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Abstract 
This paper presents a comparative study on several approaches of structural damage diagnosis based on vibration meas-

urements. Stochastic subspace identification method is used to identify modal parameters and to generate a Kalman pre-
diction model, which are taken as damage-sensitive features for structural damage detection. A statistical process control 
technique based on principal component analysis (PCA) is also presented. An improvement and enhancement of PCA are 
proposed. It is assumed that without damage, structural responses should remain approximately in a hyperplane defined by 
the principal directions of data. Damage localization is explored with these methods. As only the measured output signals 
are needed, the methods are convenient for an on-line monitoring. The efficiency and limitation of the proposed methods 
are illustrated by a practical application.  
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1. Introduction 
 

Structural damage detection via vibration meas-
urements involves the extraction of features from 
periodically spaced measurements, and the analy-
sis of these features to determine the current state 
of integrity of the system. In this process, the ex-
traction of damage-sensitive features is of primary 
importance. As structural constitutive matrices 
change with damages, model updating of finite ele-
ments (FE) may be applied [1]. On the other hand, it 
is well known that damage may be characterized 
by changes in the modal parameters, i.e., natural 
frequencies, mode shapes and modal damping 
values [2]. Therefore an effective identification of 
modal parameters is significant. For this sake, a 
stochastic subspace identification (SSI) technique 
[3] is adopted in this work. 

Damage diagnosis may be realized without need 
of identification of modal parameters and/or 
construction of a FE model, see [4-5] for example. 
In this work, two stochastic process techniques are 
proposed, which tackle the damage detection prob-
lems by a statistical analysis. The first approach [6] 
is linked to SSI, with which a so-called Kalman 
model is extracted from the time responses of the 
structure in normal conditions. The subsequent 
data are then examined to detect if the features de-
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viate significantly from the norm. A similar 
idea is adopted in the presented second ap-
proach based on principal component analysis 
(PCA) [7-8]. An improvement or enhancement of 
PCA is proposed to increase its application ef-
ficiency. The aim of this paper is to provide an 
introduction of these methods with application 
examples. More details are referred to the re-
lated literature.  
 
2. Model identification and damage diagno-
sis by SSI 
 

The dynamic behaviour of an ambient ex-
cited multi-variate linear system is described by 
the dynamic equilibrium equation: 

 
( )  ( )  ( ) ( )t t t t+ + =M z D z K z f   (1) 

 
where M, D and K are the mass, damping and 
stiffness matrices respectively; f(t) represents 
the ambient excitation vector and z(t) the dis-
placement vector. Eq. (1) may be transformed 
into the following state equation 
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As measurements are available at discrete time in-
stants k∆t, with ∆t the sample period, the state-
space model looks like [3] 

 

1  + k k k+ =x A x w    (3) 

 + k k k=y C x v   (4) 
 
where A∈ℜn×n and C∈ℜl×n are, respectively, the 
state space matrix and the output matrix; xk is the 
state vector of dimension n (the system order to be 
determined) and yk is the output vector of dimen-
sion l (the number of output sensors). wk and vk 
denote the process and the measurement noises re-
spectively. Note that the unknown excitation is 
implicitly taken into account through the noise 
terms, which are assumed to be zero-mean Gaus-
sian white noise processes 
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where E is the expectation operator and δ( )t  is 
the Kronecker delta. The i-step output covariance 
matrices Λi are defined:  
 

T [ ]i k i k+= E y yΛ  ,  T
0  [ ]k k= E y yΛ   (6) 

 
As wk and vk are independent of the actual state 

xk which is assumed to be a stationary stochastic 
process with zero-mean, the following properties 
can be established from Eqs. (4-6): 
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where Σ0 is called the state covariance matrix; G 
the next state-output covariance matrix. The above 
equations provide the starting point of SSI method. 

SSI is applied to identify the defined matrices 
(A, C, Λ0, G etc.), starting from only the output 

time history yk measured by l sensors. The out-
put may be displacement, velocity or accelera-
tion. The details of SSI are referred to [3]. 
Here, we give only a simple illustration, con-
cerning two kinds of SSI algorithms. 
 
2.1. Covariance-driven SSI 

Let Hp,q be the Hankel matrix filled up with p 
block rows and q block columns of the output 
covariance matrix iΛ  ( p≤ q) 
 

1 2

2 3 1
, 

1 1

... ...

... ...
... ... ... ... ...

... ...

q

q
p q

p p p q

+

+ + −

 
 
 =
 
 
  

H

Λ Λ Λ
Λ Λ Λ

Λ Λ Λ

 (11) 

 

with T

1

1    
N i

i k i k
kN i
−

+
=

≈ ∑
−

y yΛ   

 
The Hankel matrix may be factorised into the 

p-order observability matrix Op and q-order 
controllability matrix Cq of rank n:  
 

qpqp CO   , =H   (12) 

with 
T-1...  p

p  =  C CA CAO   

 -1... q
q  =  G AG A GC  

 
Factorisation may also be performed by a 

very popular mathematical tool called the sin-
gular value decomposition (SVD) on the 
Hankel matrix, which leads to 
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where it is assumed that the second part of sin-
gular value S2 (containing the system noises, 
etc.) are small enough to be neglected, so that 
the order of system (rank) n is determined by 
the dimension of S1. By a comparison between 
(12) and (13), matrices A,C, G etc. may be 
found.   
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2.2. Data-driven SSI 
By this method, the Hankle matrix is formed di-

rectly by the measured responses: 
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It is split into a “past” and a “future” part of i block 
rows. The identification process is, in certain ex-
tent, similar to the first one. The details are refe-
reed to [3]. Specially, the method may identify a 
so-called Kalman model for damage detection [6]. 

 
2.3. Modal parameters 

Once the system state matrices (A, C, Λ0, G etc) 
have been found by either of two algorithms 
above, the modal parameters may be determined. 
The eigenvalue decomposition of A leads to 
  

1−= ΨΛΨA   (15) 
 
Diagonal matrix Λ contains the discrete eigenval-
ues τr, from which the natural frequencies if  and 

damping ratios iζ  of the system can be extracted  
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where =1,2,..., /2; =1,3...,(2 -1)i n r i ; iω  is i-th 
angle frequency. From the eigenvector matrix ψ, 
the mode-shapes Φ may be obtained in dimension 
of the measured degrees of freedom (DOF) 
 

= CΦ Ψ   (17) 

 
2.4. Damage detection and localisation 

If the identification procedure is performed 
on the system, respectively, in reference and ac-
tual states, damage detection may be realised 
by comparing the corresponding modal parame-
ters (e.g. natural frequencies). The uncertainties 
of the identified modal parameters may be es-
timated so that the probabilistic confidence on 
the existence of damages may be estimated. 

Damage localisation may be based on a 
combined analysis on changes of the measured 
stiffness and flexibility of the structure, which 
is estimated by the identified modal parameters. 
This subject is discussed in details in [9]. 
 
3. Damage diagnosis by Kalman model  

 
Note that the Kalman model is a concept of 

the control theory. By constructing the associ-
ated Kalman filter, it is possible to predict, in 
one-step-ahead way, the responses of a noise-
contaminated system. Defining 1  +kx  the op-
timal prediction for the state vector xk+1 based 
on the system matrices of the stochastic state 
space model (3-4) and on available outputs up 
to time tk. Then the response prediction is 
 

 =k ky C x   (18) 
 
The two predictors are related through the so-
called Kalman filter [3,6] for a linear-invariant 
system: 
 

1  + + =k k k kx A x K e   (19) 

 + =k k ky C x e   (20) 
 
Kk∈ℜ

n×m is called the non-steady state Kalman 
gain matrix and ek the innovation or predicting 
errors (a zero-mean Gaussian white noise proc-
ess). At the beginning stage, the Kalman filter 
will experience a transient phase where the pre-
dictor is non-steady. However, if the state ma-
trix A is stable, the filter will quickly enter a 
steady state. When this steady state is reached, 
the covariance matrix of the predicted state vec-
tor  kx becomes constant, which implies that 
the Kalman gain becomes constant as well, i.e. 
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Kk = K so that the Kalman filter is operating in a 
steady state. By minimizing the variance of the 
state prediction error, the Kalman gain in the 
steady state may be calculated from the so-called 
Ricatti equation, provide that system matrices (A, 
C, Λ0, G etc.) have been identified by the data-
driven SSI [3]. 

Application of the Kalman model in structural 
damage diagnosis has been originally proposed in 
[6]. Starting from an “initial” state x0=0 and e0=0, 
the k-step state vector and the corresponding pre-
diction error are calculated as:  
 

1 1  − −= +k k kx A x K e  (21) 

   = − = −k k k k ke y y y C x   (22) 
 

A sequence of prediction errors may be obtained 
by an iterative process. This error sequence is 
taken as damage-sensitive features of the structure. 
It is assumed that the Kalman prediction model of 
the undamaged structure would not be able to re-
produce the newly measured responses when dam-
age occurs. Therefore structural damages are indi-
cated by an increase in error level of prediction 
with respect to the reference state. From the error 
vector ek at any k-th sampling point, the Novelty 
Index (NI) is defined as the Euclidean norm [4]: 
 

E
k kNI = e   (23) 

 
or as the Mahalanobis norm  
 

M 1 T
k k kNI −= Σe e  (24)  

 

where T1
N

Σ = Y Y  is the response covariance 

matrix, N the number of sampling points, Y the as-
sembly matrix of yk, k=1…N. The prediction pro-
cedure is performed using data of the structure re-
spectively in reference and actual states. Without 
structural damage, the level of prediction errors 
should remain unchanged. Otherwise, an alarm of 
structural damage will be issued. According to the 
subspace identification theory, the prediction er-
rors of responses by the Kalman model correspond 
to a normal Gaussian distribution, so does the Ma-
halanobis or Euclidean indices. Therefore, it is ap-

propriate to perform a statistical analysis to 
give a quantitative assessment of damage level. 
The detailed discussion is referred to [6]. 
 
4. Damage diagnosis by enhanced PCA  

 
Principal component analysis (PCA) is an 

efficient multi-variate statistical method for 
data analysis. In the field of structural dynam-
ics, it has been applied for dimensionality 
studies, modal analysis, reduced-order model-
ling, etc. When a large number of sensors are 
distributed on a system for controlling and 
monitoring (for example in chemical 
engineering community), PCA may be used for 
sensor validation [5]. This method has been ex-
tended for structural health monitoring (SHM) 

[7-8]. In this section, an improvement or 
enhancement on classical PCA in SHM is 
proposed. Starting from the standard motion equation 
(1), dynamic responses of a structure may be 
described by applying the modal transforma-
tion: 

 

( ) ( ) ( )
1

m

i i r
i

t t t
=

= α + α∑ Φy R   (25) 

 
where the complete response z in Eq. (1) is re-
placed by the measured response y of sensors; 

iΦ  is the i-th mode-shape vector, with m first 
modes adopted; R  is the global residue of the 
higher frequency modes, ( )i tα  and ( )r tα  
are the modal coordinates. This expression sug-
gests that the responses are approximately lo-
cated in a geometrical subspace (called hyper-
plane) covered by some main structural modes 

iΦ (usually with lower frequencies). The hy-
perplane is independent of the excitation his-
tory if the structure is linear. It changes only 
when damage occurs. Therefore, damage detec-
tion may be realized by monitoring this hyper-
plane, which, of course, may be captured by us-
ing SSI presented in §2.  

Instead of performing an exact modal identi-
fication to compute the trajectories covered by 
the measurements, it appears more efficient to 
identify directly the principal components of 
responses. Let Y denotes a matrix of discrete 
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block time-history yk with l sensors and N sam-
pling points ( N l>> ) 

11 1

1

N

l lN

y y

y y

 
 =  
  

Y   (26) 

Performing SVD of Y, see Eq. (13), gives 

1 1 1
T≈Y U S V   (27) 

where U1∈ℜ
 l×m, is a part of an orthonormal ma-

trix, with chosen m (<l) columns, which covers the 
geometrical subspace generated by the responses. 
Each column of U is associated with N time coeffi-
cient containing in matrix V. The active singular 
values, given by diagonal matrix S1 of (l×m) and 
sorted in descending order, can be related to the 
energy associated with the corresponding principal 
components in U1. This means that the structure 
reacts mainly along the directions of the principal 
components associated with the highest energies. 
Writing 1 1

TS V  into a time series β, (27) may be 
expressed in the following form which is com-
pletely similar to Eq. (25) 
 

( ) ( ) ( )
1

m

i i r
i

t t t
=

= β + β∑y U R   (28) 

 
So we have shown that the hyperplane of re-

sponses may be constructed by the principal com-
ponents instead of the mode shapes. This provides 
an efficient numerical method.  

Damage detection is carried out on basis of the 
fact that the hyperplane of responses changes due 
to damages. The first way of assessing the change 
of the hyperplane is to calculate the angle between 
the hyperplanes of reference and current states. See 
Fig. 1. for a geometrical explanation. The calcula-
tion of the angle is a simple mathematical and 
geometrical problem, see [7-8] for details.  

The second way takes an idea similar to the pre-
vious method with the Kalman model: the obtained 
principal components are taken to construct a pre-
diction model. The prediction error may be esti-
mated as: 

1 1
ˆ  T= − = −E Y Y Y U U Y   (29) 

Similarly, the Euclidean or Mahalanobis norm is 
calculated as the novelty index (NI), respectively 

for reference and current states. The increase of 
NI level indicates structural damages. 

φ1

φ2

U1

U2

Fig. 1. 3-D interpretation of the angle between hyper-
planes of data in two states. 
 

Damage localization with this method has 
been proposed in [7-8] which are referred to for 
the details. The basic idea is to identify the sen-
sors with maximum prediction error or largest 
effect on calculating the angle between the 
hyperplanes.  

It was noticed in our calculating practices 
that damage diagnosis by PCA poses some 
limitations mainly in two aspects: a) the num-
ber of installed sensors must be enough larger 
than the number of modes contained in the 
measured responses; b) sometimes, the calcu-
lated NI or angle of hyperplanes are not very 
sensitive to the existence of damages. In order 
to overcome these difficulties, an improvement 
of PCA is proposed in this paper leading to an 
enhanced PCA as follows. The idea is inspired 
by the SSI method: as complete dynamic in-
formation are contained in the Hankle matrix 
consisting of either output covariance by 
Eq.(11) or directly by output data by Eq.(14), 
we propose to use the Hankle matrix, instead of 
output matrix (26), in PCA-based damage diag-
nosis. With a close observation, it may be 
shown that the above two limitations are over-
come or reduced. 
 
5. Damage diagnosis with varying environ-
mental conditions 
 

In the above analysis, it is implicitly assumed 
that environmental conditions (e.g. tempera-
ture) do not change during the monitoring, or 
their effects are small. If it is not the case, the 
effects due to environmental conditions should 
be included in SHM process. In general, this is-

hyperplane in 
reference state 

 damaged
state

angle 
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sue may be addressed along two directions. The 
first one is to establish a correlation between the 
measured features and the corresponding environ-
mental conditions. In consequence, the normal 
condition may be parameterised to reflect the envi-
ronmental and operational variation, and structural 
damages are responsible for the additional changes 
in features. The second approach does not require 
measuring environmental parameters which are 
formulated as embedded variables. The subject is 
addressed in [10] and it is not reported in this pa-
per. 
 
6. Application examples 
 

The presented methods are illustrated by a labo-
ratory test on an aircraft model made of steel and 
suspended by means of three springs (See Fig. 2). 
The fuselage consists of a straight beam of rectan-
gular section with a length of 1.2m. Plate-type 
beams connected to the fuselage form the wings 
(1.5m) and tail (0.5×0.275m). The structure is ran-
domly excited on the top left wing by means of an 
electro-dynamic shaker in the frequency band of 0-
130Hz and the dynamic responses are captured by 
11 accelerometers distributed on the wing and tail 
(See Fig. 3). Three levels of damages are created 
by removing, respectively, one, two or three con-
necting bolts on the right side of wing as shown in 
Fig. 2. 

The data-driven SSI was used to identify modal 
parameters of the structure with different levels 
(0~3) of damages, which are well indicated by 
comparing the natural frequencies of the damaged 
model with reference. Fig. 4 gives an example of 
detection with the frequencies of mode 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An experimental aircraft model. 

 
Fig. 3. Distribution of 11 sensors. 

 

 
 
Fig. 4. Damage detection by identified natural fre-
quency of the first mode. 

 
 

Fig. 5. Damage detection by a statistic analysis based 
on Kalman model (level 2). 
 

Removing 1, 2 or 
3 connecting bolts  

Damage probability calculation 

Level 1 Level 2 Level 3

Level 0 (reference) 

*

* * 
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Table 1. Damage detection of experimental aircraft model by the Kalman model. 

Damage scenario Ref. state Level 0 Level 1 Level 2 Level 3 

Outlier statistics 1.0875% 2.6625% 14.9125% 94.2875% 97.925% 

/d rNI NI  1 1.1396 1.6796 6.1546 6.6704 
Num. of removed bolts

(note) 0 (reference state) 0 (exciting force 
+50%) 1 (slight damage) 2 (damage de-

tected) 
3 (damage de-

tected) 

 
While level-1 damage, as a slight damage case, 

is not definitively detected, levels 2-3 of damages 
are clearly indicated (Fig 4).  

By the method with the Kalman prediction 
model, the results are very similar. The statistical 
monitoring diagram is presented in Fig. 5 for level-
2 damage as an example. The diagram is split into 
two parts. The left part (8000 sampling points) 
trains the reference data and the right part exam-
ines the new data. Difference in outlier statistics 
(in %), and ratio of the mean NI values indicate the 
existence of damages. Complete results are sum-
marized in Table 1. While a slight damage (Level-
1 scenario) is already noticed, damage levels 2-3 
are detected with clear damage indicators. The 
column 3 of Table 1 concerns a false-positive test-
ing: two tests without damage (level 0) but with 
different excitation levels (1:1.5). It is shown that 
the damage indicators are small despite a large dif-
ference in excitation levels.  

Novelty analysis with PCA prediction model is 
also applied. However, calculating results showed 
that with classical PCA, the NI values are not 
enough sensitive to damages for this problem. 
Therefore, the enhanced PCA proposed in 4 was 
applied. The number of Hankle matrix blocks in 
(14) is chosen as 3 as an optimum in the sense that 
the PCA model is sensitive to damages but not to 
the excitation and noise levels. The results are 
summarized in Table 2, which are in good agree-
ment with previous analyses with modal parame-

ters or the Kalman model. 
Damage detection and localization with en-

hanced PCA may also be performed by calculat-
ing the angle between the hyperplanes as de-
scribed in 4. The results are presented in Fig. 6 
as an example. Damage is indicated by a large 
angle between the hyperplanes of reference and 
current states. When removing sensors 6-8 in-
stalled in the right wing, the angle reduces most. 
This indicates that damages occur in the right 
wing of the aircraft model. 

 
7. Conclusions 
 

This paper summarised several techniques of 
structural health monitoring (SHM), which were 
applied and developed recently in our laboratory. 
The SSI technique was used to provide a precise 
identification of modal parameters and also the 
Kalman model, from the output-only measure-
ments. SHM with this last model requires a 
model identification only on the reference data. 
Improvement and enhancement on PCA for 
SHM were proposed in this paper. A significant 
advantage of the methods (particularly PCA) lies 
in their simplicity and efficiency in calculation, 
allowing an on-line implementation. An experi-
mental aircraft model was presented to illustrate 
and compare the application of the presented 
methods. 
 

 
 

Table 2. Damage detection of an experimental aircraft model by enhanced PCA. 
Damage scenario Ref. state Level 0 Level 1 Level 2 Level 3 

Outlier statistics 0.1221% 1.1355% 11.624% 73.309% 60.232% 

/d rNI NI  1 1.047 1.188 1.6925 1.6126 

Num. of removing 
bolts (Note) 

0 (reference 
state) 

0 (force ratio is 
0.5:1.5) 

1 (slight dam-
age) 

2 (damage de-
tected) 

3 (damage de-
tected) 
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Fig. 6. Damage location by enhanced PCA. 
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