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Abstract—This paper introduces a reasoning system based on can be defined by using theollinearity projective invariant,
a previously developed model for ternary projective relatons which is the property of three collinear points being still
between spatial objects. The model applies to spatial objecof ¢ linear after an arbitrary number of projections. A maif d

the kind point and region, is based on basic projective invaants f in the treat tof t loaical relati d s
and takes into account the size and shape of the three objedtsat erence in the treatment of topological relations and [toje

are involved in a relation. The reasoning system proposes @t relations is that, while basic topological relations areaby,
of permutation and composition rules, which allow the infeence basic projective relations are ternary because they araatkfi

of unknown relations from given ones. on the collinearity of three points. The definition of codlirity
has been extended to regions 8).[
I. INTRODUCTION In this paper, we propose a reasoning system for the set of

The field of Qualitative Spatial Reasoning (QSR) has expBLOJective relations that was introduced @.[Such relations
rienced a great interest in the spatial data handling conignurfStablish a jointly exhaustive and pairwise disjoint (JEEBEX
due to its potential application&]] An important topic in QSR of projective relations among any three regions of the plane

is the definition of reasoning systems on qualitative spatid Preliminary version of this model was presented ]|
relations. For example, regarding topological relatioti® but the set of relations was not JEPD. A first version of the

9-intersection model2] provides formal definitions for the "€2S0Ning system, applied on a subset of the relations, was

relations and a reasoning system based on compositiorstatigSented in11]. The projective relations are ternary refations
[3] establishes a mechanism to find new relations from a &Jtthe kindr(4, B, C'), whereA has the role of primary object
of given ones. and B and C have the role of reference objects. This latter

As discussed in4], geometric properties can be subdividedfMinology derives from the work on positional relations
in three groups: topological, projective and metric. Mod€-9-» [']), where the position of an object (primary) is stated

qualitative relations between spatial objects can be difine With respect to the position of one or more other objectsigcti
terms of topological or projective properties].[ Qualitative &S reference. Two cases can be distinguished based on whethe

distances are a qualitative interpretation of metric dists (1€ convex hulls of the reference objects are disjoint or not
(6. d|510|nt. In the f|rst_ca§e, the model, callle.d tﬁentersectlor,l_
Projective relations are a category of spatial relatiorat tHPY USing only projective concepts partitions the plane into
can be described by projective properties of the space withdVe acceptance areas with respect to the reference objects;
resorting to metric properties], Projective relations are thus/n the second case, the partition of the plane results in two
qualitative in nature because they do not need exact measi@gceptance areas. The model is able to differentiate batwee
to be explained. Projective relations are more specific thaf different projective relations that are obtained by cating
topological relations and can serve as a basis for desgribfii€ intersection of the primary object with the acceptameas
relations that are not captured by topology. At an interratedi that are determined by the reference objects. _
rank between metrics and topology, projective relatiores ar 1h€ réasoning system establishes rules of permutation and
as much varied as “right of”, “before”, “between”, ua|ongn,comp05|t|0n of relations in the form of tables. Among the 34

“surrounded by”, “in front of”, “back”, “north of”, “east o, projective relations of the model, we can distinguish ®ngl

and so on. tile and multi-tile relations, depending whether the pniyna

To have a common sense understanding of projective rePhject intersects one or more of the acceptance areas. The
tions, it is helpful to think about different two-dimensain single-tile relations are five for non-intersecting convexls
views of a three-dimensional real world scene of object8f reference objects and two for intersecting convex hulls o
changing the point of view, metric aspects such distancds dfference objects. The permutation rules are of two types:
angles among the objects appear to be different, but there gnverse and rotation. Regarding the composition table, we
properties that are common in all the views. These commbntially find it for the composition of single-tile relatits with
properties are projective properties. all basic relations (therefore, &x 34 table). The latter table

Likewise topological relations, which are defined by usingas been found in two different ways: by manually checking

the connectedness topological invariant, projectivetiia 2@l geometric configurations that satisfy the table and by
running a simulation program with a high number of random
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ternary relations. In Sectiond/, we summarize the model Ternary projective relations are more general than binary
of projective relations among points and, in Sectidnwe orientation relations or cardinal directions, becausg than't
describe the reasoning system for points. In Sectibhwe need to refer to an external frame of reference. The two
summarize the model for projective relations among regiongference objects are able to make a partition of the plane to
Section VII presents the main contribution of the paperyhich the position of the primary object is compared. 38][
consisting in the reasoning system for regions. Sectith we find the same approach as ours regarding the reasoning on
draws conclusions. In the appendix, we include all geometpoints, except that authors consider a partition of theglan
configurations that have been considered to build the compaven parts instead of five. Moving from points to extended
sition tables. regions, among the strengths of our model are the factstthat i
uses projective properties only and that the acceptanees are
of relations depend on the shape and size of the reference
objects. Independence from a specific frame of referenad (bo
In the QSR literature, we can find various models for reggocentric or allocentric3f]) allows us to specify ternary
soning with projective relations. Freksa’s double-cradswus relations among objects from a purely geometric point ofwie
[12] is similar to our approach in the case of points. Such further step is to apply the model of ternary projective
a calculus, as it has been further discussed 1], [[14], relations to specific settings, like robot navigati®@¥]| [37]
is based on ternary directional relations between poimts. ¢r cardinal directions on the Earth surfaGs]|
Freksa’s model, an intrinsic frame of reference centred in a
given point partitions the plane into four quadrants tha ar IIl. REASONING WITH RELATIONS
given by the front-back and right-left dichotomies. Thiads ) )
to a greater number of qualitative distinctions with diget ~ MOSt research on spatial and temporal relations have fo-
algebraic properties and composition tables. A smaller -nuffSed on binary relat|0ns and studied glgorlthms for sévera
ber of qualitative distinctions and an independence from tHserI operators I|keonverseandcqmposmor[39], 31, 23],
specific frame of reference would improve the possibility df*0: [33. The converse of a relation that holds betweert

extending this model to other spatial types besides points. @1d B, denoted by-~, specifies the relation betweeh and
A. The composition of a relation betweenA and B with

Other work on ternary calculi is rather limited. Most ap- lati b B andC. d d b i
proaches consider binary relations to which a frame of ref re altlo_nq betwee:ﬂ a(;lC C enote 3(;7" © 4, Specilies
ence is associated ], [16]. Exceptions of ternary relations,t e relation betweenl an ©. LLOnverse an composmon are
such as “between”, were considered 1fJ[and, more recently, used tolconstruct reasoning mechanisms applicable to query
in [18]. Projective relations, intended as locative expressioﬂéocess'ng' . .
between two objectslp], depend on an underlying frame of The aforementioned notions can also be extended for ternary
reference. The use of ternary relations instead of binaasor{elat!ons B4, [41], [13]_' Let us _conS|der a sc_at of basic '_[err_1ary

lations7 that containg7 | jointly exhaustive and pairwise

allows us to describe the projective relation in a way that [§'au lati £l P q
independent from the frame of reference. The ternary mo ploint relations 16]. lements of7- are used to represent
efiniteinformation. Using these relations, we can define the

of projective relations can be seen as a geometric abzi):racﬁ]I

of locative expressions commonly used in the physical worl owerseto_f T T(|.e., th.e set of all subseTts), denoted B
Our approach can be compared to various models t contains2!?! relations. Elements 02”7 can be used to

orientation relations 40}, [21], [22], [23], [24] or cardinal represent definite but alsndefiniteinformation. For instance,

directions between point&9], [26]. Most of them, even when i Itlt". : ._,tharehl_Jz?IS{c relaporlws ﬁrd then {tl’t' ot} is @
explicitly related to projective geometry, never avoid thge '©'aton =7 WNICN 1S equivaient 1a, Voo Vi,

of metric properties (minimum bounding rectangles, angles Initially, we define converse and rotation. #(4, B, C)

etc.) and external frames of reference (such as a grid).i%o tHOIdS’ the_ converse Of specifies th? relation be_tweecn ¢
respect, the main difference in our approach is that we o d B while the rotation ofr specifies the relation between

. AT . - . , A and B.

SSZI]vg;hdpi);?;c(::tévse;rr\]\(/jazig}z,sl'ndependently of metspects Definition 1: Lei r !oe a ternary _reIaTtion i_rT . The.converse

Most work on cardinal directions deals with point abstracqf r, denoted by, is a relation in2* defined as:
tions of spatial features and less work has been devoted tg-— — {t ¢ T | (34,B,C)( t(A,C,B) A7(A,B,C) )}
extended objects2[7], [29], [29], [3Q], [31]. In [32], the
authors use spheres surrounding the objects to take intd2¢efinition 2: Let » be a ternary relation iff . Therotation
account the shape of objects in relative orientation.ai,[ Of 7, denoted by-™, is a relation in2” defined as:
the authors develop a model for cardinal directions between ~ _
extended objects, where the partition of the plane is détein T ={teT | (A, B,C)(HC A B)Ar(A, B,C) )}
by the prolongations of the sides of the minimum bounding Notice that the converse and rotation operators as defined
rectangle (MBR) of a reference object. The reasoning fohsuabove are the ternary counterpart of the binary converse
a model has been developed i3], [34]. Contrary to the operation f#1]. For binary relations, the converse operation
double-cross calculuslP] and the direction matrixd7], we is sufficient since there are only 2 permutations between 2
use a cone-based model instead of a projection-based magectsA and B, namely(A, B) and (B, A). For the ternary
[29]. relations case, there are 6 possible permutations between 3

II. RELATED WORK



|EftSid€(P2, Ps)

objectsA, B andC, namely(4, B, C), (A,C, B), (B, A, C), Py after(P2,P3)
(B,C,A), (C,A,B) and (C, B, A). It is easy to verify that betwee (P2, Ps)
we need both converse and rotation to move between these
permutations. For instance, we may move from B, C) to
(C, B, A) by applying the rotation followed by the converse
operator.

Next, we define ternary composition. @ (b)

Definition 3: Let » and ¢ be two ternary relations. The
compositionof » and g, denoted byr o ¢, is defined as:

roq={teT | (34,B,C,D)( r(A,B,C) Aq(B,C, D)A - o
t(A,C,D) )} insidgP,,P) P, P outside(P,,Py) 7
—— e

P.

—
befordP,,P;

Fig. 1. Ternary relations between pointBx(# P3)

P Ps
Similarly to earlier works in qualitative spatial relat&n *
we use a weak definition of converse and compositi@, [
[43], [33, [31]. Typically, these operators are expressible for @ ®)
every pair of spatial relations and can be naturally used as a
constraint propagation mechanism. On the contrary, theemeig. 2. Temary relations between pointgx(= Ps)
strict set-theoretic definitions of converse and compamsitire
not always definabled[d], [44], [33], [31].
In the following sections, we will define a model for
ternary projective relations for points and a model for &eyn
projective relations for regions. Moreover, we will studet
converse, the rotation and the composition operationshfer t

above models. Case 2: P, = Ps. In this case, the space is partitioned in a
point (P) and an open aredtf — P»). These regions corre-

) o ] _ ) inside( P2, P3) and outside( Py, P3) respectively (Figurea).
Our basic set of projective relations for points is based |t 5 point P; is included (in the set-theoretic sense) in region
on the most important geometric invariant in a Projectivg,;s;q. (P, P;) of some points, and P, then we say thab;

space: the collinearity of three points. Therefore, theureat g oy tsideof P, andP; and we writeou(P;, Py, Ps). Similarly,
of projective relations is intrinsically ternary. Let usnsider \ye can define relatioinside denoted byin.

three pointsP;, P, _and Ps. 1_'0 defing the projective relation Example 2:For the points of Figur@b, we have:
r1(Py, Py, P3) of primary pointP; with respect to reference
points P, and P;, we consider the following two cases. ou(Py, P2, P3) and in(Py, P, Ps3).

Case 1: P, # Ps. In this case, to define (P, P, Ps), Summarizing, the set of projective relations between goint
we use the directed IindTPg,). This directed line parti- contains the following 7 (=5+2) relationss, Is, bf, af, bt,
tions the space into 5 parts that correspond to the relatiamsand ou. We will use D,,;,,; to denote this set. Relations
rightside, leftside, before, after and between and are de- in Dy are jointly exhaustive and pairwise disjoir®] [ Ele-
noted byrightside(Ps, Ps), leftside( Py, Ps), before(Ps, Ps), ments ofD,,;,; can be used to represent definite information,
after(Py, P3) and between (P, Ps), respectively (Figurda). e.g.,bt(Pi, P, P3). To expressndefiniteinformation, we use
In Figure la, rightside(Ps, P3) is the light gray area, the powerse@Print, of D,.:,,+ Which contains128 = 27
leftside( Py, P3) is the dark gray areajefore(P, P3) is the relations. For instanc€pt, af}(Py, Py, P3) € 2Proint denotes
dotted semi-line,after(P,, P3) is the dashed semi-line andthat point P, is either between or after point8, and P;
between(Ps, Ps) is the thick line segment. Notice that: (i.e.pt(P1, Py, Ps)Vaf(P1, Py, P3) holds). More details about

« All parts are disjoint. these relations can be found ][

« The union of all parts ig?.

o Py € between(Ps, Ps), P3 € between(Ps, Ps), PP ¢ V. REASONING WITH PROJECTIVE RELATIONS FOR POINTS

rightside (P>, P3) and P, P3 & leftside(Ps, Ps). In this section, we will study the converse, rotation and
If a point P, is included (in the set-theoretic sense) in regiogomposition operators for the projective relations fornp®i
rightside( P2, P3) of some points? and P, then we say that defined in SectionV.

P, is rightside of P, and P; and we writers(Py, P, Ps3). For any projective relatiom(Py, P>, P;), Tablel presents

Similarly, we can define relations (leftside), bf (before), the relations that correspond to the conversg P, Ps, P»)

af (after) andbt (between). and the rotatiom™ (Ps, Py, P») of r(P1, P2, P3). For example,
Example 1:For the points of Figurdb, we have: given three pointsP;, P, and P; such thatbf (P, P, Ps)

holds, using Tablé, we can derive thatf (P, Ps, P;) and
rs(Pr1, P2, P3), af(Pa, P2, P;) and bt(Py, P, P3). af(Ps, P1, P,) also hold (see also Figuta).



[r(PL, P2, P3) [ r— (P, P3, P2) [ 1 (Ps,P1, P2) |

bt bt bt,bf,ou

rs ls rs In this section, we will briefly present the projective model

sz ‘;ﬁ ‘g for regions, we refer the interested reader % fpr a more

of i b extended discussion. These relations extend the progectiv

in in in relations for points discussed in Sectidvi, thus they are

ou ou bt also ternary. Let us consider three regiadis, R, and Rs.
TABLE | To define the projective relation; (R;, R2, R3) of primary

region R, with respect to reference regiot, and R3, we
consider the following two cases.

Case 1: CH(Ry;) N CH(R3) = 0. In this case, to define

CONVERSE AND ROTATION FOR PROJECTIVE RELATIONS BETWEEN POT$

P, ; 8 o i; o) r1(R1, Ra, R3), we use the convex hull of the union of regions
| 1,P2,P3 i i
biPLPP) Py | IS(PLP,Py) oC rs(Py PP Ry and ng and the internal common tangents of regidiis
b, a(PyPsP) b, D(P,PsPy) then and_Rg. SinceCH (_Rg) NCH(R3) = () holds, we can always
2y af(Ps,P,Py) 2 then rs(PyPsP) or  define exactly two internal and two external common tangents
= P4l rs(P1P3,Ps) bf(P1,Ps,P) or  For instance, in Figurda, we illustrate two regionsi, and
I(P1,Ps,P2) R3) and their internal and external common tangents.
@) (b) (©)

internal tangents
Fig. 3. Operations on point relations

i
Table Il illustrates the result of the compositiom; o ~ &€rnal

ro(Py, P3, Py), of two basic projective relations (Py, P, Ps) tangir‘“s
andrq (P, Ps, Py). For instance, as we can verify in Figisie,
we have: convex-hull

beforedR,, Rs)
Gy yane

Is(Py, Py, Py) o bt(Ps, Py, Py) = rs(Py, Py, Py). @) (b)

Notice that, for some cases, the result of the compositionfi§- 4. Ternary relations between regioS/{ (R2) N CH(Rs) = 0)

a relation in2P#int. For example, we have: _
The external common tangents help to find the convex

Is(Py, Py, P3) ors(Py, P3, Py) = {rs,bf,Is}(P1,P3,P;).  hull of the union of R, and Rs;. The convex hull and the

Thi h . f . P P andP hth internal common tangents of regiori$, and Rs partition
Is means that, given four points, P, Py and P, suchthat o yoterence space into 5 regions as in (Figthe Formal

Ls(Py, Py, Ps) andrs(Py, P, Py) hold, the projective relation yoinitions of these regions can be found @.[Similarly

of P1 can be rightside or before or leftside, ang_R; ("eb' to the point case, these areas correspond to the relations
rs(Py, Py, P4) Vbf(P1, Ps, P4) Vis(Py, Py, Py)). This can be rightside, leftside, before, after and between and are de-

verified in Figuresc. If P, were placed in pointl (respectively v pvosnica0p" PO lefiside(Py. P). b P, P

B qnd O) then the firs_t .(respectively the second and the third er( P;’/gf ) ;an (bethl)e;T)L’( Pef 15;3)6 (rez;:) ei)tiveciilrozliggj;eﬂ,%))’.
disjunct would be verified. L To distinguish the above areas, we consider an oriented line
_Moreover, for some other cases the result is IMPOfyy, the first reference region (i.eRs) to the second reference

sible, denoted byIMP. For mstance,m(Pl,].DQ,Pg) ° region (i.e.,Rs3). Specifically, in Figuretb, rightside(Ps, P3)

rs(Pa, P3, Py) = IM P because we can easily venfythattherg5 the lower dark gray aredgftside(Ps, Ps) is the upper

do not exist points™y, Py, P and P, such thatin(P1, Ps, P3)  gapi gray areapefore(Ps, Ps) is the light gray area on the
andrs(Ps, P, Py) simultaneously hold. left, after(P», P3) is the light gray area on the right and
between(Ps, Ps) is the white area on the middle. Notice that:

VI. PROJECTIVE RELATIONS FOR REGIONS The union of all regions 2.

In SectionsIV and V, we have defined a model for ¢ All areas butbetween(Ry, R3) are unbounded.
projective relations for points and we have studied reagpni * Areabetween(R;, Rs) is closed.
operators. We will now turn our attention to regions. In this * The interiors of all areas are disjoint but two areas may
paper, we will consider regions that are formed by finite ngio share common points in their boundaries. For instance,
of regions that are homeomorphic to ttlesed unit dis{34). the areasbefore(R;, R3) and rightside(R;, R3) share
This set of regions is denoted BYEG*. Regions inREG* some points of the internal tangent.
areregular closed point setand can bealisconnectear have Even though tiles share some points in their borders there is
holes However, clas®t EG* excludes points, lines and regionsio ambiguity in defining projective relations because tls<!
with emanating lines. Le#l be a region inREG*, we denote REG* does not contain objects that could lie entirely on the
the convex hull ofA by CH(A). borderline (like lines and points).



[(ro/r1 ]| bt ] rs | bf ] Is | of [ in ] ou |

bt bt Is {bt,af} TS bf bt {bt,rs,bf,ls,af}
rs rs {bt,rs,ls,af} TS {rs,bf,ls} Is IMP IMP

bf bf TS bf s {bt,af} | IMP IMP

s s {rs,bf,ls} Is {bt,rs,ls,af} TS IMP IMP

af {bt,af} Is af rs bf IMP IMP

in IMP IMP IMP IMP IMP in ou

ou ou in, ou ou ou ou IMP IMP

TABLE 1l

COMPOSITION TABLE OF PROJECTIVE RELATIONS BETWEEN POINTS

regioninside(R2, R3) of some reference region®, and R
(Figure 6b), then we say thaR; is insideof Ry and R3 and
we writein(R1, R, R3). Similarly, we can define relationu
(outside).

@ If a primary regionR; lies partly in theinside(R2, R3)
(@) (b) area and partly in theutside(R2, R3) area of some reference
regions R, and R (Figure 6¢) then we say thatl is partly
Fig. 5.  Example of projective relations between regioisH((R2) N inside and partly outside of R, and Rz and we write
CH(RS) = @) in:ou(Rl N Rz, Rg)

_ o . _ Summarizing, the general definition of a basic projective
If a region R, is included (in the set-theoretic senseje|ation in our framework is given as follows:
in region rightside( Rz, R3) of some reference region®;

and R; (Figure 5a), then we say thai?, is rightside of  pefinition 4: A basic projective relatioris an expression

Ry and R3 and we writers(R:, Ry, R3). Similarly, we can . .. ... \herek andr,...,r can belong to exactly one
define relationds (leftside), bf (before), af (after) andbt ot the following cases.
(between).

If a primary regionR; lies partly in therightside(R2, R3)
area and partly in théefore(R2, R3) area of some reference
regionsR, and Rs (Figure5b), then we say thaR, is partly 1) 1<k <5, r,....rp € {bt, s, bf, Is, af} and R; #
rightside and partly before of R, and Rz and we write R; for everyi, j such thatl <i,j <k andi # j.
rs:bf(R1, R, Rs). 2) 1 <k <2 r,...,1 € {in, ou} and R; # R; for

everyi, 7 such thatl <i,j < k ands # j.
Case 2:CH(Ry) "CH(Rs3) # 0. In this case, the common yhJ =6 iF

internal tangents of region®, and Rs; cannot be defined.
Thus, we only use the convex hull of regioRs and R3 to
partition the reference space into two areas as in Figare We refer torq,...,r; as thetiles of relation ry:---:ry.
These areas correspond to relatiomside andoutside and are Moreover, a basic projective relation: - - - ;7 is calledsingle-
denoted byinside(Rz, R3) and outside( Ry, R3) respectively. tile if & =1; otherwise it is callednulti-tile.

Region inside(R2, R3) is bounded whileoutside(Rs, R3)
is unbounded. Similarly to Case 1, the union of regions In order to avoid confusion, we will write the elements of
inside(Rz2, R3) and outside(R2, R3) is R? and the interiors a multi-tile relation according to the following ordeit, rs,
of these areas are disjoint but they share common pointsbify is, af, in and ou. Thus, we always write's:bf and not
their boundaries. bf:rs.

) — — Example 3:Expressionss, rs:bf, in andin:ou are basic
projective relations. The first and the third are single-til
_ ‘ A relations, while the second and the forth are multi-tileje@ts
7 : involved in these relations are shown in Figufss 5b, 6b
(©

and 6¢ respectively.

@) (b)

The following two definitions formally define basic (single
Fig. 6. Ternary relations between poinG# (R2) N CH(R3) # 0) and multi-tile) projective relations.

If a region R; is included (in the set-theoretic sense) in Definition 5: Let Ry, R, andR3 be three regions iR EG*.



Then, single-tile projective relations are defined as fodlo
bt(Rl, RQ, Rg) iff R, € between(RQ, Rg)

and CH(Ry)NCH(R3) =10
T‘S(Rl , Ro, R3) iff R, € rightside (Rg, R3)

Example 4:We haved ({bt, rs},d(rs,ls)) = 6(bt, rs,ls) =
{bt, rs, ls, blt:rs, bt:ls, rs:ls, bt:rs:ls}.
Definition 10: We denote by/,,,; the universal disjunctive

and CH(Ry) N CH(Rs) — 0 projective relation, i.e.,
bf(Rl, Rs, Rg) iff Rye before(RQ, Rg) Up’roj = 5(bt, rs, bf, ls, af, n, O’LL).

and CH(R:)NCH(R3) =10 _ L
Is(Ri,Ra, Ry) iff R € leftside(Ra, Rs) Moreover, we denote byD,; the universal disjunctive pro-

and CH(Rs) N CH(Rs) =0 jective relation with reference regions with disjoint cerv
af(Ri,Ra, Ry) iff R € after(Ra, Ry) hulls, i.e., Dy = §(bt,rs,bf,ls,af), and by D, the universal

and CH(R.)NCH(Rs) =0 disjunctive projective relation with reference regionshaion-
in(Ry,Ra,Rs) iff Ry € inside(Ra, Rs) d|510|r!t convex hulls, .I.e.Dc_ = 6(m,oy). _

and CH(Rs) N CH(Rs) # 0 Definition 11: The tile-union of basic relations-, ..., r,
ou(Ry, Ro,Ry)  iff Ry € outside(Ra, Rs) denoted bytile-union(ry,...,r), is the basic relation that

B and CH(R,) N CH(}’%3) 20 consists of all the tiles of relations, ..., 7.

o _ Example 5:We havetile-union(rs,bf:ls) = rs:bf:ls and
Definition 6: Let Ry, R, and Rs be three regions tij..ynion(bt,rs,rs:ls) = bt:rs:ls.

in REG* and ri:---:r, be a multi-tile projective Definition 12:Let 7 = {rl..../BYy, L . =
relation.  Then, ry:---rp(Ry, Ry, R3)  holds  iff g1 © pkny pe i projective relatlons |n2DTegwn. The
there exist regionsQi,...,Qr € REG* such that product of 1 relations 7y, ..., 7,, denoted byr (7, ..., %)

r1(Qu, Ry, R3), .., 75(Qp, R2, R3) and Ry = Q1U---UQk- s a projective relation irRPrsion defined as:
Summarizing, the set of basic projective relations between

regions contains 34 relations (7 single-tile and 27 milki-t (7 v ka)lz {tile'“m‘m(3117 . Sm) |

We will use D,.c4i0n to denote this set. Relations M,.cgion s1€{ri, Y ey sm € T b

are jointly exhaustive and pairwise disjoirf]][ Elements of  Example 6: The following are some examples of products.
D,egion Can be used to represent definite information about w({bt rs}, {bf ls}) = {bt:bf, bt:ls, rs:bf, rsilsh
directional information. We will user, ¢ and p possibly . W({rs:ls,bt},{bt:rs:ls,rs:bf:ls}) = {btrsils, rs:bfils,
subscripted to denote variables rangingI®. ;.. TO also btirs:bfils)

express indefinite information we use the powerg&t;sio», o m({rsils,bt}, {btrsids, rs:bfilsy,bf) = {rsbfils

of Dyegion. We will user, ¢ and p possibly subscripted to bt:rs:bf:%s}.7 ’ ' ’

denote variables ranging P« The following is a useful proposition.

Proposition 1: Let 71, 7, and ¢ be projective relations in
VIlI. REASONING WITH PROJECTIVE RELATIONS FOR 9Dregion . Then

REGIONS

To present our results, we will need the following defini- m(r U2, q) =n(r, @) Un(T2, ).
tions. The product of relations is commonly used to compute the

Definition 7: Let r1,. .., 7 be single-tile relations. Th&  composition operator for other models of qualitative dii@t
combinationof relationsr, ..., r, denoted byi(r1,...,7x), relations B3], [31]. In our work, we also need the following
is a short-cut for the projective relation iP~<sie~ that can definition that uses the product of two relations.
be constructed by combining single-tile relations. . ., ry. Definition 13: The augmentatiorof a basic projective rela-

For instance, we havé(bt,rs,ls) = {bt, rs, ls, bt:rs, tionrin D,.cgion by @ projective relatiog in 2Pr<sio», denoted
bt:ls, rsils, btrs:ls}. by r/q is a projective relation irPrsion defined as:

Definition 8: Letr: - - -:r; be a basic projective relation in
D,egion- The §-combination ofry: - - -y, is defined as: r/g=rumn(r,q).

S(ric-rp) = 6(r1, ..., %) Example 7:We havers:ls/o(bt,bf) = {rs:ls, bt:rs:ls,
rs:bf:ls, btrs:bf:ls}.

For instance, we have(bt:rs:ls) = d(bt,rs,ls) =
{bt, rs, ls, bt:rs, bt:ls, rs:ls, bt:rs: ls} ) A. Converse and rotation

Def|n|t|on 9: Let o= {rl, .. } v Tm ) R )
{rl ... rkm} be m projective relatlons irpDregion (Where For any basic projective relatiom(R;, R2, R3), Table
rb ek Lk are basic projective relations). [l presents the relations that (_:orrespond to the con-
The §-combination of these relations is defined as: v(e;zse;z (}};1)’ Rs, Ry) and the rotation/™ (Rs, R, Ry) of

1,412, 413 ).
O(F1y o ) = O(rl, o TR Example 8:Using Tablelll, we have thats— = Is and

. . rs— = {rs,ou}. These equations can be verified using

Finally, we define regions Ry, R, and Rs of Figure 7. We havels € rs—
S(O(rt, . P )8k, )) = since in Figure7a and b, rs(R;, Ra, R3), Is(R1, R3, Ra)
S(ri, . etk k) holds. Similarly, we havéa) rs € rs~ since in Figure7a,



[ 7(R1,R2,R3) || r—(R1,R3,R2) [ 7~ (R3, R1, Ra)

bt bt rs:ls/o(bt,bf) U bt/d(rs,ls) U o(bt,bf) U bf:af/d(bt,ls) U bf:af/d(bt, rs) U
bf:ls/bt Urs:bf /bt Ubt:af/lsUbt:af/rs U D,
rs ls {rs,ou}
bf af af/o(rs,ls) Urs:lsUou
ls rs {ls, ou}
af bf bt/5(rs,bf,ls) Urs:ls/bf
bt:rs bt:ls o(bt,bf)/rs Ubt/d(rs,bf,af) Ubf:af/rs U D,
bt:bf bt:af bt/o(rs,bf,af) Ubf:af/rsUbt/o(bf,ls,af) Ubf:af/lsU D,
bt:ls bt:rs o(bt,bf)/lsUbt/o(bf,ls,af) Ubf:af/lsU D,
bt:af bt:bf bt/5(rs,bf, Is)Urs:ls/bf Ubf /bt Ubf:af/5(bt, Is)Ubf:af/d(bt, rs)Ubf:ls/btU
rs:bf /bt Ubt:af/ls Ubt:af/rsU D
rs:bf Is:af af/rsUou
rs:ls rs:ls af Uo(bt,bf)U D,
rs:af bf:ls bt/o(rs,bf) Urs:bf U {in,in:ou}
bf:ls rs:af af/lsUou
bf:af bf:af bt/o(rs,bf,af) Ubf:af/rsUbt/é(bf,ls,af) Ubf:af/lsU D,
Is:af rs:bf bt/o(bf,ls) Ubf:ls U {in,in:ou}
bt:rs:bf bt:ls:af bt/o(rs,bf,af) Ubf:af/rsU D,
bt:rs:ls bt:rs:ls 0(bt,bf) U D,
bt:rs:af bt:bf:ls o(bt,bf) Urs:bf Ubt/d(rs,bf,af) Ubf:af/rsU D,
bt:bf:ls bt:rs:af bt/o(bf,ls,af) Ubf:af/lsU D,
bt:bf:af bt:bf:af bt/o(rs,bf,af) Ubf:af/rsUbt/o(bf,ls,af) Ubf:af/lsU D,
bt:ls:af bt:rs:bf o(bt,bf) Ubf:lsUbt/d(bf,ls,af)Ubf:af/lsU D,
rs:bf:ls rs:ls:af af UD¢
rs:bf:af bf:s:af bt/o(rs,bf,af) Ubf:af/rsU D,
rs:is:af rs:bf:ls bt/bf Uin Uin:ou
bf:ls:af rs:bf:af bt/o(bf,ls,af) Ubf:af/lsU D,
bt:rs:bf:ls bt:rs:ls:af B
bt:rs:bf:af bt:bf:ls:af bt/o(rs,bf,af) Ubf:af/rsU D,
bt:rs:ls:af bt:rs:bf:ls bt/bf Uin Uin:ou
bt:bf:ls:af bt:rs:bf:af bt/o(bf,ls,af) Ubf:af/lsU D,
rs:bf:s:af rs:bf:ls:af in,in:ou
bt:rs:bf:ls:af bt:rs:bf:ls:af in,in:ou
in m bt/DyUrs:ls/DgUbf:af/Dg U D,
ou ou bt/5(rs,ls,af) Urs/o(bt,ls,af) Uls/é(bt, rs,af) Uaf/o(bt,rs,ls)U D,
in:ou mn:ou bt/DyUrs:ls/DgUbf:af/Dg U D,

i)

rS(R1!R21R3)! IS(R11R3!R2)

andrs(R3R1,Ry)
(@

Fig. 7. Converse and rotation example

rs(R1, R, R3) andrs(Rq, Rs, R1) and (b) ou € rs™ since

TABLE Il
CONVERSE AND ROTATION FOR PROJECTIVE RELATIONS BETWEEN REGNS

rS(RllR21R3)l IS(R]_,R?,,RZ)
andou(Rs,R;,Ry)
(b)

in Figure7b, rs(Ry, Rz, R3) andou(Rs, Ry, R2) holds.

To compute the converse relations presented in Tdble

we use the following proposition.

substitutions to the tiles af.

| Tiles of r | Replace with (to get ™) |

bt bt
rs ls
ls rs
bf af
af bf
Proof: The proof easily follows from the symmetry of
the projective relations. |

For instance, the converse of relation is relationis and
the converse of relatiobt:rs:bf is relationbt:ls:af (see also
Tablelll).

The rotation operation is much more involved. To compute
the rotation operator, we have implemented Algorith@nG
PUTEROTATION (Figure 8). Given three regions?;, R, and
Rs3, the above algorithm computes relatiof?, , R2, R3) and
its rotationg(Rs3, R1, R2) (Step 4). Algorithms for computing
projective relations were presented #.[RegionsR;, Rs and
R3 are constructed by the union of two rectangles (Step 3) that
are taken from a large array of random rectang@te€Step 1).

Proposition 2: The converse— (R1, Rs3, R2) of a relation We consider regions formed by the union of two rectangles
r(R1, Rz, R3) can be computed by performing the followingbecause simple rectangles are not general enough to satisfy



To compute the composition results of Table we proceed
multi-tile relations such a&f:a f or rs:ls. In our experiments, as follows. For every pair of a single-tile relatiopand a basic
we have varied the size of arr& from 100,000 to 1,000,000. relation o, we consider every possible basic relatignand

check if there exist regiond, B, C and D such that
Algorithm COMPUTEROTATION

Method: r1(A, B,C), r2(B,C, D) andrs(A,C, D)
1. Create an arrayR[1...n] that contains: random rectangles

2 Fori—1Ton—5 hold. If we can find such regions then, according to Defini-

3. Set Ry = R[{]UR[i + 1], R2 = R[i + 2] UR[i + 3], tion 3, r3 € r1 oy holds and thuss is added in thery, rs)
R3 = R[i + 4] UR[i + 5] entry of TablelV. Notice that, for each entry of Tabl¥, in
4. CompuTErelationsr(Ry, Rz, Rs) andq(Rs, R, R2) ~ the worst case we have to consider 34 (i.e., the total number
5. Ap g to the rotation entry of I Sinceq € 7 of projective relations) configurations involving regions B,
6. EndFor - . .
C and D. To assist this procedure, we have implemented
Fig. 8. Algorithm COMPUTEROTATION Algorithm ComMpUTECOMPOSITION (Figure 10). Given four

regionsRy, R, R3 and R4, the above algorithm computes

The results that Algorithm GMPUTEROTATION produces relation 71 (R1, R, R3) and ro(R2, R3, R4) and their com-
are definitely sound since for every result there is an actyadsition 3(R1, Rs, R4). Similarly to the rotation operation,
configuration of regions satisfying the relation and itatin. regionsR;, Rs, Rs and R4 are constructed by the union of
In fact, besides running the algorithm, we checked the tesuiwo rectangles (Step 3) that are taken from a large array of
of the table by exhaustively drawing all the configurationsandom rectangle® (Step 1). In our experiments, we have
making sure that no results are missing. With another reutirvaried the size of arraR from 100,000 to 1,000,000.
we then manipulate the output of the table to find the compact
form with the § operator. The final result is presented §190"ithm COMPUTECOMPOSITION

ethod:
1. .
Table 1. Create an arrayR[1 ... n] that contains: random rectangles

2.Fori=1Ton—7

B. Composing a single-tile with a basic relation 3. Set Ri=R[JUR[i + 1], Rz = R[i + 2] UR[i + 3],
) ] ) o Rs =R[i+ 4 UR[i+ 5], Ra = R[i + 6] UR[i + 7]
For any single-tile relatiom; (4, B, C') and any basic (sin- 4.  CompuTE relationsr, (R1, R2, Rs), r2(R2, Rs, R4) and
gle or multi-tile) relationry(B, C, D), TablelV presents the r3(R1, Ry, Ra). N
relations that correspond to their compositigrr (A, C, D). 5. ApD thers to the composition emryﬂo'fl,o T2
Similarly to Tablell, we usel M P to denote impossible cases. ¢ .- - Sincers € r oz

Fig. 10. Algorithm G@MPUTECOMPOSITION

Similarly to the discussion about rotation, the results tha
Algorithm ComPUTECOMPOSITION produces are definitely
sound since for every result there is an actual configuratfon
regions satisfying relations and their composition. Ast joéir
the proof, we manually drew all the configurations (reported
in the Appendix). An empirical support to the completendss o
TablelV is given by the fact that continuing to run the exper-
Fig. 9. Example of composition iments no other results were found. The automatic procedure
can also be used to find results for the full composition table

Example 9:Assume that we want to compute the compd®f two basic relations (34 times 34 table), which is treated i

sition of bf with rs. According to TableV, we have: SectionVII-C.
bfors =4(rs,af) = {rs,af,rs:af}. C. Composing basic relations
To verify this equation, consider Figugs We have: Let us consider two basic relationgandq and let us assume

thatr = ry:--- . In this section, we will reduce the compu-
tation of r o ¢ to the computation of compositions o g, ...,
rroq. All these expressions denote the composition of a single-
tile with a basic relation and can be computed using Téble
(see also SectiovIIl-C). A natural method to perform this
reduction is to use the product of relations (Definitibg).
Specifically, we may use the expressiofr, o q,...,r; o q).
Also notice that for all relationg ¢ d(rs, af) it is impossible We will refer to this expression as thoduct expressian

to find configurations such tha{ A, C, D), bf(A, B,C) and The product expression correctly computes the composition
rs(B,C, D) simultaneously hold. of relationin:ou as the following lemma demonstrates.

rs €bfors since bf(Ai, B,C),rs(B,C,D)
and rs(4;,C, D).
af €bfors since bf(As, B,C),rs(B,C,D)
and af(A42,C, D).
rs:af € bf ors since bf(A;U A, B,C),rs(B,C, D)
and rs:af(A1 U Az, C, D).



[ r2\r [ ot [ rs [ bf [ Is | af in ou
bt bt o(bt,bf,ls,af) | 6(bt,rs,ls,af) U | o(bt,rs,bf,af) | o(bt,rs,bf, ls)U | bt Dy
(bt bf,ls,af) U o(bt, rs,bf,af)U
5(bt, s, bf, af) 5(bt, b5, af)
rs o(bt,rs,bf) o(bt,rs,ls,af) | 6(rs,af) o(rs,bf,ls) o(bt,bf,ls) o(bt,rs,bf) Dy
bf o(bt, bf) o(bt,rs,bf,af) | o(rs,bf,ls) U | 6(bt,bf,ls,af) | Dg o(bt,bf) Dy
S(rs.bf.af) U
5(bf. s, af)
Is o(bt,bf,ls) o(rs,bf,ls) o(ls,af) o(bt,rs,ls,af) | o(bt,rs,bf) o(bt,bf,ls) Dy
af Dy 5(bt, of, 1s,af) | 8(bt, af) 3(bt, rs,bf,af) | 8(bt, bf) TN P TMP
bt:rs o(bt,rs,bf,af) o(bt, ls,af) o(bt,rs,ls,af) U | d(rs,bf) o(bt, rs,bf,ls)U | o(bt,rs,bf,af)| Dg
o(bt,rs,bf,af) o(bt,bf,ls,af)
bt:bf o(bt,rs,bf,af)U | 0(bt,af) UDLS o(bt,rs,bf,af)U | 8(bt,af) UDLS o(bt,bf,ls,af)U | Dy Dy
o(bt,bf,ls,af) o(bt,bf,ls,af) o(bt, rs,bf,af)
bt:ls o(bt,bf,ls,af) o(bf,1s) o(bt,rs,ls,af) U | o(bt,rs,af) o(bt, rs,bf,ls)U | o(bt,bf,ls,af) | Dg
é(bt7 bf7 l87 (lf) 5(bt7 s, bf7 CLf)
bt:af Dy o(bt,bf,ls,af) | o(bt,rs,ls,af) U | o(bt,rs,bf,af) | 6(bt,rs,bf,ls)U | Dy Dy
o(bt,bf,ls,af) U o(bt, rs,bf,af)U
o(bt,rs,bf,af) o(bt,bf,ls,af)
rs:bf o(bt,rs,bf) o(bt,rs,af) o(rs,bf,ls) U | 6(bf, 1ls) Dy o(bt,rs,bf) Dy
5(rs,bfaf)
rs:ls Dy {rs,ls} o(bt,rs,ls,af) U | {rs,ls} o(bt, rs,ls,af)U | Dg Dy
o(rs,bf,ls) o(rs,bf,ls)
rs:af Dy o(bt, ls,af) o(bt,rs,af) o(rs,bf) o(bt,bf,ls) Dy Dy
bf:ls o(bt, bf,ls) o(rs,bf) o(rs,bf,ls) U | 6(bt, ls,af) Dy o(bt,bf,ls) Dy
5(bf. s, af)
bf:af Dy o(bt,af)Ubf o(bt,rs,bf,af)u | o(bt,af)Ubf o(bt,rs,bf,af)U| Dy Dy
5(vt, b, ls, af) 5(bt, b 15, af)
Is:af Dy o(bf,ls) o(bt, ls,af) o(bt, rs,af) o(bt, rs,bf) Dy Dy
bt:rs:bf o(bt,rs,bf, af) o(bt, af) o(bt,rs,bf,af) bf o(bt,bf,ls,af) Dy Dy
bt:rs:ls Dy Is o(bt, rs,ls,af) rs o(rs,bf,ls) Dy Dy
bt:rs:af Dy o(bt, ls,af) o(bt, rs,ls,af) U | o(rs,bf) o(bt, rs,bf,ls)U | Dy Dy
o(bt,rs,bf,af) o(bt,bf,ls,af)
Wb s 50t bf, 15, af) 3 S0, of, Is,af) | 0(bL, af) 3(bt, rs,bf,af) | Dy Dy
bt:bf:af Dy o(bt, af)Ubf o(bt,rs,bf,af)uU | o(bt,af)Ubf o(bt,rs,bf,af)U| Dy Dy
5(bt b ls, af) 5(bt, b 15, af)
bt:ls:af Dy o(bf,ls) o(bt, rs,ls,af) U | o(bt,rs,af) o(bt,rs,bf,ls)U | Dy Dy
5(bt, b, Is, af) 5(bt, vs,bf, af)
rs:bf:ls o(bt,rs,bf,ls) TS o(rs,bf,ls) s o(bt, rs,ls,af) Dy Dy
rs:bf:af Dy o(bt, af) o(bt,rs,bf, af) bf o(bt,bf,ls,af) Dy Dy
rs:s:af Dy ls o(bt,rs,ls,af) rs o(rs,bf,ls) Dy Dy
bf:ls:af Dy bf o(bt,bf,ls,af) o(bt,af) o(bt, rs,bf,af) Dy Dy
bt:rs:bf:ls IMP IMP IMP IMP IMP Dy Dy
bt:rs:bf:af Dy o(bt,af) o(bt,rs,bf,af) bf o(bt,bf,ls,af) Dy Dy
bt:rs:ls:af Dy ls o(bt,rs,ls,af) rs o(rs,bf,ls) Dy Dy
Wbl dsaf Dy 3 5L, 0f, Is,af) | 0(bL, af) 3(bt, rs,bf.af) | Da Dy
rs:bf:ls:af IMP IMP IMP IMP IMP Dy Dy
bt:rs:bf:s:af || IMP IMP IMP IMP IMP Dy Dy
in n D, D, D¢ D¢ n D¢
ou D, D, ou D¢ D¢ D¢ D¢
in:ou D, D, D, D¢ D¢ D¢ D¢
TABLE IV

COMPOSING A SINGLETILE WITH A BASIC RELATION

Lemma 1l:Let ¢ is a basic relation. The composition of

relation in:ou and ¢ can be computed using the followinginside and a part that is outsideH (B U C). It is not hard
to verify that in generalD,(A, C, D) holds. For instance, if

formula:

tn:ouoq=m(inogq, ouoq).

For example, using Lemma we have

mouors =

This result can be

= D,

w(inors, ouors )

= 7(6(bt,rs,bf), Dg)

A = A U A, thenbt:af (A, C, D) holds.

verified using Figurel Notice that

rs(B,C, D) holds. To compute the composition we should
investigate the possible position of a regioh such that
in:ou(A, B,C) holds. This means that has a part that is
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Since, r1: - - -1, (4, B, C) holds, according to Definitior,

C " D there are regiond, ..., A; such thatd = A, U---U A, and
bf ‘ r1(A1, B,C), ..., rp(Ag, B,C) hold. Thus, we have:
B ‘ r1(A1, B,C)A---Ari(Ag, B,C)Nq(B,C, D) Au(A, C, D).
rs Now, letu; be the relation that holds between regiohg C
_ _ andD, i.e.,u1 (A, C, D). Similarly, we defineus(As, C, D),
Fig. 11.  Composingn:ou andrs .., ug(Ag,C, D). Notice thatu = tile-union(u,...,ux)

holds, thus we have:
Let us now investigate the relation between composition
g p Tl(AlaB7C)/\”'/\Tk(AkaBaC)/\

(r o q) and the product expressiofi(¢1 oq,...,rr q)) in the
case of the remaining ternary projc(ective relations. )Ccmsﬂule q(B,C, D) Aur(A1, G, D) A -~ Aup(Ak, C, D)
following example. and by rewriting the expression we have:
Example 10:Let us consider relationst:rs and bt:bf. r1(Ay, B,C) A q(B,C, D) Auy (A1, C, D)
According to TablelV, we have: Ao
btobt:bf = 6(bt,rs,bf,af)Us(bt,bf,ls,af) and r&(Ak, B,C) N q(B,C, D) Aup(Ag, C, D).
rsobt:bf = 5(bt,af)Ubf. Summarizing, according to Definitid) we haveu; € r10q,
. . . uk € rpoq andu = tile-union(uy, ..., ux), thus,u €
Thus, the product expression gives: m(riogq, ..., rx oq) (see also Definitiori2). To conclude
m(bt o bt:bf, rsobt:bf) = this proof, we notice that Example illustrates a case where
w(0(bt,rs,bf,af)Ud(bt,bf,ls,af),o(bt,af)Ubf) = UEW(HOQ; cee TkOQ) andu & roq. u
bt,rs,bf,ls,af, In total the product expression, although it seems to be a
bt:rs, bt:bf, bt:ls, natural choice, results in a superset of the compositianirés
bt:af,rs:bf, rs:af, is interesting to identify the cases where the product esgioa
bf:ls,bf:af,ls:af, produces a result that does not belong to the composition. To
7T( bt:rs:bf, btrs:af, Abt,bf, af bt:af} ) — this end, let us reconsider Examdé€. The composition of
bt:bf:ls, bt:bf:af, bt:rs with bt:bf is given by the following formula.
btils:af, rs:bf:af, bt, bf, af, btrs, bt:bf, bt:af,
bf:lsaf,bt:rsbfaf, rs:af, bf:ls, bf:af, bt:rs:bf,
bt:bf:ls:af btrsobt:bf =<  btrsaf, bt:bfils, bt:bf:af, (1)
bt, bf, af, bt:rs, bt:bf, bt:ls, bt:af, rs:bf, rs:bf:af, bf:ls:af,
rs:af, bf:ls, bf:af, ls:af, btirs:bf, ' bt:rs:bf:af, bt:bf:ls:af
bt:rs:af, bt:bf:ls, bt:bf:af, bt:ls:af, ) ) ) _ ) T
rs:bfiaf, bfis:af, btrs:bf:af, bt:bfils:af To verify this expression we consider Figur2 In this figure,

we present two configurations involving three regiddsC
The above expression does not correctly compute the coamd D such thatvt:bf (B, C, D). In both configurations of
position. For instanceht:ls € w(bt o bt:bf, rs o bt:bf) but Figurel2, aregionA satisfies relationt:rs(A, B, C) iff it has
bt:ls ¢ bt:rs o bt:bf because there cannot be regiods a partthat lies in the dark-shaded area and a part that libgin
B, C and D such thatbt:ls(A, C, D), bt:rs(A,B,C) and light-shaded area. It is not hard to verify that all the ploigsi
bt:bf(B,C, D) hold at the same time. relations that hold betweed, C' and D are prescribed by the
In Example10, we have seen that the product expressigirevious expression. Also notice that for all relatianshat
contains relations that do not belong to the composition. Véee not mentioned in the set of Equatibiit is impossible to
can prove that a possible result of the composition operatoifind configurations such thag( A, C, D), bt:rs(A, B,C) and
necessarily included in the product expression but theymodbt:bf (B, C, D) simultaneously hold.
expression may contain relations that do not belong to the
composition. This fact is captured in the following propimsi.
Proposition 3: Let r;: - - -:r, and g be two projective rela-
tions. Then, we have:

(T1:~~:Tk)oq§7r(rloq, A Tkoq).

Proof: We will first prove that ifu € r1:---:r; o ¢ then
uEW(rloq, ceey rkoq).

Sinceu € rq:---:r; o ¢ holds, there are regions, B, C

and D such that @

ri-- ;rk(A7 B, C) Nq(B,C, D) ANu(A,C, D), Fig. 12. Composingt:rs with bt:bf
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Equationl can be equivalently written as follows.
bt:rs o bt:bf = 1( 8(bt,rs,bf,af), 5(bt,af) JU which is exactly the result of Equatich
2 5(bt,bf.1s,af),bf ) (2)  As another example, the composition &f:ls:af with

. . bt:rs:af is given by the following formula.
Let us compare the above expression with the productrs afisg y 9

expression of Exampl&o, i.e., bt:ls:af obt:rs:af =
7(bt o bE:bf, 15 0 bt:bf) = m( Da, 6(rs,bf), 8(bf,ls) JU

7( 8(bt, rs,bf,af) U(bt, bf,Is, af), (bt af) UbF ). :E gggi o Z;; fi’”g(Z{ 1155}: ll’f) Z)SL)J W

Using Propositiorl, we have: 7( 8(bt,rs,bf,af),bf,6(bt,bf, ls,af) U
7(bt o bt:bf, rsobt:bf) =w( 6(bt,rs,bf,af),s(bt,af) U m( Dg,rs,6(rs,bf,ls) )
m( (bt of ls,af),bf )U w( 6(bt,rs,bf af),bf )U To compute Table¥ andVI we consider one row at a time.
m( 6(bt,bf,ls,af),o(bt,af) ) For each row, we consider all different configurations that a
and able to reproduce all the composition results that appedhé
m(bt o bt:bf, rsobt:bf) = btrs o bt:bfU respective row in Tablé/. Each configuration corresponds to

7( 6(bt,rs,bf,af),bf YUm( 8(bt,bf,ls,af),5(bt,af) ). a subrow. For example, let us consider the first row of Table

. i.e., relationbt. To complete this row, we consider different
In other words, to get the correct composition result wé

- . caonfigurations of region®, C' and D such thatht(B, C, D)
should rule out some combinations that appear in the Pr9ds. To reproduce the results of Tatilé, we need four
uct expression (see also Exampl® and Proposition3). : '

L . . : . different configurations that correspond to the four ddfar

These combinations corresponditopossibleconfigurations. . . L
o . : . subrows of Tablé/. These configurations appear in Figli®
In our example, it is not possible to find regiong, For instance, in Figurd3a:
B, C and D such thatr(A,C,D), btrs(A,B,C) and ’ . )
bt:bf (B, C, D) for any relation € «( 8(bt, rs,bf,af),bf )U 1) For all regionsA such thatbt(A, B,C), we have
7( 8(bt,bf,ls,af), 5(bt,af). This can be verified using Fig- . {4 C D).
ure 12. 2) For all regionsA such thatrs(A, B,C), we have
Inspired by this observation, we refine Tablethat presents o(bt,bf, s, a_f)(A’ ¢, D).

the composition of a single-tile with a basic relation. gifer ) For all regionsA such thatbf(4, B,C), we have
each entry of the table, we consider the possible configumsiti a(bt,af)(A, _C’ D).
that produce the composition result. Then, for each row of4) For all regionsA such thatis(4, B,C), we have
the table we group the compatible configurations in the same o(bt,rs,bf, a_f)(A’ ¢, D).
row. The new results appear in Tablgsand VI. In total, ~ ©) For all regionsA such thataf(4,B,C), we have
these tables present the result of the composition of aesingl o(bt, bf)(A, C, D).
tile relationr; with a basic (single or multi-tile) relation,. ~All these results are captured in txg) subrow ofbt. Similarly,
These tables have 34 rows (numbered from 1 to 34) tH&¥ing Figuresl3b-d, we can verify all the other subrows of
correspond to the basic relation. Each row is divided into bt.
several subrows. For instance, the rows numbered 1 and 13 ar&he configurations that we consider for each row are a mini-
divided into 4 and 3 subrows respectively. The composition 81al covering set: this assures that no results in the coriposi
relationsr; andr, is computed by the union of the subrows'e missing and that impossible results are filtered out. The
that lie in on the Crossing of the row t|tba with the column Conﬁgurations that Verify all the other rows of TablésandVI
title r,. It is easy to verify that Tablé/ can be produced by are presented in the Appendix.

TablesV and VI by unifying the subrows of every cell. ForAlgorithm COMPOSE

instance, using Tablg' we have: Input: Two basic relations: = ry: - - i), andg.
bfobt = o(bt,af)Ud(bt,rs,ls,af)Ud(bt,bf, ls,af)U 3&%&”‘8 composition o g.
S(bt,rs,bf,af) result = 0
= 0(bt,rs,ls,af)Ud(bt,bf,ls,af)U If r € {in:ou} Then
result =m(inogq, ouoq)
6(bt7 TS’ bf’ aef) %
This is exactly the result we get by using Tablé For each subrows of ¢ in TablesV andVI.
Each subrow of Table¥ andVI corresponds to a possible ~ Letu1,...,ux be the cells ofs that correspond to, ...,
result = result Um(ui,...,ux)

configuration. Results taken in different subrows of the sam gnqror
row correspond to impossible configurations. For instatae, Endif
compute the composition df:rs andbt:bf we consider the Return result
elements that lie on the crossing of the 7th row of Talle rig 14, Algorithm @wmPosE
with columns titlebt andrs. To get the result, we take the
union of the product of the elements of all subrows. In total, Overall, we obtain a procedure to find the composition
we have: of two basic relations starting from the knowledge of the
bt:rsobt:bf = w( 6(bt,rs,bf,af),s(bt,af) U composition of a single-tile relation with a basic relati®uch
w( 5(bt,bf,ls,af),bf ) a procedure is summarized in Algorithmo@pPosEpresented
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| [ro\ri | [0t [ rs [ bf [ Is [ af
1 [ot a | bt o(bt,bf,ls,af) | o(bt,af) o(bt,rs,bf,af) | 6(bt,bf)
b|bt o(bt, 1s) o(bt,rs,ls,af) | 6(bt,rs) o(bt, rs,bf,ls)
c | bt o(bt, bf) o(bt,bf,ls,af) | 6(bt, af) o(bt, rs,bf, af)
d | bt o(bt, af) o(bt,rs,bf, af) | 6(bt,bf) o(bt,bf,ls,af)
2 |rs a | 6(bt,rs,bf) o(bt,rs,ls,af) | d(rs,af) o(rs,bf) o(bt,bf,ls)
b | o(bt,rs,bf) o(bt, rs,ls,af) | rs o(rs,bf,ls) o(bt, bf,1s)
3 | bf a | 6(bt,bf) o(rs,bf) o(rs,bf,ls) o(bf,ls) Dy
b [ 8(bt,bf) o(bt,rs, bf,af) | 8(rs,bf, af) bf 3(bt, bf,1s,af)
R RIGAT]) bf S Is,af) | 0066715, af) | 3(bhrs.6f,al)
d | (0t bf) o(bt,rs,bf,af) | OF o(bt,bf,ls,af) | o(bt, af)
4 |1s a | 6(bt,bf,ls) o(bf,ls) o(ls,af) o(bt,rs,ls,af) | 6(bt,rs,bf)
b | o(bt,bf,ls) o(rs,bf,ls) s o(bt, rs,ls,af) | 6(bt,rs,bf)
5 Taf  [a]Da ORI RICAT)) S5, b.af) | o
b | (b, af) o(bt,bf, ls,af) | 6(bt,af) o(bt,rs,bf,af) | 6(bL,bf)
C [0, 75, b7 al) | 300 b, Ts,af) | (b, af) 5(rs,bf>af) | o0, bf)
T 300,07, Ts,af) [ 00 1s,af) | (b, af) 3V, 75, b7, af) | (L, b)
6 | bt:rs a | 6(bt,rs,bf,af) | 6(bt,ls) o(bt,rs,ls,af) | rs o(bt,rs,bf,ls)
b | o(bt,rs,bf,af) | 6(bt,ls,af) o(bt,rs,af) o(rs,bf) o(bt, bf,1s)
c | 0(bt,rs,bf,af) | 0(bt, af) o(bt,rs,bf,af) | OF o(bt,bf,ls,af)
7 | bt:bf a | 6(bt,rs,bf,af) | 6(bt,af) o(bt,rs,bf,af) | bf o(bt,bf,ls,af)
b | o(bt,bf,ls,af) | OF o(bt,bf,ls,af) | o(bt, af) o(bt,rs,bf, af)
8 | bt:ls a | 6(bt,bf,ls,af) | s o(bt,rs,ls,af) | o(bt,rs) o(bt,rs,bf,ls)
b | d(bt,bf,ls,af) | 0(bf,1s) o(bt, s, af) (bt rs,af) o(bt, rs,bf)
c | 6(bt,bf,ls,af) | bf o(bt,bf,ls,af) | 6(bt, af) o(bt,rs,bf, af)
9 | bt:af || a | Dg o(bf,ls,af) o(bt,af) o(rs,bf,af) bf
b | o(bt,af) o(bt,bf,ls,af) | 6(bt, af) o(bt, rs,bf, af) | 6(bt,bf)
c | 6(bt,af) o(bt, Is) o(bt, rs,ls,af) | o(bt,rs) o(bt, rs,bf,ls)
d | 0(bt, af) o(bt, bf) o(bt,bf, ls,af) | 6(bt,af) o(bt,rs,bf, af)
e | o(bt,af) o(bt, af) o(bt, rs,bf, af) | 6(bt,bf) o(bt,bf,ls,af)
F 1ot rs,bf, af) | 0(bt,ls) o(bt, rs,ls,af) | rs o(bt, rs,bf,ls)
g | 0(bt, bf, ls,af) | Is o(bt,rs,ls,af) | 6(bL,rs) o(bt,rs,bf,ls)
10 | rs:bf || a | 6(bt,rs,bf) o(bt,rs,af) o(rs,bf,af) bf o(bt,bf,ls,af)
b | 4(bt,7s,bf) TS o(rs,bf,1s) 6(bf,1s) Dy
c | (bt rs,bf) (bt rs,af) o(rs,bf) o(bf, 1s) o(bt,bf,ls,af)
11 | rsis a | Dy s o(bt,rs,ls,af) | rs o(rs,bf,ls)
b | (bt,rs,bf,ls) | rs o(rs,bf,1s) Is (bt rs,ls,af)
12 | rs:af || a | Dy o(ls,af) o(bt,rs,af) o(rs,bf) o(bf,1s)
b | o(bt,rs,bf,af) | 6(bt,ls,af) o(bt,rs,af) o(rs,bf) o(bt, bf,1s)
13 | bf:ls a | 6(bt,bf,ls) bf o(bf,ls,af) o(bt, ls,af) o(bt,rs,bf,af)
b | (b, bf,1s) o(rs,bf) o(rs,bf,1s) ls Dy
c | 6(bt,bf,1s) o(rs,bf) o(bf,ls) o(bt, ls, af) o(bt, rs,bf, af)
14 [ bf:af || a | 6(bt,rs,bf,af) | 6(bt,af) o(bt,rs,bf,af) | bf o(bt,bf,ls,af)
b Dd CLf é(bt7 s, bf’ (lf) bf é(b.ﬂ lS, CLf)
c | 6(bt,bf,ls,af) | bf o(bt,bf,ls,af) | 6(bt, af) o(bt,rs,bf, af)
d Dd bf é(bt7 bf: l37 (lf) CLf 5(7'3’ bf7 CLf)
15 | Is:af || a | Dy o(bf,ls) o(bt, ls,af) o(rs,af) o(rs,bf)
b | o(bt,bf,ls,af) | 6(bf,1s) o(bt, ls,af) o(bt,rs,af) o(bt, rs,bf)
TABLE V

COMPOSING A SINGLETILE WITH A BASIC RELATION (1/2)

in Figure 14. Furthermore, we tested that the results obtaineables for the 34 basic projective relations of our modelilévh
by Algorithm CompPosEcoincide with the results obtained bythe converse table is more immediate to find, the rotation
Algorithm COMPUTEROTATION. table has been experimentally verified with test data. The
Theorem 1:Algorithm ComPOSE correctly computes the composition table is the more involved to construct since it

composition of two basic relations. contains34 x 34 entries. Instead of finding out each entry of
Proof: The proof follows from Lemmad and the previous the table individually, we tried to discover algebraic mitbat

discussion. B were able to compute, at least partially, the results. Thdtg
was impossible to find algebraic rules for the whole table, we

VIIl. CONCLUSIONS could find that, starting from a subset of the table relateti¢o

In this paper, we developed a reasoning system for tem&,@mposition of the 7 single—_tilg relations with all 34 rexims
projective relations among regions of the plane. The reagon'We can compute the remaining part of the table with a so-
system is based on three kinds of rules: converse, rotatiah, calléd product operation. Therefore, we found The34 table

composition. Converse and rotation are given in the form 8Pth manually and experimentally by running the computatio



[ Tow T 1w [ 57 [ (o |
[[16 | btrs:bf [ a]o(bt,rs,bf af) ] (bt af) | 6(bt,rs,bf, af) [ bf [ 0(bt,bf,Is,af) |
[ 17 [ bt:rs:ls [ a] Dg [ Is [ 6(bt,rs,ls,af) [ rs [ 0(rs,bf,ls) |
18 | btirs:af a | Dy o(ls,af) o(bt,rs,af) o(rs,bf) o(bf,ls)
b | o(bt,rs,bf,af) | 0(bt,ls,af) | o(bt,rs,af) o(rs,bf) o(bt,bf,ls)
c | 6(bt,rs,bf, af) | (0L, 1s) o(bt,rs,ls,af) | rs o(bt, rs,bf,ls)
d | o(bt,rs,bf,af) | 0(bt, af) o(bt,rs,bf, af) | Of o(bt,bf,ls,af)
e | Dy s o(bt, rs,ls,af) | rs 0(rs,bf,ls)
[ 19 [ bt:bf:ls [ a] ot bf ls,af) Jbf [ 6(bt,bf,ls,af) [ 6(bt,af) [ 6(bt,rs,bf,af) |
20 | bt:bf:af a | o(bt,rs,bf,af) | o(bt,af) o(bt,rs,bf,af) | bf o(bt,bf,ls,af)
b | Dq4 af 6(bt7 rs,bf, af) bf 6(bf7 ls, af)
c | 6(0t,bf,ls,af) | bf o(bt,bf, ls,af) | 6(bt,af) o(bt,rs,bf, af)
7 Dq o 5068, bF. Is,af) | af 5rs, b, af)
21 | bt:ls:af a| Dy o(bf,ls) o(bt, ls,af) o(rs,af) o(rs,bf)
b | o0t bf,ls,af) | 6(bf,1s) o(bt, ls,af) o(bt,rs,af) | o(bt,rs,bf)
c | o(bt,bf, ls,af) | 1s o(bt, rs,ls,af) | o(bt,rs) o(bt, rs,bf,ls)
d | 6(0t,bf,ls,af) | bf o(bt,bf, ls,af) | 6(bt,af) o(bt,rs,bf, af)
e | Dg s o(bt,rs,ls,af) | rs o(rs,bf,ls)
[ 22 [ rs:bfils [ a] ot rsbfls) [rs | (rs,bf,ls) [ Is [ 0(bt,7s,ls,af) |
23 | rs:ibfiaf a | o(bt,rs,bf,af) | o(bt,af) o(bt,rs,bf,af) | bf o(bt,bf,ls,af)
b Dd (lf é(bt7 TS, bf’ (lf) bf 5(bf7 l37 (lf)
[ 24 [ rsidls:af [ a] Dg [ Is [ 0(bt,rs,ls,af) [ rs [ 0(rs,bf,ls) |
25 | bf:ls:af a | o(bt,bf,ls,af) | bf o(bt,bf,ls,af) | o(bt,af) o(bt,rs,bf,af)
b Dd bf é(bt7 bf: l37 (lf) CLf 5(T37 bf’ (lf)
[ 26 [ bt:rs:bf:ls [a] IMP | IMP | IMP | IMP | IMP |
27 | bt:irs:bf:af a | o(bt,rs,bf,af) | o(bt,af) o(bt,rs,bf,af) | bf o(bt,bf,ls,af)
b Dd (lf é(bt7 TS, bf’ (lf) bf 5(bf7 l37 (lf)
[ 28 [ btirs:ls:af [ a] Dg [ Is [ 0(bt,rs,ls,af) [ rs [ 0(rs,bf,ls) |
29 | bt:bf:ls:af a | o(bt,bf,ls,af) | bf o(bt,bf,ls,af) | o(bt,af) o(bt,rs,bf,af)
b Dd bf é(bt7 bf: l37 (lf) CLf 5(T37 bf’ (lf)
[ 30 [ rsibfils:af [ a ] IMP | IMP | IMP | IMP | IMP |
[BL [ bhrsibfidsaf | a | IMP [ IMP [ IMP [ 1MP [ IMP |
[32 [ in Talin [ Dc [ De [ De [ Dc |
[33 ] ou [ a] D | Dc [ ou | Dc | Dc |
[ 34 [ in:ou [ a] D | D. | Dc | Dc | D. |

TABLE VI
COMPOSING A SINGLETILE WITH A BASIC RELATION (2/2)

algorithms of the relations on test data. Then, we checked] R. Billen and E. Clementini, “Semantics of collineariynong regions,”
the results of the experiments to verify that the complete
composition table that is found by the program corresponds

to the table as it can be computed with algebraic rules.
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