DESIGN OF BEAM-COLUMNS IN STEEL SWAY
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INTRODUCTION

Basic Concepts. A frame is formed by members (beams, columns, beam-
columns) and joints. The design of the frame and its components aims at
ensuring that they satisfy the ultimate and serviceability limit states. It
consists of a bwo-step procedure involving a globat frame analysis, followed
by individual member design checks,

The frame global analysis is based on assumptions regarding the component
behavior {elastic or elastic-plastic) and the frame geometric response (first or
second-order theory). Once the global analysis is completed, ie., the
refevant internal forces and moments are determined for the whole frame, ene
performs the design checks of the frame components (members and joints).

Frame Classification. Frames may be classified “braced” or “unbraced”
and as “sway” or “non-sway”, thus defining the four classes given in table 1,
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Table §. Frame classification

Bracing

Braced Unbraced
Braced — Sway | Unbraced — Sway
— S e N s

Sway

Lateral Stiffness

Non-sway

Second-order P-4 effects must be considered

- | Second-order P-4 effects need not be considered

The designation “non-sway frame” applies to a frame whose lateral response
to in-plane horizontal forces is so stitf (due to the small magnitude of the
acting compressive forces) that it is acceptable to neglect the additional forces
or moments arising from establishing equilibrium at the frame “linearized
deformed configuration” that includes the storey horizontal displacements
{the so-called P-A effects). This means that the global second-order effects
may be neglected. The frame is said to be a “sway frame” in the opposite
case, i.e., when the global second-order effects are not negiigible.

In Eurocode 3 (CEN 2005), a frame s classified as sway or non-sway according
10 a criterion based on the value of the ratio a,=V,, / Vi, where ¥, is the elastic
critical load associated with sway instability and Vg, is the sum of all the
applied design vertical joads. Then, the frame is said to be non-sway it

e =V [Via 210 for elastic analysis (n
@, =, [Vgg 215 for plastic analysis (2)

and sway i the appropriate above condition is not fulfitted. K is worth noting
that the frame classification is associated with a particular load case,
i.e., the same frame can be classitied differently for two load cases.

REVIEW OF ANALYSIS AND SAFETY CHECKING PROCEDURES

Besides the P-A effects, which are associated with global sway instability, the
frame response may also be affected by the so-called second-order P-Seffects,
which are associated with member (Jocal) instability. In general, both the
P-Aeffects (sway frames only) and the P-Sefects (all frames) must be taken
into account in the design or safety checking of a frame — one or both of these
second-order effects may be neglected in specific cases (CEN 2005),



As mentioned earlier, the design or safety checking of a given frame is based
on a two-step procedure involving a global analysis followed by individual
member/oint design checks. However, the frame global analysis must be
preceded by the frame definition (fayout, support conditions, load cases,
member dimensions, joint configurations, etc.). Moreover, imperfections
have to be considered (included in the analysis) — two main imperfections
types are relevant are in plane frames: the framie (global) imperfections
(out-of-plumb or equivalent/hotional horizontal loads associated with the
P-A effects) and the member (local) geometrical and material imperfections
(initial curvature and residuat stresses, often replaced by an “equivalent”
initial deformed configuration associated with the P-J effects). Finally, an
appropriate method of global analysis has to be selected.

Obviously, the most accurate method is an elastic-plastic second-order analysis
that accounts for both P-A and P-& effects, as it reflects much more closely
the actual frame response than any simplified method — note, however, that
one speaks about in-plane second-order analysis, ie., no out-of-plane behavior
is captured. Therefore, the safety checks required after performing the frame
analysis are significantly reduced, since the all in-plane cffects are already
included in the frame internal forces and moments — only the safety checks
related to out-of-plane instability need to be done.

In practice however, the member imperfections are usuatly not included in
the frame global analysis accordingly, which means that their effects must be
taken into account afterwards, through the use of appropriate member design
formulae, such as the beam and beam-column ones included in the most recent
Eurocode 3 version (Maquoi ef al. 2001, CEN 2005, Boissonnade ef ¢/, 2006)
— this approach is systematicatly foliowed in the present work. At this stage,
it is worth mentioning that beam finite elements able to handle lateral-torsional
buckling effects are not yet routinely used in global frame analysis — in Europe,
this sithation is not expected to change in the near future,

Whereas the performance of a second-order analysis that captures the P-A
effects “exactly” is atways possible, less sophisticated approximate anayses
often provide accurate enough internal forces and moments to the designer
(Hansoulle 2006). Amongst the various simplified second-order analyses
available in the literature (e.g., Chen & Lui 1991), four are described next.



Canadian Amplification Method (CAM). The application of this method
involves performing the following tasks:

= Conducting a first-order analysis of the frame subjected to all the applied
vertical (gravity) loads, assuming all storeys to be fully restrained
against sway displacements. The internal forces and moments (IFM)
obtained are termed “gravity IFM” and the horizontal reactions that
appear in the fictitious supports are designated as R (see figure 1),

= Conducting a first-order analysis of the frame subjected to all the
horizontat loads: applied loads, notional loads (replacing the initial
imperfections) and the horizontal reactions R (with opposite direction).
The internal forces and moments obtained are termed “sway IFM™,
= Amplifying the “sway 1IFM”, in order to account for the second-order

P-A effects that were not included in the global (first-order) analysis, by
means of the amplification factor

! 3
1-Ve,

Determining the frame second-order internal forces and moments,
which are the sum of the “gravity” and amplified “sway” [FM,
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Sway

Figure 1. Schematic representation of the Canadian Amplification Method

Naturally, this simplified method is recommended in the Canadian code
for the design of steel structure (CSA 2001) — however, its use is limited to
frames with ¢, 23.5.

After determining the design values of the internal forces and moments, one
must check the strength of the member cross-sections and joints, as well as
the buckling strength of the columns, beams and beam-columns, For the in-
plane buckling behavior of compressed members (columns or beam-
columns), one may use the so-called “non-sway effective/buckling lengths™,
since all the P-4 (sway) second-order effects have already been included in



the design IFM values {obtained by means of either an “exact” second-
order analysis or the amplification of the first-order sway IFM values). For
the sake of simplicity, the above buckling lengths may be taken equal to the
corvesponding physical (system) lengths — this simple approach leads almost
always to safe designs’.

Amplified Sway Moment Method (ASMM)’. This method is very similar to
the CAM - indeed, it only involves a slightly different interpretation of the
same concepls. It has been routinely used in Europe for a long time and is
included in current version of Eurocode 3 (CEN 2005), Its application is
schematically represented in figure 2 and the differences with respect to the
CAM are the following:

v il applied loads (vertical and horizontal, including the notional loads
replacing the initial imperfections) are considered in the first-order analysis
of the frame with the storeys restrained against sway displacements, The
internal forces and moments obtained are termed “non-sway IFM” and
one still designates the horizontal reactions appearing in the fictitious
supports as R (see figure 2},

* The sway JFM are obtained by applying just the horizontal reactions R,
row including the influence of a/f applied loads — of course, the ASMM
and CAM coincide if there are no applied distributed horizontal toads.

= The frame second-order internal forces and moments are now the
sum of the “non-sway” and amplified “sway” [FM — amplification
factor still given by eq. (3).

Figure 2, Schematic representation of the Amplified Sway Moment Method

Y This may not be the case if the frame contains columns with very different axial compression
levels —eg, a member subjected to a small compressive foree and large bending moments.
Although the method designation and description ofier: mentions only “moments”, it really
prescribes the amiplification of el internal forves and moments associated with sway displacements.



Eurocode 3 only allows employing the ASMM provided that one has a23.0.
Moreover, additional restrictions to the use of this method are specified —
however, they are not particutarly limiting for regular building frames.

“B\—~B," Method (B,B,M). This method is prescribed by the North American
Specification (AISC 2006) and difters from the CAM (and also the ASMM)
in the following two aspecis:

s The sway IFM amplification factor given in eq, (3) is replaced by a set
of approximate values termed B, — they must be evaiuated separately
for each frame storey.

» The gravity IFM are multiplied by a factor termed B, and given by

- Cu (4)
Y- Neg /' N

where Mg, is the axial force acting on the compressed member under
consideration and N, is its critical elastic buckling load. As for C,, it
stands for a “coefficient of equivalence” that makes it possible to
take into account the effect of the column bending moment diagram.

Therefore, this method evaluates the second-order moments due to the P-A
effects on a storey-by-slorey basis (and not simultaneously for the whole
frame, as done in the CAM and ASMM) and also includes the P-8 effects,
through the B, factor. Since both the frame and member buckling are taken
into account when determining the IFM design values, the final safety
checks concern only the member cross-section strength (AISC 2006).

“Sway Buckling Length” Method (SBLM). This is an alterative approach
to the frame design, which can be found in some steel design codes and
appeared also in the Eurocode 3 ENV version (CEN 1992)', Its application
involves performing the following tasks:

» Conducting a first-order analysis of the frame,

" This method no longer appears in the current EN version of Eurecode 3 (CEN 2005) - no
reasoniag or explanation has been provided for this surprising ahsence.



@ Checking the in-plane frame overall and member (Jocal) stability by
considering “equivalent member” fengths equal to those of their sway
buckling modes, obtained from the stability analysis of the whole frame,
These buckling lengths may be obtained by means of simplified methods,
based on two safe assumptions: (i) the frame sway buckling load is
taken as that of its weakest storey and (ii} all the columns in a storey
buckle simultaneously {when the weaker one does). One should note that
this method does not address rationally the infiuence of the second-
order effects in the IFM values at the beams and beam-to-column joints
—e.g., the Eurocede 3 ENV version stipulated a constant amplification
factor equal to 1.2 (20% fiat increase due to the second-order effects).

Comparison of the Methods, In order to compare the four methods just
described, one considers a simple rectangular portal frame with a rigid beam
and acted by two vertical point loads and two horizontal distributed loads ¢
(Frame 1 in table 2). Figure 3 shows the column bending moment diagrams
yielded by (i) a first-order analysis, (i{} a second-order analysis that accounts
only for the P-4 effects and {iii) an second-order analysis accounting for both
the P-Aand P-Seftects (exact P-A/8analysis) (Hansoulle 2006). The colurmn
top moment values are precisely the target of the various methods under
comparison: (i} SBLM, (il) CAM, (iii} ASMM and (iv) B,B,M.
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Figure 3. First and second-order bending moments {P-Aand P-4/8)

Obviously, the SBLM prediction is exact, as it coincides with the first-order
bending moment. The application of the CAM or ASMM leads to the following
second-order P-A bending moment at the top of the column (M,fp”}:

2
VA R V/—
"2 1-P/P, " 1-PIP,

&)



2 g2
PR L LI
" T8 8 1-P/P

(6)

Since there are no non-sway moments (in this particular case), the B{B,M
yields the same results as the CAM. The analytical (exact} solution of this
problem (bending moments including the P-Seffects) is given by

2 l-cose C
[ﬂ - 1/1[ i 'y i il 7
Poop = Hon 1 s 1-PIN, @)
withC, =1+ 0,03P/ N, and g = H P/ Ef (8)

‘The comparison between eqs, {5), (6) and (7) shows that, for realistic vatues of
the different parameters involved, both the CAM and ASMM yield reasonably
accurate estimates, provided that the P-Seffects are not relevant. In addition,
it is worth pointing out that only the CAM solution has a format that may
easily be moditied to replicate the exact solution.

Generally speaking, one may draw the following concerning the performance
of the methods under scrutiny (Moszkowicz 1998, Hansoulle 2006):

* The SBLM disregards the second-order effects in the analysis and takes
them into account by checking the member stability using a beam-
column formula (P-Setfects) with a sway buckling mode (P-4 effects).

* The CAM and ASMM usuaily lead to quite good predictions of the
second-order P-4 IFM, through the amplification of the first-order ones.
The member stability is checked by means of beam-column interaction
fornmutae (P-deffects), using non-sway buckling tengths, The accuracy and
validity of these methods, in terms of ultimate strength and serviceability
limit state displacements, have been demonstrated by Moszkowicz (1998)
and Hansoulle {2006), especially in frames with no relevant P-Seffects.

@ There is no good agreement between the exact second-order P-A/6
bending moment and the B,B,M prediction — this method often provides
overly canservative estimates, mainly due to the B, factor adopted in the
current AISC approach.

Choice of a Method, In order 1o obtain an accurate prediction of the second-
order P-A/8 moments, one must adopt a “B,-B; -type approach, in which



both the P-4 and P-& effects are integrated into the analysis, However,
since the B{B,M often leads to unsatisfactory estimates, it was decided to
retain the CAM or ASMM-type format and to try to improve it, by means of
appropriate equivalence factors C, (termed here G,y and C,,,,(,,f) that take
into account the P-& effects. The CAM format was finally chose, because of its
more obvious suitability to replicate exact solutions. Then, one expresses the
approximate the second-order A P-4/8bending moments in the form

C
M Er{'-h’v[ nend = C;J end A’[vaify + Mﬁm M Swuy (9)
1- ]/ LoF
Once the second-order bending moment (A"} is determined, the remaining
tasks of the design procedure can be performed — e.g,, checking the member
cross-section resistances and joint strengths, or the stability of the columns,
beams and beam-columns. In the case of beam-columns, an interaction
formula (in-span P-& effects) is used, together with (in-plane) non-sway
buckling lengths. Moreover, a classical C,, value (termed here C,, ) must be
defined to handle the bending moment variation along the member length.

IMPROVEMENT OF THE CAM

Strategy. In order to improve the CAM, one anatyzes the last three fiames in
table 2, which exhibit a growing complexity — from the academic Frame 2 to
the mose realistic Frame 4 (recall that Frame | was already studied), All the
modifications made to the CAM are then validated through the comparison
with “exact” numerical results, In these frames, «,, varies from 3 to 10.

Asymmetric Portal Frame with Rigid Beam (Frame 2). While the {weaker)
left column is built from a HE160B profile, different cross-sections shapes
are adopted for the right column, so that the inertia ratio £ g/ f1p varies
between [ and 20. The frame spans over 5m, is 4 m high, is acted by a
horizontal point toad (7=12 k¥ and the vertical load 7 is such that the ratio
Vel Vo remains within the range of application of the CAM.

Since the frame is not synunetrie, a clear distinction must be made between its
global sway buckling mode (occurring for a load factor A, ) and the weaker
{lefl) column Jocal buckling (occurving for a load factor A, .. In this particular
case, A 1s given approximately by



Table 2. Frames investigated in this work and associated equivalent systems

v 3

[
L

Frame [

—:?‘""ET Q I % R SWET
> e =
) 1 Q—),‘—,m ~+» i
X

L d
L
Frame 3 Frame 4
2
17 E(Iy‘f-'ﬁ + ])anz:hl) Nm,i »
)"cr,gl = /_ 2 = " )‘cr,gf (]0)
Vs 4 Ve

where Ny is the axial force acting on the left column'. it can be
shown that both the P-4 (global) and P-& (local) effects influence the
in-span and end section bending moments, which means that, rigorously
speaking, they cannot be treated independently, as assumed in the CAM
{(and also the ASMM,) — the P-A effects are handled in the global analysis
and the P-&ones in the member safety checks. The apptication of the CAM
leads to the results presented in figures 4(a)-(b), which concern two different
horizontal loadings: a point load applied at the left column top and identical
uniformly distributed toads applied at the two columns {as in Frame 1), These
results consist of curves providing the variation of (i) the ratio between the

' This expression only yields exact results if all the frame columns share the same Ny/ET ratio,

Although this is clearly not the case in the frames analyzad here, it was found that the results
provided by eq. {10) are fairly accurate (Hansoulle 2006).




exact and approximate moments at the left column top (M / Mead') with
(ii) the vertical load ratio g,/ ¥, for various column stiffness ratios 7,/ J.4.
As for the M,/ values, they were yielded by accurate beam finite element
analyses (Hansoulle 2006) — this applies to all the frames analyzed in this work,
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Figure 3. Application of the CAM to Frame 2 for (a) a top point load and
{b) two uniformly distributed horizontal loads'

The observation of the above curves provides clear evidence that, for both
loadings, the CAM only leads to “acceptable” moment estimates (etrors below
10% and 5% on the safe or unsafe sides) in frames with L,/ 4.0 equal to 1
(symmerric) or 4 {“weakly” asymmetric). For the more asymmetric frames,
one obtains either excessively conservative or too unsafe moment estimates.

In order to try to improve the CAM performance, one considers the
structural model equivalent to Frame 2, shown in table 2. It is intended
to simulate the behavior of the frame left column, which is subjected to
an axial force Mgy and laterally restrained by a spring that “replaces” the
frame right column and ensures that the model and frame share the same
first-order sway stiffness — thus, the spring stiffness value K is given by

K=3El .. [H (11)

The first-order (My) and second-order (Af5" " } bending moments values at
the top of the structural model are given by the expressions

! Obviously, the results presented in figure 4(a) {horizontal paint load) also correspond to
the application of the ASMM. Recall that the the CAM and ASMM enly differ in the
presence of horizontal distribuied loads (as is the case in figure 4(b)).
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where (i) o and £ are “stability functions” {e.g., Chen & Lui 1987) and the
parameter & is a function of the axial force N, (sce eq. (8)). Eq. (12) may
be used to derive the amplification factor S, defined as

M Pais
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By looking at the second part of eq. (8), one readily recognizes that the
equivalent moment factor C,, .,s may be written as
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where A, 4 is the critical load factor of the structural model, approximately
related to the frame global sway critical toad factor A, by means of eq. (10).
The inclusion of the above C, . expression in the CAM leads to estimates
of the second-order bending moment at the frame lefl column top given by

i Cm,md‘ Cm,md
Mot ot = My + W:{mm M =0+ m———— M (16)
- (A - or, gl

This modification (improvement) of the CAM will be hereatier designated
as “modified CAM” (CAM,,..y). Figure 5 shows how including the new &, .
improves the quality of the end moment estimates (now termed Meggmod -
Indeed, all curves providing the vartation of A" /;’tJC,M,,,(,;” with VgV,
are nearly horizontal and extremely close to the unit value — in order to assess
the drastic improvement due to the modification, it suffices to compare the
curves associated with £.0..//,14>10 in figures 4(a) and 5,
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Figure 5. Application of the modified CAM 1o Frame 2 for a top point load

Once the value of the second-order bending moment at the left columns top
is evaluated, it is possible to further anal}(ze this column by treating it as
being simply supported — indeed, Mesgm.d accounts for the influence of the
P-A and P-deffects and also of the other frame members, Then, since no
additional transverse loads are applied within the member span, the maximum
second-order “span bending moment” M., is given by

P Cm,span ’

M= NN Mgt s (17)
where Mg 1S the previously obtained second-order bending moment at the
column top, Cp, oo i @ classical equivalent moment factor (Villette 2004)
associated with the determination of second-order bending moments along
the length of simply supported compressed members and Ny is the member
Euler buckling load. At this stage, is worth pointing out that the use of Ng
{(instead of the column non-sway critical load N,,) is due to the fact that one
is dealing with the additional moments stemming from the difference between
the member actual and linearized (chord) deformed configurations — of course,
it is implicitly assumed that one has Ngy, < Mg, In this particular case
(triangular bending moment diagram}, the value of C,, g is yielded by

(1~ Ny, /N) ! if Ney 2 N,

Crppan = sin (J!J Npo/ NE) o (18)

(E ~Npa ! NE) if Ngg s Ny,

with Ny = 0 ElL,,, [H (19)



where Ny, is the axial load for which the end and span maximum second-
order moments have the same value — one has Ny, =Ng in this particular
case {e.g., Chen & Lui 1987, Villette 2004). Figure 6(a) shows curves that
provide the variation of the span moment ratio Mo/ Mo mad With Pl V.,
and one notices that they are again {(even more than in figure 5) practicalty
coincident with the unit value horizontal line, Just for comparison purposes,
figure 6(b) displays Mo/ 1‘;4’(-‘4_‘1{,,,0‘,” vs. VgV, curves evaluated with N,
{i.e., taking the column buckling length equal to 0.74) — naturally, several
CAM,, predictions are now excessively conservative.
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Figure 6. Application of the CAM,, to Frame 2 with (a) Nz and (B) NV,

Asymmetric Portal Frame with Flexible Beam (Frame 3). Next, one looks
at an asynunetric portal frame with a flexible beam, a feature that affects
both the global (frame) and local (member) buckling behaviors. The frame
is subjected to the loading indicated - rotice that it includes a uniformly
distributed vertical load ¢ applied on the beam. As in the case of Frame 2, the
left column is buitt from a HE160B profile and different cross-sections shapes
are adopted for the right column (e L, n varies again from 1 to 20). The
beam is ahways chosen as an IPE400 profile. Table 2 also shows a structural
model equivalent to Frame 3, with (i) a translational spring with stiffiess K
and (ii} a rotational spring with stiffness C; that must account for the beam
flexibility. In order to ensure that the modet and frame share the same first-
order sway and rotation stiffness values (when subjected to a horizontal
point load applied at the storey level), K and C, need to satisfy the conditions

C, =3EI(AIH ~ g, ) [(@,H ) and K =(Q+R-Cy¢, /H)[A  (20)



where QR stands for an arbitrary horizontal point load (see fable 2). By
adopting a procedure similar to the one employed for Frame 2 (but a bit more
complex — Hansoulle 2006), it is possible to obtain an analytical expression
to evaluate C,, .., Which reads
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The curves M/ Mead V8. Vil Vi and Mg ! Mesgmad: vS. Veal Vo shown
in figures 7(a)-(b) concern frames having L=4m, H=4m, 0=12 kN and
g=0kN/m (ie., no “gravity” moments). By comparing these curves with the
ones in figures 4(a) and 5, one readily notices that the beam flexibility does not
alter the “quality” of the CAM and CAM,,,q moment estimates — indeed,
while the majority of the former are too unsafe, all the latter are very accurate,
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Figure 7. Application of the (a) CAM and (b} CAM 4 to Frame 3 (g=0)

On the other hand, the curves displayed in figures 8(a)-(b) correspond to
frames with L=4 m, H=4 m, 0=6 kN and ¢=30 kN/m (i.e., fairly high
“gravity” moments}, Unlike in the previous cases, the beam flexibility now
leads {0 a transfer of gravity bending moments to the left column top {and
also to the right one). First of all, it is worth mentioning that, because the
second-order effects influence differently the sway and gravity moments,
it is convenient to incorporate in eq.(7) two distinct C,, factors, namely
Cineng (SWay mornents) and C,,,,e,k,' (gravity moments) — indeed, it was found
that, in the case of this particutar frame, the use of C,,,'e,d' reduces to about
half the errors of the CAM and CAM,,,¢ predictions, The determination
of Cm,(’m.i" is addressed in detail in the next section (devoted to Frame 4).



The observation of the curves presented in figures 8(a)-(b) shows that, once
more, (i) the CAM o4 estimates of the left column end moments are very
accurate and (ii) several of their CAM counterparts are too unsafe.
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Figure 8. Application of the (a) CAM and (b) CAMy.4 to Frame 3 (g=0)

Asymmetric Three-Storey Frame (Frame 4). Finally, one considers a more
complex frame, which (i) has a 4 s single bay and three 4 m high storeys, (ii)
is formed by IPE300 beams, HEB160 left columns and HEB300 right
columns (i.e., is asymmetric ~ see table 2) and (jii) is acted by three identical
(iii;} uniformly distributed vertical loads =10 AN/m applied on each beam
and (iiiy) horizontal point loads O=104¥ applied at each floor level.

Attention is focused on the intermediate storey column AB, the behavior of
which can be simulated by the structural mode] depicted in table 2 — the
influence of the remaining frame members and loads is taken into account by
means of one translational and two rotationat springs. As in the previous
cases, their stiffness values (K, Cy and C;) can be obtained by imposing the
equivalence between the model and frame first-order sway and rotation stiffhess
values (when subjected to horizontal point loads applied at the storey levels)
— obviously, the complexity of this procedure increases with the number of
frame members. One is then led to

C - 2EI(3A,, /1 H =28, ¢;)

-1

2E{(3A ,fH 24
and C, = L by 4)
¢, H g

K= ZQ _ Cl¢1! +C2¢B (23)
Ar.’.' HAh’f

(22)



where .. is the column refative sway displacement and the summation 20
is extended to all storeys located above column AB. The corresponding
Coena factor {concerning the sway moments) is given by
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where Fp; corresponds to the sum of the vertical loads acting on the storeys
located above column AB. In order to account properly for the P-¢& effects
associated with the gravity bending moments, one must derive a C,,,,,,x;
factor (already mentioned, with respect to Frame 3), a task performed by
considering the structural model shown in figure 9, which concerns the frame
non-sway behavior — the remainder of the frame is now replaced by only two
rotational springs. After equating the model and frame first-order rotation
stiffhess values {when subjected {o a top end moment A/ — see figure 9), one
obtains, sequentially, expressions for (i) C," and C, ', and (i1} Gy ens , Which are

2

o= 2E1(2¢, +¢,) and € = 2E1(2¢; +8,) (26)
' ¢4 : ¢atl

.\‘1}
Figure 9. Structural model considered in the determination of C, gy
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Table 3 presents the exact (Mpun) and approximate (Mycmar) second-
order moments at the column end B, for several values of P — My canmad® 15
evaluated through eq. (9)'. Once more, the moment estimates yielded by the
CAM 0 are found to be very accurate — all errors are below 8%,

Table 3. Comparison of the actual and modified CAN and ASMM

P Mperael | Macari® | Ervorcas | Macastmed | EVFOrcasmod
NT | fNm] | [kNm) | (o) [Nm] [%]

106 19.93 20.58 32 19,74 1.0

150 21.60 22.57 4,5 21.20 1.9

200 231,58 25.45 7.9 22.93 2.8

225 24,73 26.27 6.2 23.89 34

Concluding Remarks. The modified (improved) CAM, which is based on the
analysis of structural models consisting of elastically restrained isolated
members, has been shown to provide quite accurate bending moment
estimates in the four frames considered — in theory, it should perform equaily
well in more general situations (frame geometries and loadings). Since
the CAM,q is based on the equality of the model and frame first-order
stiffness (1o characterize the model elastic springs), it exhibits a strong
physical background, responsible for the high accuracy of the estimates
obtained. In particular, the “quality” of these estimates is much better than
that of their CAM counterparts.

It is important to stress the fact that, after estimating the second-order end
moments (which include both the P-4 and P-J effects), the subsequent
safety checking of the “equivalent simply supported member” must be

" In order to be able to evaluate second-order span moments, one must first determine an
appropriate Cnon factor {e.g., Villette 2004).




carried out with a buckling length equal to the member physical length
{i.e., taking N,=Ng) - failing to do this will often lead to rather inaccurate
second-order span moment estimates.

PRACTICAL DESIGN EXAMPLES

In this section, one applies and compares the performance of several design
methods (evaluation of the second-order elastic internal forces and moments,
followed by member strength and stability safety checks). The analysis by
means of the CAM and CAM,,oq is combined with the use of the beam-
column interaction formulae included in Annex A of the EN version of
Eurocode 3 (Boissonnade er al. 2006, Maquoi ef al. 2001). As for the B;B;M,
it is applied together with the AISC specifications (AISC 2005).

In order to assess the efliciency of the above design methods, one uses “exact
(1) second-order elastic bending moments at frame member ends and (i)
elastic-plastic franmie ultimate strength values, both obtained by means of
rigorous finite element analyses — in the latter case, the non-linear analyses
include appropriate initial geometrical imperfections and residuat stresses.

Sway Frame 1. The results reported in table 4 concern the three-bay and three-
storey frame shown in figure 10, made of 82335 steel, and consist of (i) second-
order bending moments at the top of the lower central columns (A/I,(,,,”) yielded
by an “exact” clastic frame antalysis and the CAM, CAM,y and B,B;M, and
(ii) frame collapse load parameters (4, — failure mechanism in figure 10)
yielded by an “exact” elastic-plastic frame analysis and design approaches
based on the CAM (Eurccode 3), CAM,..4 (Eurocode 3) and B;B,M (AISC
Manual)’. Although all A4, and A, estimates are quite accurate, it is clear
that the CAM .4 ones exhibit a “higher” quality — indeed, they are virtually
“exact™. It is worlh noting that all column buckling reduction factors are very
close 1o unity, which means that the frame collapse is mostiy due to plasticity
effects — this fact also contributes to the accuracy of all the 4, estimates,

T Note that, since there are no distributed horizontal loads, the CAM._; (Furocode 3} and ASMM
(Furocode 3) design approaches yield exaetly the same estimates — this statement applies also
1o the two frames considered next.
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Figure 10. Sway Frame 1 data and failure mechanism (with yield pattern)

Table 4. Sway Frame 1: comparison between the analysis/design methods

Method Moy [KNm] Error [%] A Error [%]
Numerical 102.89 — 1.669 —
CAM, oy 102,63 -0.3 1.661 -0.5
CAM 106.80 3.8 1.603 -4.0
B B.M 105,58 2.6 1.650 -1.1

Sway Frame 2, This second sway frame, shown in figure 11 and made of a
steel with E=200GPa and £=248.2 MPa, was first investigated by Ziemian &
Martinez-Garcia (2006) and has a highly asymmetric geometry, due to the
fact that its member dimensions were selected to optimize the frame response
under the particular load case indicated. The results presented in table 5
consist of (i) second-order bending moments at the top of lower left column
(M, and again (if) frame collapse load parameters {4, — failure mechanism
in figure 11) — one employs the same analyses and design approaches as in
the previous case. Even if the frame collapse appears to stem mostly from the
yiciding of the beams, it should be pointed out that plasticity also develops in
several column zones. Moreover, it is worth mentioning that, according to the
three design approaches, the frame failure load is governed by the safety
checking of the lower central column.

Concerning the Axf,q,” values, one observes that both the CAM, 4 and the
B;-B,M yield very good (safe) estimates, a bit more accurate than the
(unsafe) CAM one. On the other hand, all design approaches predict the same
(very conservative) ultimate load parameter 4, — the development of a plastic
hinge in the W27x84 beam for A=0.748, which obviously limits the application
of the design procedures {based on elastic analysis).
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Figure 11, Sway Frame 2 data and failure mechanism (with yield pattern)

Table 5, Sway Frame 2: comparison between the analysis/design methods

Methad Mo,” (KNm] | Error [%] A, Error {%]
Numerical 451,30 - 1.029 -
CAM ot 442.66 -1.9 0.748 37.6
CAM 473.68 5.0 0.748 37.6
B, B:M 442 99 -1.8 0.748 37.6

Non-Sway Frame. Since the modifications incorporated in the CAM remain
valid for non-sway frames, due to the consideration of the C,,.,.;' factor, one
applies now the CAM;, to the frame displayed in figure 12, which has semi-
rigid joints (their stiffhess values are indicated) and is made of §235 steel,

The results presented in table 6 consist, once more, ot‘:\/fw,'!I and A, values — the
former concern the top of the lower central column and the failure mechanism
associated with the latter is depicted in figure 12, Since {local) buckling
effects are now relevant in the column under consideration, the difference
between the CAM and CAM,, bending moment estimates (both unsafe) is
much more pronounced’ — indeed, while the error of the former is a little
over 7%, the former is off by more than 15% (the error of the B{B,M is
precisely the same). As in the previous case (but to a much lesser extent), the
three design procedures underestimate the uitimate load parameter 4,=1.317
- one obtains either A,~1.225 (designs based on the CAM or CAM,¢) or
A=1.221 (design based on the B,B,M). The equality of the 4, values yielded

! Note that the two methods only differ in the fact that the CAM... adoptsa C,......" factor.



by the CAM and CAM,q design procedures is due to the fact that they are
associated with the safety checking of a beam {and not of the lower central
column, where M,q,,” acts). Moreover, the marginally lower A4, value provided
by the AISC specification is associated with the collapse of a column (and
not a beam, as predicted by the Eurocode 3 provisions).
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Figure 12, Non-Sway Frame data and failure mechanism (with yield pattern)

Table 6, Non-Sway Frame: comparison between the analysis/design methods

Method M, [kNm] Error [%] A, Error [%]
Numerical 13.14 — [.317 -
CAM o 14.09 7.2 1.225 -7.5
CAM £5.15 15.3 1.225 -7.5
B B.M 15,15 [5.3 [.221 -1.9
CONCLUSION

This paper proposed and illustrated the application and capabilities of a
design approach tor sway steel frames that (i) is based on a modification of the
Canadian Amplification Method (CAM) and (i1) incorporates the influence of
both the P-s and P-Jeffects on the member end internal forces and moments
vielded by a frame first-order analysis. This ensures that it is possible to perform
the individual member strength and stability checks by considering “simply
supported equivalent members” subjected to fived (i.e., no longer affected
by P-Jeffects) end moments — a feature that is particutarly helpful, since it
becomes possible to use a large number of available equivalent moment
(C,) factors, developed in the context of simply supported beam-columns,




Because the above modification is based on the frame physical behavior,
the modified method (CAMoq) yiclds more accurate FFM values and leads
to more efficient design solutions — these assertions have been illustrated by
means of the analysis and collapse load evaluation of several frames with
different configurations. Moreover, it was also shown that the application
of the CAM ;44 t0 non-sway frames also yieids accurate estimates.

Finally, one last word to mention that the proposed design approach is still
under investigation, aimed at (i) obiaining a more in-depth assessment of its
validity and efficiency, and (i) establishing a well defined range of application.
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