNDA lies an encoder-decoder algorithm to embed local microbial

neighbourhoods at multiple timepoints. Neighbourhoods may be based on global

microbiome co-occurrence networks or on derived ISNs. Traditional embedding ap-

proaches [56], such as PCA of Laplacian matrix, DeepWalk [57] and node2vec [58],

have been previously proposed for single-layer networks. For these methods, the

parameters in the encoder are not shared between nodes and cannot be generalised

to new nodes. Using an EDNN structure, MNDA is able to introduce shared pa-

rameters while encoding the nodes. In addition, we solved the node generalisation

problem by feeding the vector of node neighbours to the encoder. Using this trick,

the encoder can generate embedding for a new node whose neighbours need to be

determined. In addition, the method can easily be extended to multiple timepoints

by increasing the number of layers of the multiplex network. Our MNDA implemen-

tation works with weighted networks by exploiting a fixed-length weighted random

walk algorithm. Even though MNDA can be used on binarized networks as well,

with binary input and binary output vectors for the encoder-decoder system [59], we

do not describe it here since our empirical evaluation indicate suboptimal results.

Computing ISNs can be computationally intensive when the number of edges

grows. On a computational infrastructure with Windows 10 and R version 4.0.3

(2020-10-10), computing 5 ISNs for 95 microbes took 1.17 seconds. The MAGMA

network calculation can rapidly become intractable: for 5 MAGMA networks on 95

microbes, it took 55.15 seconds. MNDA analysis, including random walk probability

calculation and EDNN training, is the most time-consuming step in our analysis. In

particular, on a MacOS (version 12.4) and R version 4.0.5 (2021-03-31), random

walk probability calculation took 28.1 seconds for each multilayer network of 95

microbes; each round of EDNN training took 5.7 minutes for 69 individuals. The

measurements were done through the Sys.time() function in R. Embedding individ-

uals into a joint space is less computationally intensive than creating an embedding

space for each individual separately. It also ensures that cosine distances are compa-

rable across individuals (and thus can be used to cluster individuals). However, on

the downside of this, when the initial dataset is enriched with additional individuals,

the joint embedding space will differ, and individual predictions may change.

4.3 Unique Use of Individual-Specific Network Methodology

The ISNs were constructed using the method by Kuijjer et al. [20]. It builds on

a global reference network from which individuals are iteratively extracted and

perturbation effects are used to derive an ISN with individual-specific edges. Mo-

tivation for this particular way of ISN construction included that it is easy to
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implement via the LIONESS software [21] and has a straightforward interpreta-

tion: On average, and for an asymptotically large number of individuals, Kuijjer’s

ISNs average to the global reference network. Moreover, unlike for sample-specific

networks, approaches such as described in [60], edges in Kuijjer’s ISNs go beyond

differential co-occurrences: for each individual a tailored ”co-occurrence” network

is reconstructed.

Given the compositional and zero-inflated nature of the microbial data, it is nec-

essary to use a global network association algorithm that accommodates these data

characteristics. One of the most common tailored microbial association network

inference approaches in the field is SparCC [61, 62]. Alternatively, Cougoul et al.

[39] proposed MAGMA (rMAGMA R package), which not only takes into account

microbiomes’ noisy structure, excess of zero counts, overdispersion (high skewness)

and compositional nature (simplex constraint), but also ensures inferred association

strengths within [−1, 1]. Moreover, it results in a sparse low dimensional matrix of

co-occurrences, with edge strengths that can be adjusted for known confounders. On

the contrary, SparCC does not have a native sparsification and needs to be added as

an external step, with no established rule on how to perform it, hence, undermining

the reproducibility. Since ISNs are computed outside the MNDA framework, our

pipeline can be combined with any type of ISN, as long as the edges are individual-

specific.

Compared to the work done by Mac Aogáin et al. [24], our work has some impor-

tant differences. First, the authors construct microbiome co-occurrence networks

on CLR-transformed abundances and Pearson correlation. Pearson correlation is

the base measure of association implemented in the LIONESS software; which was

initially showcased on gene expression data. Friedman et al. [61] showed that even

though correlations on the CLR transformation are more accurate than Pearson cor-

relation, they are not as accurate as the SparCC algorithm. Second, the authors con-

tinued their analysis with edges as units of analysis. Our work exploits individual-

specific networks to define individual-specific ASV neighbourhoods (hence sets of

edges). Third, MNDA is mainly developed to compare microbiomes across condi-

tions or over time, by stacking ISNs into multiplex networks.

Compared to the iENA protocol [26] applied to multi-time point microbial anal-

ysis [27], our newly proposed workflow is different in the following ways: i) firstly,

the MAGMA transformation is considered instead of a Pearson correlation on abun-

dances; ii) LIONESS aims to reconstruct a network with the same interpretation

as the global network, i.e., the population-based network, while iENA computes an

individual deviation from the average; iii) edge-network in iENA is aggregated in a

single sCI value quantifying the disease’s risk, while in our work the edges constitute

the input of MNDA pipeline. They state that only interactions, not abundances are

significant and suggest remarkable disruption of the microbiota community when

diseases occur. This understanding is reinforced by a follow-up work from the same

group, characterising the personalised microbiota dynamics for disease classification

by individual-specific edge-network analysis [25]. Beneficial co-evolved interactions

between host and microbiota can be disrupted by different environmental stresses

such as changes in dietary habits, natural physiology, virus infections, and medical

treatments [63, 64, 65]. In general, analysis techniques developed to process time-

varying networks often require numerous temporal observations. The analysis of
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time-dependent multiplex networks with low temporal dimensions remains largely

under-investigated. In this paper, we encapsulate our proposed time-course anal-

ysis of ISNs into a multiplex network differential analysis framework, where each

network layer refers to a point in time. The framework quantifies the changes in

the local neighbourhood of each node for an ISN (i.e. a microbial taxon) between

the time points. This is achieved by embedding the nodes of network layers into a

shared embedding space.

4.4 Complementary Novel Findings

We uncovered previously unreported microbial taxa as biomarkers for temporal

changes between months 6 and 9 after birth. In particular, the two microbial taxa

that consistently cluster together in months 6 and 9 and are different from other

microbes are Bacteroides uniformis and Blautia sp. We can find insights from the

composition of the appearing/disappearing microbes. The disappearing Firmicutes

microbes’ are mostly (facultative) aerobic microorganisms, including Enterococcus,

Streptococcus, and Staphylococcus species, along with other facultative aerobes such

as Klebsiella (phylum Proteobacteria). In contrast, the appearing taxa within the

Firmicutes phylum include several strictly anaerobic species, including clostridial

members, Dorea sp. and Coprococcus. This shift is indicative of a more reduced

intestinal environment and more mature microbiome adapting to the fermentation

of complex dietary carbohydrates. Moreover, Verrucomicrobia is recognized as the

phylum with the least dynamic microbes in terms of their global network neigh-

bourhoods.

Regarding the individual-specific neighbourhood dynamics, Lachnospira sp. and

Bifidobacterium sp. have low neighborhood dynamics; Streptococcus luteciae and

Ruminococcus sp. are important microbes for both delivery and diet types. Strep-

tococcus luteciae had previously been reported to be associated with infant feeding

[47]; and, it is a skin bacterium, which can be the reason why in our study it

was associated with birth mode (like other skin bacteria) and exhibited low neigh-

bourhood dynamics. Other markers, such as Ruminococcus sp, Lachnospira and

Bifidobacterium sp., are too general, and little biological interpretation can be ex-

tracted in the context of this study. However, the observed link of S. luteciae and

B. bifidum with diet can potentially trace back to the depletion of these microbes

once breastfeeding is ceased.

The differences in co-expression networks over time (as highlighted in Figure 10)

show that the connections at 6M are much stronger than at 9M for C-section de-

livery. This is indicative of the waning effect of C-section delivery and temporal

colonization of environmental and skin bacteria in C-section delivered infants that

are displaced by other bacteria. The interaction networks of such typical C-section

delivered microbes also appear to wane over time. This is exemplified by the edge be-

tween Lachnospira sp. and Haemophilus parainfluenza, a bacterium typically found

to be temporarily enriched in C-section infants, which is much stronger at 6 as com-

pared to 9 months of age. Furthermore, we observed that a change in diet between

the two timepoints results in clear differences in co-expression networks (Figure

10C), while the networks are apparently more stable when infants have a more sta-

ble dietary pattern. Note that even infants with persistent dietary patterns still have
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a diet that is gradually becoming more complex and diverse as more complementary

foods are being introduced over time.

Moreover, filtration curves indicate that newborns shifting diet between 6M and

9M have the largest variation between the two timepoints. This would indicate that

dietary shifts have a stronger impact on dynamics of microbial co-occurrence in

this age-window when compared to C-section, which is in line with previous studies

indicating that the impact of birth mode is mainly restricted to the first months of

life.

4.5 Limitations and Future Work

Several steps in our MNDA framework can be varied. We could have chosen Eu-

clidean distance instead of cosine distance. However, Euclidean distance calculations

are computationally intensive and are often replaced by Manhattan distance for

high-dimensional data. In scenarios of high dimensionality, the approximation error

introduced by Manhattan distance may be unacceptably large and thus undesirable.

For the user who does wish to adopt Euclidean distances instead, Carderilli et al

[66] proposed an approximation method to Euclidean distance in high-dimensional

spaces. Building upon our default implementation of cosine similarity, in principle,

we can generalize the adopted similarity measure to more than two time points by

moving from angular similarity to similarity based on dihedral angles (i.e., angle

between two intersection half-planes) or generalized solid angles of pointed convex

cones (i.e., the intersection of a finite number of half-spaces whose corresponding

hyperplanes meet in exactly one point [67]). Assessing performance of multiple dis-

tance measures to capture microbiome neighbourhood dynamics as a biomarker for

prediction or stratified medicine is a logical next step.

Microbiome data analysis results are particularly susceptible to choices made

during virtually all steps of the analysis: for instance during pre-processing (e.g.,

normalization [68]), when adopting differential abundance strategies [69], or when

carrying out network analyses [29]. ISNs can be computed in several ways, with

individual-specific edges being binary or weighted, sparse or rich, positively weighted

or not. In this work, we transformed ISN edge weights to their absolute values.

Hence, we did not differentiate between positive and negative correlations. Lof-

tus et al. [70] noticed that taxonomically and functionally similar species tend to

have positive associations. In the current version of MNDA, taxa with neighbour-

hoods at months 6 or 9 only differing in sign, would be considered highly simi-

lar in terms of their neighbourhood dynamics. In future work, we aim to adapt

MNDA to accommodate positive and negative edge weights. Particularly linked to

our MNDA framework, tuning the hyperparameters of EDNN may further enhance

performance. These hyperparameters are number of hidden units (dimension of

the embedding space), number of layers, L1 and L2 regularization parameters, and

batch size. Although performance can be clearly defined in view of expected predic-

tion accuracy in supervised context (see Section 3.4 – MNDA inspired prediction),

it is less clear in unsupervised modelling contexts, in the absence of the ground

truth. For instance, the relevance of homogeneous subgroups identified in Section

3.5 may become more apparent when associated with variation in extraneous data.

For this study, we only had additional information about diet and mode of delivery.
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No significant association was observed between diet, mode of delivery and cluster

membership (using chi-squared test α = 0.05).

Finally, we emphasize that our MNDA framework is not limited to temporal mi-

crobiome data. For instance, nodes can be genes with edge weights representing

gene co-expression. ISNs can represent molecular interactions within and between

multiple related omics data types [71]. For all these scenarios, we believe that our

longitudinal analysis framework can be useful to identify novel biomarkers for pre-

cision medicine.

5 Conclusion
In this paper, we propose a novel framework to uncover microbial neighbourhood

dynamics. Our approach, MNDA, combines representation learning and individual-

specific microbiome networks, which makes it unique in the current landscape of

statistical methods for microbiome temporal data analysis. MNDA is not restricted

to microbiome data but can handle any data type and measurements, as long as

these can sensibly be organized into cross-sectional association networks. Our results

show that MNDA can induce predictions that outperform standard approaches

and that ISN dynamic analysis can identify microbes that are not identified by

global network comparisons. Stratified analysis over clinical variables confirms the

differential dynamic behaviour of identified discriminators to diet type stability or

mode of delivery. Standard microbial abundance changes over time and MNDA

dynamics of microbial interactions can be seen as alternate representations of the

same underlying process.
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Figures

Figure 1 The rationale behind ISNs. A global network summarises node and edge information
across the individuals belonging to the same population. The goal is to compute
individual-specific networks with individual-specific edge weights (as in [21]; each individual is
allowed to exhibit a particular network topology. Comparing such network topologies may not only
reveal individual heterogeneity, but may also indicate instances where health-related interventions
based on the global network may be inappropriate.

Figure 2 Multiplex network differential analysis (MNDA) framework. (A) in multiplex network
representation learning, all the nodes of a multiplex network are transformed into an embedding
space; the highlighted nodes are matched pairs and, in our case, correspond to the same microbe.
(B) Multiplex network representation learning is performed using an encoder-decoder neural
network for all individuals.

Figure 3 Phyla in the subset of the LucKi cohort. The share of the phyla in the 95 selected
microbes is showed. Sample figure title

Figure 4 Violin plot for α-diversity distribution grouped (A) per timepoint, (B) mode of delivery
and (C) diet. The grey dots represent the averages. Gray line extremes indicate plus and minus
one standard deviation. Paired Mann-Whitney U test between 6m and 9m rejects the hypothesis
of no difference between the timepoints (p− value = 3.418× 10−8), while there is no significance
(p-value ¿0.05) grouping per mode of delivery and diet. The IQRs are respectively (A) 0.72 for 6m
and 0.42 for 9m; (B) 0.45 per C-section and 0.67 per Vaginal; (C) 0.80 per Non persistent and
0.63 per Persistent diet.
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Figure 5 β-diversity grouped (A) per timepoint, (B) mode of delivery and (C) diet on paired
samples. As in Le cao et al [72], we compute the β-diversity with a PCA from the mixOmics
package on the CLR transformation of the microbiome data. The axes are the first two principal
components and account for 13% of the total variance. Individuals with missing phenotypes (1 for
diet) are excluded from the analysis

Figure 6 Global MAGMA networks calculated on all subjects retained in the LucKi cohort at 6
(81 subjects) and 9 months (74 subjects) after birth, i.e., available cases at each timepoint. Color
code corresponds to phylum classification. The thickness of an edge corresponds to the strength
of association. Microbial taxa are organized on a circle according to phylum membership at
timepoint 6m (A) and 9m (B). In (C) and (D), respectively timepoint 6m and 9m, edges are
aggregated per phylum and within- and across- phyla co-occurrences are computed via sparsified
MAGMA binary networks at each time point. Node size and edge weight correspond to
respectively phylum size and association strength. In (E) and (F) weighted MAGMA edges are
used, whereas binary edges are used in (C) and (D).

Figure 7 (A) Four groups of microbes based on their cluster shifts between m6 and m9; (B) The
frequency of cluster shifts between m6 and m 9; (C) Graphical illustration of microbial cluster
shift rates; (D) Highly and lowly variable microbes.

Figure 8 Different scenarios for microbiome longitudinal analysis. (A) Individual specific networks
of microbiome co-occurrences for month 6 and month 9 are represented into an embedding space
using our proposed MNDA method. Therefore, data can be organised by different perspectives as
following. B) node-oriented approach: standard Taxon abundance table of both timepoints is used;
(C) edge-oriented approach: the edge weights of both timepoints are used as features; (D)
dynamic-oriented approach: the variations between the local neighbourhood of nodes in time are
considered as features. Assuming K nodes and L edges between nodes, the number of variables in
the microbial dynamic space is the same as the number of microbes K. The number of edges L is
bounded by the number of possible selections of pairs of nodes out of K nodes.

Figure 9 The prediction results, in terms of AUC, for (A) delivery type and (B) diet type.
Different feature sets use for prediction, among which MNDA-based method is consistently the
top performing. On the contrary, the difference between MAGMA individual-specific edges at 6m
and 9m never reaches an AUC of 0.5.

Figure 10 Differences of averaged microbial co-expression networks restricted to the important
microbes and their first level neighbours between month 6 and month 9 on (A) C-section and (B)
vaginal delivery, as well as (C) non-persistent diet and (D) persistent diet. Edge thickness is given
by its co-occurrence magnitude, while the edge colours show the sign of the correlation (red for
average edge weight at 9m larger than at 6m and green the reverse). The important microbes are
highlighted by dark colour and their family names (also listed in Table II), and their first level
neighbours are indicated by light colours.

Figure 11 Filtration curves representing the difference between averaged microbial co-expression
networks of month 6 and month 9 for (A) non-persistent diet (9 infants) and (B) persistent diet
(32 on solid food, 27 on mixed breastfeeding and solid food).

Figure 12 A comparison between our MNDA-induced clustering and DMM clustering reveals no
significant association, which means that MNDA provides an independent view to the data. It is
also noteworthy that unlike DMM that finds clusters for each timepoint, MNDA provides
clustering of individuals based on their variation in both timepoints.
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