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OVERHEAD ELECTRICAL TRANSMISSION LINE GALLOPING
A Full Multi-Span 3-DOF Model, Some Applications and Design Recommendations
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Abstract - A full multi-span three-degree-of-freedom
(3-DOF) iced transmission line model is presented. This
new model is applicable for describing the galloping phe-
nomena of both single and bundle lines, for performing
static and dynamic analysis, and predicting the galloping
behavior of iced transmission line, as well as for perform-
ing checks against field experience. Some applications for
overhead transmission lines design are detailed. Some orig-
inal recommendations for the design of multi-span bundle
configurations are proposed.

Keywords: galloping, overhead transmission line, bun-
dle, torsional stiffness.

1. INTRODUCTION

Galloping is a low frequency, large amplitude, wind-
induced vibration of both single and bundle overhead trans-
mission lines, with a single or a few loops of standing waves
per span. It is caused by moderately strong, steady cross-
wind acting upon an asymmetrically-iced conductor sur-
face. The ice accretion on the conductor has the effect of
modifying the cross-sectional shape of the conductor, so
that it becomes aerodynamically unstable. The large am-
plitudes are generally - but not always - in a vertical plane,
and range typically from & 0.1 to £ 1.0 times the sag of the
span. Frequencies are dependent on the type of line con-
struction and the oscillation mode excited. For a typical
EHV construction, frequencies usually range from 0.15 Hz
to 1.0 Hz. Winds approximately normal to the line with a
speed above 7 m/s are usually required and it can not be
assumed that there is necessarily an upper speed limit.

Because the galloping amplitudes may approach or even
exceed the sag of the span, the distances between phases
become too small and phase-to-phase flashovers occur. The
conductors are damaged by the power arc. Indeed, the line
can be removed from service by the utility.

When galloping occurs, the strings and towers are sub-
jected to high dynamic stress leading to mechanical dam-
ages, such as loosening and ejection of tower bolts, wear
on landing bolts, ovalling of holes and distortion of tower
swivels and associated hardware. Galloping can also cause
the fatigue of conductor at semi-tension strings and jumpers,
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and of tower steelwork during sustained events. In ad-
dition, when the electrical damage happens, damage to
insulator pins, spacers and Stockbridge dampers, to sub-
conductor strands at suspension clamps and spacer clamps
from fault current equalization within the bundle can also
occur. '

Galloping necessitates high average annual cost for re-
pairs, for building lines to have large clearance, as well as
for the installation of control devices. This cost is addi-
tional to the loss of revenue during the servicing. More-
over, several million dollars may be spent every ten years
when a particularly severe example of galloping occurs and
causes the collapse of lines and towers.

State-of-the-Art

Galloping of iced conductors has been a design and op-
erating problem since early this century. In 1930, Davidson
[3] attributed the occurrence of galloping during freezing
rain storms to the change in the aerodynamic lift when the
wind blows across an iced conductor. Two years later, Den
Hartog presented the mathematical description of the gal-
loping mechanism — the classical aerodynamic instability
criterion [5]. ‘

Progress, both in the analytical attack on the prob-
lem and in the development of countermeasures, has been
slow. Sixty years after the publication of Den Hartog’s
analysis, important questions remain as to which variables
and mechanisms are significant, and the validation of the-
ories of galloping is still not satisfactory. No practical pro-
tection method has been developed that is recognized as
fully-reliable. The slow progress has resulted from several
reasons. Galloping is difficult to study in nature because of
its sporadic occurrence, both in time and location. Quan-
titative data are difficult and sometimes risky to obtain.
The varied character of ice deposits from one occasion to
another makes generalization of a few observations unreli-
able.

Theoretical studies for galloping are greatly compli-
cated by its dependence on nonlinear geometry, the time
varying nature of the aerodynamic loads, the interactions
between vertical, transversal and torsional motions, the
conductors and supporting hardware as well as between
adjacent spans. In addition, the unknown variation of ice
accumulation and a changing wind along a conductor add
further complexities. Therefore, theoretical studies have
concentrated mostly on deterministic investigations which
may be categorized as analytical or numerical. ,

Den Hartog’s approach [5] takes only the aerodynamic
properties of the ice profile into account. He proposed that
sustained vibrations happen when the negative slope of the
lift coefficient versus the wind’s relative angle of attack ex-
ceeds the drag coefficient. The mechanical characteristics
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of the system, the conductor torsion in particular, are ex-
cluded from that theory, at least as concerns aerodynamic
effects [10, 15]. It has been suggested (7, 16, 17, 18] that
the influence of the twisting of a conductor may also be
significant in the initiation of galloping. N igol and Buchan
[16] emphasized the importance of the twisting. By per-
forming wind-tunnel experiments, they concluded that the
galloping of a naturally iced line is caused by a flutter
instability rather than by a Den Hartog type of instabil-
ity. In fact, measurements carried out on real ice profiles
[2, 7, 11, 18, 19] suggested that the Den Hartog condi-
tion holds only for very slightly eccentric sheaths with lift
properties opposite to those of more markedly eccentric
profiles, at least for near zero angle of attack (the vector
joining the centers of gravity of sheath and conductor is
nearly parallel to the transversal wind direction). This
type of profile generally appears as a result of freezing rain
and its aerodynamic pitching moment coefficient is negli-
gible. Furthermore, it has been suspected that a lateral
(out-of-plane) motion of the conductor may be important
to the initiation of galloping [21]. This phenomenon was
observed by Davis et al [4] on a bare conductor.

The majority of previous studies on galloping were per-
formed in a 2-DOF system (vertical and torsion) [1, 20, 24].
Even in a 3-DOF system (transversal in addition), the ex-
isting theories usually neglect some second order couplings
and are only sufficient to explain the galloping of the sin-
gle conductors, not that of bundle ones (8, 16, 25]. To
date, very few developments on both stability and time re-
sponse analysis have been performed, especially on bundle
conductors.

Although the finite element approach is straightforward
in principle, conventional time-stepping computations to

. find a steady state amplitude of galloping can be extraor-
dinarily protracted. Because of the tediousness of para-
metric calculations, it is much easier to understand the
physics and to obtain a better grasp of the phenomena by
simplified approaches rather than by finite element ones.
Therefore, a more effective approach needs to be developed
to provide tools for analyzing galloping and to find more
affective control devices. .

This full multi-span 3-DOF model [22] can be described
by a relatively simple mathematical model but which is
able to describe the galloping phenomena as fully as possi-
ble, for both single and bundle conductors and both dead-
end and multi-span sections, including a new theory of tor-
sional stiffness, while taking into account the basic param-
eters and couplings which were neglected in other existing
theories [16, 17, 25]. Some theoretical and experimental
comparisons have been made with this new theory [22].
The new model correlates well with the published experi-
mental results, test line results and actual, full-scale field
tests. The simulation results of torsional stiffness coincide
with the experiments to a very high degree of accuracy.

2. A Full Multi-Span 3-DOF Model

2.1 Hypotheses

Most of observed galloping takes the form of standing
waves. The standing waves may occur with one, two or as
many as ten loops in a span. Data on observed galloping
of operating lines shows that the observed distribution of

four or more loops is only about 2%. Therefore, for actual
typical spans (span length up to 400 m), an approach by
one, two and three harmonic sine waves with the possible
mixing faithfully reproduces practical observations.

The mechanical behavior of overhead transmission lines
is basically ruled by tension calculations. Due to the fact
that the sag is only 2 — 4% of the span length, the ten-
sion along a span can be considered independent of the ab-
scissa. The suspension insulator is considered as a rigid
body which can move only in a longitudinal direction.

As most of the actual attachments of bundle conductors
at suspension clamps, the relative longitudinal movement
between subconductors is free (within several centimeters).
This has the effects on torsional stiffness of a multi-span
section.

The anchoring attachment points are considered with-
out vertical, transversal nor torsional motions. The an-
choring attachment in torsion is defined by a flexibility
matrix which is easily managed for most practical cases by
the knowledge of yoke plate design.

The towers are considered as springs. Because the
tower frequency is generally higher than 1 Hz (which is
higher than galloping frequency), the tower anchoring stiff-
ness is approximated by its static behavior. The dynamic
behavior of towers are not considered.

Subconductors are uniformly distributed along the cir-
cumferential geometry.

The bundle is found out by an equivalent single con-
ductor that presents similar mechanical behavior to that
of a bundle of any number of subconductors (similar as
used by Yamaoka [23]). The main differences with single
conductor are from torsional stiffness.

Ice accretion is presumed to be received instantaneously
on the conductor all along the span under no-wind condi-
tion, i.e. the same ice shape all along the span. Thus the
ice accretion is defined by one angle which is in fact the
angle at the anchoring or suspension point, independent
of wind condition. Due to the bundle stiffness, ice pen-
dulum effect, blow-back angle, and aerodynamic pitching
moment, the ice position which is a function of ice shape
and wind speed varies finally all along the span. Aerody-
namic properties on each subconductor are considered the
same.

2.2 The Brief Mechanism of Galloping

Galloping is always caused by moderately strong, steady
crosswind acting upon an asymmetrically iced conductor
surface. This asymmetry generally appears when the mete-
orological conditions are favorable for the formation of ice
coating around the conductors which grows preferentially
on the side facing the wind or the precipitation.

The origin of galloping is caused by two aerodynamic
forces due to wind action on an asymmetrical conductor
profile. Because of the boundary conditions, the cable can
rotate only around its shear center. The aerodynamic drag
and lift acting in the aerodynamic center are replaced by
three aerodynamic loads acting in the shear center of the
cable: the drag fp, the lift f; and an additional pitching
moment My, . The drag and lift forces are respectively par-
allel and perpendicular to the relative wind speed vector
which refers to conductor movement. The reference direc-
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Figure 1: Definition diagram of angles and forces (angles
and moments are anticlockwise positive.)

tions are defined in Fig. 1, where V; is the relative wind
speed.

For some appropriate ice accretion angle 6;.., the aero-
dynamic coefficients behave in such a way that upwards
velocity increases the vertical force and that downwards
velocity decreases the vertical force. The drag damping ef-
fect can be so compensated that a self-sustained oscillation
appears. This oscillation is known as galloping.

2.3 The Multi-Span Line System

The vertical, transversal and torsional motion of the
line system can be described by the following second-order
partial derivatives equations:

(O dy 9%
Mot Oy Ta z = Fo(2)
52 o 92
4 ma—tf+cza—f—fr5§ = Fy(2) 1)
8%0 %6
Iat2 Co GJ@ = Mt(z)

where y and z are respectwely the displacements in the ver-
tical and the transversal plane and where 6 is the torsional
angle. The definitions of angles and forces of this 3-DOF
system are to be found in Fig. 1. C,, C; and Cy rep-
resent the damping constants. T is related to the strains
evolving from the movement of the cable (see 2.6). GJrep-
resents the torsional stiffness, linear for single conductors
and highly nonlinear for bundles. Bundle stiffness depends
on many parameters such as tension, spacer, number of
subspan and flexibility matrix, etc. F,, F}, and M; are the
excitations for the iced conductor system in 3-DOF. They
act together with the aerodynamic drag, lift and moment
in addition to internal inertial contributions. Furthermore,
m and I are respectively the total mass and the moment of
inertia of the iced conductor’s cross-section per unit length.

Let us consider the modal decomposition of the func-
tions n(z,t)

3
(1) =Y m(t)sinkf  with = (2)
k=1

where 7 represents successively y,  and 6. ¢ is the time, L

and z are respectively the length of span to be considered
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and the distance between the beginning of the span and the
point to be studied, k is the mode number. The 3-DOF
conductor system with each specific mode & is described
by

( dzyk dyx kr\2 2 [ .
dt2 +Cy— 7 +T (T) Yp = ;/0 F, sin kB3df
d2 d.’IIk km z 2 4
..} b=l —_ = | AL
< dt2 +C’ T(L) Tk W/o Fy, sin kBdg
2g k 4
Id k +Cg = +GJ = ek = -2-/ M, sin kBdp
dt? T Jo
3)
This system is used for all spans of the section. Thus

the partial differential equations can be easily solved by

time integration. Nonlinear couplings exist between differ-

ent spans and between different modes due to tension T,
torsional stiffness GJ (for bundle conductors) and aerody-
namic forces (included in F,, F} and M;), which include
the angle of attack.

2.4 Aerodynamic Excitations

The source of the external excitations is the wind. These
external loads are the aerodynamic forces and moments.
According to aerodynamics, the drag force fp, the lift force
fr and the pitching moment My are given by

fp = KpV2Cp(p,V,)
fo =KpV2CrL(p,Vy) (4)

My = KyV2Cu (e, Vr)

1
and Ky = -

with Kp= 2

-;—npa,-rq& NPaird®
where n is the number of subconductors, pg;, is the mass
density of the air, V, is the relative wind speed, ¢ is the
diameter of the conductor, ¢ is the angle of attack (see
Fig. 1). Cp, Cr and C)y represent the aerodynamic coef-
ficients of drag, lift and moment respectively (curves ob-
tained from wind tunnel tests).

2.5 The Angle of Attack

The angle of attack is defined as the angle between the
instantaneous ice location and the apparent wind speed, as
@ in Fig. 1. The angle of attack is one of the most active
factors for galloping.

The wind velocities relative to the conductor in both
vertical and transversal directions are described by

Ox

80
vy = Vpz — Tig sin(8 + 6y) — 5 (5)
o0 ay
=Wy + 1 5 cos(6 + 6p) — T (6)

where 6 is the angle of the conductor in the original equi-
librium position (generally equal to the ice accretion angle
0ice for single conductors), r; is the distance between the
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shear center of the conductor and the center of gravity of
the ice deposit (Gice), Voo and Voy are the components of
the absolute wind velocity V.

The angle of attack is given by

=6 +0-a (7

For bundle conductors, the bundle geometry provides ad-
ditional rotating contributions.

2.6 Modelling of Tension

The global tension variation is related to the total length
variation induced by the motion of the cable over the whole
multi-span section. Considering the longitudinal stiffness
K., (including the stiffness of anchoring towers), the global
tension for a N-span section (whatever its configuration) is
given by N
T=To+K.Y Al (8)

=1

~here Ty represent the initial tension before galloping. Al
the length variation of the span j.
Using the modal decomposition and rectification formu-
lae, the global tension of the cable for a multi-span section
is found by

N3 2
T=T+K. ZZ I (%ﬁ) W5k — Yok + 5k = Too)
J=lk=1 "7

(9)
where yro and g are the magnitudes of the odd mode k at
the static equilibrium position in the vertical and transver-
sal plane respectively (yko and o are null for even mode
k).

Due to the configuration of multi-span overhead lines,
the movement of the suspension insulator is mainly longi-
tudinal and transversal with only a very limited movement
in the vertical plane. Furthermore, the movements in both
the vertical and the transversal planes have no significant
influence on the length variation of the cable of the multi-
span section. The sole longitudinal movement should then
I “ept and dealt with.

T'he movements of the suspension insulators affect the
tension in the multi-span section. This is the main reason
why tension compensates so well in some cases. Access to
suspension longitudinal movement can be easily managed
by separately evaluating the tension in each span, based
on the longitudinal displacement of suspension insulator
(Equations (8) and (9) will be slightly modified).

2.7 Bundle Torsional Stiffness

The galloping mechanism is closely related to stiffness,
especially to the torsional stiffness. Up to now, due to the
complexity of the bundle torsional stiffness, the existing
3-DOF theories [16, 25] are limited to the study of the
galloping of single conductors, and fail to, investigate this
phenomenon for bundle conductors. Although there exist
a few theories [6, 12, 14] for bundle conductors, they are
2-DOF and only valid for small torsional movements. In
1977, Nigol et al [17] presented a complete model for bundle
stiffness, but showing significant discrepancies with exper-
imental results (up to 50%). The new model introduced

in this paper is valid for both small and large torsional
movements of bundles until collapse. There are no more
discrepancies between the simulation results by this new
model and experimental results (detailed in [22]).

An Analytical Expression of Torsional Stiffness

Using the mode decomposition and considering one mode,
the following global expression of the torsional stiffness can
be found.

672
L

1
GJ=(r+7°T) + YA [Kouk + K122 — (K3 + Ky)yrze]

(10)
where L is the total length of spans in the whole section
and r represents the radius of the bundle. K; depends on
the flexibility matrix of anchoring (related to the yoke plate
assembly), the number of subconductor, bundle geometry
and the sagging conditions.

The first term (t +12T) of (10) is identical to Nigol
theory [17] but the second one is a new term. This term
can be as large as the first one so that neglecting it can lead
to an under-estimation of the bundle torsional stiffness by
about 50%. The second term results only from the tension
differences between subconductors arising from the anchor-
ing attachment of the bundle. The influence of this term
increases as the number of spans decreases.

A Simplified Torsional Stiffness Formula,

Considering small rotations, if there is no global transver-
sal movement and no initial rotation of the bundle, the
torsional stiffness can easily be obtained from (10) as

1672 K.
GJ=r1+rTy+ %yﬁo

(11)
Twin bundles, for example, have two extreme values of

torsional stiffness, i.e.:

Typical vertical twin bundle:

GJ =71+ (12)
Typical horizontal twin bundle:
16r2EA
Gl =1+ 7‘2T0 + ;:Tyfo (13)

where E represents the Young’s modulus, A the cross-
section of one phase. This simplified torsional stiffness
formula (11) allows for the complex bundle stiffness to be
directly calculated from the basic parameters.

2.8 Experimental Comparisons

Some experimental comparisons have been made with
this new theory. The simulation results of torsional stiff-
ness coincide with the experiments on both test lines and
actual, full-scale lines to a very high degree of accuracy
[22]. Due to the complexity of galloping, it is difficult to
perform dynamic experiment of galloping. As far as the
authors are aware of, the only published dynamic experi-
mental result (with known ice shape and aerodynamic co-
efficients) is given by Yu et al [25]. This full multi-span
3-DOF model correlates well with this published experi-
mental result [22].




3. CASE STUDIES

A two-span section of a 420 kV transmission line in Nor-
way was subjected to galloping. The span lengths are 292
m and 196 m respectively. The basic data are: ACSR hori-
zontal twin bundle, subconductor cross-section A = 863.10
mm?, Young’s modulus E = 7.0 x 10 N /m?2, mass of
subconductor per unit length m = 2.879 kg/m, subcon-
ductor diameter ¢ = 38.25 mm, subconductor separation
d = 0.45 m, sagging tension per subconductor T = 50802
N, intrinsic torsional stiffness T = 530 Nm?, 15 spacers per
span. Percentage critical damping in vertical, torsion and
transversal are 0.5%, 4% and 0.5% respectively.

Galloping occurred after a while under the following
external conditions:

I/0 =15 m/s eiﬁe \ gice = —-50°

WIND 3 ice thickness = 6mm

Unfortunately, there was no any recorded result during
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Figure 3: Time evolution of the vertical displacement
(a zoom of Fig. 2, typical “up-and-down” movement)
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Figure 4: Time evolution of the transversal displacement

913

galloping.

The time evolution of galloping in the vertical, the
transversal planes and in torsion at mid-span as well as
the tension are simulated right from the initiation of gal-
loping to the steady galloping. View of galloping in vertical
is shown in Fig. 2.

The limit cycle of the time response means the steady
galloping state. The time evolution at mid-span during
the limit cycle is simulated for the 3-DOF and allows us to
find not only the galloping amplitudes in the vertical, the
transversal planes and in torsion, but also the mechanical
tension (Fig. 3, Fig. 4, Fig. 5 and Fig. 6). From the limit
cycle characteristics for two spans (at mid-span), it can
be seen that this galloping is an “up-and-down” type of
galloping (Fig. 3). The galloping ellipses at each mid-span,
shown in Fig. 7, are also important results. Because of the
different sag of each span in this case, galloping ellipses in
Fig. 7 are shifted. :

These simulation results clearly show that this two-
span section is also sensible to galloping with large am-
plitudes, as observed in the field.

torsional displacement (degree)

L '
131 132 133 134 135 136 137 138 139
time (s)
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Figure 6: Time evolution of the mechanical tension result-
ing from the movement of the whole section
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4. DESIGN RECOMMENDATIONS

For large rotations, the nonlinearity of the torsional
stiffness is mainly due to the differences of tension between
subconductors. These tension differences evolve from the
anchoring attachment of the bundle and also depend on the
total number of spans. The higher the number of spans,
the lower the nonlinearity of the torsional stiffness. Fig. 8
gives details on the influence of the number of spans and
different suspension sets on the torsional stiffness.

with suspension sets as shown in Fig.10 -

by the new theory

GI (Nm/deg.)

with typical suspension sets

by Nigol theory
1 2 3 4 5 6
span number

Figure 8: The influence of the number of spans on torsional
stiffness in one span of a section

From Fig. 8 it can be seen that for the same set of
data, the bundle torsional stiffness of a span in a multi-
span section is lower than that of a dead-end span section
and depends on the number of spans in the section. The
“dead-end effect” of anchoring towers tends to disappear
when the number of spans is more than 4. Dead-end span
sections can sometimes increase the bundle stiffness more
than 50% by comparing with the same span included in o
multi-span section. This is mainly because in a multi-span
section, conductors can move freely and independently in
longitudinal direction at the suspension clamp locations, so
that tension compensates well from one span to another.

It is possible to avoid this relative movement by an ap-
propriate suspension assembly, instead of the typical sus-
pension sets (as shown in Fig.'9). For example, Fig. 10
clearly shows this possibility.

R
XIXPIXXI XD

Figure 9: Typical suspension sets. Subconductors A and
B can move longitudinally and independently each other
in a range of several centimeters.

Figure 10: A new suspension assembly for V-shape insula-
tors. Subconductors A and B can not move independently
in longitudinal direction.

This is particularly important because it will shift the
ratio of frequency (between vertical and torsional motions)
to a significant amount. In such a case, couplings of tor-
sional motion between spans will disappear but couplings
of vertical motion between spans will still remain. By this
way, “up-and-down” galloping risks of bundles will disap-
pear in most of the cases. This is because most of galloping
of bundles are aero-elastic instability (not the Den Hartog
type galloping) and come from the fact that the ratio of fre-
quency between vertical and torsional motions is generally
close to 1. Such new suspension set will increase the tor-
sional stiffness by about 50% (from 1.2 Nm/deg to about
1.8 Nm/deg) and therefore induce a detuning of about 25%
by shifting up the frequency of torsional motions.

5. INVESTIGATIONS OF ANTI-GALLOPING
METHODS

Some investigations have been done (based on the same
Norwegian multi-span bundle case) to find the most effec-
tive anti-galloping method for bundle conductors based on
this case.

5.1 Modifying the Subconductor Separation

Fig. 11 shows the results of modifying the spacing of the
bundle. It can be seen that when the spacing increases, the
vertical peak-to-peak amplitide keeps slowly growing and
reaches a maximum for a certain value of spacing. After
this specific spacing value, the vertical peak-to-peak am-
plitude decreases sharply to recover a stable state. This is
explained by the close relation between the bundle moment
of inertia and the bundle spacing. Modifying the spacing
sensibly modifies the bundle moment of inertia. The bun-
dle moment of inertia is a very sensible factor of the bundle
stability.

i
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Figure 11: Galloping in the vertical plane as a function of
spacing (Norwegian 2-span case, Vo = 15m /8, Bice = —50°,
ice thickness = 6 mm)

5.2 Employing Pendulums

The detuning pendulum (eccentric concentrated mass
which can make the shifting between vertical and torsional
frequencies) is one of anti-galloping devices (first used by
Havard [9]). Fig. 12 illustrates the pendulum effects and
displays the vertical amplitude as a function of the pendu-

lum parameter ZL”O mpgly.

4 T T T T
3sF 1
3 J

a5 4

vertical amplitude (pk-pk) (m)

0 L I s 1
0 50 100 150 200 250

pendulum parameter (Nm)

Figure 12: Galloping in the vertical plane as a function of
pendulum effects: Eﬁr:”o mpgl,, (Norwegian 2-span case,
Vo =15 m/s, 0;cc = —50°, ice thickness = 6 mm)

The sole implementation of pendulums, for example 3
pendulums per span with mpgl, = 71 Nm per pendulum
(lever arm: 0.45 m, mass: 16 kg), is not sufficient to avoid
instability (in this case, at least 3 times more masses could
be successful). Since the overhead line is limited in extra-
weight, we suffer a limitation in the number of pendulums
to install as well as in the mass of each pendulum.

5.3 The Combination of Detuning and Torsional
Damping »

Due to the above limitations, the simulated influence
of a new anti-galloping device — TDD (torsional damper
and detuner [13]) on the above mentioned Norwegian case
has been calculated. Three TDDs per span are used and
their characteristics are: an arm of 0.45 m, mass of 16 kg
per TDD (same as the mentioned inefficient pendulums),
and a torsional damping of 12% and the dimension of yoke
plates is changed to 0.4 m.
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The simulation results [22] show that the combination
of detuning and torsional damping is a very efficient anti-
galloping method and no more galloping occurs in this two-
span section.

Some field tests of TDDs on twin bundle lines have
been performed and good anti-galloping effects have been
obtained.

6. CONCLUSIONS

This new model is a full multi-span 3-DOF model for
both single and bundle conductor galloping and includes
a new theory of torsional stiffness for bundle conductors
valid for large rotation until collapse. All mixing between
1, 2 and 3 loop galloping can be simulated by this new
model, together with all second order coupling factors be-
tween vertical, transversal and torsional modes, including
movement effects of suspension insulators.

The attachment to anchoring towers by yoke plates and
the attachment to suspension towers by suspension clamps
play a key role in the torsional stiffness. By appropriate
choice of the anchoring conditions and suspension clamps
at the design stage, the bundle torsional stiffness can be
easily increased so that a detuning factor between vertical
frequency and torsional frequency can be obtained without
any significant additional cost, which could help to avoid
galloping.

Anti-galloping devices are widely used as a method to
avoid galloping. This comprehensive mathematical model
is a foundation for performing structural analyses for in-
vestigations of anti-galloping devices. The anti-galloping
devices which combine detuning and torsional damping will
be able to solve the flutter galloping problem.

The software based on this 3-DOF model can perform
both static and dynamic evaluations, frequency analysis,
stability analysis and the special evaluation of both single
and bundle torsional stiffness. This model gives the full,
time response evolutions of galloping. It can simulate the
time response of amplitudes in vertical, transversal and
torsional motion, tension, loads in the insulator strings,
as well as the galloping ellipse. It is able to simulate any
galloping behavior, all mixing between 1, 2 and 3 loops
on a full section line (for any iced transmission line con-
figuration up to 20 spans), including movement effects of
suspension insulators.

Some original recommendations for design have been
proposed in this paper. It can alleviate galloping and re-
duce galloping consequences in the design stages by the
appropriate design of suspension assembly, and the sub-
conductor separation. For the operating lines, installing
anti-galloping devices which combine detuning and tor-
sional damping effects is an effective method to alleviate
galloping and reduce galloping consequences.

This full multi-span 3-DOF model is a very effective
tool for describing the galloping phenomena, for perform-
ing static and dynamic analysis, and predicting the gallop-
ing behavior of iced conductors, as well as for performing
checks against field experience. Therefore this full multi-
span 3-DOF model can be used for both galloping studies
and as an aid for electrical overhead transmission line de-
sign.




