Learning about the growing habits and reproductive strategy of Thinopyrum intermedium through the establishment of its critical nitrogen dilution curve

Fagnant L..*, Duchêne O. ${ }^{2}$, Celette F. ${ }^{2}$, David C. ${ }^{2}$, Bindelle J. ${ }^{3}$, Dumont B. ${ }^{1}$
*Corresponding author: laura.fagnant@uliege.be; +3281622141
${ }^{1}$ ULiege - Gembloux AgroBio-Tech, Plant Sciences Axis, Crop Science lab., B- 5030 Gembloux, Belgium. benjamin.dumont@uliege.be
${ }^{2}$ ISARA, Agroecology and Environment Research Unit, 23 Rue Jean Baldassini, 69364, Lyon cedex 07, France.
olduchene@isara.fr; fcelette@isara.fr; davidc@isara.fr
${ }^{3}$ ULiege - Gembloux AgroBio-Tech, Precision livestock and nutrition laboratory, B- 5030 Gembloux, Belgium Jerome.Bindelle@uliege.be
Abstract
Context

The perennial grain crop Thinopyrum intermedium can provide various ecosystem services and a dual production of grains and forage. Yet, to improve crop management, better knowledges of its physiological behavior and growing habits are required.

Objective

The goal of this study was to characterize Th. intermedium nitrogen (N) requirements through the evaluation of its response to N fertilization and the subsequent determination of its critical nitrogen dilution curve (CNDC).

Methods

A field experiment was implemented in Belgium during three growing seasons with various N fertilization schemes. Biomass of the different organs and their N contents were measured at specific phenological stages. To estimate the CNDC, a Bayesian hierarchical model was applied on the
assembled dataset. The validity of the curve was assessed on an independent dataset including contrasted N situations.

Results

Globally, N fertilization had a positive impact on the dry matter (DM) of leaves, stems and ears (p value<0.05). The aboveground biomass and N uptake were found maximum with fertilization comprised between 100 and $150 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ applied over the entire growing year. At grain harvest, total DM ranged from 7.0 to 16.4 t DM/ha for a fertilization strategy of $100 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$, depending upon the growing season. The N amount of the aboveground biomass was found to decrease during the second phase of the growing cycle. As observed with the proposed CNDC, the aerial N content tended to decrease with the evolution of growing stages and biomass accumulation. Through the low a-coefficient determined for the CNDC, it was confirmed that the crop had reduced need in terms of N nutrition.

Conclusions

The reduced N requirements can be linked to the high N use efficiency and a potential resourceconservative strategy of the crop. This, combined with the observed decrease of the N uptake by the aboveground biomass during the second phase of growth, can be related to the long-term survival strategy of the crop. The latter requires substantial investments in perennial belowground structures coupled with reduced resource allocations to seeds.

Implications

Our study has highlighted that Th. intermedium is able to reach a high shoot DM production with low N needs. Our proposed CNDC will be highly helpful to help define N requirements in various pedoclimatic environments and adjust accordingly the soil-crop management, among which the N fertilization. Ultimately, the low N requirements of $T h$. intermedium coupled with a high N use efficiency demonstrated that it could enhance agronomic and environmental benefits.

Keywords

Thinopyrum intermedium, perennial crop, Intermediate wheatgrass, nitrogen dilution curve, nitrogen nutrition index, nitrogen needs

1. Introduction

The intermediate wheatgrass Thinopyrum intermedium subsp. intermedium (Host) Barkworth \& D.R. Dewey is developed as a perennial grain crop that can provide ecosystem services including production and preservation services. Previous research has largely focused on its agronomic performances and analyzed both grain and fodder productions (Dick et al., 2018; Jungers et al., 2018; Tautges et al., 2018; Clark et al., 2019; Favre et al., 2019; Barriball, 2020; Hunter et al., 2020a; 2020b). In the meantime, the crop has proven to be valuable in reducing nitrate leaching (Culman et al., 2013; Jungers et al., 2019), or improving soil food webs, carbon pools and sequestration (de Oliveira et al., 2018, 2020; Bergquist, 2019; Sprunger et al., 2019). Th. intermedium is characterized by a recent selection history (DeHaan et al., 2018) and its resource allocation to grains is low and variable (Culman et al., 2013; Zhang et al., 2015; Newell \& Hayes, 2017). At the same time, its perenniality leads to large resource allocation to the belowground organs composed of short rhizomes and a deep root system to ensure crop continuity (Ogle et al., 2011; Sainju et al., 2017; Sprunger et al., 2018; Sakiroglu et al., 2020). Consequently, the development of intermediate wheatgrass in cropping system is still impeded by grain yielding capacity and stability, and knowledge gaps about best management practices in fields (Lanker et al., 2020).

To improve yields and crop management, a good description of its physiological behavior and a better understanding of its growing habits are yet required. For instance, recent findings highlighted the ability of using water from deep soil layers and maintaining high water-use efficiency throughout the growing season (de Oliveira et al., 2020; Clément et al., 2021a, 2021b). However, few are known about its nitrogen (N) use, whereas crop N management is a key point by being one of the major limiting factors for agricultural productions (Gastal et al., 2012). Some studies have investigated the
impact of N fertilization on Th. intermedium performances (Jungers et al., 2017; Frahm et al., 2018), without quantifying the soil N supply. Yet, Th. intermedium is characterized by a deep and extensive root system, its soil exploration and resource use are better both in space and time through extended growing period (Culman et al., 2013; Jungers et al., 2019; Duchene et al., 2020). This observation may suggest that external sources of N could be minimized without hampering productions of the crop with the benefit of limiting economic and environmental costs of agriculture. Anyhow, there is a need for research devoted to understanding the impacts of N management on crop ecophysiology which will undoubtedly have consequences on agronomical practices and crop N requirements.

To determine the N status of a plant population, the nitrogen nutrition index (NNI) is frequently used. It corresponds to the ratio between the actual N concentration within aerial plant tissues and the critical N concentration $\left(\mathrm{N}_{\mathrm{c}}\right)$ required to achieve a non-limiting growth (Lemaire et al., 1997). N_{c} is derived from the critical N dilution curve (CNDC) and represents the minimal N concentration required in shoots to ensure optimal photosynthesis activity and maximize the total aerial dry matter production (W) (Greenwood et al., 1990). The mathematical description of the curve is provided in Eq. 1 linking N percentage and W using the allometric function proposed by Lemaire et al. (1984):

$$
\begin{equation*}
\% N=a W^{-b} \tag{Equation1}
\end{equation*}
$$

where W is the total shoot biomass expressed in terms of dry matter ($\mathrm{t} \mathrm{DM} / \mathrm{ha}$), \% N is the total N content of shoots (\% of W), a and b are coefficients specific to crop parameters. The a-coefficient represents the N concentration in the total aboveground biomass at $1 \mathrm{t} \mathrm{DM} /$ ha of W , while the b coefficient influences the shape of the curve (Greenwood et al., 1990; Lemaire et al., 1997; Gastal et al., 2002; Ziadi et al., 2010; Santana et al., 2020). The CNDC relies on the principle that under nonlimiting soil nitrogen availability, the N concentration in the aboveground biomass is highly related to the crop growth rate and the dry matter accumulation. The CNDC has been determined for many cultivated crops including perennial crops (Table 1) and has been further used as a reference to
discriminate N situations that are over (above the curve, $\mathrm{NNI}>1$, i.e. luxury N consumption) or under (below the curve, $\mathrm{NNI}<1$, i.e. N deficiency) the critical curve, thus driving fertilization rate and timing on crop.

The conventional approach to set-up the CNDC consists firstly in identifying the N_{c} points and then fit the negative exponential curve to these points (Eq.1). Different statistical approaches may be used to identify N_{c} points: (i) analysis of variance and multiple comparisons (Greenwood et al., 1990), (ii) fitting a linear-plateau curve (Justes et al., 1994), or (iii) hierarchical Bayesian modelling (Makowski et al., 2020). Many studies determined N_{c} points using the simplified statistical method derived from the study of Greenwood et al. (1990). In this approach, ANOVA is first used to identify where variations in W are statistically different under varying N treatments, within each date of sampling. A multiple comparisons analysis is then used to identify the maximal biomass ($W_{\text {Max }}$), the N content recorded under $W_{\text {Max }}$ is the critical N_{c} point. In the event where statistically equivalent $W_{\text {Max }}$ are reported under two or more N treatments, the lowest N rate is selected as the N_{c}. However, N_{c} points selected using this simplified approach might be biased due to potential deficiencies within the experimental dataset such as the N rates might not be sufficient to reach $\mathrm{W}_{\max }$ (Fernandez et al., 2022). The second method usually requires dataset sufficiently large enough so that a linear-plateau curve can be identified for each observation set. However, this approach remains difficult to implement as the experimental dataset must meet specific statistical criteria, as described in Justes et al. (1994). Finally, more recently, an alternative statistical method based on a hierarchical Bayesian modelling has been proposed by Makowski et al. (2020) to relate the N percentage to the W and analyze concomitantly the uncertainty in the fitted CNDC. The hierarchical Bayesian model simultaneously identifies critical points using the linear-plateau method (Justes et al., 1994) while fitting the negative exponential curve which defines N_{c}. In principle, this model can estimate CNDC from the direct $\mathrm{W}-\% \mathrm{~N}$ pair of observations without classifying limiting and non-limiting N data and without assuming that $W_{\text {max }}$ has been reached in all sampling dates (Fernandez et al., 2022). This method has already been successfully used in different study for maize, wheat or tall fescue
(Ciampitti et al., 2021a, 2021b; Fernández et al., 2021; Yao et al., 2021). However, the Bayesian hierarchical method might remain subjected to potential inferential bias due to limitations within experimental datasets in terms of quantity and/or quality of the data (Fernández et al., 2021; Fernandez et al., 2022).

The CNDC is a reliable tool to establish diagnoses of the N status of various crop species growing within different climatic and agronomic conditions and further inform on the crop growing habits (Table 1). Among else, it has allowed differentiating functionally different plants, such as C3 and C4 plants in the study of Greenwood et al. (1990). The establishment of the CNDC may also contribute to improve the management practices, such as N fertilization. Therefore, to understand growing habits and N requirements of the newly developed perennial grain crop Th. intermedium, our objective was to determine the CNDC associated to its growth.

Table 1 : Coefficients of the critical nitrogen dilution curve (described in Eq.1) of different cultivated species.
$\left.\begin{array}{lllll}\hline \text { Plant species } & a \text {-coefficient } & b \text {-coefficient } & \begin{array}{l}\text { Statistical method } \\ \text { reference }\end{array} & \text { Reference } \\ \hline \text { C3 crops } & 5.70 & -0.50 & & \begin{array}{l}\text { (Greenwood et al., 1990) } \\ \text { C4 crops }\end{array} \\ \hline \begin{array}{lll}\text { Lolium perenne L. (Perennial } \\ \text { ryegrass) }\end{array} & 6.09 & -0.50 & -0.71 & \text { (Justes et al., 1994) }\end{array}\right)$ (Gislum et al., 2009)

Note. "*" indicating a credibility interval set at 95\%.
2. Materials and methods

2.1 Experimental sites

To determine the response to N of Th. intermedium, a field experiment (C1) was conducted on the experimental farm of ULiège - Gembloux Agro-Bio Tech, Belgium, using a complete randomized splitplot design (2*8m microplots) with four replicates. The first level of randomization is used to assign experimental units to a mowing factor comparing two treatments (not presented in this study). Within these experimental units, different N fertilization treatments (ammonium nitrate granular) were applied on subplots. These treatments differed according to total amount (0,50,100 or 150 kg $N / h a$) and timing of application (early-spring (BBCH29), mid-spring (BBCH39), and fall (vegetative stage)) (Table 2). Fertilization levels were chosen according to previous studies on N application (Jungers et al., 2017).

Five French additional field experiments (V1-5) were used to provide validation data and assess the reliability of the CNDC established from the main Belgian experimental site (C1). All detailed information about crop management and experimental designs of the sites used is summarized in Table 3.

Table 2 : Timings and amounts ($\mathrm{kg} \mathrm{N} / \mathrm{ha}$) of N fertilization treatments of the Belgian experimental C1 site from 2019 to 2021.

Code	Treatment	Total \mathbf{N} dose (kg N/ha)	Splitting (kg N/ha)				
			2019		2020 and 2021		
			$\begin{gathered} \text { April } \\ \text { BBCH29 } \end{gathered}$	September Vegetative stage	$\begin{gathered} \text { April } \\ \text { BBCH29 } \end{gathered}$	$\begin{gathered} \text { May } \\ \text { BBCH39 } \end{gathered}$	September Vegetative stage
O+0+0N	1	0	0	0	0	0	0
$50+0+0 \mathrm{~N}$	2	50	50	0	50	0	0
$50+0+50 \mathrm{~N}$	3	100	50	50	50	0	50
$100+0+0 \mathrm{~N}$	4	100	100	0	100	0	0
100+0+50N	5	150	100	50		Not ap	plied
100+50+0N	6	150		Not applied	100	50	0
0+100+0N	7	100		Not applied	0	100	0
50+50+50N	8	150		Not applied	50	50	50

Table 3 : Detailed information about experimental sites, their design and their management.

	Experimental sites					
Site code	C1	V1	V2	V3	V4	V5
Location						
Country	Belgium			France		
GPS Long. (DD)	4.7063	5.1251	5.0920	5.143	5.0419	3.5130
GPS Lat. (DD)	50.5664	45.4250	45.2746	45.3323	45.4350	45.4638
Soil type	Clay loam	Loam	Sandy-loam (stony)	Sandyloam	Sandy-clayloam (stony)	Clay-loam
Climate						
Average annual rainfall (mm)	852	881	984	983	927	628

Average annual min temperature (${ }^{\circ} \mathrm{C}$)	7	7.8	6.3	6.3	7.8	6.5
Average annual max temperature (${ }^{\circ} \mathrm{C}$)	14.2	16.5	16.1	16.1	16.5	16.7
Type of experiment	Research station (microplots).	On-farm experiment			Research station (microplots).	
	Randomized splitplot design	Strips design			Randomized split-block design	
	(4 replicates)	(3 replicates)			(3 replicates)	$\begin{gathered} \text { (4 } \\ \text { replicates) } \end{gathered}$
Implementation						
Sowing date	22-09-2017	$\begin{gathered} 20-09- \\ 2017 \end{gathered}$	15-09-2018	$\begin{gathered} 05-09- \\ 2017 \end{gathered}$	18-09-2018	$\begin{gathered} 19-10- \\ 2017 \end{gathered}$
Seed population	Third selection cycle of The Land Institute (TLI-C3)					
Seeding rate (kg/ha)	20		18		25	18
Interrow spacing (cm)	25	25	12	20		
Field management						
N fertilization BBCH3O	See (Table 2)	50	50	50	80	80
(kg N/ha) ВВСН39		0	0	0	40	0
Weeding	Chemical + mechanical	/	1	/	Chemical + hand	
Crop protection	/	/	/	$/$,	/
Post-harvest residue management	Chipping or mowing at 5 cm from the ground					
Growing season for data	2019,2020,2021	2018	2019	2018	2018	2018,2019
collection						

2.2 Data collection

The data from the analytical site (C1) used in this study were collected from the second to the fourth growing season after crop implantation. Concerning the validation sites (V1-5), data were collected during the first, the second or both growing season, depending on sites and data availability (Table 3). Aboveground biomasses were sampled through a $50 \times 50 \mathrm{~cm}$ quadrat, cut at 5 cm above soil surface, oven-dried (72 h at $60^{\circ} \mathrm{C}$) and weighted to obtain dry matter (DM). Samples were collected at four different main phenological stages, rated with the BBCH scale (Meier, 1997), namely the stem elongation (BBCH 30), the flag leaf (BBCH 39), the flowering (BBCH 65) and the grain maturity (BBCH89) stage. For site C1 only, ears were always separated from straw biomass. Additionally, leaves were separated from stems in 2020 and 2021. During these two years, LAI was also measured at three phenological stages (BBCH30, BBCH39 and BBCH65) by collecting leaves on 50 cm of a row in one replicate of each N treatments. They were then laminated with transparent adhesive cover on paper sheets and scanned. These leaves were beforehand weighted to estimate the specific leaf area
(i.e., ratio of leaf area to leaf dry mass) to estimate LAI over the three other replicates. Finally, the leaf area ratio (LAR) was calculated by dividing the LAI by the total aboveground biomass.

For all sites, nitrogen concentrations of samples were measured through the Dumas method (Dumas, 1831); N contents were quantified individually for each replicate (across all sites, cropping seasons and phenological stages). An exception must be notified for the cropping season 2019, where the sole average samples over the four replicates were available to determine N content at the grain maturity stage for C 1 site.

When needed, the four phenological stages were translated into development units (sum of degreedays corrected by photoperiodic and cold requirement effects) as proposed in the STICS soil-crop model and described in the study of Duchene et al. (2021). The corresponding sum of UPVT (EUPVT) is of 191 at $\mathrm{BBCH} 30,413$ at $\mathrm{BBCH} 39,878$ at BBCH 65 and 1622 at BBCH 89 , respectively.

2.3 Analysis of the aboveground biomass, N content and N uptake of Th. intermedium (C1 site)

Analyses of variances (ANOVA) were conducted with the R studio software (R Core Team, 2021). A three-way ANOVA was used, where factors were constituted of i) the growing seasons (year), ii) the N fertilization treatments common to each growing season and iii) the four - or three - phenological stages of the crop at which samples were collected. The total aboveground dry matter, N uptake, N content, leaf/stem ratio as well as LAR were the analyzed variables. Two-way ANOVA's were also performed, within each year and for each plant organ, where factors were constituted of i) the N fertilization treatments and ii) the four phenological stages at which samples were collected. The dry matter, N content and N uptake within plant tissues were the analyzed variables.

Within the different analyses conducted, mixed models were used. The nitrogen fertilization, phenological stage and growing season were considered as fixed effect, while replicates as a random effect. Regarding N fertilization effect, N treatments were considered globally, without dissociating timing or amount effect.

When interactions were observed between the fixed effect (fertilization, phenological stage or year), data were separated by the treatments of one factor to analyze the effects of the other factors. Bartlett's test was used to confirm the homogeneity of variance and Shapiro-Wilk's test was used to confirm that residuals were normally distributed. Following ANOVA analysis, the post-hoc Student-Newman-Keuls test (SNK test) was used to compare treatment means with a significance level set at 0,05.

2.4 Critical nitrogen dilution curve establishment and validation

2.4.1 The Bayesian hierarchical model to estimate CNDC

To estimate the CNDC, a Bayesian hierarchical model (Makowski et al., 2020) was applied on our consolidated C1 dataset. In this model the response of W to N content is considered to follow a linear-plus-plateau function. The variability of this function's parameters across sampling dates is described by a posteriori probability distribution function, estimated using Bayesian method, from which the most probable parameter values of CNDC and their credibility intervals are derived (Makowski et al., 2020).

The statistical model was assessed using a Markov chain Monte Carlo algorithm (MCMC) implemented using R (R Core Team, 2021) and its brms package (Bürkner, 2017, 2018). As proposed in the study of Bohman et al. (2021), the following non-linear brms model formula was applied:

$$
\begin{equation*}
W \sim \min \left(W_{M a x, i}+S_{i}\left(\% N_{\text {Plant }}-\left(a W_{M a x, i}^{-b}\right)\right), W_{M a x, i}\right) \tag{Equation2}
\end{equation*}
$$

where S_{i} and $W_{\text {Max, } i}$ are respectively the slope of the linear plateau curve and the maximum value of biomass (i.e., plateau) for a given date [i]. min represents the minima function (i.e., the plateau component) and a - and b-coefficient have the same meaning as previously defined in Eq.1. The parameters S and $W_{\text {Max }}$ included group-level (i.e., random) effects to fit a linear-plateau curve to each sampling date:

$$
\begin{equation*}
W_{M a x}+S \sim 1+(1 \mid \text { index }) \tag{Equation3}
\end{equation*}
$$

where index represents the unique level of each experimental sampling date [i].

2.4.2 Practical considerations and priors setting

Only data from stem elongation (BBCH30) to flowering stage (BBCH65) and with W above 1 t DM/ha were used. Indeed, as explained in the study of Justes et al. (1994), N dilution would not be significant for low biomass values (less than 1t DM/ha) as plant canopy is not closed yet. In addition, the theory explaining decline in N percentage with increasing biomass is mostly restricted to the vegetative period, excluding samplings after the flowering stage (BBCH65) (Greenwood et al., 1990; Justes et al., 1994).

Priors were chosen based on expertise and empirical observations (e.g., summary values from our data set, previously reported values for other species) combined with prior distribution boundaries (e.g., if the range of a prior led to biologically or physically impossible predictions, it was narrowed). Values of priors are reported in Table 4.

The MCMC algorithm was run with 4 chains of 10000 iterations each. A warmup period of 3000 runs was used.

Table 4 : Priors used to fit the critical nitrogen dilution curve (CNDC) with the hierarchical Bayesian model.

Parameter of the CNDC	Distribution	Boundaries	
		Lower	Upper
a	Normal (3; 1)	1	7
b	Normal (0.5; 0.15)	0	1
$W_{\text {Max }}$	Normal (10; 10)	1	30
S	Normal (4; 3)	0	" ∞ "
$\sigma_{\text {BMax }}$	Normal (7; 1)	"- ∞ "	" ∞ "
$\sigma_{\text {S }}$	Normal (2; 1)	"- - "	" ∞ "
σ	Student's t (3; 1; 0.1)	"- ∞ "	" ∞ "

2.4.3 Evaluating uncertainty on parameters and critical N concentration

The a - and b-coefficients of the CNDC curves were derived from their respective a posteriori distribution. The most probable parameter value was estimated through the median value (centile 0.5) and the 0.025 and 0.975 quantiles were used to determine the 95% credibility interval (CI).

The uncertainty around the CNDC curve was estimated using the following procedure. The a - and b coefficients of the 1000 final runs of each of the 4 chains were used to generated CNDC curves. Curves were calculated for a set of discrete values of W ranging from $1 \mathrm{t} \mathrm{DM} /$ ha to the maximum observed value in the experimental data set. From the population of CNCD curves, quantiles 0.025 , $0.25,0.75$ and 0.975 were calculated to determine the $50 \% \mathrm{Cl}$ and $95 \% \mathrm{Cl}$. As the estimation of $a-$ and b-coefficients is performed concomitantly by the Bayesian model, this approach allows to account for their correlation and its impact on the generated CNDC curves (Dumont et al., 2014).

2.4.4 Validation of the critical nitrogen dilution curve (V1-5 sites)

The dataset from validation sites (V1-5) was used to assess the validity of the curve and confirm that it allows to properly distinguishing "limiting" and "non-limiting" N situations according to their biomass and N content. To discriminate situations within the validation sites, the following procedure was applied.

At each phenological stage, a one-way ANOVA was performed to determine if statistical differences existed in W and N percentage between sites. When statistical differences were reported, a post-hoc test was performed to group results. The least significant difference (LSD) at the 0,05-significance level (Chakwizira et al., 2016) was calculated to compare and rank means of W and N percentage samples.

Discrimination of the datasets into two groups was made as follows. Samples that were not significantly different from the lowest biomass, were classified as "limiting" N situations, while samples that did not significantly differ from the highest biomass sample, were classified as "nonlimiting" N situations. As many points were not categorized, additional information provided by field experts was required for the validation sites: sites with high N fertilization (80 and $120 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ in the spring) and known has being non-water limited were considered as "non-limiting" N situations (V4, V5); sites with relatively low N fertilization ($50 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ in the spring), with shallow and stony soils or
with a high weed competition were considered as "limiting" N situations (V1, V2 at BBCH30 and V3 at BBCH39).
3. Results
3.1 Impact of N fertilization on crop growth and nutrient uptake (C1 site)
3.1.1 Evolution and partitioning of DM in the aboveground biomass

Significant interactions were found between the fixed factors, namely the growing season (year), the fertilization treatment, and the phenological stage (Table 5). Therefore Table 6 presents detailed results of aboveground biomass within each year and each plant organ (when available). Leaf/stem ratio and LAR are presented in supplementary material (Table S2, Table S3).

As expected, the aboveground dry matter production generally increased along the crop cycle. A sharp increase is observed between the stem elongation (BBCH30) and the flag leave stage (BBCH39), followed by a lower increase of the total aboveground dry matter until the grain maturity stage (BBCH89). The cumulated aboveground DM of the different plant organs in relation with the development stages is illustrated in Figure 1 for the $50+0+50 \mathrm{~N}$ fertilization level (treatment 3), which was found to best match the plant requirements (see section 3.2 and Figure S3 in supplementary material). The total aboveground biomass was found to be highly variable between growing seasons. It reached, at BBCH89 ((UPVT of 1622), 16.4t DM/ha in 2019, only 7.0t DM/ha in 2020 and 10.3 t DM/ha in 2021 (Figure 1), indicating the highest final production level in 2019 and the lowest in 2020 (p-value<0.001).

Focusing on biomass production of the aboveground organs, the analysis indicated a significant effect of phenological stage. The weight of leaves is generally the highest at BBCH 39 , before gradually decreasing until BBCH89. Concerning stems, the biomass peak is observed at the flowering stage (BBCH65), except in 2021 where the increase was reported until BBCH89 for some N
treatments (Table 6). The biomass of ears was systematically found to statistically increase between BBCH65 and BBCH89 (Table 6).

The comparison between biomass production levels of the different aerial organs indicates a higher amount of leaves than stems at BBCH30. At BBCH39 and after, stems are the most represented organ of the plant. At BBCH30 ((UPVT of 191), leaves represented $83.8 \pm 2.5 \%$ of the total aboveground biomass. Reversely, they accounted for $12.9 \pm 0.7 \%$ at BBCH89, while stems and ears represented respectively $71.4 \pm 1.4 \%$ and $15.7 \pm 1 \%$ of the total aboveground biomass (Figure 1). The leaf/stem ratio seemed to be only influenced by phenological stages. The ratio was found to decrease during the growing season (supplementary material Table S2). The same trend was observed for the leaf area ratio, as it was significantly influenced by phenological stages (p-value<0.001), with a sharp decrease from BBCH30 to BBCH65 (supplementary material Table S3).

N fertilization had generally a positive impact on the aboveground DM production, especially on vegetative organs. Indeed, in 2020, the lowest biomass of leaves and stems were obtained with the reference treatment $(0+0+0 \mathrm{~N})$ and the high mid-spring fertilization $(0+100+0 \mathrm{~N})$, regardless of the stage of development. In 2021, the biomass from both stems and leaves was also the lowest with the reference treatment, the high mid-spring fertilization and the low early-spring fertilization ($50+0+0 \mathrm{~N}$) at early stages of the crop cycle (BBCH 30 and BBCH 39). Later in the growing season, the biomass of vegetative organs remained broadly equivalent for all N treatments, except in the reference treatment which has always the lowest level of biomass production. Focusing on the biomass of ears, the $100+50+0 N$ treatment showed the highest level in 2020. But apart from this situation, the biomass of ears was not significantly influenced by the different N treatments, with no difference compared to the reference treatment in 2019, and only lower levels of biomass found for the reference treatment in 2021 (Table 6).

2021(C) for the N treatment $3(50+0+50 N)$.

A 2019

B 2020

c
2021

Figure 2 : Aboveground N content (\%N) of plant organs
311 according to the accumulation of crop development units
312 (UPVT) in 2019(A), 2020(B) and 2021(C) for the N

313 treatment $3(50+0+50 \mathrm{~N})$.

Table 5 : F-statistics and significance levels from the performed three-way ANOVA.

Source of variation	Dry matter of the total aboveground biomass		N uptake of the total aboveground biomass		N content of the total aboveground biomass		Leaf/Stem ratio		LAR	
	Df	F-value	Df	F-value	Df	F-value	Df	Fvalue	Df	F-value
Year (Y)	2	173***	2	122***	1	17***	1	1	1	3
Stage (S)	3	243***	3	51***	3	827***	3	88***	2	3612***
N fertilization (N)	3	$17^{* * *}$	3	43***	6	26***	6	2	6	4**
Replicate (R)	3	1	3	1	3	4**	3	2	3	5*
${ }^{*}{ }^{\text {S }}$	6	18***	6	6***	3	22***	3	3	2	$27^{* * *}$
$Y^{*} N$	6	1	6	1	6	3**	6	1	6	4**
S*N	9	2*	9	3***	18	5***	18	2*	12	13***
$\mathrm{Y}^{*}{ }^{*} \mathrm{~N}$	18	1	18	1	18	2	18	2	12	5***

Note. "*" indicating statistical significance at p-value ≤ 0.05; "**" indicating statistical significance at p-value ≤ 0.01; "***" indicating statistical significance at p-value ≤ 0.001.

3.1.2 Evolution and partitioning of plant tissues N content

Significant interactions were found between the fixed factors (Table 5). Detailed results within each year and each plant organ (when available) are illustrated in Figure 2, for the treatment 3, and presented in supplementary materials (Table S1).

Overall, the N content of vegetative organs (leaves and stems) decreased along the crop cycle. As illustrated in Figure 2, the highest N content of leaves and stems was obtained at BBCH30 (Σ UPVT of 191). Reversely, the phenological stage of the crop had no significant influence on the N content of ears which was similar between BBCH65 (£UPVT of 878) and BBCH89 ($\Sigma \mathrm{UPVT}$ of 1622) stage (Figure 2).

As expected, at each stage of crop development, the N content was higher in leaves than in stems. At BBCH89, the N content was the lowest in stems and the highest in ears (Figure 2).

The N content in aboveground organs increased with the N fertilization. Globally the absence of fall or early-spring fertilization lowered N content in vegetative organs at BBCH 30 while the absence of mid-spring fertilization lowered N content of leaves and stems at BBCH65 and BBCH89. Concerning the N content of ears, the SNK's results showed a globally higher N content with the mid-spring fertilization by increasing it by 0.3% compared to the reference treatment (unshown results supplementary material Table S1).

3.1.3 Evolution and partitioning of N uptake in the aboveground biomass

Significant interactions were reported between the fixed factors (Table 5). Therefore, Table 7 presents detailed results within each year and each plant organ, when available.

Overall, the N uptake of the total aboveground biomass increased from the BBCH30 to BBCH39 ($\Sigma \mathrm{UPVT}$ of 413) or BBCH65 (2 UPVT of 878) stages before decreasing until BBCH89 as shown in Figure 3 for treatment 3. The N uptake decrease from leaves is generally more pronounced than in stems,
which tend to accumulate N later and conserve it longer (Table 7, Figure 3). Looking at ears, the N uptake generally increased between BBCH65 and BBCH89. However, this increase in ears does not compensate the N uptake decrease in vegetative organs in late growing season, resulting in total N uptake diminution in the aboveground biomass (Table 7).

The N uptake of the aboveground biomass tended to increase with the N fertilization. The lowest N uptake of leaves and stems was always obtained with the reference treatment. At the beginning of the growing season (BBCH 30), the N uptake of vegetative organs is increased by high early spring fertilization (100+0+0N and 100+50+0N treatments) and by early spring fertilization coupled with fall fertilization (50+0+50N and 50+50+50N treatments). At BBCH89, the influence of fertilization seemed more limited although the lowest N uptake of leaves and stems is obtained with the reference treatment (Table 7). The N fertilization had no influence on the N uptake by ears in 2019. The reference treatment and the 50+0+0N fertilization seemed to limit N uptake by ears in 2020 and 2021 while the highest N uptake of ears was obtained with the $100+50+0 \mathrm{~N}$ fertilization in 2020 and with the $50+50+50 \mathrm{~N}$ fertilization in 2021 (Table 7).

Figure 3: Aboveground N uptake ($\mathrm{kg} \mathrm{N} / \mathrm{ha}$) partitioning in plant organs according to the accumulation of crop development units (UPVT) in 2019(A), 2020(B) and 2021(C) for the N treatment $3(50+0+50 N)$.

355

（A） 2019													
Fertilization	Dry matter of leaves and stems \pm S．E．（ \mathbf{t} / ha ）										Dry matter of ears \pm S．E．（t／ha）		
	BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages						BBCH65	BBCH89	Mean of stages
O＋0＋0N	1.8 ± 0.1	7.8 ± 1.5	12.2 ± 1.2	13.8 ± 2.2	8.9 ± 1.4						1.6 ± 0.2	2.6 ± 0.4	2.1 ± 0.3
50＋0＋0N	2.1 ± 0.2	11.3 ± 1.5	11.7 ± 0.5	13.4 ± 1.4	9.5 ± 1.3						1.5 ± 0.1	2.3 ± 0.2	1.9 ± 0.2
50＋0＋50N	2.2 ± 0.2	13.7 ± 3.6	16.6 ± 1.5	14.3 ± 0.5	11.6 ± 1.7						2．1 ± 0.3	2.2 ± 0.5	2.2 ± 0.3
100＋0＋ON	2.2 ± 0.2	15.6 ± 1.9	13.5 ± 0.7	13.5 ± 0.7	10.6 ± 1.5						1.6 ± 0.2	2.0 ± 0.4	1.8 ± 0.2
$100+0+50 \mathrm{~N}$	2.7 ± 0.5	12.6 ± 3.4	14.0 ± 1.0	14.2 ± 0.7	10.7 ± 1.5						1.6 ± 0.4	1.9 ± 0.6	1.7 ± 0.4
Mean of	2.2 ± 0.1	11．7士1．2	13.6 ± 0.6	13.8 ± 0.5							1．7士0．1	2.2 ± 0.2	
fertilizations	A	B	c	c							A	B	
（B） 2020													
Fertilization	Dry matter of leaves \pm S．E．（ \mathbf{t} / ha ）					Dry matter of stems \pm S．E．（ t / ha ）					Dry matter of ears \pm S．E．（t／ha）		
	BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages	BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages	BBCH65	BBCH89	Mean of stages
O＋O＋ON	0.9 ± 0.1	1.5 ± 0.3	1.2 ± 0.1	0.9 ± 0.2	$1.1 \pm 0.1 \mathrm{c}$	0.2 ± 0.0	1.9 ± 0.3	3.9 ± 0.1	3.5 ± 0.7	$2.4 \pm 0.4 \mathrm{c}$	0.5 ± 0.1	0.6 ± 0.1	0．5 $\pm 0.1 \mathrm{c}$
$50+0+0 \mathrm{~N}$	1.2 ± 0.1	2.0 ± 0.1	1.3 ± 0.1	1.2 ± 0.1	1．4 40.1 ab	0.3 ± 0.1	2.7 ± 0.2	4.8 ± 0.4	5.6 ± 1.0	$3.3 \pm 0.6 \mathrm{abc}$	0.6 ± 0.1	1.2 ± 0.4	0．9 ${ }^{\text {a }} 0.2 \mathrm{bc}$
50＋0＋50N	1.5 ± 0.2	2.1 ± 0.3	1.2 ± 0.1	1.0 ± 0.1	1．5さ0．1ab	0.3 ± 0.1	3.8 ± 0.7	5.6 ± 1.1	4.8 ± 0.5	$3.6 \pm 0.6 \mathrm{ab}$	0.9 ± 0.1	1.2 ± 0.1	$1.1 \pm 0.1 \mathrm{~b}$
100＋0＋ON	1.4 ± 0.2	2.3 ± 0.2	1.4 ± 0.1	1.2 ± 0.1	$1.6 \pm 0.1 \mathrm{a}$	0.4 ± 0.1	3.5 ± 0.2	5.8 ± 0.9	5.7 ± 0.6	$3.8 \pm 0.6 \mathrm{ab}$	1.0 ± 0.2	1.5 ± 0.2	$1.2 \pm 0.2 \mathrm{~b}$
$100+50+0 \mathrm{~N}$	1.5 ± 0.2	1.9 ± 0.3	1.5 ± 0.1	1.2 ± 0.2	$1.5 \pm 0.1 \mathrm{a}$	0.4 ± 0.2	3.5 ± 0.9	6.5 ± 0.9	6.8 ± 0.7	$4.3 \pm 0.7 \mathrm{a}$	1.2 ± 0.2	2.1 ± 0.3	$1.6 \pm 0.2 \mathrm{a}$
O＋100＋ON	1.2 ± 0.1	1.5 ± 0.1	1.3 ± 0.1	0.9 ± 0.1	$1.2 \pm 0.1 \mathrm{bc}$	0.3 ± 0.1	2.0 ± 0.1	3.6 ± 0.6	4.4 ± 0.4	$2.5 \pm 0.4 \mathrm{c}$	0．5さ0．1	1.1 ± 0.1	0．8さ0．1bc
$50+50+50 \mathrm{~N}$	1.1 ± 0.1	1.9 ± 0.1	1.4 ± 0.1	0.9 ± 0.1	$1.3 \pm 0.1 \mathrm{abc}$	0.3 ± 0.1	3.1 ± 0.4	4.5 ± 0.7	3.9 ± 0.2	$3.0 \pm 0.5 \mathrm{bc}$	0.8 ± 0.2	1.0 ± 0.1	$0.9 \pm 0.1 \mathrm{bc}$
Mean of	1.3 ± 0.1	1.9 ± 0.1	1.3 ± 0.1	1.1 ± 0.1		0.3 ± 0.0	2.9 ± 0.2	4.9 ± 0.3	5.0 ± 0.3		0.8 ± 0.1	1.2 ± 0.1	
fertilizations	B	A	B	c		A	B	c	c		A	B	
（C） 2021													
O＋O＋ON	$0.7 \pm 0.1 \mathrm{~d}$	1．2 2 0．1c	1．2 2 0．1b	1.0 ± 0.1	1.0 ± 0.1	0．1 $\pm 0.0 \mathrm{~d}$	$1.8 \pm 0.2 \mathrm{~d}$	4．5 $\ddagger 0.4 \mathrm{~b}$	$5.80 \pm 0.3 \mathrm{~b}$	3.1 ± 0.6	0.7 ± 0.0	1.1 ± 0.1	$0.9 \pm 0.1 \mathrm{~b}$
	A	B	B	AB		A	B	c	D				
$50+0+0 \mathrm{~N}$	$0.9 \pm 0.1 \mathrm{~cd}$	1．6 $\pm 0.1 \mathrm{bc}$	$1.5 \pm 0.2 \mathrm{ab}$	1.1 ± 0.1	1.3 ± 0.1	0．1 $\pm 0.0 \mathrm{~d}$	$2.7 \pm 0.2 \mathrm{~cd}$	$6.2 \pm 0.8 \mathrm{ab}$	$6.9 \pm 0.7 \mathrm{ab}$	4.0 ± 0.8	1.0 ± 0.1	1.4 ± 0.2	1．2 20.1 ab
	A	B	B	A		A	B	c	c				
50＋0＋50N	$1.4 \pm 0.3 \mathrm{abc}$	$1.8 \pm 0.1 \mathrm{bc}$	1．6 $\pm 0.1 \mathrm{ab}$	1.2 ± 0.1	1.5 ± 0.1	$\underset{\mathrm{A}}{0.3 \pm 0.1 \mathrm{bc}}$	$\begin{gathered} 3.6 \pm 0.2 \mathrm{bc} \\ \text { B } \end{gathered}$	$\begin{gathered} 7.7 \pm 0.5 a \\ C \end{gathered}$	$\begin{gathered} 7.7 \pm 0.5 \mathrm{ab} \\ \mathrm{c} \end{gathered}$	4.8 ± 0.8	1.3 ± 0.1	1.5 ± 0.2	$1.4 \pm 0.1 \mathrm{a}$
100＋0＋0N	1．5 50.1 abc	1．9さ0．1b	2．0さ0．2a	1.2 ± 0.1	1.7 ± 0.1	$0.3 \pm 0.0 \mathrm{bc}$	$4.0 \pm 0.4 \mathrm{bc}$	8．7士1．0a	$8.1 \pm 0.8 \mathrm{ab}$	5.3 ± 0.9	1.4 ± 0.2	1.6 ± 0.3	$1.5 \pm 0.2 \mathrm{a}$
	AB	B	B	A		A	B	C	c				
100＋50＋0N	1．7 $\pm 0.1 \mathrm{ab}$	$2.7 \pm 0.3 \mathrm{a}$	$1.6 \pm 0.2 \mathrm{ab}$	1.1 ± 0.1	1.8 ± 0.2	0．5さ0．1ab	5．9 ${ }^{\text {a }}$ ．7a	7．8さ1．2a	$7.9 \pm 0.6 \mathrm{ab}$	5.5 ± 0.9	1.3 ± 0.2	1.7 ± 0.2	$1.5 \pm 0.2 \mathrm{a}$
	A	B	A	A		A	B	B	B				
O＋100＋ON	$1.1 \pm 0.2 \mathrm{bcd}$	$1.7 \pm 0.2 \mathrm{bc}$	$1.4 \pm 0.2 \mathrm{ab}$	1.2 ± 0.0	1.4 ± 0.1	0．2 20.1 cd	$3.1 \pm 0.3 \mathrm{~cd}$	$6.4 \pm 0.5 \mathrm{ab}$	$8.4 \pm 0.4 \mathrm{ab}$	4.5 ± 0.8	1.2 ± 0.2	1.8 ± 0.2	$1.5 \pm 0.2 \mathrm{a}$
	A	B	AB	A		A	B	C	D				
50＋50＋50N	$2.0 \pm 0.1 \mathrm{a}$	$2.2 \pm 0.2 \mathrm{~b}$	1．6さ0．1ab	1.3 ± 0.1	1.8 ± 0.1	0．6さ0．1a	4．7 $\pm 0.6 \mathrm{ab}$	$7.1 \pm 0.2 \mathrm{ab}$	9．0さ0．9a	5.4 ± 0.8	1.4 ± 0.1	1.9 ± 0.3	$1.6 \pm 0.2 \mathrm{a}$
	A	A	B	B		A	B	C	D				
Mean of fertilizations	1.3 ± 0.1	1.9 ± 0.1	1.6 ± 0.1	1.2 ± 0.1		0.3 ± 0.1	3.7 ± 0.3	6.9 ± 0.4	7.7 ± 0.3		$\begin{gathered} 1.2 \pm 0.1 \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 1.6 \pm 0.1 \\ B \end{gathered}$	

are reported in the＇mean of fertilizations＇row or in the＇mean of stages＇column，it means no interactions between those factors were reported for that year and plant organ．

（A） 2019	Fertilization	N uptake of leaves and stems \pm S．E．（kg N／ha）										N uptake of ears \pm S．E．（kg N／ha）		
		BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages						BBCH65	BBCH89	Mean of stages
	O＋0＋0N	$46.0 \pm 1.7 \mathrm{~b}$	73.0 ± 13.6	$67.5 \pm 6.6 \mathrm{~b}$	46.9 ± 7.4	58.4 ± 4.9						27．6さ3．0	29．1 ± 4.6	28.4 ± 2.5
	50＋0＋ON	$\begin{gathered} 61.6 \pm 6.5 \mathrm{ab} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 148.0 \pm 19.4 \\ \text { B } \end{gathered}$	$\underset{\mathrm{A}}{73.7 \pm 2.9 \mathrm{~b}}$	$\begin{gathered} 43.5 \pm 4.4 \\ \text { A } \end{gathered}$	77.3 ± 10.6						26.5 ± 1.0	25.9 ± 1.7	26.2 ± 0.9
	50＋0＋50N	$\begin{gathered} 74.4 \pm 6.5 \mathrm{ab} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 159.0 \pm 41.5 \\ \text { B } \end{gathered}$	$\begin{gathered} 127.9 \pm 11.4 \mathrm{a} \\ \text { B } \end{gathered}$	$\begin{gathered} 60.6 \pm 2.2 \\ \mathrm{~A} \end{gathered}$	101.9 ± 12.9						38.6 ± 4.6	25．9さ5．5	32.2 ± 4.1
	100＋0＋0N	$\underset{\mathrm{A}}{78.9 \pm 7.2 \mathrm{ab}}$	$\underset{\mathrm{C}}{218.2 \pm 25.9}$	$\begin{gathered} 127.6 \pm 7.0 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\underset{\mathrm{A}}{49.5 \pm 2.7}$	104.3 ± 15.8						31.2 ± 4.5	21.9 ± 4.8	26.5 ± 3.5
	100＋0＋50N	$\begin{gathered} 91.7 \pm 16.1 \mathrm{a} \\ \text { AB } \end{gathered}$	$\begin{gathered} 149.6 \pm 39.9 \\ \text { B } \end{gathered}$	$\begin{gathered} 98.5 \pm 7.0 \mathrm{a} \\ \mathrm{AB} \end{gathered}$	$\begin{gathered} 49.4 \pm 2.4 \\ \text { B } \end{gathered}$	93.8 ± 12.1						27．9さ7．8	22.5 ± 7.5	25．2＋5．1
	Mean of fertilizations	70．5 55.0	139.9 ± 16.5	99.0 ± 6.6	50.0 ± 2.2							30．3 +2.1	25．1 ± 2.1	
（B） 2020	Fertilization	N uptake of leaves \pm S．E．（kg N／ha）					N uptake of stems \pm S．E．（kg N／ha）					N uptake of ears \pm S．E．（kg N／ha）		
		BBCH30	ВвСН39	BBCH65	BBCH89	Mean of stages	BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages	BBCH65	BBCH89	Mean of stages
	O＋0＋0N	$19.7 \pm 3.0 \mathrm{c}$	$\begin{gathered} 16.5 \pm 4.1 \mathrm{c} \\ A B \end{gathered}$	$\begin{gathered} 10.6 \pm 1.1 \mathrm{~d} \\ B C \end{gathered}$	$\begin{gathered} 4.0 \pm 0.8 \mathrm{c} \\ \mathrm{C} \end{gathered}$	12.7 ± 1.9	$\begin{gathered} 2.0 \pm 0.2 \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 14.2 \pm 1.0 \mathrm{c} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 14.5 \pm 1.8 \mathrm{c} \\ \text { B } \end{gathered}$	$\begin{gathered} 11.0 \pm 1.9 b \\ B \end{gathered}$	10.4 ± 1.5	6.7 ± 1.0	7.4 ± 0.6	$7.0 \pm 0.6 \mathrm{c}$
	50＋0＋0N	$\begin{gathered} 29.2 \pm 3.6 \mathrm{bc} \\ \mathrm{~A} \end{gathered}$	$\frac{26.2 \pm 2.0 \mathrm{bc}}{\mathrm{~A}}$	$\begin{gathered} 14.9 \pm 1.0 \mathrm{~cd} \\ B \end{gathered}$	$\begin{gathered} 5.9 \pm 0.6 \mathrm{bc} \\ \mathrm{C} \end{gathered}$	19.0 ± 2.6	$\stackrel{4.0 \pm 0.7}{\mathrm{~A}}$	$\begin{gathered} 21.5 \pm 0.2 \mathrm{bc} \\ \mathrm{~B} \end{gathered}$	$\text { 22. } 5 \pm 1.3 \mathrm{bc}$	$\underset{B}{17.5 \pm 3.5 b}$	16.4 ± 2.1	8.4 ± 1.2	15.9 ± 4.7	$12.2 \pm 2.7 \mathrm{bc}$
	50＋0＋50N	$\underset{\mathrm{A}}{39.3 \pm 3.1 \mathrm{ab}}$	$\underset{A}{36.6 \pm 5.5 b}$	$\underset{B}{17.1 \pm 1.3 \mathrm{bc}}$	$\begin{gathered} 5.7 \pm 0.5 \mathrm{bc} \\ \mathrm{C} \end{gathered}$	24.7 ± 3.9	$\underset{\text { A }}{\frac{4.6 \pm 1.2}{}}$	$\underset{C}{35.4 \pm 5.6 \mathrm{a}}$	$\underset{\mathrm{C}}{30.5 \pm 4.2 \mathrm{bc}}$	$\underset{\text { B }}{\substack{17.6 \pm 1.2 b}}$	22.0 ± 3.5	12．9さ1．5	16．3 ± 1.4	$14.6 \pm 1.1 \mathrm{~b}$
	100＋0＋0N	$\begin{gathered} 41.6 \pm 5.8 \mathrm{ab} \\ \mathrm{~A} \end{gathered}$	$\frac{51.2 \pm 7.1 \mathrm{a}}{\mathrm{~A}}$	$\begin{gathered} 21.8 \pm 1.5 \mathrm{ab} \\ \mathrm{~B} \end{gathered}$	$\frac{7.6 \pm 0.7 \mathrm{~b}}{B}$	30.6 ± 4.9	$\underset{\mathrm{A}}{\frac{5.9 \pm 1.5}{}}$	$\begin{gathered} 39.1 \pm 4.3 \mathrm{a} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} 39.4 \pm 5.4 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$	$\underset{B}{20.9 \pm 1.4 \mathrm{~b}}$	26.3 ± 3.9	14．7 ± 3.2	21.0 ± 3.1	$17.9 \pm 2.4 \mathrm{~b}$
	100＋50＋0N	$\frac{47.9 \pm 7.0 \mathrm{a}}{\mathrm{~A}}$	$\begin{gathered} 41.4 \pm 6.8 \mathrm{ab} \\ A B \end{gathered}$	$\begin{gathered} 28.2 \pm 2.5 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 9.9 \pm 1.2 \mathrm{a} \\ \mathrm{C} \end{gathered}$	31.8 ± 4.4	$\begin{gathered} 8.1 \pm 3.0 \\ \text { A } \end{gathered}$	$\begin{gathered} 36.6 \pm 6.5 a \\ \text { B } \end{gathered}$	$\underset{C}{51.9 \pm 7.2 a}$	$\begin{gathered} 33.3 \pm 3.9 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	32.5 ± 4.7	18．7 72.9	35.4 ± 5.3	$27.1 \pm 4.2 \mathrm{a}$
	O＋100＋0N	$\underset{\mathrm{A}}{23.8 \pm 1.8 \mathrm{bc}}$	$\begin{gathered} 18.4 \pm 0.9 \mathrm{c} \\ \mathrm{~B} \end{gathered}$	$\underset{\mathrm{A}}{24.4 \pm 1.6 \mathrm{a}}$	$\begin{gathered} 6.7 \pm 0.5 \mathrm{bc} \\ \mathrm{c} \end{gathered}$	18.3 ± 1.9	$\underset{\mathrm{A}}{2.9 \pm 0.6}$	$\underset{B}{14.9 \pm 1.5 \mathrm{C}}$	$\underset{\mathrm{C}}{28.1 \pm 5.8 \mathrm{bc}}$	$\begin{gathered} 20.5 \pm 0.6 \mathrm{~b} \\ \mathrm{BC} \end{gathered}$	16.6 ± 2.7	8.8 ± 2.2	18.9 ± 1.5	$13.8 \pm 2.3 \mathrm{~b}$
	50＋50＋50N	$\underset{\mathrm{A}}{30.9 \pm 1.2 \mathrm{abc}}$	$\begin{gathered} 35.5 \pm 1.9 \mathrm{~b} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 24.2 \pm 2.4 a \\ B \end{gathered}$	$\begin{gathered} 6.2 \pm 0.5 \mathrm{bc} \\ \mathrm{C} \end{gathered}$	24.2 ± 3.0	$\underset{\text { A }}{4.0 \pm 0.8}$	$\begin{gathered} 30.0 \pm 3.3 \mathrm{ab} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} 34.8 \pm 6.3 b \\ C \end{gathered}$	$\begin{gathered} 18.2 \pm 1.5 b \\ \text { B } \end{gathered}$	21.7 ± 3.5	12．6 53.0	15．7士1．2	$14.1 \pm 1.1 \mathrm{~b}$
	Mean of fertilizations	33.2 ± 2.3	32.3 ± 2.7	20.2 ± 1.3	6.6 ± 0.4		4.5 ± 0.6	27.4 ± 2.3	31.7 ± 2.7	19.9 ± 1.4		$\underset{\mathrm{A}}{11.8 \pm 1.1}$	$\begin{gathered} 18.7 \pm 1.8 \\ \text { B } \end{gathered}$	
（C） 2021														
	O＋O＋ON	$\begin{gathered} 12.8 \pm 1.1 \mathrm{~b} \\ \mathrm{~A} \end{gathered}$	$\underset{A}{15.5 \pm 1.9 \mathrm{~d}}$	$\begin{gathered} 12.1 \pm 2.6 \mathrm{~b} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 5.3 \pm 0.7 \mathrm{~b} \\ \text { B } \end{gathered}$	11.4 ± 1.2	$\begin{gathered} 0.9 \pm 0.5 \mathrm{c} \\ \mathrm{~B} \end{gathered}$	$\underset{\mathrm{A}}{20.3 \pm 2.5 \mathrm{~b}}$	$\frac{22.7 \pm 1.6 \mathrm{c}}{\mathrm{~A}}$	$\begin{gathered} 19.7 \pm 0.9 b \\ \text { A } \end{gathered}$	15．9さ2．4	9.4 ± 0.8	15．3 ± 1.9	$12.4 \pm 1.5 \mathrm{c}$
	50＋0＋0N	$\underset{A}{19.3 \pm 2.5 b}$	$\underset{A}{23.3 \pm 0.9 \mathrm{~cd}}$	$\begin{gathered} 14.3 \pm 2.0 \mathrm{~b} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 5.9 \pm 0.5 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	15.7 ± 1.8	$\begin{gathered} 1.1 \pm 0.4 \mathrm{c} \\ \mathrm{c} \end{gathered}$	$\underset{A B}{29.0 \pm 2.0 \mathrm{~b}}$	$\underset{\mathrm{A}}{35.4 \pm 4.3 \mathrm{bc}}$	$\underset{B}{22.2 \pm 1.5 \mathrm{ab}}$	21.9 ± 3.5	13．5 51.7	19．1 1 3．5	$16.3 \pm 2.1 \mathrm{bc}$
	50＋0＋50N	$\underset{A}{28.6 \pm 5.4 a b}$	$\underset{\mathrm{A}}{27.5 \pm 0.8 \mathrm{bc}}$	$\begin{gathered} 14.7 \pm 0.7 \mathrm{~b} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 7.0 \pm 0.8 \mathrm{ab} \\ \text { B } \end{gathered}$	19.4 ± 2.6	$\underset{C}{4.2 \pm 1.8 b c}$	$\underset{\mathrm{A}}{36.9+1.4 \mathrm{~b}}$	$\underset{\mathrm{A}}{44.5 \pm 1.4 \mathrm{abc}}$	$\underset{B}{25.0 \pm 3.9 \mathrm{ab}}$	27.6 ± 4.1	18.0 ± 1.0	21.5 ± 3.5	19．7 $\pm 1.8 \mathrm{abc}$
	100＋0＋0N	$\begin{gathered} 37.9 \pm 6.9 \mathrm{a} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 33.0 \pm 0.4 \mathrm{bc} \\ A B \end{gathered}$	$\begin{gathered} 20.2 \pm 2.7 \mathrm{ab} \\ \text { BC } \end{gathered}$	$\begin{gathered} 7.7 \pm 1.0 \mathrm{ab} \\ \mathrm{C} \end{gathered}$	24.7 ± 3.5	$\begin{gathered} 5.7 \pm 0.5 \mathrm{ab} \\ \mathrm{D} \end{gathered}$	$\underset{B}{41.5 \pm 3.1 \mathrm{~b}}$	$\begin{gathered} 53.2 \pm 5.1 \mathrm{abc} \\ \mathrm{~A} \end{gathered}$	$\underset{c}{26.7 \pm 3.3 \mathrm{ab}}$	31.8 ± 4.8	21．9さ3．1	23.7 ± 4.3	$22.8 \pm 2.5 \mathrm{ab}$
	100＋50＋0N	$\underset{\mathrm{A}}{42.3 \pm 3.2 \mathrm{a}}$	$\frac{52.9 \pm 5.2 \mathrm{a}}{\mathrm{~A}}$	$\begin{gathered} 20.4 \pm 1.6 \mathrm{ab} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 10.4 \pm 1.5 a \\ \text { B } \end{gathered}$	31.0 ± 4.0	$\begin{gathered} 7.4 \pm 1.4 \mathrm{ab} \\ \text { B } \end{gathered}$	$\underset{\text { A }}{72.8 \pm 9.6 \mathrm{a}}$	$\underset{A}{72.9 \pm 11.5 a}$	$\begin{gathered} 35.5 \pm 4.6 a \\ B \end{gathered}$	47.2 ± 7.9	21.8 ± 2.9	26.8 ± 4.3	$24.3 \pm 2.6 \mathrm{ab}$
	O＋100＋0N	$\begin{gathered} 18.3 \pm 2.3 b \\ B \end{gathered}$	$\underset{\mathrm{A}}{\frac{32.4 \pm 4.6 \mathrm{bc}}{}}$	$\begin{gathered} 17.7 \pm 3.8 \mathrm{ab} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 8.1 \pm 0.7 \mathrm{ab} \\ \mathrm{C} \end{gathered}$	19.1 ± 2.7	$\underset{c}{2.3 \pm 0.7 c}$	$\begin{gathered} 35.6 \pm 3.2 b \\ A B \end{gathered}$	$\underset{\mathrm{A}}{51.1 \pm 10.1 \mathrm{abc}}$	$\begin{gathered} 29.5 \pm 2.6 \mathrm{ab} \\ \mathrm{~B} \end{gathered}$	29．6 5 5．2	20．3 ± 4.8	26.5 ± 2.8	$23.4 \pm 2.8 \mathrm{ab}$
	50＋50＋50N	$43.3 \pm 3.5 \mathrm{a}$	$36.6 \pm 2.5 \mathrm{~b}$	$27.0 \pm 3.0 \mathrm{a}$	10．4土0．9a	29.3 ± 3.4	$8.9 \pm 1.0 \mathrm{a}$	$61.4 \pm 9.5 \mathrm{a}$	64．7士7．2ab	35．7土1．9a	42.7 ± 6.4	25．9さ3．1	28.7 ± 4.2	$27.3 \pm 2.5 \mathrm{a}$

$\begin{array}{cccccccccccc} & \text { A } & \text { A } & \text { B } & \text { C } & \text { C } & \text { A } & \text { A } & & \text { B } & & \text { A } \\ \text { Mean of fertilizations } & 28.9 \pm 2.6 & 31.6 \pm 2.3 & 18.1 \pm 1.2 & 7.8 \pm 0.5 & & & 4.4 \pm 0.7 & 42.5 \pm 3.8 & 49.2 \pm 3.8 & 27.8 \pm 1.5 & \end{array}$
Note. Means with a letter differ significantly (p-value<0.05). Letters in minuscule represent the result of SNK test of the effect of fertilization and letters in majuscule represent the result of SNK test of the effect of phenological stage. When letters are reported in the 'mean of fertilizations' row or in the 'mean of stages' column, it means no interactions between those factors were reported for that year and plant organ.

3.2 Establishment of the critical nitrogen dilution curve (C1 and V1-5 sites)

Coefficients of the CNDC of Th. intermedium with their 95% credibility interval are presented in Table 8 and their posterior densities are graphically represented in Figure 4.

The newly established CNDC is presented in Figure 5-A. It highlights that the N content decreases with the aerial biomass production of Th. intermedium. Regarding the dataset used to validate the results (V1-5 sites), the newly developed CNDC seemed to properly separate the "limiting" and "nonlimiting" N situations, while some minor errors remained. The expert-based information surimposed to some data might have led to situations where points are not fully N stressed, especially during the early crop growth where they can benefit from residual soil N and early mineralization. Yet, the discrimination of "limiting" and "non-limiting" N situations remains globally very efficient.

Figure 5-B shows the newly developed CNDC of Th. intermedium compared with other crops presented in Table 1. With a much lower a-coefficient, the CNDC of Th. intermedium appeared to be positioned under the curves of Triticum aestivum (a C3 annual species) and Zea mays (a C4 annual species) obtained by the Bayesian method (Table 1 and Table 8). The closest crops in terms of behavior appeared to be Miscanthus giganteus \& sinensis (Figure 5-B) or Grapevine (Table 1), both perennial plants.

Table 8 : Coefficients of the proposed critical nitrogen dilution curve (CNDC) of Th. intermedium and their 95\% credibility interval.

	\boldsymbol{a}-coefficient	\boldsymbol{b}-coefficient	$\boldsymbol{\%} \boldsymbol{N}=\boldsymbol{a} \boldsymbol{M S}^{-\boldsymbol{b}}$
CNDC	2.35	0.46	$\% \mathrm{~N}=2.35 \mathrm{M}^{-0.46}$
95\% credibility interval	$[1.25 ; 4.10]$	$[0.19 ; 0.76]$	

A

B

Figure 4 : Posterior densities of $a-(A)$ and b-coefficient (B) of the critical nitrogen dilution curve (CNDC). Distributions are presented over the range of their 95% credibility interval. Dark blue lines represent the median value and light blue zones represent the 50\% credibility interval.

Figure 5 : Newly developed critical nitrogen dilution curve (CNDC) of Th. intermedium set up over the C1 dataset and plotted against the V1-5 validation dataset (A). Comparison of the CNDC of Th. intermedium, Tritcum aestivum (C3 annual plant), Zea mays (C4 annual plant) and Miscanthus (C4 perennial plant). Blue line represent the CNDC generated with median parameter value, dark grey area represented the 50% Cl and light grey area the 95% Cl of CNDC of Th. intermedium.

4. Discussion

4.1 Understanding nitrogen needs through the dilution curve

Globally, the maximization of the aboveground production of DM and the N uptake was obtained with a N application comprised between 100 and $150 \mathrm{~kg} / \mathrm{ha}$ applied over the entire growing year (including fall fertilization). However, depending upon the year and the phenological stage, the increase might not always be significant compared to reduced fertilizations strategies (i.e., 50kg N/ha over the entire growing year). Jungers et al. (2017) found the optimum to range between 61 and $96 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ applied in spring to maximize yields with an average of $10.8 \mathrm{t} \mathrm{DM} / \mathrm{ha}$ at the grain maturity stage. Using our proposed N dilution curve, the N content for this level of biomass production is averaging 0.79% corresponding to a N uptake of $85 \mathrm{~kg} / \mathrm{ha}$. If we consider our maximizing N treatments (application ranging between 100 and $150 \mathrm{~kg} / \mathrm{ha}$), the Belgian mean biomass yield at grain maturity stage is around 11.5 t DM/ha over the three cropping seasons. It corresponds to an average N content of 0.76% resulting in a N uptake of $88 \mathrm{~kg} /$ ha. Production levels are relatively similar, corresponding to comparable N requirements. Regarding these N needs, N fertilizations should be adjusted to the yield targets, the different soil and climatic conditions of the field including soil N
availability to be at the optimum. In addition, to further optimize N fertilization, we recommend studying the response of the crop to finer fertilization amount intervals. Yet, the newly proposed CNDC provides a robust characterization of the N critical status and needs for Thinopyrum intermedium, as a response to crop management practices or environmental conditions (Lemaire et al., 2019). However, as Th. intermedium has a recent selection history, the potential development of new genotypes or cultivars should be studied in the future as it could lead to different growing patterns, therefore influencing N requirements or the CNDC (Lemaire et al., 2019).

Concerning the N fertilization timings of Th. intermedium, a late summer or fall fertilization could be integrated into the N management strategy of the multi-annual Th. intermedium crop. Indeed, a fall N application combined with an early-spring application resulted in relatively similar aboveground production levels of the crop as a full early-spring nitrogen application if we compare treatment 3 and 4 of our study. In addition, as Cattani et al. (2017) highlighted, N applied in fall could enhance fertile tiller initiation and N applied in spring during pre-reproductive induction could allow a better N use by inducing larger fertile tillers, larger panicles, and greater seed set. Therefore, spring applications could be reduced by transferring a part of these applications in late summer or fall or in very early-spring before reproductive induction. This strategy could also prevent risks of lodging at the end of the growing cycle, lodging that has been observed in the study of Jungers et al. (2017) under high spring N fertilizations.

During the crop cycle of Th. intermedium, N is diluted in the aboveground biomass, which results in a reduction of the N percentage. Furthermore, data reported in this study indicated that the leaf area ratio (LAR) of Th. intermedium decreased along the growing season. As explained in the study of Ratjen et al. (2018), as aboveground biomass increases, growth becomes more vertical and leaves are organized in leaf-layers which progressively differentiate leaf declination, specific leaf area and vertical N distribution. The fraction of structural biomass which has a low N concentration is known to increase at a higher relative rate than the metabolic fraction which is characterized by a high N
concentration. In that way, the metabolic fraction varies with the photosynthetic surface of the plant while the structural fraction varies with the canopy height and leaf thickness. Therefore, it has been shown that, in a large range of crops, the decline of N percentage is strictly parallel to the decline of the leaf area ratio (Ratjen et al., 2018; Lemaire et al., 2020). Our results provided evidences that the dilution of N within $T h$. intermedium tissues might respond to the same mechanisms.

4.2 Storing nutrients in perennial structures to ensure survival strategy

After an initial increase until BBCH39 or BBCH65, the N uptake within the aboveground biomass was found to decrease during the second part of the growing season as shown in Figure 3. For some treatments we observed, a decrease of up to 50% of the N uptake within the aboveground biomass during the second phase of the growing season. Surprisingly, N fertilization appeared to not really influence this N disappearance, not allocated to grains. Neither was the addition of N as fertilizer associated to any substantial increase in the allocation of N towards the grains. While it has no impact in 2019, the fertilization of $150 \mathrm{~kg} \mathrm{~N} /$ ha increased the N uptake of ears by only around 20 kg in 2020 and 12kg in 2021 in comparison to the reference treatment. Allocation of N to ears seems much lower compared to other cultivated crops such as wheat (Hussain et al., 2006). A first explanation lies in the low allocation of DM to grains. We observed that ears, including grains and vegetative biomass such as seed hulls and rachis, represented approximatively 16% of the aboveground biomass at grain harvest for the treatment 3. A study conducted by Culman et al. (2013) reported that grains represented only 10% of total aboveground dry matter of Th. intermedium, compared to 50% for annual winter wheat that allocates much more resources to seeds.

We believe that the low seeds production and the associated low N uptake in the grains are related to a long-term survival strategy of the plant, which can translocate nutrients to belowground organs at the expense of grains production. This has been previously underlined in the study of Nassi et al. (2013) for Arundo Donax L., a C3 rhizomatous grass. The plant experienced a peak nutrients level in shoots over the summer period followed by a decline and a simultaneous increase in belowground
rhizomes' level. At the end of the growing season, the crop exhibited relatively low nutrient contents in shoots. The same trend was reported for C4 crops (Miscanthus \& Spartina cynosuroides), which translocates nutrients to rhizomes at the end of each growing season, with a mean N content within the aboveground biomass declining respectively by 83% and by 77% for $M . x$ giganteus and S . cynosuroides (Beale et al., 1997). The latter species produce larger quantities of rhizomes than Th. intermedium, approximately 50\% of the belowground biomass for Arundo donax (Quinn et al., 2007) and between 60 to 80% at shallow depth considering different Miscanthus species and growth years (Dohleman et al., 2012; Christensen et al., 2016) compared to 17% for Th. intermedium (Sakiroglu et al., 2020). As reported in the study of Sakiroglu et al. (2020), nutrients are stored in rhizomes of Th. intermedium suggesting that this organ could play an important role in spring regrowth and plant survival. In addition, in this latter study, it was hypothesized that the storage of reserves in rhizomes for spring regrowth would be significant in the first few years and would then decrease with the age of the crop. Another belowground storage organ could be represented by the root system, where N might be stored and then remobilized to the shoot after defoliation to support leaf regrowth. This was observed for alfalfa or ryegrass. The N reserves stored in alfalfa roots and that contributed to shoot regrowth reached $30 \mathrm{~kg} \mathrm{~N} /$ ha in the study of Lemaire et al. (1992).

Finally, ground-level stem's bases might be another storage organ used by Th. intermedium in its survival strategy. As proposed in the review of White (1973) about perennial grasses, we also believe that the lower region of the stems (i.e., the stem's bases) could also be a storage area of most carbohydrate reserves for $T h$. intermedium that could be used as an energy source to initiate new growth following herbage removal.

Considering all these aspects, it is not unlikely that Th. intermedium would have similar internal mechanisms for the reallocation of nutrients toward belowground organs (i.e., roots and short rhizomes) or ground-level organs (i.e., stem's bases). During regrowth, Th. intermedium could use the nutrients stored in these organs to develop plants already established (from reserves of roots and/or
stem bases) or produce the shoot and root systems of new plants (from rhizomes - as hypothesized by Sakiroglu et al. (2020)).

4.3 Linking nitrogen use efficiency with resource-conservative strategy

The newly proposed CNDC of Th. intermedium seemed very different from other annual crop species' CNDC, such as Triticum aestivum L. or Zea mays L. (Figure 5-B), with globally much lower needs in terms of N nutrition translated in a a-coefficient of 2.35 . Based on the estimations of a - and b coefficients, it seems that the N amount needed for intermediate wheatgrass would be approximatively 60% of the N needed by Triticum aestivum at a production of 1 t DM/ha, and 53% at a production of $15 \mathrm{DM} / \mathrm{ha}$. These differences in N use efficiency - mostly related to a lower a coefficient (Lemaire et al., 1981) - have been highlighted in the pioneer work of Greenwood et al. (1990) who identified clear differences between C3 and C4 metabolic groups. The lower a-coefficient reported for Th. intermedium can be associated to aerial tissues with lower N content. At low levels of W (~1t DM/ha), aboveground biomass is mainly composed of leaves; this would reflect a lower leaves' N content. For treatment 3, the leaves' N content was about 2.8% in 2020 and 2.1% in 2021 at the beginning of the growing season for a biomass of 1.5 and $1.3 \mathrm{t} \mathrm{DM} /$ ha respectively.

In addition, we found out that the CNDC of Th. intermedium is relatively close from the one reported by Zapater et al. (2017) for Miscanthus (Figure 5-B). In this study, such low N needs have been related to several life traits. Potential explanation lies in the work of Beale et al. (1997) who reported (i) a higher nitrogen use efficiency (ii) a high nutrient uptake efficiency thanks to a deep and extensive root system and (iii) an efficient nutrient recycling through translocation from shoots to rhizomes and through remobilization from rhizomes to shoots the following growing season. As shown in the study of Sprunger et al. (2018) and considering the simplest NUE definition - the N content of the whole plant (roots included) divided by the N available - the nitrogen use efficiency of Th. intermedium is very high, and the plant seems to be able to assimilate large quantities of N, even greater than what has been applied. This same study reported that Th. intermedium allocated
between 23 to 50% of biomass to roots. Its deep and dense root system allows an extensive exploration of the soil profile which can further increase the nitrogen use efficiency while at the same time reducing nitrate leaching (Jungers et al., 2019).

Beyond these aspects, the higher N use efficiency of Th. intermedium could be discussed in link with different growing habits and with a resource-conservative strategy of the crop. As explained by the theory of Tilman (1982), in low soil fertility conditions, the rate of acquisition of nutrients would be low and plants would grow very slowly. The plants having the more efficient uptake capacity for the more limiting resource, and/or the ability to store and to conserve this resource through efficient internal recycling mechanisms will be more competitive. The concept of 'resource conservation' within the plant has thus been highlighted: 'as the time of residence of one resource within a plant increase, this resource becomes more efficient and in consequence it can be acquired in lower quantity for maintaining the plant alive' (Lemaire, 2001). Therefore, species with long leaf life span should have a lower demand for N resources and should persist better in a poor soil condition than species with short leaf life span. The ability for acquiring and conserving resources, for most herbaceous plant species, can be described by leaf traits (i.e., specific leaf area, dry matter content of leaf, leaf N\% and leaf life span), allowing a rapid classification between slow- and fast-growing species (Lemaire, 2001). In the study of Maire et al. (2009) this N conservative strategy has been related to different physiological traits. Indeed, some tall grass species with high N -yields (i.e., N uptake of shoots) and high root and shoot biomass can display more conservative traits such as a high leaf N use efficiency combined with a low leaf N concentration and a low root uptake capacity which is the case of Dactylis glomerata or Festuca arundinacea. Furthermore, Duchene et al. (2020) hypothesized that some root traits of Th. intermedium were also linked to a resource-conservative strategy of the plant, namely the higher average root diameter and tissue density, suggesting an enhanced root storage functions with a higher residence time of nutrients in tissues.
5. Conclusion

Our study has highlighted that Th. intermedium perennial grain crop is able to reach a high shoot dry matter production with low N needs. This is most likely associated to its long-term survival strategy that implies an important investment in perennial structures coupled with a weaker resource allocation to reproductive seeds. Some growing patterns of the crop were put in relation with mechanisms observed in plant with similar strategies, such as the N recycling through the storage of nutrients in the perennial organs or an extensive exploration of soil with a dense and deep root system allowing for a certain efficiency at extracting nutrients. In the future, N contents of roots, rhizomes and stem's bases of Th. intermedium should be studied to confirm the possible translocation of nutrients to these belowground or ground-level organs during the second part of the growing season. Overall, the CNDC found in this study will be highly helpful to help define N requirements in various pedo-climatic environments and adjust accordingly the soil-crop management, and more precisely the management of the N fertilization. Ultimately, the low N requirements of Th. intermedium coupled with a high N use efficiency demonstrate that the crop can enhance agronomic and environnemental benefits such as (i) the N cycling and accumulation in soil by its belowground and/or storage organs, (ii) the reduction of nitrate leaching or (iii) the potential to produce high aboveground biomass in N limited environnements.
6. Competing interests

The authors declare that they have no competing interests.
7. Acknowledgement

This work was partially supported by the Fonds de la Recherche Scientifique - FNRS - under grant n° R.8003.20, which is part of the Biodiversa - BiodiClim ERA-NET COFUND - project entitled 'NAPERDIV - Nature-based perennial grain cropping as a model to safeguard functional biodiversity towards future-proof agriculture'
8. Author contribution
L.F., B.D.: conceptualization and planning of the experiments. Formulation of research goals and aims.
L.F.: carrying out the samplings, data curation, formal analyses (statistical and mathematical).
B.D.: Supervision.
B.D., L.F.: Development and design of methodology.
F.C., C.D., O.D., J.B., B.D.: help provided for data presentation and visualization.
L.F., B.D., F.C., O.D., C.D. contributed to the interpretation of result.
L.F.: Writing. Original Draft Preparation.
F.C., C.D., O.D., J.B., B.D.: critical review, commentary and revision, validation.
9. References

Barriball S., 2020. Growth, development, and forage quality of Intermediate wheatgrass when grown for Kernza ${ }^{\circledR}$ perennial grain production.

Beale C. v. \& Long S.P., 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses miscanthus x Giganteus and Spartina cynosuroides. Biomass Bioenergy 12(6), 419-428, DOI:10.1016/S0961-9534(97)00016-0.
ben Abdallah F., Olivier M., Goffart J.P. \& Minet O., 2016. Establishing the Nitrogen Dilution Curve for Potato Cultivar Bintje in Belgium. Potato Res 59(3), 241-258, DOI:10.1007/s11540-016-9331-y.

Bergquist G.E., 2019. Biomass yield and soil microbial response to management of perennial intermediate wheatgrass (Thinopyrum intermedium) as grain crop and carbon sink.

Bohman B.J., M.J. Culshaw-Maurer, F. Ben Abdallah, C. Giletto, G. Bélanger, F.G. Fernández, Y. Miao, D.J. Mulla \& and C.J. Rosen, 2021. Quantifying the uncertainty in critical N concentration for potato using Bayesian methods. Plants. (in preparation). Plants - Special Issue "Improving Nitrogen-Use Efficiency at the Cropping System Scale: Agronomic and Genetic Aspects."

Bürkner P.C., 2017. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw 80(1), DOI:10.18637/jss.v080.i01.

Bürkner P.C., 2018. Advanced Bayesian multilevel modeling with the R package brms. R Journal 10(1), 395-411, DOI:10.32614/rj-2018-017.

Cattani D. \& Asselin S.R., 2017. Extending the Growing Season: Forage Seed Production and Perennial Grains. Canadian Journal of Plant Science 98(2), 235-246, DOI:10.1139/cjps-2017-0212.

Celette F. \& Gary C., 2013. Dynamics of water and nitrogen stress along the grapevine cycle as affected by cover cropping. European Journal of Agronomy 45, 142-152, DOI:10.1016/j.eja.2012.10.001.

Chakwizira E., de Ruiter J.M., Maley S. \& Teixeira E., 2016. Evaluating the critical nitrogen dilution curve for storage root crops. Field Crops Res 199, 21-30, DOI:10.1016/j.fcr.2016.09.012.

Christensen B.T., Lærke P.E., Jørgensen U., Kandel T.P. \& Thomsen I.K., 2016. Storage of Miscanthusderived carbon in rhizomes, roots, and soil. Can J Soil Sci 96(4), 354-360, DOI:10.1139/cjss-2015-0135.

Ciampitti I.A., Fernandez J., Tamagno S., Zhao B., Lemaire G. \& Makowski D., 2021a. Does the critical N dilution curve for maize crop vary across genotype x environment x management scenarios? a Bayesian analysis. European Journal of Agronomy 123, DOI:10.1016/j.eja.2020.126202.

Ciampitti I.A., Makowski D., Fernandez J., Lacasa J. \& Lemaire G., 2021b. Does water availability affect the critical N dilution curves in crops? A case study for maize, wheat, and tall fescue crops. Field Crops Res.

Clark I., Jones S.S., Reganold J.P., Sanguinet K.A. \& Murphy K.M., 2019. Agronomic Performance of Perennial Grain Genotypes in the Palouse Region of the Pacific Northwest, USA. Front Sustain Food Syst 3, 1-14, DOI:10.3389/fsufs.2019.00039.

Clément C., 2021a. Deep water uptake of perennial crops. A case study on intermediate wheatgrass and alfalfa.

Clément C., Sleiderink J., Svane S.F., Smith A.G., Diamantopoulos E., Desbrøll D.B. \& Thorupkristensen K., 2021b. Comparing the Deep Root Growth and Water Uptake of Intermediate Wheatgrass (Kernza ${ }^{\circledR}$) to Alfalfa. Res Sq 1-24.

Culman S.W., Snapp S.S., Ollenburger M., Basso B. \& DeHaan L.R., 2013. Soil and Water Quality Rapidly Responds to the Perennial Grain Kernza Wheatgrass. Agron J 105(3), 735-744, DOI:10.2134/agronj2012.0273.
de Oliveira G., Brunsell N.A., Crews T.E., DeHaan L.R. \& Vico G., 2020. Carbon and water relations in perennial Kernza (Thinopyrum intermedium): An overview. Plant Science 295, 1-4, DOI:10.1016/j.plantsci.2019.110279.
de Oliveira G., Brunsell N.A., Sutherlin C.E., Crews T.E. \& DeHaan L.R., 2018. Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Agric For Meteorol 249, 120-137, DOI:10.1016/j.agrformet.2017.11.022.

DeHaan L., Christians M., Crain J. \& Poland J., 2018. Development and evolution of an intermediate wheatgrass domestication program. Sustainability 10, 1499, DOI:10.3390/su10051499.

Dick C., Cattani D. \& Entz M.H., 2018. Kernza Intermediate wheatgrass (Thinopyrum intermedium) grain production as influenced by legume intercropping and residue management. Canadian Journal of Plant Science 98(6), 1-10.

Dohleman F.G., Heaton E.A., Arundale R.A. \& Long S.P., 2012. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus \times giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4(5), 534-544, DOI:10.1111/j.17571707.2011.01153.x.

Duchene O., Celette F., Barreiro A., Dimitrova Mårtensson L.-M., Freschet G.T. \& David C., 2020. Introducing Perennial Grain in Grain Crops Rotation: The Role of Rooting Pattern in Soil Quality Management. Agronomy 10(9), 1254, DOI:10.3390/agronomy10091254.

Duchene O., Dumont B., Cattani D.J., Fagnant L., Schlautman B., DeHaan L.R., Barriball S., Jungers J.M., Picasso V.D., David C. \& Celette F., 2021. Process-based analysis of Thinopyrum intermedium phenological development highlights the importance of dual induction for reproductive growth and agronomic performance. Agric For Meteorol.

Dumas J.B.A., 1831. Procédés de l'analyse organique., Ann. Chim. Phys., 198-213.

Dumont B., Leemans V., Mansouri M., Bodson B., Destain J.P. \& Destain M.F., 2014. Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environmental Modelling and Software 52, 121-135, DOI:10.1016/j.envsoft.2013.10.022.

Favre J.R., Castiblanco T.M., Combs D.K., Wattiaux M.A. \& Picasso V.D., 2019. Forage nutritive value and predicted fiber digestibility of Kernza intermediate wheatgrass in monoculture and in mixture with red clover during the first production year. Anim Feed Sci Technol.

Fernández J.A., Lemaire G., Bélanger G., Gastal F., Makowski D. \& Ciampitti I.A., 2021. Revisiting the critical nitrogen dilution curve for tall fescue: A quantitative synthesis. European Journal of Agronomy 131, DOI:10.1016/j.eja.2021.126380.

Fernandez J.A., van Versendaal E., Lacasa J., Makowski D., Lemaire G. \& Ciampitti I.A., 2022. Dataset characteristics for the determination of critical nitrogen dilution curves: From past to new guidelines. European Journal of Agronomy 139, 1-11, DOI:10.1016/j.eja.2022.126568.

Flénet F., Guérif M., Boiffin J., Dorvillez D. \& Champolivier L., 2006. The critical N dilution curve for linseed (Linum usitatissimum L.) is different from other C3 species. European Journal of Agronomy 24(4), 367-373, DOI:10.1016/j.eja.2006.01.002.

Frahm C.S., Tautges N.E., Jungers J.M., Ehlke N.J., Wyse D.L. \& Sheaffer C.C., 2018. Responses of intermediate wheatgrass to plant growth regulators and nitrogen fertilizer. Agron J 110(3), 1028-1035, DOI:10.2134/agronj2017.11.0635.

Gastal F. \& Lemaire G., 2002. N uptake and distribution in crops: An agronomical and ecophysiological perspective. In: Journal of Experimental Botany. Oxford University Press, 789799.

Gastal F., Lemaire G., Durand J. \& Louarn G., 2012. "Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency" (Chapter 8) in Carbon, water and nutrient economies of crops, Crop Physiology, Elsevier Inc., 161-206.

Gislum R. \& Boelt B., 2009. Validity of accessible critical nitrogen dilution curves in perennial ryegrass for seed production. Field Crops Res 111(1-2), 152-156, DOI:10.1016/j.fcr.2008.11.009.

Greenwood D.J., Lemaire G., Gosse G., Cruz P. \& Draycott A., 1990. Decline in Percentage N of C3 and C4 Crops with Increasing Plant Mass, NEETESON Source: Annals of Botany, 425-436.

Hunter M.C., Sheaffer C.C., Culman S.W. \& Jungers J.M., 2020. Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Agron J 112, 1748-1763, DOI:10.1002/agj2.20128.

Hunter M.C., Sheaffer C.C., Culman S.W., Lazarus W.F. \& Jungers J.M., 2020. Effects of defoliation and row spacing on intermediate wheatgrass II: Forage yield and economics. Agron J 112(3), 18621880, DOI:10.1002/agj2.20124.

Hussain I., Khan M.A. \& Khan E.A., 2006. Bread wheat varieties as influenced by different nitrogen levels. J Zhejiang Univ Sci B.

Jungers J.M., DeHaan L.H., Mulla D.J., Sheaffer C.C. \& Wyse D.L., 2019. Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA. Agric Ecosyst Environ 272, 63-73, DOI:10.1016/J.AGEE.2018.11.007.

Jungers J.M., DeHaan L.R., Betts K.J., Sheaffer C.C. \& Wyse D.L., 2017. Intermediate wheatgrass grain and forage yield responses to nitrogen fertilization. Agron J 109(2), 462-472, DOI:10.2134/agronj2016.07.0438.

Jungers J.M., Frahm C.S., Tautges N.E., Ehlke N.J., Wells M.S., Wyse D.L. \& Sheaffer C.C., 2018. Growth, development, and biomass partitioning of the perennial grain crop Thinopyrum intermedium. Annals of Applied Biology 1-9, DOI:10.1111/aab.12425.

Justes E., Meynard J.-M., Machet J.-M. \& Thelier-Huche L., 1994. Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops. Botany 74(4), 397-407.

Lanker M., Bell M. \& Picasso V.D., 2020. Farmer perspectives and experiences introducing the novel perennial grain Kernza intermediate wheatgrass in the US Midwest. Renewable Agriculture and Food Systems 35(6), 653-662, DOI:10.1017/S1742170519000310.

Lemaire G., 2001. Ecophysiology of Grasslands: Dynamic Aspects of Forage Plant Populations in Grazed Swards.

Lemaire G. \& Belanger G., 2020. Allometries in plants as drivers of forage nutritive value: A review. Agriculture .

Lemaire G., Cruz P., Gosse G. \& Chartier M., 1985. Etude des relations entre la dynamique de prélèvement d'azote et la dynamique de croissance en matière sèche d'un peuplement de luzerne (Medicago sativa L.). Agronomie 5(8), 685-692, DOI:10.1051/agro:19850803.

Lemaire G. \& Gastal F., 1997. N uptake and distribution in plant canopies. In: Lemaire G (Ed) Diagnosis on the Nitrogen Status in Crops. Springer-Verlag, Heidelberg (Germany), 3-43.

Lemaire G., Khaity M., Onillon B., Allirand J.M., Chartier M. \& Gosse G., 1992. Dynamics of Accumulation and Partitioning of N in Leaves, Stems and Roots of Lucerne (Medicago sativa L.) in a Dense Canopy, Source: Annals of Botany, 429-435.

Lemaire G. \& Salette J., 1984. Relation entre dynamique de croissance et dynamiquede prélèvement d'azote pour un peuplement degraminées fourragères. I. - Etude de l'effet du milieu, EDP Sciences, 423-430.

Lemaire G., Sinclair T., Sadras V. \& Bélanger G., 2019. Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agron Sustain Dev 39(2), DOI:10.1007/s13593-019-0570-6.

Maire V., Gross N., da Silveira Pontes L., Picon-Cochard C. \& Soussana J.F., 2009. Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Funct Ecol 23(4), 668-679, DOI:10.1111/j.1365-2435.2009.01557.x.

Makowski D., Zhao B., Ata-Ul-Karim S.T. \& Lemaire G., 2020. Analyzing uncertainty in critical nitrogen dilution curves. European Journal of Agronomy 118, 126076, DOI:10.1016/j.eja.2020.126076.

Meier uwe, 1997. Stades phénologiques des Mono- et Dicotylédones cultivées BBCH-Monograph. Federal Biological Research Centre for Agriculture and Forestry ed., Berlin: Blackwell Wissenschaft.

Nassi o Di Nasso N., Roncucci N. \& Bonari E., 2013. Seasonal Dynamics of Aboveground and Belowground Biomass and Nutrient Accumulation and Remobilization in Giant Reed (Arundo donax L.): A Three-Year Study on Marginal Land. Bioenergy Res 6(2), 725-736, DOI:10.1007/s12155-012-9289-9.

Newell M.T. \& Hayes R.C., 2017. An initial investigation of forage production and feed quality of perennial wheat derivatives. Crop Pasture Sci 68(12), 1141-1148, DOI:10.1071/CP16405.

Ogle D., John L. st., Tober D. \& Jensen K., 2011. Plant Guide for intermediate wheatgrass (Thinopyrum intermedium). USDA-Natural Resources Conservation Service, Idaho and North Dakota Plant Materials Centers.

Quinn L.D., Rauterkus M.A. \& Holt J.S., 2007. Effects of Nitrogen Enrichment and Competition on Growth and Spread of Giant Reed (Arundo donax). Weed Sci 55(4), 319-326, DOI:10.1614/WS-06-139.1.

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ratjen A.M., Lemaire G., Kage H., Plénet D. \& Justes E., 2018. Key variables for simulating leaf area and N status: Biomass based relations versus phenology driven approaches. European Journal of Agronomy 100, 110-117, DOI:10.1016/j.eja.2018.04.008.

Sainju U.M., Allen B.L., Lenssen A.W. \& Ghimire R.P., 2017. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates. Field Crops Res 210, 183191, DOI:10.1016/j.fcr.2017.05.029.

Sakiroglu M., Dong C., Hall M.B., Jungers J. \& Picasso V., 2020. How does nitrogen and forage harvest affect belowground biomass and nonstructural carbohydrates in dual-use Kernza intermediate wheatgrass? Crop Sci 60(5), 2562-2573, DOI:10.1002/csc2.20239.

Santana A.C.A., de Oliveira E.C.A., da Silva V.S.G., dos Santos R.L., da Silva M.A. \& Freire F.J., 2020. Critical nitrogen dilution curves and productivity assessments for plant cane \| Curvas de diluição do nitrogênio crítico e produtividade da cana planta. Revista Brasileira de Engenharia Agricola e Ambiental 24(4), 244-251.

Sprunger C.D., Culman S.W., Peralta A.L., DuPont S.T., Lennon J.T. \& Snapp S.S., 2019. Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics. Soil Biol Biochem 137, 107573, DOI:10.1016/j.soilbio.2019.107573.

Sprunger C.D., Culman S.W., Robertson G.P. \& Snapp S.S., 2018. How does nitrogen and perenniality influence belowground biomass and nitrogen use efficiency in small grain cereals? Crop Sci 58, 2110-2120, DOI:10.2135/cropsci2018.02.0123.

Tautges N.E., Jungers J.M., DeHaan L.R., Wyse D.L. \& Sheaffer C.C., 2018. Maintaining grain yields of the perennial cereal intermediate wheatgrass in monoculture v. bi-culture with alfalfa in the Upper Midwestern USA. J Agric Sci 156, 758-773, DOI:10.1017/S0021859618000680.

Tilman D., 1982. Resource competition and community structure., Princeton: Princeton University Press, 1-296.

White L.M., 1973. Carbohydrate Reserves of Grasses: A Review. Journal of range management 26(1), 13-18.

Yao B., Wang X., Lemaire G., Makowski D., Cao Q., Liu X., Liu L., Liu B., Zhu Y., Cao W. \& Tang L., 2021. Uncertainty analysis of critical nitrogen dilution curves for wheat. European Journal of Agronomy 128, DOI:10.1016/j.eja.2021.126315.

Zapater M., Catterou M., Mary B., Ollier M., Fingar L., Mignot E., Ferchaud F., Strullu L., Dubois F. \& Brancourt-Hulmel M., 2017. A Single and Robust Critical Nitrogen Dilution Curve for Miscanthus \times giganteus and Miscanthus sinensis. Bioenergy Res 10(1), 115-128, DOI:10.1007/s12155-016-9781-8.

Zhang X., Ohm J.-B., Haring S., Dehaan L.R. \& Anderson J.A., 2015. Towards the understanding of enduse quality in intermediate wheatgrass (Thinopyrum intermedium): High-molecular-weight glutenin subunits, protein polymerization, and mixing characteristics. J Cereal Sci 66, 81-88, DOI:10.1016/j.jcs.2015.10.008.

Ziadi N., Bélanger G., Claessens A., Lefebvre L., Cambouris A.N., Tremblay N., Nolin M.C. \& Parent L.É., 2010. Determination of a critical nitrogen dilution curve for spring wheat. Agron J 102(1), 241-250, DOI:10.2134/agronj2009.0266.

Table 1 : Coefficients of the critical nitrogen dilution curve (described in Eq.1) of different cultivated species 6
Table 2 : Timings and amounts ($\mathrm{kg} \mathrm{N} / \mathrm{ha}$) of N fertilization treatments of the Belgian experimental C1

site from 2019 to 2021 .
Table 3 : Detailed information about experimental sites, their design and their management. 7
Table 4 : Priors used to fit the critical nitrogen dilution curve (CNDC) with the hierarchical Bayesian model. 11
Table 5 : F-statistics and significance levels from the performed three-way ANOVA. 15
Table 6 : Aboveground biomass production (t DM/ha) for the different N fertilizations andphenological stages for 2019(A), 2020(B) and 2021(C). Data are presented as average \pm standarderror.19
Table 7 : Aboveground N uptake (kg $N / h a$) for the different N fertilizations and phenological stagesfor $2019(A), 2020(B)$ and 2021 (C). Data are presented as average \pm standard error.20
Table 8 : Coefficients of the proposed critical nitrogen dilution curve (CNDC) of Th. intermedium andtheir 95\% credibility interval.22

11. List of figures

Figure 1 : Aboveground DM (t / ha) partitioning in plant organs according to the accumulation of crop development units (UPVT) in 2019(A), 2020(B) and 2021(C) for the N treatment 3 (50+0+50N).15

Figure 2 : Aboveground N content $(\% N)$ of plant organs according to the accumulation of crop development units (UPVT) in 2019(A), 2020(B) and 2021(C) for the N treatment 3 (50+0+50N).15

Figure 3: Aboveground N uptake ($\mathrm{kg} \mathrm{N} / \mathrm{ha}$) partitioning in plant organs according to the accumulation of crop development units (UPVT) in 2019(A), 2020(B) and 2021(C) for the N treatment 3 ($50+0+50 \mathrm{~N})$.

Figure 4 : Posterior densities of $a-(A)$ and b-coefficient (B) of the critical nitrogen dilution curve (CNDC). Distributions are presented over the range of their 95\% credibility interval. Dark blue lines represent the median value and light blue zones represent the 50% credibility interval.

Figure 5 : Newly developed critical nitrogen dilution curve (CNDC) of Th. intermedium set up over the C1 dataset and plotted against the V1-5 validation dataset (A). Comparison of the CNDC of Th. intermedium, Tritcum aestivum (C3 annual plant), Zea mays (C4 annual plant) and Miscanthus (C4 perennial plant). Blue line represent the CNDC generated with median parameter value, dark grey area represented the $50 \% \mathrm{Cl}$ and light grey area the $95 \% \mathrm{Cl}$ of CNDC of Th. intermedium. 23

Table S1 ：N content（ $\% N$ ）within the aboveground biomass for the different N fertilizations and phenological stages for 2019（A），2020（B）and 2021（C）．Data are presented as average \pm standard

（A） 2019	Fertilization	N content of leaves and stems \pm S．E．（\％）										N content of ears \pm S．E．（\％）		
		BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages						BBCH65	BBCH89	Mean of stages
	O＋0＋0N	$2.40 \pm 0.04 \mathrm{c}$	0．91＋0．01b	$0.50 \pm 0.02 \mathrm{~b}$	0.34	1.04						1.71 ± 0.04	1.13	1.42
	$50+0+0 \mathrm{~N}$	$2.90 \pm 0.01 \mathrm{~b}$	$1.08 \pm 0.08 \mathrm{~b}$	$0.56 \pm 0.03 \mathrm{~b}$	0.32	1.22						1.89 ± 0.09	1.15	1.52
	$50+0+50 \mathrm{~N}$	3．23 20.05 a	$0.99 \pm 0.06 \mathrm{~b}$	$0.54 \pm 0.08 \mathrm{~b}$	0.43	1.30						1.95 ± 0.05	1.19	1.57
	100＋0＋0N	$3.35 \pm 0.07 \mathrm{a}$	$1.16 \pm 0.08 \mathrm{ab}$	0．72 ${ }^{\text {a }}$ ． 08 a	0.37	1.40						1.96 ± 0.02	1.10	1.53
	100＋0＋50N	3．46さ0．03a	$1.32 \pm 0.04 \mathrm{a}$	0．80土0．03a	0.35	1.48						1.89 ± 0.03	1.19	1.54
	Mean of fertilizations	3.09 ± 0.08	1.09 ± 0.04	0.62 ± 0.03	0.36							1.88 ± 0.03	1.15	
（B） 2020	Fertilization													
		N content of leaves \pm S．E．（\％）					N content of stems \pm S．E．（\％）					N content of ears \pm S．E（\％）		
		BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages	BBCH30	BBCH39	BBCH65	BBCH89	Mean of stages	BBCH65	BBCH89	Mean of stages
	O＋0＋0N	$\underset{\mathrm{A}}{2.13 \pm 0.09 \mathrm{c}}$	$\begin{gathered} 1.09 \pm 0.10 \mathrm{~b} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.90 \pm 0.05 \mathrm{e} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.46 \pm 0.01 \mathrm{~d} \\ \mathrm{C} \end{gathered}$	1.14 ± 0.16	$\underset{\mathrm{A}}{1.19 \pm 0.05 \mathrm{bc}}$	$\begin{gathered} 0.78 \pm 0.09 a \\ B \end{gathered}$	$\begin{gathered} 0.38 \pm 0.06 \mathrm{c} \\ \mathrm{c} \end{gathered}$	$\underset{c}{0.32 \pm 0.02 b}$	0.67 ± 0.09	1．37 ± 0.04	1．30 0.11	$1.33 \pm 0.06 \mathrm{~b}$
	50＋0＋0N	$\frac{2.40 \pm 0.13 \mathrm{bc}}{\mathrm{~A}}$	$\underset{\mathrm{B}}{\frac{1.34 \pm 0.11 \mathrm{~b}}{}}$	$\begin{gathered} 1.18 \pm 0.05 \mathrm{~d} \\ B \end{gathered}$	$\underset{c}{0.48 \pm 0.01 \mathrm{~d}}$	1.35 ± 0.18	$\underset{\mathrm{A}}{1.39 \pm 0.09 \mathrm{abc}}$	$\begin{gathered} 0.80 \pm 0.04 a \\ B \end{gathered}$	$\begin{gathered} 0.48 \pm 0.04 \mathrm{bc} \\ \mathrm{C} \end{gathered}$	$\underset{\mathrm{D}}{0.31 \pm 0.01 \mathrm{~b}}$	0.74 ± 0.11	1.43 ± 0.08	1．32 ± 0.03	1．37 $\ddagger 0.05 \mathrm{~b}$
	50＋0＋50N	$\frac{2.75 \pm 0.25 \mathrm{ab}}{\mathrm{~A}}$	$\underset{\mathrm{B}}{\frac{1.75 \pm 0.08 \mathrm{a}}{}}$	$\begin{gathered} 1.38 \pm 0.02 \mathrm{c} \\ \mathrm{~B} \end{gathered}$	$\underset{\mathrm{C}}{0.56 \pm 0.02 \mathrm{~cd}}$	1.61 ± 0.21	$\underset{\mathrm{A}}{1.68 \pm 0.28 \mathrm{ab}}$	$\begin{gathered} 0.94 \pm 0.04 a \\ B \end{gathered}$	$\begin{gathered} 0.57 \pm 0.03 b \\ \text { BC } \end{gathered}$	$\underset{c}{0.37 \pm 0.01 \mathrm{~b}}$	0.89 ± 0.14	1.39 ± 0.03	1．39 0.03	$1.39 \pm 0.02 \mathrm{~b}$
	100＋0＋0N	$\begin{gathered} 3.01 \pm 0.12 \mathrm{a} \\ \mathrm{~A} \end{gathered}$	$\underset{\mathrm{B}}{2.19 \pm 0.13 \mathrm{a}}$	$\underset{c}{1.61 \pm 0.02 b}$	$\begin{gathered} 0.65 \pm 0.04 \mathrm{bc} \\ \mathrm{D} \end{gathered}$	1.86 ± 0.23	$\underset{\mathrm{A}}{1.74 \pm 0.12 \mathrm{ab}}$	$\begin{gathered} 1.11 \pm 0.11 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.68 \pm 0.04 a \\ c \end{gathered}$	$\underset{\mathrm{D}}{0.37 \pm 0.02 b}$	0.98 ± 0.14	1．47 ± 0.04	1.46 ± 0.04	$1.46 \pm 0.03 \mathrm{~b}$
	100＋50＋0N	$\begin{gathered} 3.26 \pm 0.18 \mathrm{a} \\ \mathrm{~A} \end{gathered}$	$\underset{\mathrm{B}}{\frac{2.15 \pm 0.15 a}{}}$	$\begin{gathered} 1.86 \pm 0.10 \mathrm{a} \\ \mathrm{C} \end{gathered}$	$\underset{\mathrm{D}}{0.81 \pm 0.06 \mathrm{a}}$	2.02 ± 0.23	$\underset{\mathrm{A}}{1.92 \pm 0.24 \mathrm{a}}$	$\begin{gathered} 1.12 \pm 0.12 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.80 \pm 0.04 \mathrm{a} \\ B C \end{gathered}$	$\begin{gathered} 0.49 \pm 0.02 a \\ c \end{gathered}$	1．09 0.15	1.57 ± 0.08	1.73 ± 0.05	$1.65 \pm 0.05 a$
	O＋100＋0N	$\underset{\mathrm{A}}{2.02 \pm 0.06 \mathrm{c}}$	$\underset{c}{1.25 \pm 0.03 b}$	$\begin{gathered} 1.83 \pm 0.03 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.73 \pm 0.04 \mathrm{ab} \\ \mathrm{D} \end{gathered}$	1.46 ± 0.13	$\frac{1.11 \pm 0.08 \mathrm{c}}{\mathrm{~A}}$	$\begin{gathered} 0.76 \pm 0.06 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.78 \pm 0.05 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\underset{C}{0.48 \pm 0.03 a}$	0.78 ± 0.06	1．65 ± 0.04	1．72 ± 0.06	1．69＋0．03a
	50＋50＋50N	$\underset{\mathrm{A}}{2.98 \mathrm{a}}$	$\underset{\mathrm{B}}{1.91 \pm 0.19 \mathrm{a}}$	$\begin{gathered} 1.75 \pm 0.04 \mathrm{ab} \\ \mathrm{~B} \end{gathered}$	$\underset{\mathrm{c}}{0.72 \pm 0.03 \mathrm{ab}}$	1.84 ± 0.22	$\underset{\mathrm{A}}{1.73 \pm 0.20 \mathrm{ab}}$	$\begin{gathered} 1.00 \pm 0.11 \mathrm{a} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 0.76 \pm 0.03 \mathrm{a} \\ \mathrm{BC} \end{gathered}$	$\underset{C}{0.46 \pm 0.02 a}$	0.99 ± 0.13	1．61 ± 0.07	1.55 ± 0.06	1．58 50.04 a
	Mean of fertilizations	2.65 ± 0.10	1.67 ± 0.09	1.50 ± 0.07	0.63 ± 0.03		1.54 ± 0.08	0．93 ± 0.04	0.64 ± 0.03	0.40 ± 0.02		1.50 ± 0.03	1.50 ± 0.04	
（C） 2021														
	O＋O＋ON	$\underset{\mathrm{A}}{1.81 \pm 0.07 \mathrm{~b}}$	$\underset{\mathrm{B}}{1.31 \pm 0.03 \mathrm{c}}$	$\stackrel{\substack{1.01 \pm 0.15 b \\ c}}{ }$	$\underset{\text { D }}{0.53 \pm 0.02 c}$	1．17 ± 0.13	1.10 ± 0.18	1.15 ± 0.10	0.51 ± 0.01	0.34 ± 0.01	0．77 $\pm 0.10 \mathrm{c}$	1．34土0．11	1．37 ± 0.07	$1.35 \pm 0.06 \mathrm{~b}$
	50＋0＋0N	$\underset{\mathrm{A}}{2.09 \pm 0.05 \mathrm{~b}}$	$\underset{\mathrm{B}}{1.48 \pm 0.02 \mathrm{bc}}$	$\underset{c}{0.94 \pm 0.04 b}$	$\underset{\mathrm{D}}{0.53 \pm 0.01 \mathrm{c}}$	1.26 ± 0.15	1.19 ± 0.20	1.07 ± 0.04	0.57 ± 0.01	0．33 ± 0.02	0．79 9.10 c	1.33 ± 0.03	1．400．04	$1.37 \pm 0.02 \mathrm{~b}$
	50＋0＋50N	$\underset{\mathrm{A}}{2.07 \pm 0.07 \mathrm{~b}}$	$\begin{gathered} 1.56 \pm 0.10 \mathrm{abc} \\ \text { B } \end{gathered}$	$\underset{c}{0.90 \pm 0.02 b}$	$\underset{D}{0.60 \pm 0.04 \mathrm{bc}}$	1.29 ± 0.15	1.16 ± 0.31	1．04 ± 0.05	0.58 ± 0.02	0．32 ± 0.04	0．78さ0．11c	1.43 ± 0.06	1.41 ± 0.05	1．42 $\pm 0.04 \mathrm{ab}$
	100＋0＋0N	$\underset{\mathrm{A}}{2.47 \pm 0.22 \mathrm{a}}$	$\underset{\text { B }}{\substack{1.73 \pm 0.05 \mathrm{ab}}}$	$\underset{c}{\substack{0.99 \pm 0.06 b \\ C}}$	$0.66 \pm 0.03 \mathrm{bc}$ C	1.46 ± 0.19	1.71 ± 0.12	1.05 ± 0.02	0.61 ± 0.03	0.33 ± 0.03	$0.92 \pm 0.14 \mathrm{abc}$	1.60 ± 0.05	1．47 ± 0.04	1．53 $\pm 0.04 \mathrm{ab}$
	100＋50＋0N	$\underset{\mathrm{A}}{2.51+0.08 \mathrm{a}}$	$\begin{gathered} 1.94 \pm 0.07 a \\ B \end{gathered}$	$\begin{gathered} 1.30 \pm 0.12 \mathrm{~b} \\ \mathrm{C} \end{gathered}$	$\underset{\mathrm{D}}{0.90 \pm 0.07 \mathrm{a}}$	1.66 ± 0.16	1.69 ± 0.06	1.26 ± 0.18	0.94 ± 0.04	0.45 ± 0.05	1．08さ0．13a	1．76 0.16	1．57 $\pm .11$	1．66 50.10 a
	O＋100＋0N	$\underset{\mathrm{A}}{1.77 \pm 0.13 \mathrm{~b}}$	$\underset{A}{1.85 \pm 0.17 a b}$	$\underset{\mathrm{B}}{1.21 \pm 0.18 \mathrm{~b}}$	$\begin{gathered} 0.70 \pm 0.06 \mathrm{bc} \\ \mathrm{C} \end{gathered}$	1.38 ± 0.14	1.20 ± 0.12	1.16 ± 0.05	0.79 ± 0.14	0.35 ± 0.03	0．88さ0．10bc	1．61 \pm ． 20	1．49き0．11	1．55 $\pm 0.11 \mathrm{ab}$
	50＋50＋50N	$\underset{A}{2.16 \pm 0.16 \mathrm{~b}}$	$\underset{\mathrm{A}}{1.72 \pm 0.11 \mathrm{ab}}$	$\underset{\mathrm{A}}{1.78 \pm 0.27 \mathrm{a}}$	$\begin{gathered} 0.79 \pm 0.07 \mathrm{ab} \\ \text { B } \end{gathered}$	1.61 ± 0.15	1.47 ± 0.02	1.31 ± 0.17	0.91 ± 0.08	0.41 ± 0.06	$1.03 \pm 0.11 \mathrm{ab}$	1.84 ± 0.12	1.56 ± 0.05	$1.70 \pm 0.08 \mathrm{a}$

Mean of fertilizations

Note. Means with a letter differ significantly (p-value<0.05). Letters in minuscule represent the result of SNK test of the effect of fertilization and letters in majuscule represent the result of SNK test of the effect of phenological stage. When letter are reported in the 'mean of fertilizations' row or in the 'mean of stages' column, it means no interactions between those factors were reported for that year and plant organ.

Table S2 : Leaf/Stem ratio of the aboveground biomass for the different N fertilizations and phenological stages from 2020(A) to 2021(B). Data are presented as average \pm standard error.

Note. Means with a letter differ significantly (p-value <0.05). Letters in minuscule represent the result of SNK test of the effect of fertilization and letters in majuscule represent the result of SNK test of the effect of phenological stage. When letters
are reported in the 'mean of fertilizations' row or in the 'mean of stages' column, it means no interactions between those factors were reported for that year.

b Si Intercepl

 approach.

Figure S2 : Posterior distribution and the post-warmup samples from all 4 Markov chains of 10000 iterations of σ_{s} and σ obtained with the Bayesian approach.

Figure S3 : Relationship between nitrogen concentration of the total aboveground biomass (\%) and dry matter production of Th. intermedium from the Belgian experimental C1 dataset used to set up the critical nitrogen dilution curve (CNDC). Black line represent the CNDC generated with median parameter value, dark grey area represented its 50% CI and light grey area its 95% CI of CNDC.

