
1

A Reasoning System of Ternary Projective Relations
Eliseo Clementini, Spiros Skiadopoulos, Roland Billen, Francesco Tarquini

Abstract—This paper introduces a reasoning system based on
a previously developed model for ternary projective relations
between spatial objects. The model applies to spatial objects of
the kind point and region, is based on basic projective invariants
and takes into account the size and shape of the three objectsthat
are involved in a relation. The reasoning system proposes a set
of permutation and composition rules, which allow the inference
of unknown relations from given ones.

I. I NTRODUCTION

The field of Qualitative Spatial Reasoning (QSR) has expe-
rienced a great interest in the spatial data handling community
due to its potential applications [1]. An important topic in QSR
is the definition of reasoning systems on qualitative spatial
relations. For example, regarding topological relations,the
9-intersection model [2] provides formal definitions for the
relations and a reasoning system based on composition tables
[3] establishes a mechanism to find new relations from a set
of given ones.

As discussed in [4], geometric properties can be subdivided
in three groups: topological, projective and metric. Most
qualitative relations between spatial objects can be defined in
terms of topological or projective properties [5]. Qualitative
distances are a qualitative interpretation of metric distances
[6].

Projective relations are a category of spatial relations that
can be described by projective properties of the space without
resorting to metric properties [7]. Projective relations are thus
qualitative in nature because they do not need exact measures
to be explained. Projective relations are more specific than
topological relations and can serve as a basis for describing
relations that are not captured by topology. At an intermediate
rank between metrics and topology, projective relations are
as much varied as “right of”, “before”, “between”, “along”,
“surrounded by”, “in front of”, “back”, “north of”, “east of”,
and so on.

To have a common sense understanding of projective rela-
tions, it is helpful to think about different two-dimensional
views of a three-dimensional real world scene of objects:
changing the point of view, metric aspects such distances and
angles among the objects appear to be different, but there are
properties that are common in all the views. These common
properties are projective properties.

Likewise topological relations, which are defined by using
the connectedness topological invariant, projective relations
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can be defined by using thecollinearity projective invariant,
which is the property of three collinear points being still
collinear after an arbitrary number of projections. A main dif-
ference in the treatment of topological relations and projective
relations is that, while basic topological relations are binary,
basic projective relations are ternary because they are defined
on the collinearity of three points. The definition of collinearity
has been extended to regions in [8].

In this paper, we propose a reasoning system for the set of
projective relations that was introduced in [9]. Such relations
establish a jointly exhaustive and pairwise disjoint (JEPD) set
of projective relations among any three regions of the plane.
A preliminary version of this model was presented in [10],
but the set of relations was not JEPD. A first version of the
reasoning system, applied on a subset of the relations, was
presented in [11]. The projective relations are ternary relations
of the kindr(A, B, C), whereA has the role of primary object
and B and C have the role of reference objects. This latter
terminology derives from the work on positional relations
(e.g., [7]), where the position of an object (primary) is stated
with respect to the position of one or more other objects acting
as reference. Two cases can be distinguished based on whether
the convex hulls of the reference objects are disjoint or not
disjoint. In the first case, the model, called the5-intersection,
by using only projective concepts partitions the plane into
five acceptance areas with respect to the reference objects;
in the second case, the partition of the plane results in two
acceptance areas. The model is able to differentiate between
34 different projective relations that are obtained by computing
the intersection of the primary object with the acceptance areas
that are determined by the reference objects.

The reasoning system establishes rules of permutation and
composition of relations in the form of tables. Among the 34
projective relations of the model, we can distinguish single-
tile and multi-tile relations, depending whether the primary
object intersects one or more of the acceptance areas. The
single-tile relations are five for non-intersecting convexhulls
of reference objects and two for intersecting convex hulls of
reference objects. The permutation rules are of two types:
converse and rotation. Regarding the composition table, we
initially find it for the composition of single-tile relations with
all basic relations (therefore, a7 × 34 table). The latter table
has been found in two different ways: by manually checking
all geometric configurations that satisfy the table and by
running a simulation program with a high number of random
regions and finding the occurring relations. Afterwards, the
full composition table has been found (34×34) with algebraic
rules that can be applied to the7 × 34 table.

The remainder of the paper is organized as follows. We start
in Section II with a brief comparison to existing literature.
In SectionIII , we introduce preliminaries on reasoning with
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ternary relations. In SectionsIV, we summarize the model
of projective relations among points and, in SectionV, we
describe the reasoning system for points. In SectionVI, we
summarize the model for projective relations among regions.
Section VII presents the main contribution of the paper,
consisting in the reasoning system for regions. SectionVIII
draws conclusions. In the appendix, we include all geometric
configurations that have been considered to build the compo-
sition tables.

II. RELATED WORK

In the QSR literature, we can find various models for rea-
soning with projective relations. Freksa’s double-cross calculus
[12] is similar to our approach in the case of points. Such
a calculus, as it has been further discussed in [13], [14],
is based on ternary directional relations between points. In
Freksa’s model, an intrinsic frame of reference centred in a
given point partitions the plane into four quadrants that are
given by the front-back and right-left dichotomies. This leads
to a greater number of qualitative distinctions with different
algebraic properties and composition tables. A smaller num-
ber of qualitative distinctions and an independence from the
specific frame of reference would improve the possibility of
extending this model to other spatial types besides points.

Other work on ternary calculi is rather limited. Most ap-
proaches consider binary relations to which a frame of refer-
ence is associated [15], [16]. Exceptions of ternary relations,
such as “between”, were considered in [17] and, more recently,
in [18]. Projective relations, intended as locative expressions
between two objects [19], depend on an underlying frame of
reference. The use of ternary relations instead of binary ones
allows us to describe the projective relation in a way that is
independent from the frame of reference. The ternary model
of projective relations can be seen as a geometric abstraction
of locative expressions commonly used in the physical world.

Our approach can be compared to various models for
orientation relations [20], [21], [22], [23], [24] or cardinal
directions between points [25], [26]. Most of them, even when
explicitly related to projective geometry, never avoid theuse
of metric properties (minimum bounding rectangles, angles,
etc.) and external frames of reference (such as a grid). To this
respect, the main difference in our approach is that we only
deal with projective invariants, independently of metric aspects
such as distances and angles.

Most work on cardinal directions deals with point abstrac-
tions of spatial features and less work has been devoted to
extended objects [27], [28], [29], [30], [31]. In [32], the
authors use spheres surrounding the objects to take into
account the shape of objects in relative orientation. In [27],
the authors develop a model for cardinal directions between
extended objects, where the partition of the plane is determined
by the prolongations of the sides of the minimum bounding
rectangle (MBR) of a reference object. The reasoning for such
a model has been developed in [33], [34]. Contrary to the
double-cross calculus [12] and the direction matrix [27], we
use a cone-based model instead of a projection-based model
[25].

Ternary projective relations are more general than binary
orientation relations or cardinal directions, because they don’t
need to refer to an external frame of reference. The two
reference objects are able to make a partition of the plane to
which the position of the primary object is compared. In [35],
we find the same approach as ours regarding the reasoning on
points, except that authors consider a partition of the plane in
seven parts instead of five. Moving from points to extended
regions, among the strengths of our model are the facts that it
uses projective properties only and that the acceptance areas
of relations depend on the shape and size of the reference
objects. Independence from a specific frame of reference (both
egocentric or allocentric [36]) allows us to specify ternary
relations among objects from a purely geometric point of view.
A further step is to apply the model of ternary projective
relations to specific settings, like robot navigation [35], [37]
or cardinal directions on the Earth surface [38].

III. R EASONING WITH RELATIONS

Most research on spatial and temporal relations have fo-
cused on binary relations and studied algorithms for several
useful operators likeconverseandcomposition[39], [3], [25],
[40], [33]. The converse of a relationr that holds betweenA
andB, denoted byr⌣, specifies the relation betweenB and
A. The composition of a relationr betweenA and B with
a relationq betweenB and C, denoted byr ◦ q, specifies
the relation betweenA andC. Converse and composition are
used to construct reasoning mechanisms applicable to query
processing.

The aforementioned notions can also be extended for ternary
relations [14], [41], [13]. Let us consider a set of basic ternary
relationsT that contains|T | jointly exhaustive and pairwise
disjoint relations [16]. Elements ofT are used to represent
definite information. Using these relations, we can define the
powersetof T (i.e., the set of all subsets), denoted by2T

that contains2|T | relations. Elements of2T can be used to
represent definite but alsoindefiniteinformation. For instance,
if t1, . . . , tn are basic relations inT , then {t1, . . . , tn} is a
relation in2T which is equivalent tot1 ∨ · · · ∨ tn.

Initially, we define converse and rotation. Ifr(A, B, C)
holds, the converse ofr specifies the relation betweenA, C
and B while the rotation ofr specifies the relation between
C, A andB.

Definition 1: Let r be a ternary relation inT . Theconverse
of r, denoted byr⌣, is a relation in2T defined as:

r⌣ = {t ∈ T | (∃A, B, C)
(

t(A, C, B) ∧ r(A, B, C)
)

}

Definition 2: Let r be a ternary relation inT . The rotation
of r, denoted byr⌢, is a relation in2T defined as:

r⌢ = {t ∈ T | (∃A, B, C)
(

t(C, A, B) ∧ r(A, B, C)
)

}

Notice that the converse and rotation operators as defined
above are the ternary counterpart of the binary converse
operation [41]. For binary relations, the converse operation
is sufficient since there are only 2 permutations between 2
objectsA andB, namely(A, B) and (B, A). For the ternary
relations case, there are 6 possible permutations between 3
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objectsA, B andC, namely(A, B, C), (A, C, B), (B, A, C),
(B, C, A), (C, A, B) and (C, B, A). It is easy to verify that
we need both converse and rotation to move between these
permutations. For instance, we may move from(A, B, C) to
(C, B, A) by applying the rotation followed by the converse
operator.

Next, we define ternary composition.
Definition 3: Let r and q be two ternary relations. The

compositionof r andq, denoted byr ◦ q, is defined as:

r ◦ q = {t ∈ T | (∃A, B, C, D)
(

r(A, B, C) ∧ q(B, C, D)∧
t(A, C, D)

)

}

Similarly to earlier works in qualitative spatial relations,
we use a weak definition of converse and composition [42],
[43], [33], [31]. Typically, these operators are expressible for
every pair of spatial relations and can be naturally used as a
constraint propagation mechanism. On the contrary, the more
strict set-theoretic definitions of converse and composition are
not always definable [40], [44], [33], [31].

In the following sections, we will define a model for
ternary projective relations for points and a model for ternary
projective relations for regions. Moreover, we will study the
converse, the rotation and the composition operations for the
above models.

IV. PROJECTIVE RELATIONS FOR POINTS

Our basic set of projective relations for points is based
on the most important geometric invariant in a projective
space: the collinearity of three points. Therefore, the nature
of projective relations is intrinsically ternary. Let us consider
three pointsP1, P2 and P3. To define the projective relation
r1(P1, P2, P3) of primary pointP1 with respect to reference
pointsP2 andP3, we consider the following two cases.

Case 1: P2 6= P3. In this case, to definer1(P1, P2, P3),
we use the directed line

−−−→
P2P3. This directed line parti-

tions the space into 5 parts that correspond to the relations
rightside , leftside, before, after and between and are de-
noted byrightside(P2, P3), leftside(P2, P3), before(P2, P3),
after (P2, P3) and between(P2, P3), respectively (Figure1a).
In Figure 1a, rightside(P2, P3) is the light gray area,
leftside(P2, P3) is the dark gray area,before(P2, P3) is the
dotted semi-line,after(P2, P3) is the dashed semi-line and
between(P2, P3) is the thick line segment. Notice that:

• All parts are disjoint.
• The union of all parts isℜ2.
• P2 ∈ between(P2, P3), P3 ∈ between(P2, P3),

−−−→
P2P3 6∈

rightside(P2, P3) and
−−−→
P2P3 6∈ leftside(P2, P3).

If a pointP1 is included (in the set-theoretic sense) in region
rightside(P2, P3) of some pointsP2 andP3, then we say that
P1 is rightside of P2 and P3 and we writers(P1, P2, P3).
Similarly, we can define relationsls (leftside), bf (before),
af (after ) andbt (between).

Example 1:For the points of Figure1b, we have:

rs(P1, P2, P3), af(PA, P2, P3) and bt(P2, P2, P3).

leftside(P2,P3)

(a)

P2 

P3 

rightside(P2,P3)

after(P2,P3)

before(P2,P3)

between(P2,P3)

P2 

P3 
P1 

PA

(b)

Fig. 1. Ternary relations between points (P2 6= P3)

(a)

P2 P3 
outside(P2,P3)inside(P2,P3)

P1 

(b)

P2 P3 

Fig. 2. Ternary relations between points (P2 = P3)

Case 2:P2 = P3. In this case, the space is partitioned in a
point (P2) and an open area (ℜ2 − P2). These regions corre-
spond to the relationsinside andoutside and are denoted by
inside(P2, P3) andoutside(P2, P3) respectively (Figure2a).

If a pointP1 is included (in the set-theoretic sense) in region
outside(P2, P3) of some pointsP2 andP3, then we say thatP1

is outsideof P2 andP3 and we writeou(P1, P2, P3). Similarly,
we can define relationinside, denoted byin.

Example 2:For the points of Figure2b, we have:

ou(P1, P2, P3) and in(P2, P2, P3).

Summarizing, the set of projective relations between points
contains the following 7 (=5+2) relations:rs, ls, bf , af , bt,
in and ou. We will useDpoint to denote this set. Relations
in Dpoint are jointly exhaustive and pairwise disjoint [9]. Ele-
ments ofDpoint can be used to represent definite information,
e.g.,bt(P1, P2, P3). To expressindefiniteinformation, we use
the powerset2Dpoint, of Dpoint which contains128 = 27

relations. For instance,{bt, af}(P1, P2, P3) ∈ 2Dpoint denotes
that point P1 is either between or after pointsP2 and P3

(i.e.,bt(P1, P2, P3)∨af(P1, P2, P3) holds). More details about
these relations can be found in [9].

V. REASONING WITH PROJECTIVE RELATIONS FOR POINTS

In this section, we will study the converse, rotation and
composition operators for the projective relations for points
defined in SectionIV.

For any projective relationr(P1, P2, P3), Table I presents
the relations that correspond to the converser⌣(P1, P3, P2)
and the rotationr⌢(P3, P1, P2) of r(P1, P2, P3). For example,
given three pointsP1, P2 and P3 such thatbf(P1, P2, P3)
holds, using TableI, we can derive thataf(P1, P3, P2) and
af(P3, P1, P2) also hold (see also Figure3a).
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r(P1, P2, P3) r⌣(P1, P3, P2) r⌢(P3, P1, P2)

bt bt bt, bf, ou
rs ls rs
bf af af
ls rs ls
af bf bt
in in in
ou ou bt

TABLE I
CONVERSE AND ROTATION FOR PROJECTIVE RELATIONS BETWEEN POINTS

P2 

P3 

P1 

(a)

bf(P1,P2,P3) 
af(P1,P3,P2)
af(P3,P1,P2)

P2 

P3 

P1 

(b)

if
ls(P1,P2,P3) 
bt(P2,P3,P4)

then
rs(P1,P3,P4) P4 

(c)

if
ls(P1,P2,P3) 
rs(P2,P3,P4)

then
rs(P1,P3,P4) or
bf(P1,P3,P4) or

ls(P1,P3,P4)

P2 

P3 
P1 

P4 

A B C

Fig. 3. Operations on point relations

Table II illustrates the result of the composition,r1 ◦
r2(P1, P3, P4), of two basic projective relationsr1(P1, P2, P3)
andr2(P2, P3, P4). For instance, as we can verify in Figure3b,
we have:

ls(P1, P2, P3) ◦ bt(P2, P3, P4) = rs(P1, P3, P4).

Notice that, for some cases, the result of the composition is
a relation in2Dpoint . For example, we have:

ls(P1, P2, P3) ◦ rs(P2, P3, P4) = {rs, bf, ls}(P1, P3, P4).

This means that, given four pointsP1, P2, P3 andP4 such that
ls(P1, P2, P3) andrs(P2, P3, P4) hold, the projective relation
of P1 can be rightside or before or leftsideP3 and P4 (i.e.,
rs(P1, P3, P4)∨ bf(P1, P3, P4)∨ ls(P1, P3, P4)). This can be
verified in Figure3c. If P1 were placed in pointA (respectively
B andC) then the first (respectively the second and the third)
disjunct would be verified.

Moreover, for some other cases the result is impos-
sible, denoted byIMP . For instance, in(P1, P2, P3) ◦
rs(P2, P3, P4) = IMP because we can easily verify that there
do not exist pointsP1, P2, P3 andP4 such thatin(P1, P2, P3)
andrs(P2, P3, P4) simultaneously hold.

VI. PROJECTIVE RELATIONS FOR REGIONS

In Sections IV and V, we have defined a model for
projective relations for points and we have studied reasoning
operators. We will now turn our attention to regions. In this
paper, we will consider regions that are formed by finite unions
of regions that are homeomorphic to theclosed unit disk[34].
This set of regions is denoted byREG∗. Regions inREG∗

areregular closed point setsand can bedisconnectedor have
holes. However, classREG∗ excludes points, lines and regions
with emanating lines. LetA be a region inREG∗, we denote
the convex hull ofA by CH(A).

In this section, we will briefly present the projective model
for regions, we refer the interested reader to [9] for a more
extended discussion. These relations extend the projective
relations for points discussed in SectionIV, thus they are
also ternary. Let us consider three regionsR1, R2 and R3.
To define the projective relationr1(R1, R2, R3) of primary
region R1 with respect to reference regionsR2 and R3, we
consider the following two cases.

Case 1: CH(R2) ∩ CH(R3) = ∅. In this case, to define
r1(R1, R2, R3), we use the convex hull of the union of regions
R2 andR3 and the internal common tangents of regionsR2

andR3. SinceCH(R2)∩CH(R3) = ∅ holds, we can always
define exactly two internal and two external common tangents.
For instance, in Figure4a, we illustrate two regions (R2 and
R3) and their internal and external common tangents.

R3

internal tangents

external 
tangents

R2
R3

R2

between(R2,R3)

rightside(R2,R3)

leftside(R2,R3)

afte
r(R

2 ,R
3 )b

ef
o

re
(R

2,
R 3

)

(a) (b)

convex-hull

Fig. 4. Ternary relations between regions (CH(R2) ∩ CH(R3) = ∅)

The external common tangents help to find the convex
hull of the union ofR2 and R3. The convex hull and the
internal common tangents of regionsR2 and R3 partition
the reference space into 5 regions as in (Figure4b). Formal
definitions of these regions can be found in [9]. Similarly
to the point case, these areas correspond to the relations
rightside , leftside , before, after and between and are de-
noted byrightside(P2, P3), leftside(P2, P3), before(P2, P3),
after(P2, P3) and between(P2, P3) respectively (Figure4b).
To distinguish the above areas, we consider an oriented line
from the first reference region (i.e.,R2) to the second reference
region (i.e.,R3). Specifically, in Figure4b, rightside(P2, P3)
is the lower dark gray area,leftside(P2, P3) is the upper
dark gray area,before(P2, P3) is the light gray area on the
left, after(P2, P3) is the light gray area on the right and
between(P2, P3) is the white area on the middle. Notice that:

• The union of all regions isℜ2.
• All areas butbetween(R2, R3) are unbounded.
• Area between(R2, R3) is closed.
• The interiors of all areas are disjoint but two areas may

share common points in their boundaries. For instance,
the areasbefore(R2, R3) and rightside(R2, R3) share
some points of the internal tangent.

Even though tiles share some points in their borders there is
no ambiguity in defining projective relations because the class
REG∗ does not contain objects that could lie entirely on the
borderline (like lines and points).
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r2/r1 bt rs bf ls af in ou

bt bt ls {bt, af} rs bf bt {bt, rs, bf, ls, af}
rs rs {bt, rs, ls, af} rs {rs, bf, ls} ls IMP IMP
bf bf rs bf ls {bt, af} IMP IMP
ls ls {rs, bf, ls} ls {bt, rs, ls, af} rs IMP IMP
af {bt, af} ls af rs bf IMP IMP
in IMP IMP IMP IMP IMP in ou
ou ou in, ou ou ou ou IMP IMP

TABLE II
COMPOSITION TABLE OF PROJECTIVE RELATIONS BETWEEN POINTS

R1

R2
R3

(a)

R2
R3

(b)

R1

Fig. 5. Example of projective relations between regions (CH(R2) ∩
CH(R3) = ∅)

If a region R1 is included (in the set-theoretic sense)
in region rightside(R2, R3) of some reference regionsR2

and R3 (Figure 5a), then we say thatR1 is rightside of
R2 and R3 and we writers(R1, R2, R3). Similarly, we can
define relationsls (leftside), bf (before), af (after ) and bt
(between).

If a primary regionR1 lies partly in therightside(R2, R3)
area and partly in thebefore(R2, R3) area of some reference
regionsR2 andR3 (Figure5b), then we say thatR1 is partly
rightside and partly before of R2 and R3 and we write
rs:bf(R1, R2, R3).

Case 2:CH(R2) ∩ CH(R3) 6= ∅. In this case, the common
internal tangents of regionsR2 and R3 cannot be defined.
Thus, we only use the convex hull of regionsR2 and R3 to
partition the reference space into two areas as in Figure6a.
These areas correspond to relationsinside andoutside and are
denoted byinside(R2, R3) andoutside(R2, R3) respectively.

Region inside(R2, R3) is bounded whileoutside(R2, R3)
is unbounded. Similarly to Case 1, the union of regions
inside(R2, R3) and outside(R2, R3) is ℜ2 and the interiors
of these areas are disjoint but they share common points in
their boundaries.

(a)

R3
R2

inside(R2,R3)

outside(R2,R3)

R3
R2

R1

(b)

R3
R2

R1

(c)

Fig. 6. Ternary relations between points (CH(R2) ∩ CH(R3) 6= ∅)

If a region R1 is included (in the set-theoretic sense) in

region inside(R2, R3) of some reference regionsR2 andR3

(Figure6b), then we say thatR1 is insideof R2 andR3 and
we write in(R1, R2, R3). Similarly, we can define relationou
(outside).

If a primary regionR1 lies partly in theinside(R2, R3)
area and partly in theoutside(R2, R3) area of some reference
regionsR2 and R3 (Figure 6c) then we say thatA is partly
inside and partly outside of R2 and R3 and we write
in:ou(R1, R2, R3).

Summarizing, the general definition of a basic projective
relation in our framework is given as follows:

Definition 4: A basic projective relationis an expression
r1: · · · :rk wherek and r1, . . . , rk can belong to exactly one
of the following cases.

1) 1 ≤ k ≤ 5, r1, . . . , rk ∈ {bt, rs, bf , ls, af} andRi 6=
Rj for every i, j such that1 ≤ i, j ≤ k and i 6= j.

2) 1 ≤ k ≤ 2, r1, . . . , rk ∈ {in, ou} and Ri 6= Rj for
every i, j such that1 ≤ i, j ≤ k and i 6= j.

We refer to r1, . . . , rk as the tiles of relation r1: · · · :rk.
Moreover, a basic projective relationr1: · · · :rk is calledsingle-
tile if k = 1; otherwise it is calledmulti-tile.

In order to avoid confusion, we will write the elements of
a multi-tile relation according to the following order:bt, rs,
bf , ls, af , in and ou. Thus, we always writers:bf and not
bf :rs.

Example 3:Expressionsrs, rs:bf , in and in:ou are basic
projective relations. The first and the third are single-tile
relations, while the second and the forth are multi-tile. Objects
involved in these relations are shown in Figures5a, 5b, 6b
and6c respectively.

The following two definitions formally define basic (single
and multi-tile) projective relations.

Definition 5: Let R1, R2 andR3 be three regions inREG∗.
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Then, single-tile projective relations are defined as follows.

bt(R1, R2, R3) iff R1 ∈ between(R2, R3)
and CH(R2) ∩ CH(R3) = ∅

rs(R1, R2, R3) iff R1 ∈ rightside(R2, R3)
and CH(R2) ∩ CH(R3) = ∅

bf(R1, R2, R3) iff R1 ∈ before(R2, R3)
and CH(R2) ∩ CH(R3) = ∅

ls(R1, R2, R3) iff R1 ∈ leftside(R2, R3)
and CH(R2) ∩ CH(R3) = ∅

af(R1, R2, R3) iff R1 ∈ after (R2, R3)
and CH(R2) ∩ CH(R3) = ∅

in(R1, R2, R3) iff R1 ∈ inside(R2, R3)
and CH(R2) ∩ CH(R3) 6= ∅

ou(R1, R2, R3) iff R1 ∈ outside(R2, R3)
and CH(R2) ∩ CH(R3) 6= ∅

Definition 6: Let R1, R2 and R3 be three regions
in REG∗ and r1: · · · :rk be a multi-tile projective
relation. Then, r1: · · · :rk(R1, R2, R3) holds iff
there exist regionsQ1, . . . , Qk ∈ REG∗ such that
r1(Q1, R2, R3), . . . , rk(Qk, R2, R3) andR1 = Q1∪· · ·∪Qk.

Summarizing, the set of basic projective relations between
regions contains 34 relations (7 single-tile and 27 multi-tile).
We will useDregion to denote this set. Relations inDregion

are jointly exhaustive and pairwise disjoint [9]. Elements of
Dregion can be used to represent definite information about
directional information. We will user, q and p possibly
subscripted to denote variables ranging inDregion. To also
express indefinite information we use the powerset,2Dregion ,
of Dregion. We will use r̄, q̄ and p̄ possibly subscripted to
denote variables ranging in2Dregion

VII. R EASONING WITH PROJECTIVE RELATIONS FOR

REGIONS

To present our results, we will need the following defini-
tions.

Definition 7: Let r1, . . . , rk be single-tile relations. Theδ-
combinationof relationsr1, . . . , rk, denoted byδ(r1, . . . , rk),
is a short-cut for the projective relation in2Dregion that can
be constructed by combining single-tile relationsr1, . . . , rk.

For instance, we haveδ(bt, rs, ls) = {bt, rs, ls, bt:rs,
bt:ls, rs:ls, bt:rs:ls}.

Definition 8: Let r1: · · · :rk be a basic projective relation in
Dregion. The δ-combination ofr1: · · · :rk is defined as:

δ(r1: · · · :rk) = δ(r1, . . . , rk)

For instance, we haveδ(bt:rs:ls) = δ(bt, rs, ls) =
{bt, rs, ls, bt:rs, bt:ls, rs:ls, bt:rs:ls}.

Definition 9: Let r̄1 = {r1

1 , . . . , r
k1

1
}, . . ., r̄m =

{r1

m, . . . , rkm
m } be m projective relations in2Dregion (where

r1
1 , . . . , r

k1

1
, . . ., r1

m, . . . , rkm
m are basic projective relations).

The δ-combination of these relations is defined as:

δ(r̄1, . . . , r̄m) = δ(r1

1 , . . . , r
k1

1
, . . . , r1

m, . . . , rkm

m )

Finally, we define

δ
(

δ(r1

1
, . . . , rk1

1
), . . . , δ(r1

m, . . . , rkm
m )

)

=

δ(r1

1
, . . . , rk1

1
, . . . , r1

m, . . . , rkm
m )

Example 4:We haveδ({bt, rs}, δ(rs, ls)) = δ(bt, rs, ls) =
{bt, rs, ls, bt:rs, bt:ls, rs:ls, bt:rs:ls}.

Definition 10: We denote byUproj the universal disjunctive
projective relation, i.e.,

Uproj = δ(bt, rs, bf, ls, af, in, ou).

Moreover, we denote byDd the universal disjunctive pro-
jective relation with reference regions with disjoint convex
hulls, i.e.,Dd = δ(bt, rs, bf, ls, af), and byDc the universal
disjunctive projective relation with reference regions with non-
disjoint convex hulls, i.e.,Dc = δ(in, ou).

Definition 11: The tile-union of basic relationsr1, . . . , rk,
denoted bytile-union(r1, . . . , rk), is the basic relation that
consists of all the tiles of relationsr1, . . . , rk.

Example 5:We havetile-union(rs, bf :ls) = rs:bf :ls and
tile-union(bt, rs, rs:ls) = bt:rs:ls.

Definition 12: Let r̄1 = {r1

1
, . . . , rk1

1
}, . . ., r̄m =

{r1
m, . . . , rkm

m } be m projective relations in2Dregion . The
product of relations r̄1, . . ., r̄m, denoted byπ(r̄1, . . . , r̄m)
is a projective relation in2Dregion defined as:

π(r̄1, . . . , r̄m) = {tile-union(s1, . . . , sm) |

s1 ∈ {r1

1
, . . . , rk1

1
}, . . . , sm ∈ {r1

m, . . . , rkm
m }}.

Example 6:The following are some examples of products.

• π
(

{bt, rs}, {bf, ls}
)

= {bt:bf, bt:ls, rs:bf, rs:ls},
• π

(

{rs:ls, bt}, {bt:rs:ls, rs:bf :ls}
)

= {bt:rs:ls, rs:bf :ls,
bt:rs:bf :ls}

• π
(

{rs:ls, bt}, {bt:rs:ls, rs:bf :ls}, bf
)

= {rs:bf :ls,
bt:rs:bf :ls}.

The following is a useful proposition.
Proposition 1: Let r̄1, r̄2 and q̄ be projective relations in

2Dregion . Then

π(r̄1 ∪ r̄2, q̄) = π(r̄1, q̄) ∪ π(r̄2, q̄).

The product of relations is commonly used to compute the
composition operator for other models of qualitative direction
relations [33], [31]. In our work, we also need the following
definition that uses the product of two relations.

Definition 13: Theaugmentationof a basic projective rela-
tion r in Dregion by a projective relation̄q in 2Dregion , denoted
by r/q̄ is a projective relation in2Dregion defined as:

r/q̄ = r ∪ π(r, q̄).

Example 7:We havers:ls/δ(bt, bf) = {rs:ls, bt:rs:ls,
rs:bf :ls, bt:rs:bf :ls}.

A. Converse and rotation

For any basic projective relationr(R1, R2, R3), Table
III presents the relations that correspond to the con-
verse r⌣(R1, R3, R2) and the rotationr⌢(R3, R1, R2) of
r(R1, R2, R3).

Example 8:Using TableIII , we have thatrs⌣ = ls and
rs⌢ = {rs, ou}. These equations can be verified using
regions R1, R2 and R3 of Figure 7. We havels ∈ rs⌣

since in Figure7a and b, rs(R1, R2, R3), ls(R1, R3, R2)
holds. Similarly, we have(a) rs ∈ rs⌢ since in Figure7a,
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r(R1, R2, R3) r⌣(R1, R3, R2) r⌢(R3, R1, R2)

bt bt rs:ls/δ(bt, bf) ∪ bt/δ(rs, ls) ∪ δ(bt, bf) ∪ bf :af/δ(bt, ls) ∪ bf :af/δ(bt, rs) ∪
bf :ls/bt ∪ rs:bf/bt ∪ bt:af/ls ∪ bt:af/rs ∪ Dc

rs ls {rs, ou}
bf af af/δ(rs, ls) ∪ rs:ls ∪ ou
ls rs {ls, ou}
af bf bt/δ(rs, bf, ls) ∪ rs:ls/bf

bt:rs bt:ls δ(bt, bf)/rs ∪ bt/δ(rs, bf, af) ∪ bf :af/rs ∪ Dc

bt:bf bt:af bt/δ(rs, bf, af) ∪ bf :af/rs ∪ bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

bt:ls bt:rs δ(bt, bf)/ls ∪ bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

bt:af bt:bf bt/δ(rs, bf, ls)∪ rs:ls/bf ∪ bf/bt∪ bf :af/δ(bt, ls)∪ bf :af/δ(bt, rs)∪ bf :ls/bt∪
rs:bf/bt ∪ bt:af/ls ∪ bt:af/rs ∪ Dc

rs:bf ls:af af/rs ∪ ou
rs:ls rs:ls af ∪ δ(bt, bf) ∪ Dc

rs:af bf :ls bt/δ(rs, bf) ∪ rs:bf ∪ {in, in:ou}
bf :ls rs:af af/ls ∪ ou
bf :af bf :af bt/δ(rs, bf, af) ∪ bf :af/rs ∪ bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

ls:af rs:bf bt/δ(bf, ls) ∪ bf :ls ∪ {in, in:ou}
bt:rs:bf bt:ls:af bt/δ(rs, bf, af) ∪ bf :af/rs ∪ Dc

bt:rs:ls bt:rs:ls δ(bt, bf) ∪ Dc

bt:rs:af bt:bf :ls δ(bt, bf) ∪ rs:bf ∪ bt/δ(rs, bf, af) ∪ bf :af/rs ∪ Dc

bt:bf :ls bt:rs:af bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

bt:bf :af bt:bf :af bt/δ(rs, bf, af) ∪ bf :af/rs ∪ bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

bt:ls:af bt:rs:bf δ(bt, bf) ∪ bf :ls ∪ bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

rs:bf :ls rs:ls:af af ∪ Dc

rs:bf :af bf :ls:af bt/δ(rs, bf, af) ∪ bf :af/rs ∪ Dc

rs:ls:af rs:bf :ls bt/bf ∪ in ∪ in:ou
bf :ls:af rs:bf :af bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

bt:rs:bf :ls bt:rs:ls:af Dc

bt:rs:bf :af bt:bf :ls:af bt/δ(rs, bf, af) ∪ bf :af/rs ∪ Dc

bt:rs:ls:af bt:rs:bf :ls bt/bf ∪ in ∪ in:ou
bt:bf :ls:af bt:rs:bf :af bt/δ(bf, ls, af) ∪ bf :af/ls ∪ Dc

rs:bf :ls:af rs:bf :ls:af {in, in:ou}
bt:rs:bf :ls:af bt:rs:bf :ls:af {in, in:ou}

in in bt/Dd ∪ rs:ls/Dd ∪ bf :af/Dd ∪ Dc

ou ou bt/δ(rs, ls, af) ∪ rs/δ(bt, ls, af) ∪ ls/δ(bt, rs, af) ∪ af/δ(bt, rs, ls) ∪ Dc

in:ou in:ou bt/Dd ∪ rs:ls/Dd ∪ bf :af/Dd ∪ Dc

TABLE III
CONVERSE AND ROTATION FOR PROJECTIVE RELATIONS BETWEEN REGIONS

R1

R3

(a)

R2
R3

(b)

R1

rs(R1,R2,R3), ls(R1,R3,R2) 
and rs(R3,R1,R2) 

rs(R1,R2,R3), ls(R1,R3,R2) 
and ou(R3,R1,R2) 

R2

Fig. 7. Converse and rotation example

rs(R1, R2, R3) and rs(R2, R3, R1) and (b) ou ∈ rs⌢ since
in Figure7b, rs(R1, R2, R3) andou(R3, R1, R2) holds.

To compute the converse relations presented in TableIII ,
we use the following proposition.

Proposition 2: The converser⌣(R1, R3, R2) of a relation
r(R1, R2, R3) can be computed by performing the following

substitutions to the tiles ofr.

Tiles of r Replace with (to getr⌣)

bt bt
rs ls
ls rs
bf af
af bf

Proof: The proof easily follows from the symmetry of
the projective relations.

For instance, the converse of relationrs is relationls and
the converse of relationbt:rs:bf is relationbt:ls:af (see also
Table III ).

The rotation operation is much more involved. To compute
the rotation operator, we have implemented Algorithm COM-
PUTEROTATION (Figure 8). Given three regionsR1, R2 and
R3, the above algorithm computes relationr(R1, R2, R3) and
its rotationq(R3, R1, R2) (Step 4). Algorithms for computing
projective relations were presented in [9]. RegionsR1, R2 and
R3 are constructed by the union of two rectangles (Step 3) that
are taken from a large array of random rectanglesR (Step 1).
We consider regions formed by the union of two rectangles
because simple rectangles are not general enough to satisfy
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multi-tile relations such asbf :af or rs:ls. In our experiments,
we have varied the size of arrayR from 100,000 to 1,000,000.

Algorithm COMPUTEROTATION
Method:

1. Create an arrayR[1 . . . n] that containsn random rectangles
2. For i = 1 To n − 5
3. Set R1 = R[i] ∪R[i + 1], R2 = R[i + 2] ∪ R[i + 3],

R3 = R[i + 4] ∪R[i + 5]
4. COMPUTE relationsr(R1, R2, R3) andq(R3, R1, R2)
5. ADD q to the rotation entry ofr // Sinceq ∈ r⌢

6. EndFor

Fig. 8. Algorithm COMPUTEROTATION

The results that Algorithm COMPUTEROTATION produces
are definitely sound since for every result there is an actual
configuration of regions satisfying the relation and its rotation.
In fact, besides running the algorithm, we checked the results
of the table by exhaustively drawing all the configurations,
making sure that no results are missing. With another routine,
we then manipulate the output of the table to find the compact
form with the δ operator. The final result is presented in
Table III .

B. Composing a single-tile with a basic relation

For any single-tile relationr1(A, B, C) and any basic (sin-
gle or multi-tile) relationr2(B, C, D), Table IV presents the
relations that correspond to their compositionr1◦r2(A, C, D).
Similarly to TableII , we useIMP to denote impossible cases.

B

C

D

ls
bt

bf
af

rs A1
A2

Fig. 9. Example of composition

Example 9:Assume that we want to compute the compo-
sition of bf with rs. According to TableIV, we have:

bf ◦ rs = δ(rs, af) = {rs, af, rs:af}.

To verify this equation, consider Figure9. We have:

rs ∈ bf ◦ rs since bf(A1, B, C), rs(B, C, D)
and rs(A1, C, D).

af ∈ bf ◦ rs since bf(A2, B, C), rs(B, C, D)
and af(A2, C, D).

rs:af ∈ bf ◦ rs since bf(A1 ∪ A2, B, C), rs(B, C, D)
and rs:af(A1 ∪ A2, C, D).

Also notice that for all relationsq 6∈ δ(rs, af) it is impossible
to find configurations such thatq(A, C, D), bf(A, B, C) and
rs(B, C, D) simultaneously hold.

To compute the composition results of TableIV, we proceed
as follows. For every pair of a single-tile relationr1 and a basic
relation r2, we consider every possible basic relationr3 and
check if there exist regionsA, B, C andD such that

r1(A, B, C), r2(B, C, D) andr3(A, C, D)

hold. If we can find such regions then, according to Defini-
tion 3, r3 ∈ r1 ◦ r2 holds and thusr3 is added in the(r1, r2)
entry of TableIV. Notice that, for each entry of TableIV, in
the worst case we have to consider 34 (i.e., the total number
of projective relations) configurations involving regionsA, B,
C and D. To assist this procedure, we have implemented
Algorithm COMPUTECOMPOSITION (Figure 10). Given four
regionsR1, R2, R3 and R4, the above algorithm computes
relation r1(R1, R2, R3) and r2(R2, R3, R4) and their com-
position r3(R1, R3, R4). Similarly to the rotation operation,
regionsR1, R2, R3 and R4 are constructed by the union of
two rectangles (Step 3) that are taken from a large array of
random rectanglesR (Step 1). In our experiments, we have
varied the size of arrayR from 100,000 to 1,000,000.

Algorithm COMPUTECOMPOSITION
Method:

1. Create an arrayR[1 . . . n] that containsn random rectangles
2. For i = 1 To n − 7
3. Set R1 = R[i] ∪R[i + 1], R2 = R[i + 2] ∪R[i + 3],

R3 = R[i + 4] ∪R[i + 5], R4 = R[i + 6] ∪R[i + 7]
4. COMPUTE relationsr1(R1, R2, R3), r2(R2, R3, R4) and

r3(R1, R3, R4).
5. ADD the r3 to the composition entry ofr1 ◦ r2

// Sincer3 ∈ r1 ◦ r2

6. EndFor

Fig. 10. Algorithm COMPUTECOMPOSITION

Similarly to the discussion about rotation, the results that
Algorithm COMPUTECOMPOSITION produces are definitely
sound since for every result there is an actual configurationof
regions satisfying relations and their composition. As part of
the proof, we manually drew all the configurations (reported
in the Appendix). An empirical support to the completeness of
TableIV is given by the fact that continuing to run the exper-
iments no other results were found. The automatic procedure
can also be used to find results for the full composition table
of two basic relations (34 times 34 table), which is treated in
SectionVII-C.

C. Composing basic relations

Let us consider two basic relationsr andq and let us assume
thatr = r1: · · · :rk. In this section, we will reduce the compu-
tation of r ◦ q to the computation of compositionsr1 ◦ q, . . . ,
rk◦q. All these expressions denote the composition of a single-
tile with a basic relation and can be computed using TableIV
(see also SectionVII-C). A natural method to perform this
reduction is to use the product of relations (Definition12).
Specifically, we may use the expressionπ(r1 ◦ q, . . . , rk ◦ q).
We will refer to this expression as theproduct expression.

The product expression correctly computes the composition
of relation in:ou as the following lemma demonstrates.
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r2\r1 bt rs bf ls af in ou

bt bt δ(bt, bf, ls, af) δ(bt, rs, ls, af) ∪
δ(bt, bf, ls, af) ∪
δ(bt, rs, bf, af)

δ(bt, rs, bf, af) δ(bt, rs, bf, ls)∪
δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

bt Dd

rs δ(bt, rs, bf) δ(bt, rs, ls, af) δ(rs, af) δ(rs, bf, ls) δ(bt, bf, ls) δ(bt, rs, bf) Dd

bf δ(bt, bf) δ(bt, rs, bf, af) δ(rs, bf, ls) ∪
δ(rs, bf, af) ∪
δ(bf, ls, af)

δ(bt, bf, ls, af) Dd δ(bt, bf) Dd

ls δ(bt, bf, ls) δ(rs, bf, ls) δ(ls, af) δ(bt, rs, ls, af) δ(bt, rs, bf) δ(bt, bf, ls) Dd

af Dd δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf) IMP IMP
bt:rs δ(bt, rs, bf, af) δ(bt, ls, af) δ(bt, rs, ls, af) ∪

δ(bt, rs, bf, af)
δ(rs, bf) δ(bt, rs, bf, ls)∪

δ(bt, bf, ls, af)
δ(bt, rs, bf, af) Dd

bt:bf δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

δ(bt, af) ∪ bf δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

δ(bt, af) ∪ bf δ(bt, bf, ls, af)∪
δ(bt, rs, bf, af)

Dd Dd

bt:ls δ(bt, bf, ls, af) δ(bf, ls) δ(bt, rs, ls, af) ∪
δ(bt, bf, ls, af)

δ(bt, rs, af) δ(bt, rs, bf, ls)∪
δ(bt, rs, bf, af)

δ(bt, bf, ls, af) Dd

bt:af Dd δ(bt, bf, ls, af) δ(bt, rs, ls, af) ∪
δ(bt, bf, ls, af) ∪
δ(bt, rs, bf, af)

δ(bt, rs, bf, af) δ(bt, rs, bf, ls)∪
δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

Dd Dd

rs:bf δ(bt, rs, bf) δ(bt, rs, af) δ(rs, bf, ls) ∪
δ(rs, bf, af)

δ(bf, ls) Dd δ(bt, rs, bf) Dd

rs:ls Dd {rs, ls} δ(bt, rs, ls, af) ∪
δ(rs, bf, ls)

{rs, ls} δ(bt, rs, ls, af)∪
δ(rs, bf, ls)

Dd Dd

rs:af Dd δ(bt, ls, af) δ(bt, rs, af) δ(rs, bf) δ(bt, bf, ls) Dd Dd

bf :ls δ(bt, bf, ls) δ(rs, bf) δ(rs, bf, ls) ∪
δ(bf, ls, af)

δ(bt, ls, af) Dd δ(bt, bf, ls) Dd

bf :af Dd δ(bt, af) ∪ bf δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

δ(bt, af) ∪ bf δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

Dd Dd

ls:af Dd δ(bf, ls) δ(bt, ls, af) δ(bt, rs, af) δ(bt, rs, bf) Dd Dd

bt:rs:bf δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af) Dd Dd

bt:rs:ls Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls) Dd Dd

bt:rs:af Dd δ(bt, ls, af) δ(bt, rs, ls, af) ∪
δ(bt, rs, bf, af)

δ(rs, bf) δ(bt, rs, bf, ls)∪
δ(bt, bf, ls, af)

Dd Dd

bt:bf :ls δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) Dd Dd

bt:bf :af Dd δ(bt, af)∪bf δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

δ(bt, af) ∪ bf δ(bt, rs, bf, af)∪
δ(bt, bf, ls, af)

Dd Dd

bt:ls:af Dd δ(bf, ls) δ(bt, rs, ls, af) ∪
δ(bt, bf, ls, af)

δ(bt, rs, af) δ(bt, rs, bf, ls)∪
δ(bt, rs, bf, af)

Dd Dd

rs:bf :ls δ(bt, rs, bf, ls) rs δ(rs, bf, ls) ls δ(bt, rs, ls, af) Dd Dd

rs:bf :af Dd δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af) Dd Dd

rs:ls:af Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls) Dd Dd

bf :ls:af Dd bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) Dd Dd

bt:rs:bf :ls IMP IMP IMP IMP IMP Dd Dd

bt:rs:bf :af Dd δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af) Dd Dd

bt:rs:ls:af Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls) Dd Dd

bt:bf :ls:af Dd bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) Dd Dd

rs:bf :ls:af IMP IMP IMP IMP IMP Dd Dd

bt:rs:bf :ls:af IMP IMP IMP IMP IMP Dd Dd

in in Dc Dc Dc Dc in Dc

ou Dc Dc ou Dc Dc Dc Dc

in:ou Dc Dc Dc Dc Dc Dc Dc

TABLE IV
COMPOSING A SINGLE-TILE WITH A BASIC RELATION

Lemma 1:Let q is a basic relation. The composition of
relation in:ou and q can be computed using the following
formula:

in:ou ◦ q = π( in ◦ q, ou ◦ q ).

For example, using Lemma1, we have

in:ou ◦ rs = π( in ◦ rs, ou ◦ rs )
= π( δ(bt, rs, bf), Dd )
= Dd.

This result can be verified using Figure11. Notice that
rs(B, C, D) holds. To compute the composition we should
investigate the possible position of a regionA such that
in:ou(A, B, C) holds. This means thatA has a part that is

inside and a part that is outsideCH(B ∪ C). It is not hard
to verify that in generalDd(A, C, D) holds. For instance, if
A = A1 ∪ A2 thenbt:af(A, C, D) holds.
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B

C
D

ls

bt
bf

af

rs

A1

A2

Fig. 11. Composingin:ou and rs

Let us now investigate the relation between composition
(r ◦ q) and the product expression (π(r1 ◦ q, . . . , rk ◦ q)) in the
case of the remaining ternary projective relations. Consider the
following example.

Example 10:Let us consider relationsbt:rs and bt:bf .
According to TableIV, we have:

bt ◦ bt:bf = δ(bt, rs, bf, af) ∪ δ(bt, bf, ls, af) and
rs ◦ bt:bf = δ(bt, af) ∪ bf.

Thus, the product expression gives:

π(bt ◦ bt:bf, rs ◦ bt:bf) =
π(δ(bt, rs, bf, af) ∪ δ(bt, bf, ls, af), δ(bt, af) ∪ bf) =

π
(























































bt, rs, bf, ls, af,
bt:rs, bt:bf, bt:ls,

bt:af, rs:bf, rs:af,
bf :ls, bf :af, ls:af,
bt:rs:bf, bt:rs:af,
bt:bf :ls, bt:bf :af,
bt:ls:af, rs:bf :af,

bf :ls:af, bt:rs:bf :af,
bt:bf :ls:af























































, {bt, bf, af, bt:af}
)

=















bt, bf, af, bt:rs, bt:bf, bt:ls, bt:af, rs:bf,
rs:af, bf :ls, bf :af, ls:af, bt:rs:bf,
bt:rs:af, bt:bf :ls, bt:bf :af, bt:ls:af,

rs:bf :af, bf :ls:af, bt:rs:bf :af, bt:bf :ls:af















.

The above expression does not correctly compute the com-
position. For instance,bt:ls ∈ π(bt ◦ bt:bf, rs ◦ bt:bf) but
bt:ls 6∈ bt:rs ◦ bt:bf because there cannot be regionsA,
B, C and D such thatbt:ls(A, C, D), bt:rs(A, B, C) and
bt:bf(B, C, D) hold at the same time.

In Example10, we have seen that the product expression
contains relations that do not belong to the composition. We
can prove that a possible result of the composition operatoris
necessarily included in the product expression but the product
expression may contain relations that do not belong to the
composition. This fact is captured in the following proposition.

Proposition 3: Let r1: · · · :rk andq be two projective rela-
tions. Then, we have:

(r1: · · · :rk) ◦ q ⊆ π
(

r1 ◦ q, . . . , rk ◦ q
)

.

Proof: We will first prove that ifu ∈ r1: · · · :rk ◦ q then
u ∈ π

(

r1 ◦ q, . . . , rk ◦ q
)

.
Sinceu ∈ r1: · · · :rk ◦ q holds, there are regionsA, B, C

andD such that

r1: · · · :rk(A, B, C) ∧ q(B, C, D) ∧ u(A, C, D).

Since, r1: · · · :rk(A, B, C) holds, according to Definition6,
there are regionsA1, . . . , Ak such thatA = A1∪· · ·∪Ak and
r1(A1, B, C), . . ., rk(Ak, B, C) hold. Thus, we have:

r1(A1, B, C)∧· · · ∧ rk(Ak, B, C)∧ q(B, C, D)∧u(A, C, D).

Now, let u1 be the relation that holds between regionsA1, C
andD, i.e.,u1(A1, C, D). Similarly, we defineu2(A2, C, D),
. . ., uk(Ak, C, D). Notice thatu = tile-union(u1, . . . , uk)
holds, thus we have:

r1(A1, B, C) ∧ · · · ∧ rk(Ak, B, C)∧
q(B, C, D) ∧ u1(A1, C, D) ∧ · · · ∧ uk(Ak, C, D)

and by rewriting the expression we have:

r1(A1, B, C) ∧ q(B, C, D) ∧ u1(A1, C, D)
∧ · · · ∧

rk(Ak, B, C) ∧ q(B, C, D) ∧ uk(Ak, C, D).

Summarizing, according to Definition3, we haveu1 ∈ r1◦q,
. . ., uk ∈ rk ◦ q and u = tile-union(u1, . . . , uk), thus,u ∈
π
(

r1 ◦ q, . . . , rk ◦ q
)

(see also Definition12). To conclude
this proof, we notice that Example10 illustrates a case where
u ∈ π

(

r1 ◦ q, . . . , rk ◦ q
)

andu 6∈ r ◦ q.
In total the product expression, although it seems to be a

natural choice, results in a superset of the composition result. It
is interesting to identify the cases where the product expression
produces a result that does not belong to the composition. To
this end, let us reconsider Example10. The composition of
bt:rs with bt:bf is given by the following formula.

bt:rs ◦ bt:bf =























bt, bf, af, bt:rs, bt:bf, bt:af,
rs:af, bf :ls, bf :af, bt:rs:bf,
bt:rs:af, bt:bf :ls, bt:bf :af,

rs:bf :af, bf :ls:af,
bt:rs:bf :af, bt:bf :ls:af























(1)

To verify this expression we consider Figure12. In this figure,
we present two configurations involving three regionsB, C
and D such thatbt:bf(B, C, D). In both configurations of
Figure12, a regionA satisfies relationbt:rs(A, B, C) iff it has
a part that lies in the dark-shaded area and a part that lies inthe
light-shaded area. It is not hard to verify that all the possible
relations that hold betweenA, C andD are prescribed by the
previous expression. Also notice that for all relationsq that
are not mentioned in the set of Equation1 it is impossible to
find configurations such thatq(A, C, D), bt:rs(A, B, C) and
bt:bf(B, C, D) simultaneously hold.

B

C

ls

bt
bf

af
rs

B

C

D

ls

bt
bf

af

rs

B
B

D

(a) (b)

Fig. 12. Composingbt:rs with bt:bf
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Equation1 can be equivalently written as follows.

bt:rs ◦ bt:bf = π( δ(bt, rs, bf, af), δ(bt, af) )∪
π( δ(bt, bf, ls, af), bf )

(2)

Let us compare the above expression with the product
expression of Example10, i.e.,

π(bt ◦ bt:bf, rs ◦ bt:bf) =
π( δ(bt, rs, bf, af) ∪ δ(bt, bf, ls, af), δ(bt, af) ∪ bf ).

Using Proposition1, we have:

π(bt ◦ bt:bf, rs ◦ bt:bf) = π( δ(bt, rs, bf, af), δ(bt, af) )∪
π( δ(bt, bf, ls, af), bf ) ∪ π( δ(bt, rs, bf, af), bf )∪

π( δ(bt, bf, ls, af), δ(bt, af) )

and
π(bt ◦ bt:bf, rs ◦ bt:bf) = bt:rs ◦ bt:bf∪

π( δ(bt, rs, bf, af), bf ) ∪ π( δ(bt, bf, ls, af), δ(bt, af) ).

In other words, to get the correct composition result we
should rule out some combinations that appear in the prod-
uct expression (see also Example10 and Proposition3).
These combinations correspond toimpossibleconfigurations.
In our example, it is not possible to find regionsA,
B, C and D such that r(A, C, D), bt:rs(A, B, C) and
bt:bf(B, C, D) for any relationr ∈ π( δ(bt, rs, bf, af), bf )∪
π( δ(bt, bf, ls, af), δ(bt, af). This can be verified using Fig-
ure 12.

Inspired by this observation, we refine TableIV that presents
the composition of a single-tile with a basic relation. First, for
each entry of the table, we consider the possible configurations
that produce the composition result. Then, for each row of
the table we group the compatible configurations in the same
row. The new results appear in TablesV and VI . In total,
these tables present the result of the composition of a single-
tile relation r1 with a basic (single or multi-tile) relationr2.
These tables have 34 rows (numbered from 1 to 34) that
correspond to the basic relationr2. Each row is divided into
several subrows. For instance, the rows numbered 1 and 13 are
divided into 4 and 3 subrows respectively. The composition of
relationsr1 andr2 is computed by the union of the subrows
that lie in on the crossing of the row titler1 with the column
title r2. It is easy to verify that TableIV can be produced by
TablesV and VI by unifying the subrows of every cell. For
instance, using TableV we have:

bf ◦ bt = δ(bt, af) ∪ δ(bt, rs, ls, af) ∪ δ(bt, bf, ls, af)∪
δ(bt, rs, bf, af)

= δ(bt, rs, ls, af) ∪ δ(bt, bf, ls, af)∪
δ(bt, rs, bf, af)

This is exactly the result we get by using TableIV.
Each subrow of TablesV andVI corresponds to a possible

configuration. Results taken in different subrows of the same
row correspond to impossible configurations. For instance,to
compute the composition ofbt:rs and bt:bf we consider the
elements that lie on the crossing of the 7th row of TableV
with columns titlebt and rs. To get the result, we take the
union of the product of the elements of all subrows. In total,
we have:

bt:rs ◦ bt:bf = π( δ(bt, rs, bf, af), δ(bt, af) )∪
π( δ(bt, bf, ls, af), bf )

which is exactly the result of Equation2.
As another example, the composition ofbt:ls:af with

bt:rs:af is given by the following formula.

bt:ls:af ◦ bt:rs:af =
π( Dd, δ(rs, bf), δ(bf, ls) )∪
π( δ(bt, rs, bf, af), δ(rs, bf), δ(bt, bf, ls) )∪
π( δ(bt, rs, bf, af), rs, δ(bt, rs, bf, ls) )∪
π( δ(bt, rs, bf, af), bf, δ(bt, bf, ls, af) )∪
π( Dd, rs, δ(rs, bf, ls) )

To compute TablesV andVI we consider one row at a time.
For each row, we consider all different configurations that are
able to reproduce all the composition results that appear for the
respective row in TableIV. Each configuration corresponds to
a subrow. For example, let us consider the first row of TableV,
i.e., relationbt. To complete this row, we consider different
configurations of regionsB, C andD such thatbt(B, C, D)
holds. To reproduce the results of TableIV, we need four
different configurations that correspond to the four different
subrows of TableV. These configurations appear in Figure13.
For instance, in Figure13a:

1) For all regionsA such that bt(A, B, C), we have
bt(A, C, D).

2) For all regionsA such that rs(A, B, C), we have
δ(bt, bf, ls, af)(A, C, D).

3) For all regionsA such that bf(A, B, C), we have
δ(bt, af)(A, C, D).

4) For all regionsA such that ls(A, B, C), we have
δ(bt, rs, bf, af)(A, C, D).

5) For all regionsA such that af(A, B, C), we have
δ(bt, bf)(A, C, D).

All these results are captured in the(a) subrow ofbt. Similarly,
using Figures13b-d, we can verify all the other subrows of
bt.

The configurations that we consider for each row are a mini-
mal covering set: this assures that no results in the composition
are missing and that impossible results are filtered out. The
configurations that verify all the other rows of TablesV andVI
are presented in the Appendix.

Algorithm COMPOSE

Input: Two basic relationsr = r1: · · · :rk andq.
Output: The compositionr ◦ q.
Method:
result = ∅
If r ∈ {in:ou} Then

result = π( in ◦ q, ou ◦ q )
Else

For each subrows of q in TablesV andVI.
Let u1, . . . , uk be the cells ofs that correspond tor1, . . . , rk

result = result ∪ π(u1, . . . , uk)
EndFor

EndIf
Return result

Fig. 14. Algorithm COMPOSE

Overall, we obtain a procedure to find the composition
of two basic relations starting from the knowledge of the
composition of a single-tile relation with a basic relation. Such
a procedure is summarized in Algorithm COMPOSEpresented
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r2\r1 bt rs bf ls af

1 bt a bt δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf)
b bt δ(bt, ls) δ(bt, rs, ls, af) δ(bt, rs) δ(bt, rs, bf, ls)
c bt δ(bt, bf) δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
d bt δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf) δ(bt, bf, ls, af)

2 rs a δ(bt, rs, bf) δ(bt, rs, ls, af) δ(rs, af) δ(rs, bf) δ(bt, bf, ls)
b δ(bt, rs, bf) δ(bt, rs, ls, af) rs δ(rs, bf, ls) δ(bt, bf, ls)

3 bf a δ(bt, bf) δ(rs, bf) δ(rs, bf, ls) δ(bf, ls) Dd

b δ(bt, bf) δ(bt, rs, bf, af) δ(rs, bf, af) bf δ(bt, bf, ls, af)
c δ(bt, bf) bf δ(bf, ls, af) δ(bt, bf, ls, af) δ(bt, rs, bf, af)
d δ(bt, bf) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af) δ(bt, af)

4 ls a δ(bt, bf, ls) δ(bf, ls) δ(ls, af) δ(bt, rs, ls, af) δ(bt, rs, bf)
b δ(bt, bf, ls) δ(rs, bf, ls) ls δ(bt, rs, ls, af) δ(bt, rs, bf)

5 af a Dd δ(bf, ls, af) δ(bt, af) δ(rs, bf, af) bf
b δ(bt, af) δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf)
c δ(bt, rs, bf, af) δ(bt, bf, ls, af) δ(bt, af) δ(rs, bf, af) δ(bt, bf)
d δ(bt, bf, ls, af) δ(bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf)

6 bt:rs a δ(bt, rs, bf, af) δ(bt, ls) δ(bt, rs, ls, af) rs δ(bt, rs, bf, ls)
b δ(bt, rs, bf, af) δ(bt, ls, af) δ(bt, rs, af) δ(rs, bf) δ(bt, bf, ls)
c δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)

7 bt:bf a δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)
b δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)

8 bt:ls a δ(bt, bf, ls, af) ls δ(bt, rs, ls, af) δ(bt, rs) δ(bt, rs, bf, ls)
b δ(bt, bf, ls, af) δ(bf, ls) δ(bt, ls, af) δ(bt, rs, af) δ(bt, rs, bf)
c δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)

9 bt:af a Dd δ(bf, ls, af) δ(bt, af) δ(rs, bf, af) bf
b δ(bt, af) δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf)
c δ(bt, af) δ(bt, ls) δ(bt, rs, ls, af) δ(bt, rs) δ(bt, rs, bf, ls)
d δ(bt, af) δ(bt, bf) δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
e δ(bt, af) δ(bt, af) δ(bt, rs, bf, af) δ(bt, bf) δ(bt, bf, ls, af)
f δ(bt, rs, bf, af) δ(bt, ls) δ(bt, rs, ls, af) rs δ(bt, rs, bf, ls)
g δ(bt, bf, ls, af) ls δ(bt, rs, ls, af) δ(bt, rs) δ(bt, rs, bf, ls)

10 rs:bf a δ(bt, rs, bf) δ(bt, rs, af) δ(rs, bf, af) bf δ(bt, bf, ls, af)
b δ(bt, rs, bf) rs δ(rs, bf, ls) δ(bf, ls) Dd

c δ(bt, rs, bf) δ(bt, rs, af) δ(rs, bf) δ(bf, ls) δ(bt, bf, ls, af)

11 rs:ls a Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls)
b δ(bt, rs, bf, ls) rs δ(rs, bf, ls) ls δ(bt, rs, ls, af)

12 rs:af a Dd δ(ls, af) δ(bt, rs, af) δ(rs, bf) δ(bf, ls)
b δ(bt, rs, bf, af) δ(bt, ls, af) δ(bt, rs, af) δ(rs, bf) δ(bt, bf, ls)

13 bf :ls a δ(bt, bf, ls) bf δ(bf, ls, af) δ(bt, ls, af) δ(bt, rs, bf, af)
b δ(bt, bf, ls) δ(rs, bf) δ(rs, bf, ls) ls Dd

c δ(bt, bf, ls) δ(rs, bf) δ(bf, ls) δ(bt, ls, af) δ(bt, rs, bf, af)

14 bf :af a δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)
b Dd af δ(bt, rs, bf, af) bf δ(bf, ls, af)
c δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
d Dd bf δ(bt, bf, ls, af) af δ(rs, bf, af)

15 ls:af a Dd δ(bf, ls) δ(bt, ls, af) δ(rs, af) δ(rs, bf)
b δ(bt, bf, ls, af) δ(bf, ls) δ(bt, ls, af) δ(bt, rs, af) δ(bt, rs, bf)

TABLE V
COMPOSING A SINGLE-TILE WITH A BASIC RELATION (1/2)

in Figure14. Furthermore, we tested that the results obtained
by Algorithm COMPOSEcoincide with the results obtained by
Algorithm COMPUTEROTATION.

Theorem 1:Algorithm COMPOSE correctly computes the
composition of two basic relations.

Proof: The proof follows from Lemma1 and the previous
discussion.

VIII. C ONCLUSIONS

In this paper, we developed a reasoning system for ternary
projective relations among regions of the plane. The reasoning
system is based on three kinds of rules: converse, rotation,and
composition. Converse and rotation are given in the form of

tables for the 34 basic projective relations of our model. While
the converse table is more immediate to find, the rotation
table has been experimentally verified with test data. The
composition table is the more involved to construct since it
contains34 × 34 entries. Instead of finding out each entry of
the table individually, we tried to discover algebraic rules that
were able to compute, at least partially, the results. Though it
was impossible to find algebraic rules for the whole table, we
could find that, starting from a subset of the table related tothe
composition of the 7 single-tile relations with all 34 relations,
we can compute the remaining part of the table with a so-
called product operation. Therefore, we found the7×34 table
both manually and experimentally by running the computation
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r2\r1 bt rs bf ls af

16 bt:rs:bf a δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)

17 bt:rs:ls a Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls)

18 bt:rs:af a Dd δ(ls, af) δ(bt, rs, af) δ(rs, bf) δ(bf, ls)
b δ(bt, rs, bf, af) δ(bt, ls, af) δ(bt, rs, af) δ(rs, bf) δ(bt, bf, ls)
c δ(bt, rs, bf, af) δ(bt, ls) δ(bt, rs, ls, af) rs δ(bt, rs, bf, ls)
d δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)
e Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls)

19 bt:bf :ls a δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)

20 bt:bf :af a δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)
b Dd af δ(bt, rs, bf, af) bf δ(bf, ls, af)
c δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
d Dd bf δ(bt, bf, ls, af) af δ(rs, bf, af)

21 bt:ls:af a Dd δ(bf, ls) δ(bt, ls, af) δ(rs, af) δ(rs, bf)
b δ(bt, bf, ls, af) δ(bf, ls) δ(bt, ls, af) δ(bt, rs, af) δ(bt, rs, bf)
c δ(bt, bf, ls, af) ls δ(bt, rs, ls, af) δ(bt, rs) δ(bt, rs, bf, ls)
d δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
e Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls)

22 rs:bf :ls a δ(bt, rs, bf, ls) rs δ(rs, bf, ls) ls δ(bt, rs, ls, af)

23 rs:bf :af a δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)
b Dd af δ(bt, rs, bf, af) bf δ(bf, ls, af)

24 rs:ls:af a Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls)

25 bf :ls:af a δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
b Dd bf δ(bt, bf, ls, af) af δ(rs, bf, af)

26 bt:rs:bf :ls a IMP IMP IMP IMP IMP

27 bt:rs:bf :af a δ(bt, rs, bf, af) δ(bt, af) δ(bt, rs, bf, af) bf δ(bt, bf, ls, af)
b Dd af δ(bt, rs, bf, af) bf δ(bf, ls, af)

28 bt:rs:ls:af a Dd ls δ(bt, rs, ls, af) rs δ(rs, bf, ls)

29 bt:bf :ls:af a δ(bt, bf, ls, af) bf δ(bt, bf, ls, af) δ(bt, af) δ(bt, rs, bf, af)
b Dd bf δ(bt, bf, ls, af) af δ(rs, bf, af)

30 rs:bf :ls:af a IMP IMP IMP IMP IMP

31 bt:rs:bf :ls:af a IMP IMP IMP IMP IMP

32 in a in Dc Dc Dc Dc

33 ou a Dc Dc ou Dc Dc

34 in:ou a Dc Dc Dc Dc Dc

TABLE VI
COMPOSING A SINGLE-TILE WITH A BASIC RELATION (2/2)

algorithms of the relations on test data. Then, we checked
the results of the experiments to verify that the complete
composition table that is found by the program corresponds
to the table as it can be computed with algebraic rules.
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