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The homogenized mechanical response of heterogeneous, elasto-plastic composite ma-
terials was investigated by the use of clustering analysis based homogenization (CAH)
approaches, relying on two-scale coupling algorithms and on piecewise uniform micro-
scopic fields of internal variables. Clustering algorithms fed by several micromechanical
fields can be implemented for the spatial decomposition into the domains with uniform
fields of variables. In cases of history-dependent responses of the materials however, the
selection of the underlying deformation fields for the clustering procedure is crucial. Not
optimized spatial subdomain decompositions of the microscopic domain, meaning that lo-
calized effects and evolving deformation patterns are not well represented, can cause over-
stiff inelastic composite material responses modeled by the CAH approaches. To improve
homogenized predictions for the responses of heterogeneous materials, more accurate rep-
resentations of inelastic localizations were targeted by new spatial decompositions. The
numerical estimation of the interaction functions between the subdomains allows the use
of the CAH approaches for the numerical modeling of general composite materials with
arbitrary microstructures. The CAH methods based on clustering analyses were tested for
materials with isotropic and anisotropic microstructures, various material systems with a
particular emphasis on the complex case of perfectly plastic material phases, under both
proportional and non-proportional loading conditions and histories. The assessment of
the predictions by the CAH methods was based on comparisons to reference full-field
homogenization results. After the extensive investigation, comparisons could be drawn
between the CAH approaches based on different algorithms, and the effect of the underly-
ing spatial decomposition based on elastic and inelastic fields was evaluated. It could be
proven that more accurate predictions for the mechanical responses of composite materials
can be found when inelastic fields are considered as the foundation of the spatial division
into subdomains. Subsequently, a novel approach for the three-scale bridging of woven
composite materials based on the CAH approaches was employed. Very good predictions
under various complex loading conditions prove the suitability for woven materials, and
offer a promising technique for the homogenization of materials with underlying hetero-
geneous meso and microstructures. Finally, a novel multi-step homogenization scheme
as an extension of the transformation field analysis was proposed and employed for the
consideration of two scale levels.
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Chapter 1

Introduction

‘‘homogeneous“ macroscopic
domain

macroscopic
wing structure

microscale RVE

fibers

matrix

(a)

macroscopic
wing structure

microscale RVE

fibers

matrix

textile composite
macroscopic domain

mesoscopic unit cell

(b)

Figure 1.1: Schematic representation of a composite wing structure with different
kinds of compositions and arrangements of the constituents on the associated scales. The
macroscopic domain represents the structural behavior of the wing, built by composite
materials on the mesoscale and the microscale. In (a), the macroscopically homogeneous
material is built by a composite microstructure consisting of fibers in a matrix material.
In (b), the wing structure is built by the weaving process of different yarns on the

mesoscale. The yarns have an underlying composite structure on the microscale.



2 Chapter 1. Introduction

In technologies that rely on the structural use of materials, e.g. aerospace, automotive
and wind blade engineering, three factors are all-decisive for the achieved quality: stiffness,
strength and weight. While the sufficient stiffness and strength of the used materials
ensure the safety of structures and thus of passengers and/or surroundings, the use of light-
weight materials boosts the economic value of a certain application. The sought types
of materials are multi-phase materials, so called composite materials and schematically
depicted in Fig. 1.1. Composite media consist of more than one material phase, engineered
in order to exploit the strengths and advantages of the single constituents and achieve
optimal performance as a result. Typical composites for industrial applications consist of
an inclusion phase, often fibrous, embedded in a matrix material. Fibers are dominantly
made of glass, carbon, ceramics, but natural fibers are used as well. The matrix of most
industrial applications consists of polymer materials. Composites in civil engineering are
typically constructed by steel fibers embedded in concrete. It is mentioned that, besides
engineered composite materials, many other types of materials of interest in engineering
disciplines have naturally composite microstructures (e.g. biomaterials or geomaterials).
Several microstructures consisting of fibrous inclusions in a matrix material investigated
in this work are depicted by means of an representative volume element (RVE), which
will be explained in more detail in the following, in Fig. 1.2.

X
Y
Z(a) X

Y
Z(b) X

Y
Z(c)

X
Y
Z

(d)

Figure 1.2: Different composite microstructures, represented by RVEs. The mi-
crostructures consist of an inclusion phase (red) in a matrix material (blue), both with
varying material properties. Investigated in this work are (a-c) isotropic structures with
(a,b) different volume fractions and (c) different RVE sizes, and (d) anisotropic struc-

tures.

In the aerospace industry, the rising number of passengers and the demand for a
reduction of costs has led to an increase of the use of high performance materials over
the last years. In nowadays era of sustainable transport technologies relying on higher
fuel efficiency or electrification, the use of light-weight composites is becoming even more
essential to guarantee physical and economic feasibility. Similarly, longer wind blades
allowing for more efficient production of wind energy drive the increasing demand of high-
stiffness and low-weight composite materials in the sector of renewable energy production.

Various kinds of composites exist, and continuous research is done on their improve-
ment and the development of novel composite materials and structures. The major draw-
backs of the use of composite materials are possibly complex kinds of nonlinear behav-
ior, particularly marked by high localizations of deformation (Fig. 1.3). These complex
material nonlinearities can lead to the degradation of the stiffness of the materials and
finally to complex and sudden failure modes, requiring for full characterizations of the
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elasticity

inelasticity

onset of nonlinear response

formation of
band-like patterns

Figure 1.3: Schematic display of a highly nonlinear response of a composite material.
After a specific yield strength of the material is exceeded by the occurring stresses σ,
the formation of inelastic, in particular band-like, deformation patterns starts. The
deformation is represented by the equivalent scalar strain ε. The screenshots show

equivalent strain distributions in the RVE.

materials performance through extensive testing, before they can finally be introduced in
practice. However, the full characterization of these composite materials purely by the
use of experiments is not feasible due to several reasons, e.g., composites in high perfor-
mance applications must resist complex loading conditions and histories, which can be
impossible to be implemented in the laboratory. Other examples are the characterization
of a materials creep behavior, which may require extremely long observation times. Per-
forming destructive tests for the investigation of a materials fracture or damage behavior,
where one manufactured sample is required for one test, may lead to high material ex-
penses. Consequently, the need for numerical tools for the characterization of materials
with complex heterogeneous microstructures and under complex loading conditions has
seen an increasing demand in many areas of engineering applications.

1.1 Multiscale mechanics in composite media

1.1.1 Homogenization techniques

The typical scale of interest in the computational mechanics of composite materials is
the structural, or macroscopic, scale. As already mentioned however, composite materials
may have complex structures on lower scales due to varying distributions, sizes and shapes
of the material constituents. The precise analysis of the macroscopic mechanical behavior
requires the consideration of processes on the lower scales, where constitutive relations
of the individual composite constituents are available. Two structural systems are to be
distinguished:

• Macroscopic materials that are macroscopically homogeneous, have however an un-
derlying heterogeneous microstructure (Fig. 1.1a). Mechanical processes like plas-
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௏

, 

macroscopic domain

RVE

Figure 1.4: Schematic demonstration of full-field homogenization approach at a ma-
terial point X under a strain ε(X) in a macroscopic domain, represented by the RVE
subjected to a boundary problem expressed through ε(X). The overall stress response
σ(X) at X follows from computation of the local strain and stress fields ε(χ) and σ(χ)

and the averaging of the local reaction stress field over the full RVE domain.

ticity, damage or fracture originate on the microscale and affect the materials macro-
scopic response.

• Macroscopic materials with composite structures on both meso and microscales
(Fig. 1.1b). The mesoscale response is affected by processes like plasticity, damage
and fracture, initiating on the microscale. With possibly complex mesoscopic struc-
tures and arrangements, the macroscopic response is affected by the processes and
structures on both meso and microscales.

Mesoscopic material models for materials with underlying microstructures were intro-
duced for the prediction of damage (Zhuang et al., 2019a,b) and plasticity with damage
(Cózar et al., 2022). These mesoscopic constitutive models are constructed by the in-
tegration of both micromechanical models as well as phenomenological and mechanism
based contributions to predict the onset of microstructural damage or plasticity. A dif-
ferent approach for the modeling of the mesoscopic or macroscopic response of a compos-
ite material is based on the simultaneous consideration of two scales. The use of purely
micromechanical constitutive relations for plasticity or damage for the determination of
the effective behavior of a material allows to predict responses of general and possibly
complex material systems under general loading conditions.

Computational analyses linking the materials behavior on the macroscopic or the
mesoscopic scale to the processes on the heterogeneous meso or microscale are known
as multiscale simulations and typically rely on a principle that is known as mechanical
homogenization (Charalambakis, 2010; Geers, Kouznetsova, and Brekelmans, 2010; Geers
et al., 2017; Kanouté, Boso, and Chaboche, 2009; Saeb, Steinmann, and Javili, 2016;
Yvonnet, 2019, e.g.). In homogenization based multiscale methods, one material point of
the macroscopic (or mesoscopic) domain is considered (Fig. 1.4). The material point in
the macroscopic domain contains a selected, but representative, section of the microstruc-
ture, required to include all essential structural features. This statistically representative
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section is referred to as the representative volume element (RVE) and is the key element
for the scale bridging of materials. During a multiscale analysis, the deformation state
at one point of the macroscopic domain constitutes a boundary value problem (BVP)
applied on the RVE. The response computed over the RVE domain is then considered as
the local response of the associated material point in the macroscopic domain.

Different estimates for the homogenized mechanical behavior of composite materials
exist, with first analytical approaches originating long ago. Classical analytical estimates
are certain upper and lower bounds, from which the most stiff and the most compliant
possible homogenized responses of a particular composite can be derived. The first
introduced bounds for the linear overall properties of heterogeneous two-phase solids
are the upper and lower bounds developed by Voigt (1889) and Reuss (1929), assuming
iso-strain (Voigt) and iso-stress (Reuss) conditions over both phases without any
knowledge of the actual microstructure. The Voigt-Reuss bounds represent the two
most distinct cases of microstructural configurations and allow for estimations of the
materials overall response solely making use of known phase stiffnesses and volume
fractions. The Voigt-Reuss bounds were extended by Hashin and Shtrikman (1962,
1963) towards a variational formulation. The Hashin-Shtrikman bounds, valid for linear
and isotropic microstructures, allow for more narrow estimations of the homogenized
response. Following, the Hashin-Shtrikman bounds were further extended towards higher
order formulations by Kröner (1977) and for the use of anisotropic materials by Willis
(1977). Talbot and Willis (1985) introduced the first bounds with the ability to derive
overall responses for the case of material phases with nonlinear mechanical behavior by
a variational procedure. The variational approach pioneered by Ponte Castañeda (1991)
builds the foundation for many subsequent homogenization schemes by introducing
a linear comparison composite (LCC) with linear properties, being equivalent to the
linearized effective properties of the actual nonlinear composite (Ponte Castañeda, 1992,
1996). The LCC approach was extended towards a second-order scheme considering
strain and stress field fluctuations in the material phases (Lopez-Pamies and Castañeda,
2004; Lopez-Pamies, Goudarzi, and Danas, 2013; Ponte Castañeda, 2002a, 2002b).

A related but distinct class of (semi-)analytical homogenization schemes is the mean
field homogenization (MFH). The MFH was initiated on the basic rule of mixtures and
assuming a uniform strain or uniform stress throughout all phases of the material. These
approaches are known as the Taylor-model and the Sachs-model and correspond to the
Voigt-Reuss upper and lower bounds. The work of Eshelby (1957) considering the elastic
two-phase problem of a dilute inclusion in an infinite matrix laid the foundation for the
following MFH approaches. He pioneered the concept of occurring phase-wise uniform
eigenstrains in elastic two-phase materials due to the stiffness mismatch of the inclusion
phase and the host phase. The eigenstrains lead to interactions between the phases, de-
pending on the inclusion size and orientation, expressed by the Eshelby tensor. Subse-
quent MFH schemes rely on per-phase uniform, or average, strain and stress fields, and
the relation between the two phases deformation states expressed by so-called strain local-
ization tensors. Different relations for the strain localizations were developed, expressing
the phase strains as a function of the composite strain or as a mutual relation between
the phases. Most popular MFH formulations are built on the self-consistent scheme (Bu-
diansky, 1965; Hill, 1963, 1965a,b; Kröner, 1958), the Mori-Tanaka scheme (Benveniste,
1987; Mori and Tanaka, 1973) or the differential scheme (McLaughlin, 1977; Norris, 1985;
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ஐ

ஐ

elastic
total 
secant

tangent

incremental
secant

residual state

current state

Figure 1.5: Schematic display of the nonlinear behavior of a composite material phase
denoted by Ω, with indicated references to the materials elastic, tangent and secant
stiffnesses used as LCC operators in various MFH schemes. The marked residual state
associated to the incremental secant stiffness will be explained in detail in Section 2.

Zimmerman, 1991). Various MFH formalisms exist, depending on the selected LCC oper-
ator (see Fig. 1.5). Total secant (Berveiller and Zaoui, 1978; Suquet, 2001), affine (Mas-
son and Zaoui, 1999; Molinari, Canova, and Ahzi, 1987), tangent (Doghri and Ouaar,
2003) and incremental secant (Wu et al., 2013a) MFH schemes were developed for the
homogenization of nonlinear composite materials, with extensions towards the integra-
tion of second-order statistical moments of the phase strains (Doghri et al., 2011; Wu
et al., 2017). Doghri and Friebel (2005) achieved improved MFH predictions when ap-
plying isotropization procedures of the phases tangent operators. This isotropization step
is waived when using the incremental-secant scheme by Wu et al., 2013a, relying on a
naturally isotropic secant operator. An overview of the applicability of various MFH
formulations was presented by Chaboche, Kanouté, and Roos (2005). Focusing on the
computational capabilities, MFH approaches are able to deliver homogenized composite
estimations with very low computational requirements. However, compromises of the va-
lidity of MFH approaches with respect to the particular composite structures need to be
pointed out. The interaction functions used in MFH schemes are relations depending on
a single tensor that contains the geometrical inclusion information. Therefore, composites
with fully random isotropic structures can be represented, as well as composites with in-
clusions that have one preferred orientation. Examples are transverse isotropic inclusions,
as unidirectional (UD) fiber composites. Complex composites however, containing more
than one structural orientation, can not be reliably covered by MFH approaches. This
includes orthotropic structures, for example layered composite laminates with layers that
have different preferred orientations or composites with woven structures. In summary it
means that MFH approaches, while being computationally very efficient, rely on certain
assumptions on the composites microstructural configuration and therefore have obvious
limitations when dealing with cases of complex anisotropic microstructures.

Nowadays, thanks to vastly increased computational abilities in recent years, fully
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computational multiscale approaches using direct numerical simulations (DNS) for the
mesoscale or microscale BVP can be exploited for the homogenization of the mechanics
of composite materials. The most widely used solution strategy for DNS is still based
on the finite element method (FEM), with the FE2 formulation (where the "2" denotes
a two-scale consideration) introduced by Feyel (1999) and Kouznetsova, Brekelmans, and
Baaijens (2001) used for the computational scale-bridging. Alternative fully computa-
tional techniques for multiscale problems are based on the Fast Fourier Transformation
(FFT), pioneered by Moulinec and Suquet (1998) and Moulinec and Suquet (1994). FFT
homogenization approaches make use of the assumption of structural periodicity and the
solution of convolution theorems based on the Green’s function transformed into the spa-
tial frequency space. Fully computational methods, both based on FE2 or FFT, allow for
a precise spatial discretization, referred to as mesh, of the actual composite microstruc-
ture, that respects any structural features and allows for a modeling of structures with un-
limited complexity. Mechanical responses are computed locally at each integration point
of the mesh (Gauss points) by the associated constitutive relations. The homogenized
RVE response, also referred to as full-field solution, follows as the averaged solution of
the BVP over the fully discretized RVE integration domain. However, complex heteroge-
neous microstructures or material behavior may require very fine discretizations or basis
functions of higher order, implying extremely high numbers of degrees of freedom (DOF,
implied by the number of nodes belonging to the mesh) and immensely large integration
domains (given by the number of Gauss points), and therefore the requirement of massive
computational power or time to achieve the macroscopic numerical solution. Moreover,
strong local distortions of the mesh, occurring under complex loading conditions, can lead
to invalid or not converging solutions. For these reasons, even though DNS allow for a
very precise approach of structural problems, they may exceed computational capabilities
and numerical limitations in cases of complex or highly nonlinear problems.

1.1.2 Reduced homogenization schemes

The objective to reduce the computational efforts of complex multiscale problems, while
maintaining the ability to accomplish accurate predictions, has motivated the development
of reduced models and surrogate models, with computationally much lighter solution stages
in comparison to full-field DNS. The estimation of macroscopic responses of materials by
taking into account microscopic processes using an underlying reduction scheme will in
this work be referred to as reduced homogenization (RH). In structural mechanics, the
reduced homogenized mechanical response of a material can be achieved through different
procedures. While it is mentioned that intersections between the approaches exist, some
of the bases to build the surrogate models are named in the following:

1. The approximation of micromechanics-based analytical scale-couplings between mi-
croscopic and macroscopic mechanical fields through spatial decompositions by
means of clustering techniques. This kind of RH approaches will be referred to
as clustering analysis based homogenization (CAH).

2. Reduced order models, using a complexity-reduction from full-field solutions by
a restriction of the space of possible solution fields. Typically, methods like the
proper orthogonal decomposition (POD) are used to select the main components of
the displacement fields.
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Figure 1.6: Schematic multiscaling by CAH: The RVE, representing the macroscopic
material pointX, is decomposed into the subdomains by a clustering technique. During
the solution stage of the BVP stated through ε(X), the subdomains r have uniform
fields of variables. The homogenized stress σ(X) is the result of an averaging over the

subdomains.

3. Various kinds of data-driven approaches, replacing physics-based constitutive re-
lations by statistical regression algorithms and machine learning procedures to di-
rectly predict homogenized behaviors or to estimate potentials that allow deriving
the homogenized response.

The first class of RH approaches, the CAH schemes, represent physically-motivated
models, built on analytical micromechanical models that rely on spatial concentration
functions and influence functions, expressed by spatial convolution theorems. The solu-
tion of these convolution theorems as a full-field approach would be much more computa-
tionally challenging than DNS using FEM. Therefore, the problems are reduced by a con-
sideration of piecewise uniform fields, or average fields, of deformation and internal vari-
ables, firstly considered by Dvorak (1990). To be determined are the averaged interactions
between the regions with uniform fields, referred to as subdomains. The characteristic
of piecewise uniform fields has similarities to MFH approaches, built on the assumption
of per-phase uniform fields. However, unlike the MFH, the actual RVE can be decom-
posed into more than one subdomain per phase. The spatial subdomains are achieved by
a decomposition of the original mesh for the actual composite RVE structure, and the
interaction functions are estimated through DNS in the so-called offline stage. Therefore,
the model reduction is accomplished as a reduction from the degrees of freedom (DOF)
of a full-field problem towards the number of DOF represented by the strain tensors of
the subdomains. The integration domain is reduced from the number of Gauss points
of a full-field problem towards the number of subdomains of the reduced scheme. The
CAH reduction technique built on DNS of the actual composite structure in the offline
stage allows to neglect any microstructural pre-assumptions. The pioneering approach for
the piecewise uniform field homogenization is the Transformation Field Analysis (TFA)
by Dvorak (1992). The analytical TFA algorithm is based on the separation of elas-
tic and inelastic fields (referred to as eigenfields) and elastic interaction functions inside
the heterogeneous medium. Alternative descriptions of the micromechanics in heteroge-
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neous composite media make use of the assumption of the (statistical) homogeneity of the
medium and the Lippmann-Schwinger equation (Kröner, 1978; Lippmann and Schwinger,
1950), considering local polarization stress fields (Eshelby, 1957; Hashin and Shtrikman,
1962, 1963). Polarization stresses are quantified as the deviations between local stress
fields and the stress field that would exist in a homogeneous reference medium. The first
CAH approach based on the Lippmann-Schwinger equation is the self-consistent cluster-
ing analysis (SCCA) by Liu, Bessa, and Liu (2016) and Liu, Fleming, and Liu (2018). In
the SCCA approach, the reference medium is assumed to be isotropic, and its stiffness
can be adapted during inelastic deformation by computing the instantaneous homoge-
nized tangential Lamé parameters. The influence functions for the SCCA algorithm are
computed analytically. An approach similar to the SCCA is the Hashin-Shtrikman (HS)
type analysis (Cavaliere, Reese, and Wulfinghoff, 2020; Wulfinghoff, Cavaliere, and Reese,
2018), relying on piecewise uniform fields and the integration of an isotropic secant ref-
erence stiffness. In this method, the influence functions are determined numerically by
pre-simulations. A constant Poisson ratio of the reference medium is assumed in order to
achieve a simple scaling of the reference stiffness. Originally implemented for the modeling
of nonlinear elastic materials behavior without the evolution of internal state variables,
the HS type analysis was later applied to elasto-plastic materials by Castrogiovanni et al.
(2021).

The typical issue encountered using the piecewise uniform approximations of analyt-
ical micromechanical models is the loss of the precise capture of the physics in the CAH
model. Considering analyses of composites with inelastically deforming material phases,
the loss of physics is represented by the inability to capture highly localized inelastic
processes when using piecewise uniform fields of variables with spatial decompositions
much coarser than high fidelity discretizations used for DNS. In the particular case of not
sufficiently captured localized inelastic effects, homogenization schemes using piecewise
uniform approximations lead to typically overstiff predictions of the response of the com-
posite. In this thesis, we improve the convergence of the TFA with an increasing number
of subdomains towards DNS results by using an enhanced inelasticity based subdomain
decomposition and corrections estimated from micromechanical inelastic field fluctuations
(Spilker et al., 2022). In this way, the CAH model contains more information of the actual
physics of the nonlinear problem, leading to more accurate computed responses.

Addressing the issue of overstiff homogenized responses relying on piecewise uniform
field approximations, Michel and Suquet (2003) and Michel and Suquet (2004, 2009)
introduced the non-uniform TFA (NTFA) and accomplished the goal to achieve better
estimates for the composite mechanical response by extending the TFA from the con-
sideration of piecewise uniform fields of internal variables towards an integration of to-
tally non-uniform plastic fields. The non-uniform fields are represented by a number of
dominant plastic modes acting as global shape functions, extracted from inelastic offline
simulations. The mode activity in the online stage was controlled by and restricted to
basic evolution laws. The global NTFA was extended to the computation of evolution
equations of internal variables derived from variational principles (Fritzen and Leuschner,
2013), allowing the use of the NTFA for all generalized standard material (GSM) classes,
comprising all kinds of material behavior which can be defined through an elastic energy
and a dissipation potential. Subsequently, Michel and Suquet (2016) incorporated the use
of second-order potentials (Michel and Suquet, 2016) for the NTFA. Based on the NTFA
considering a number of global inelastic modes, a strategy was introduced building on
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a non-uniform distribution of internal variables over selected subdomains (Sepe, Marfia,
and Sacco, 2013). Only elastic offline simulations are required, but evolution equations
during the online stage are evaluated at all microscopic integration points resulting in
significantly increased computational efforts. A further development incorporates the use
of stress instead of inelastic strain shape functions in each subdomain and the solution
of weak-form relations for the subdomains, reducing computational requirements for the
online stage (Covezzi et al., 2016). A recent extension of this piecewise non-uniform TFA
using global inelastic modes combines it with the domain decomposition using a statistical
clustering approach based on different deformation conditions (Ri, Hong, and Ri, 2021).
The computed overall behavior of the RVE follows purely from the constitutive relations
in the subdomains, allowing the computation of the mechanical response for all kinds of
heterogeneous material systems.

The second class of RH approaches is based on the application of POD on various
snapshots of displacement fields recorded under certain loading conditions applied on the
fully discretized composite RVE. The POD procedure extracts the principle components of
the entirety of the considered displacement fields, which define the most essential spatial
modes of the deformation fields inside the material. Extracting and focusing on the
dominant patterns of the displacements fields, the nodes of the mesh are restricted to a
reduced space of possible displacements. In this manner, the POD reduces the complexity
of the simulations towards a reduced number of allowed displacement modes. However,
constitutive equations are still to be solved at all the integration points of the original
mesh, meaning that they do not lead to a reduction of the integration domain. This led
to the additional development of reduced integration domains (Hernández et al., 2014;
Ryckelynck, 2009). Reduced models based on POD and the reduction of the integration
domain are called hyper-reduced order models (HPROM).

The third considered class of RH approaches bases on the abundance of available
data and the use of high computational capabilities to store and analyse high amounts of
these data. The characteristic of numerical solutions based on learning algorithms using
various input data instead of physical constitutive laws has established the term of data
driven approaches. These approaches include the use of statistical regression to create
data-based constitutive relations as well as the application of artificial neural networks
(ANNs) and deep learning techniques. Using an available training set of numerical, and
possibly experimental, data, the neural network is trained through a forward feeding and
backward propagation scheme and adjusting certain fitting parameters. First homoge-
nization of nonlinear elastic materials using ANNs as surrogates for constitutive relations
was practised by Le, Yvonnet, and He (2015). Irreversible behaviours could be represented
by recurrent neural networks (Gorji et al., 2020; Mozaffar et al., 2019; Wu et al., 2020).
Liu and Wu (2019) and Liu, Wu, and Koishi (2019) have developed the so-called deep
material network (DMN) approach based on analytical micromechanical models, such as
laminate theory, defining mechanistic building blocks which form a binary hierarchical
topological structure. Elastic offline simulations define the parameters of the building
blocks, so that the DMN can be used to predict nonlinear responses. The good handling
of this extrapolation was theoretically explained by Gajek, Schneider, and Böhlke (2020).
Nguyen and Noels (2022b) have provided an efficient implementation, Wu, Adam, and
Noels (2021) have used complex micromechanical models such as MFH in the mechanis-
tic building blocks for woven composite materials, and Nguyen and Noels (2022a) have
replaced the micromechanical models in the building blocks by interactions which obey
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the Hill-Mandel condition, i.e. the consistency of the energy variation on both scales.

woven composite laminate

mesoscale unit cell weft and warp yarns

yarns fibrous
microstructure

x
y

z

Figure 1.7: Schematic demonstration of a woven composite laminate considering the
associated scales. A mesoscopic unit cell is extracted from the woven laminate. The

yarns of the woven composite have a fibrous microstructure.

1.2 Textile composites
Textile composites are composite structures designed to provide high resistance to complex
or multi-axial loading conditions and are therefore used in a broad range of domains, from
functional clothing to high performance aerospace applications. In order to resist multi-
axial loading conditions, the structures possess complex architectures accomplished by
specific manufacturing processes. Many structural textile composite laminates are built
by layers, called plies, of particularly arranged high-stiffness yarns embedded in a matrix
material. In the context of multiscale materials, the designed textile structure is referred
to as the composites mesostructure, with the yarns microstructure constituted by fibers
of high stiffness in the same embedding matrix material. The focus of this work is the
most classic type of textile composites, manufactured by a weaving process of the yarns.
The woven composites considered in this work have a mesostructure built by orthogonally
arranged, fibrous yarns (Fig. 1.7).

Considering the mechanics of textile or woven composites produced by fiber-based
yarns, the evaluation of the structural behavior involves more than one scale. On the one
hand, the mesoscale mechanics are characterized by the designed composite architecture
of the yarns. The yarns on the other hand, can not be considered homogeneous either.
As composite materials on the microscale, the yarns mechanical behavior depends on the
microstructure and the material properties associated to fibers and matrix. The fibers in
the yarns follow the exact yarn orientations, involving the vertical inclinations due to the
woven structure. The fibers have therefore globally non-uniform orientations, implying
non-uniform elastic and inelastic responses of the yarns, can however be locally treated as



12 Chapter 1. Introduction

𝑿

𝝌

𝜺ത(𝑿)

𝝈ഥ(𝑿)

𝜺(𝝌)

𝝈(𝝌)

x
y

z

Figure 1.8: Schematic demonstration of a mechanical problem of a woven compos-
ite considering the associated scales. The deformation state at a certain location in-
side a structural woven composite ε(X) states the boundary problem for the unit cell,
representing the mesostructure. The microscopic material points of the yarns in the
mesostructural cell are locally considered as a UD fiber composite material. Follow-
ing from the local deformation at the yarns material points ε(χ), the MFH is used for
the computation of the homogenized response σ(χ). The overall stress response of the

woven unit cell σ(X) follows from the consideration of the complete local field χ.

UD. In summary, the structural, or macroscopic, behavior of this kind of composite mate-
rials is affected by mechanical processes on both mesoscopic and microscopic scales. Con-
sequently, textile composite materials may be classified as three-scale materials. Spilker
et al. (2022, article submitted) implemented an approach for the microscale-mesoscale-
macroscale bridging for woven composites by means of a two-step homogenization using
CAH and MFH (Fig. 1.8).

1.3 Objectives of this thesis
In this thesis, the performance of reduced analytical micromechanical models used as
CAH schemes is investigated, focusing on the TFA and HS algorithms. These models
allow immense potentials for computational savings. The TFA was shown to provide
homogenized composite responses in accordance with full-field homogenization techniques
when the heterogeneity of the inelastic fields can be sufficiently represented by the spatial
subdomain decomposition (Dvorak, Bahei-El-Din, and Wafa, 1994). Furthermore, the
TFA with its characteristic to purely rely on the single phase properties, is valid for any
microstructural configurations. On the one hand, the HS approach was shown to provide
faster convergence towards DNS (Castrogiovanni et al., 2021). On the other hand, relying
on an isotropic reference medium, its applicability for generic anisotropic materials is to
be investigated. The classical issue of overstiff composite predictions of CAH due to a
loss of physics, or more precisely, a loss of the capture of highly localized phenomena,
is tackled in this work with the goal to improve the rate of convergence towards the
predictions delivered by DNS. The problem of inaccurate results using reasonable numbers
of subdomains for the spatial decomposition is approached as following:
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Figure 1.9: Multi-step CAH procedure presented for two scale levels: the subdomains
of the RVE are again decomposed into sub-subdomains. The strains εr of the RVE
subdomains state BVPs for the lower scale level. The solution of the BVP on the lower

scale level results in the homogenized stress σr = σr.

• The implementation of enhanced spatial decompositions with respect to classical
discretizations that rely on elastic deformation patterns. A number of inelastic de-
formation conditions is selected, representing typical inelastic deformation patterns
in a specific RVE. Based on the computed deformation fields, a k-means clustering
technique is used for the partitioning of the RVE into subdomains. Although the
spatial decomposition relies on a limited number of simple loading modes, the goal
is the extraction of inelastic patterns occurring under various loading conditions and
therefore to allow the modeling of more complex and history-dependent loading.

• Further improvements of the capture of localized effects by computing and taking
into account fluctuations of the inelastic fields inside the subdomains in the form of
a correction factor.

• Modification of the HS approach from a secant towards a tangent formulation in
order to allow modeling composite responses under cyclic loading.

• Proposal of a novel multi-step CAH through downscaling and upscaling techniques,
allowing for an improved capture localized effects. Implemented is a two-step TFA
approach (displayed in Fig. 1.9), where the TFA is used to solve the strain local-
ization on the higher scale level. The strain of one subdomain states a BVP for the
underlying subdomains, that is again solved by the TFA algorithm. This procedure
can be extended towards the multi-step scaling technique.

The implemented approaches for the enhanced convergence of piecewise uniform field
homogenization schemes were tested for various two-dimensional material microstructures
and material systems.

With a subdomain decomposition that aims to accurately respect different inelastic
patterns in a material, the number of possibly considered inelastic modes cannot be ex-
tended infinitely. Consequently, the selection of only a few inelastic modes is of particu-
lar interest for composite materials with finite numbers of possible deformation patterns.
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One type of materials that accommodate a finite range of possible deformation modes are
composite structures with arranged meso- or microstructures, as are textile composites.
Following the assumption that the CAH schemes relying on piecewise uniform fields may
have a good applicability for woven composite structures, the TFA and HS approaches
with underlying inelasticity-based spatial decompositions are used for the reduced scale
bridging of the mechanics of woven composite structures. The RH of woven composite
structures was treated in previous works, Han et al. (2020) and Wu, Adam, and Noels
(2021, e.g.), where Han et al. (2020) investigated the woven composite by the another
CAH approach, the SCCA mentioned above. As woven composite materials are consid-
ered as three-scale materials, the prediction of the macroscopic response of biaxial wo-
ven composites is accomplished by a two-step homogenization (Fig. 1.8), exploiting the
strengths of two different homogenization techniques for an efficient modeling:

• Physics-based scale-coupling algorithms approximated by piecewise uniform fields
allow for the consideration of complex and anisotropic structures. Therefore, it is
made use of the CAH approaches based on either the TFA or the HS formulations
for the mesoscopic to macroscopic homogenization of the woven RVE.

• The non-uniform anisotropic elastic and inelastic properties of the yarn materials
due to locally varying fiber orientations need to be respected by the spatial division
into subdomains in order to gather only material points with similar responses
in the same subdomain and therefore, guarantee valid effective responses of the
particular subdomain. For this sake, an adapted subdomain decomposition designed
for the RH of three-scale composite materials, built by a mesostructure containing
phases with possibly fully heterogeneous microstructures, is implemented. It allows
for piecewise uniform field approximations of composites with heterogeneous and
anisotropic meso- and microstructures by respecting locally varying orientations of
fibers or inclusions.

• Using the aforementioned new spatial decomposition, the composite yarn material
can confidently be treated as a UD fiber composite per subdomain. The MFH, ap-
plicable for composites with simple microstructures and low or high inclusion vol-
ume fractions, is used for the homogenization of the yarn material and thus, the
microscopic to mesoscopic scale bridging. The mesoscopic eigenstrains of the yarns
required for the mesoscale to macroscale transition follow from a redefined concept
for the computation of the eigenstrains, based on an incremental-secant MFH pro-
cedure on the microscale. The integration of the MFH on the microscale allows for
the modeling of arbitrary inelastic loading conditions, without the requirement of a
predefined unit cell yield criterion (Han et al., 2020).

1.4 Outline
This thesis is organized as follows: In Section 2, the different homogenization techniques
considered in this work are presented in detail. This contains the conditions for the scale
transition in full-field homogenization techniques as well as different descriptions of the
micromechanics in heterogeneous solids and RH approaches that base on the spatial dis-
cretization of these micromechanical algorithms, here referred to as CAH. This work fo-
cuses on two CAH algorithms, comprising of the TFA and a modified tangent formulation
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of the HS type analysis. Furthermore, the MFH approach integrated for the modeling
of the woven composite is introduced. Numerical procedures for the iterative solution of
the BVPs through the CAH and MFH approaches are presented. In Section 3, all nu-
merical steps to achieve the solution for the mechanical RVE response by using the CAH
techniques are presented in detail. The elasticity-based and inelasticity-based reductions
from a discretized full-field problem to a reduced problem using the TFA and the HS ap-
proaches are described. A new approach is proposed for the incorporation of numerically
determined plastic field fluctuations inside the subdomains in order to achieve improved
homogenized responses, making use of statistical measures of plastic field inhomogeneities
gathered in the offline stage. Subsequently, the CAH results for the responses of a range
of RVEs with various microstructures and containing different material systems are pre-
sented and compared to the ones following the full-field homogenization using DNS. The
tangent HS approach provides generally clearly better predictions than the TFA for the
response of isotropic composite RVEs. However it it shown that the method does lead
to overcompliant responses of several microstructures with elevated complexity. Further-
more, the modeling capability of strongly anisotropic materials is shown to be limited
using the HS approach. In contrast, the TFA is a suitable modeling technique for generic
anisotropic microstructures, yet leads to typically overstiff homogenized responses due to
overestimated strains accumulations in stiff elastic phases. It is shown that the TFA with
a spatial decomposition that bases on inelastic micromechanical patterns achieves clearly
improved inelastic responses with respect to an elasticity-based spatial decomposition for
all kinds of investigated isotropic and anisotropic microstructures. Section 4 contains the
three-scale bridging of the woven composite, involving an adapted clustering that respects
inelastic fields and the local yarn orientation as well as the two-step homogenization pro-
cedure, comprised by CAH for the mesoscopic homogenization of the woven unit cell the
and MFH for the microscopic homogenization of the yarn materials. Two-step homoge-
nization results for various numerical tests with different complex loading conditions per-
formed on the woven unit cell are displayed and compared to full-field homogenization
results. The CAH using both the TFA and the HS algorithms, combined with the MFH,
allows an accurate representation of the inelastic behavior of the woven unit cell. This
is valid for all investigated complex non-proportional loading histories. In Section 5, a
new strategy for the CAH of composites is proposed, basing on a multi-step upscaling
and downscaling scheme. The multi-step scheme allows for an improved capture of the
heterogeneous inelastic fields and at the same time the circumvention of the solution of
large systems by a decoupling into sub-systems. The approach was employed for two TFA
homogenization steps and details of the implementation of the offline and online stage, as
well as first numerical results, are presented. With a homogenization on the lower scale
level that appears ineffective at this point, it becomes obvious that further research is
required in order to obtain the expected results using the two-step TFA. In Section 6,
concluding remarks and potential future extensions of this work are pointed out.
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1.5 Contributions
The following novelties were introduced by the work in this thesis:

• A clustering procedure to construct CAH schemes, relying on piecewise uniform
field of variables, that allows to take into account actual inelastic patterns evolving
in an RVE with its particular microstructure.

• A new correction approach for enhanced predictions by the TFA homogenization
scheme by taking into account statistical fluctuations of inelastic fields computed
by DNS.

• The modification of the HS homogenization scheme from a secant towards a tangent
formulation in order to allow the modeling of cyclic loading conditions.

• A novel microscale-mesoscale-macroscale bridging technique for woven composites
using two homogenization steps (Fig. 1.8), allowing the modeling of general inelastic
loading conditions.

• A clustering approach for three-scale materials with underlying meso- and mi-
crostructures, that takes into account the mesoscale inelastic fields and the het-
erogeneous microstructural configuration.

• The proposal for a novel multi-step homogenization scheme, implemented for two
homogenization steps based on the TFA formulation (Fig. 1.9). This approach is
expected to allow improved modeling results while decreasing the computational
effort of the clustering-based homogenization methods.

This work has directly resulted in the publication of the following articles in peer
reviewed journals as main author:

• K. Spilker, V. D. Nguyen, L. Adam, L. Wu, and L. Noels. "Piecewise-uniform
homogenization of heterogeneous composites using a spatial decomposition based
on inelastic micromechanics". Composite Structures, June 2022.

• K. Spilker, V. D. Nguyen, L. Wu, and L. Noels. "Three-scale bridging for woven
composites using homogenization techniques" (submitted article), 2022.

Moreover, this work has been presented at the following international conferences:

• K. Spilker, L. Noels and L. Wu. "Numerical Evaluation of Interaction Tensors
in Heterogeneous Materials". 29th International Workshop on Computational Me-
chanics of Materials (IWCMM29), September 2019.

• K. Spilker and L. Noels. "Multiscale Modeling of Composites – Piecewise-Uniform
Model Order Reduction". 24th International Conference on Composite Structures
(ICCS24), June 2021.
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Chapter 2

Homogenization of the mechanics in
composite media

2.1 Introduction
Almost all existing materials have inhomogeneous compositions at certain length scales,
containing alloys, natural materials like bio- or geomaterials, and designed composite
materials for industrial purposes. Inhomogeneous compositions imply mismatches of the
mechanical properties of the materials constituents. The overall, structural, behavior of
the material is then dependent on the properties and volume fractions, shapes, distribu-
tions and sizes of the single constituents on the materials microstructure. Consequently,
specific multiscale techniques, relying on the use of certain microstructural descriptors,
need to be employed for an estimation of the overall behavior. While techniques for the
evaluation of the response of a material with linearly-elastic constituents where developed
early, the consideration of nonlinear or history-dependent responses of the microstructural
constituents underlies a much higher degree of complexity. To obtain nonlinear macro-
scopic constitutive relations for a material is highly complex because the occurrence of
history-dependent phenomena as plasticity or damage on the microscale strongly affect
the overall response. In the previous and present centuries, different approaches for the
evaluation of the overall response of heterogeneous, nonlinear materials were developed.
Several of these nonlinear homogenization techniques, achieving the extraction of overall,
or homogenized, responses of heterogeneous composite media under external influences,
are presented in this section.

In the following two-scale consideration, it is referred to the upper and lower scales
as the macro and microscales, respectively. One point X, belonging to a macroscopic
material domain, is represented by an associated microstructural domain V , required to
contain all essential microscopical features and therefore referred to as the representative
volume element (RVE), displayed in Fig. 1.4. The point X is then assumed to be located
at the center of the volume V . The total volume of the RVE is given as

|V | =
∫
V

dχ , (2.1)

where χ ∈ V denotes the microstructural domain. In a small strain setting, the macro-
scopic strain ε(X) and stress σ(X) are given as the volume averages over the RVE domain
as

ε =
1

|V |

∫
V

ε(χ)dχ (2.2)
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and
σ =

1

|V |

∫
V

σ(χ)dχ , (2.3)

where the strains are related to the displacements u(χ) as

ε(χ) =
1

2

(
∇⊗ u(χ) + u(χ)⊗∇

)
. (2.4)

The local stresses σ(χ, t) at the time t are connected through certain constitutive rela-
tions, expressed as

σ(χ, t) = f
(
ε(χ, t), z(χ, t′),∀t′ ≤ t

)
, (2.5)

with the internal state variables z(χ, t′), where the dependence on the history is expressed
through t′ with t′ ≤ t. In the absence of dynamic effects, the local stress field needs to
satisfy the force equilibrium

∇ · σ(χ) = f(χ) ∀χ ∈ V (2.6)

at any point χ, where the Nabla operator ∇ denotes the spatial gradient and f(χ) the
local body forces. On the RVE boundary ∂V , the occurring forces due to the local stress
states need to conform with the applied surface traction t, expressed as

n(χ) · σ(χ) = t(χ) ∀χ ∈ ∂V , (2.7)

where n is the outward unit normal on the boundary ∂V .
Assuming a prescribed macroscopic strain ε, following the deformation state at the

macroscopic material point X, the local strain field ε(χ), the local stress field σ(χ)
and the macroscopic stress response σ follow the solution of a boundary value problem
(BVP) on the RVE, stated through ε. The problem of computational homogenization
is schematically presented in Fig. 1.4, where the homogenized stress response under
a prescribed macroscopic strain is extracted from the resolution of the BVP over the
discretized RVE. Complementary to the averaging theorems for the strain and stress, the
volume average of the internal microscopic energy must equal the macroscopic energy in
order to guarantee preservation of energy between both scales. The energy consistency
between two scales is provided by the Hill-Mandel condition, stated as

σ : δε =
1

|V |

∫
V

(σ : δε) dχ . (2.8)

In this chapter, different techniques to extract the homogenized response of an RVE
are presented. Section 2.2 contains the procedure and conditions of the computational
homogenization by full-field DNS. Section 2.3 presents two different micromechanical the-
ories, providing analytical scale-coupling relations for composite media. These relations
allow the adoption of CAH schemes by the assumption of piecewise uniform fields. The
developed numerical solution procedures of the CAH schemes are presented. In Section
2.4, details on MFH techniques are given, focusing on the Mori-Tanaka formalism. The
numerical resolution of the incremental-secant MFH scheme by Wu et al. (2013a) is pre-
sented. Section 2.5 presents the different constitutive relations of the composite material
phases considered in this work. Section 2.6 contains a brief summary of the presented
homogenization approaches for composite media.
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2.2 Computational Homogenization
Using Direct Numerical Simulations (DNS) like the FE method, the homogenized strain-
stress response of a RVE can be achieved by an integration over the local fields of a
constructed microscopic domain. The local fields are results of a BVP, solved numerically
over the discretized domain. In mechanical problems, the BVP is typically solved to
compute the local displacement field u(χ). In the absence of dynamic effects and body
forces, the equilibrium equations{

∇ · σ = 0 ∀χ ∈ V ,
n · σ = t ∀χ ∈ ∂V ,

(2.9)

at all microscopic material points χ, and the Hill-Mandel condition for the transition of
scales, are to be satisfied.

Hill-Mandel condition The microscale displacement field is written under the form

u(χ) = ε · (χ− χref) + u′(χ) (2.10)

where χref is a reference point in V and u′ is the fluctuation field. Considering the
definition of the homogenized strain tensor ε (Eq. (2.2)), the fluctuation field u′ should
thus satisfy the condition

0 =
1

|V |

∫
V

(∇⊗ u′(χ) + u′(χ)⊗∇) dχ =
1

|V |

∫
∂V

(n⊗ u′ + u′ ⊗ n) dS . (2.11)

Besides, substituting Eq. (2.10) in Eq. (2.8), integrating by parts and using the equi-
librium condition (2.9) allows the reformulation of the Hill-Mandel condition (2.8) as

σ : δε =
1

|V |

∫
V

σ : δε dχ = σ : δε+
1

|V |

∫
V

σ : (δu′ ⊗∇) dχ , (2.12)

or
0 =

∫
∂V

(σ · n) · δu′ dS =

∫
∂V

t · δu′ dS . (2.13)

Definition of the constrained microscale finite element problem Let δu′ ∈ U
be a test function, where U is an admissible kinematic vector field subset of the minimum
kinematic field Umin satisfying Eq. (2.11), i.e.

Umin =

{
δu′|

∫
∂V

(n⊗ δu′ + δu′ ⊗ n) dS = 0

}
. (2.14)

Then, the weak form of the microscale equilibrium conditions in Eq. (2.9) reads∫
V

σ : (δu′ ⊗∇) dχ = 0 , ∀δu′ ∈ U . (2.15)

If U ⊂ Umin, the resolution of this weak form always ensures Eq. (2.12) and the Hill-
Mandel condition (2.8) to be satisfied. The variational statement (2.15) of the Hill-
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Mandel condition was introduced by Peric et al. (2010) and Schröder, Labusch, and Keip
(2016) and is practically implemented by defining specific boundary conditions on the
RVE whose constraint is to satisfy Eq. (2.11), as detailed in Nguyen, Wu, and Noels
(2017). In this work, we consider the Periodic Boundary Conditions (PBC), for which the
admissible kinematic vector field U is defined by

UPBC =
{
u′|u(χ+)− u(χ−) = ε · (χ+ − χ−) ,

∀χ+ ∈ ∂V + and corresponding χ− ∈ ∂V −
}
⊂ Umin , (2.16)

where the parallelepiped RVE faces have been separated in opposite surfaces ∂V − and
∂V +. Note that the variational statement does not require the PBC to constrain directly
the symmetry of the surface traction in order to satisfy the Hill-Mandel condition. This
symmetry is a consequence of the microscale problem resolution as shown by considering
arbitrary δu′ ∈ UPBC in Eq. (2.13). The Eq. (2.15) is completed by the PBC (2.16) and
the system is solved using the constraint elimination method (Nguyen, Wu, and Noels,
2017). The fourth order macroscale material tensor Calg

= ∂σ/∂ε can be extracted from
this resolution. It is noted that Calg is not equal to the volume average of the local stiffness
field Calg(χ) in the case of non-uniform strain distributions over the RVE.

The base for the computational homogenization of finite domains was set up by the
work done by Geers, Kouznetsova, and Brekelmans (2010), Peric et al. (2010), and Saeb,
Steinmann, and Javili (2016). The consideration of volume elements with sizes below
the statistical representation was treated by Ostoja-Starzewski et al. (2007), where it is
shown that the presented formalism for the computational homogenization of statistical
volume elements still hold for smaller domains.

2.3 Micromechanics based homogenization

2.3.1 Relations in heterogeneous media

The local strain field ε(χ) in the domain V under homogeneous loading conditions ε may
be computed using the Lippmann-Schwinger equation

ε(χ) = ε+

∫
V

Γ(χ,χ′) : τ (χ′)dχ′, χ,χ′ ∈ V , (2.17)

with the polarization stress field

τ (χ) = σ(χ)− C : ε(χ), (2.18)

where C is the stiffness of a homogeneous reference medium, and the product C : ε(χ)
represents the stress that would exist locally in the reference medium under the same
local strain ε(χ) (Dvorak, 2013; Kröner, 1977). Polarization stresses in a medium with a
reference stiffness following the homogenized secant stiffness are schematically presented
in Fig. 2.1 (for the case of a discretization into subdomains that will be introduced in
Section 2.3.3).
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Figure 2.1: Schematic display of the piecewise uniform field consideration with K
= 2 subdomains, one of them with an elastic response and the other one deforming
inelastically. In (a), the homogenized nonlinear σ − ε response of the composite, with
the indicated initial reference stiffness C0 = Cel and the current secant reference stiffness
C = Csec. In (b), the σr − εr responses of both the elastic (r = 1, blue) and inelastic
(r = 2, red) subdomains. Indicated are the eigenstrain ε∗1 only occurring in the inelastic

subdomain, and the polarization stresses of both subdomains τ1 and τ2.

The influence of a local polarization stress field on the local strain field is expressed
by means of the classical Green’s operator

Γijkl =
1

2

[
∂2Gik

∂χj∂χl
+

∂2Gjk

∂χi∂χl

]
, (2.19)

derived from the Green’s function of the homogeneous reference medium G(χ,χ′), satis-
fying

Cijkl
∂2Gkp

∂χl∂χj
(χ,χ′) + δ

ip δ(χ− χ′) = 0 . (2.20)

As the reference medium is homogeneous, the Green’s interaction operator Γ is inversely
proportional to the stiffness of the medium:

Γ(χ,χ′) ∝ C−1 . (2.21)

2.3.2 Transformation Fields

The Transformation Field Analysis (TFA) builds on the separation of elastic fields and
so-called transformation fields, comprising eigenstrain fields and eigenstress fields. Local
strains are expressed by

ε(χ) = εel(χ) + ε∗(χ) , (2.22)
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where εel(χ) is the local elastic strain field and ε∗(χ) the eigenstrain field. Eigenstrains
occurring in nonlinear material phases are schematically displayed in Fig. 2.1b (for the
case of a discretization into subdomains that will be introduced in Section 2.3.3). The
relation between eigenstrains and eigenstresses is given as

ε∗(χ) = −Cel(χ)−1 : σ∗(χ) , (2.23)

with the local elastic stiffness tensor Cel(χ) and the local elastic compliance being its
inverse. The constitutive relation in Eq. (2.5) is alternatively stated under the form

σ(χ) = Cel(χ) :
(
ε(χ)− ε∗(χ)

)
= Cel(χ) : ε(χ) + σ∗(χ) ,

(2.24)

implying that the eigenstrains ε∗(χ) belong to the internal state variables z(χ) in Eq.
(2.5).

If the state of the material domain V is elastic, the local strain field ε(χ) inside the
body can be expressed as

ε(χ) = Ael(χ) : ε, χ ∈ V (2.25)

with the local elastic strain concentration tensor Ael(χ). The local stress field in Eq. (2.5)
is given as

σ(χ) = Cel(χ) : ε(χ), χ ∈ V. (2.26)

The expression of the overall strain and stress in Eqs. (2.2) and (2.3) can be reformulated
to

ε =

[
1

|V |

∫
V

Ael(χ) dχ
]

: ε (2.27)

and
σ =

[
1

|V |

∫
V

Cel(χ) : Ael(χ) dχ
]

: ε, (2.28)

the latter leading to the expression for the overall elastic stiffness

Cel
=
dσ

dε
=

1

|V |

∫
V

Cel(χ) : Ael(χ)dχ. (2.29)

In the case of a vanishing overall strain ε = 0, the local strain field can be expressed
as

ε(χ) = D(χ,χ′) : ε∗(χ′) χ,χ′ ∈ V , (2.30)

with the interaction function D(χ,χ′), estimating the effect of an eigenstrain field ε∗(χ′)
on the strain at χ (Dvorak, 1992). An existing eigenstrain field in the material domain
under a vanishing overall strain ε = |V |−1

∫
V
ε(χ)dχ = 0 leads to the expression∫

V

ε(χ) dχ =

∫
V

D(χ,χ′) : ε∗(χ′) dχ = 0, (2.31)

implying for arbitrary eigenstrain distributions ε∗(χ′) the condition∫
V

D(χ,χ′) dχ = 0 . (2.32)
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Considering now a general mechanical problem as presented in Eq. (2.22), the resulting
local strain field is given as the superposition of the two particular problems presented
above

1. the material body with an overall strain ε 6= 0 in the absence of an eigenstrain field,

2. the material body under a vanishing overall strain ε = 0 and containing an eigen-
strain field ε∗(χ) 6= 0,

expressed by the superposition of the Eqs. (2.25) and (2.30), yielding

ε(χ) = Ael(χ) : ε+ D(χ,χ′) : ε∗(χ′), χ ∈ V. (2.33)

This equation provides an analytical field relation and a coupling relation between the
microscopic and macroscopic scales.

2.3.3 Piecewise uniform fields: Clustering-based homogenization

The scale-coupling formulations presented in Sections 2.3.1 and 2.3.2 can be discretized
considering a division of the domain V into subdomains Vr. Average quantities over the
subdomains with the volumes

|Vr| =
∫
Vr

dχ (2.34)

are considered instead of local quantities and a uniform distribution of all internal state
variables is assumed inside the K subdomains denoted by the index r. The piecewise
uniform fields of local variables β(χ), where β = ε, ε∗,σ, are expressed by

β(χ) =
K∑
r=1

βrξr(χ) (2.35)

with the per-subdomain r constant value βr and the spatial distribution function

ξr(χ) =

{
1 , if χ ∈ Vr
0 , otherwise.

(2.36)

It follows
βr =

1

|Vr|

∫
Vr

β(χ)dχ , (2.37)

meaning that the uniform quantities of a subdomain equal the averaged quantities over
the subdomain. The homogenized strain and stress can now be expressed as

ε =
K∑
r=1

υrεr, (2.38)

and

σ =
K∑
r=1

υrσr, (2.39)
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where υr = |Vr|/|V | is the volume fraction of the subdomain r. The subdomain stresses
σr, assumed uniform per-subdomain, follow from the subdomains particular constitutive
relations. The homogenized instantaneous response

δσ = Calg
: δε (2.40)

is expressed by the tangent stiffness (here referred to as the algorithmic tangent operator),
computed as

Calg
=
∂σ

∂ε
=

K∑
r=1

υr
∂σr
∂εr

∂εr
∂ε

, (2.41)

where ∂σr/∂εr represents the instantaneous response of the subdomain r, and ∂εr/∂ε
are the instantaneous strain localizations of the phases with respect to the overall strain.

2.3.4 Piecewise uniform Transformation Field Analysis (TFA)

Considering Eq. (2.25), the strain field averaged over a certain subdomain Vr in the RVE
V under the loading ε in pure elasticity, meaning that no eigenstrain fields ε∗(χ) exist,
is given as

εr = Ael
r : ε , (2.42)

where the effective strain concentration tensor of the subdomain is calculated as the
average over the subdomain following

Ael
r =

1

|Vr|

∫
Vr

Ael(χ)dχ . (2.43)

In the case of a vanishing homogenized strain ε = 0 and assuming a uniform eigenstrain
field, existing only in one subdomain s,

ε∗(χ) =

{
ε∗s , if χ ∈ Vs
0 , otherwise ,

(2.44)

the local reaction strain field results in

ε(χ) = D(χ,χ′) : ε∗(χ) = Ds(χ) : ε∗s , (2.45)

with no sum on s intended and with Ds(χ), expressing the local strain reaction due to
a uniform eigenstrain field in the subvolume Vs. The effect of the uniform eigenstrain ε∗s
on the averaged strain over a subdomain Vr is expressed by the interaction tensor Drs,
computed as

Drs =
1

|Vr|

∫
Vr

Ds(χ)dχ . (2.46)
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If several uniform eigenstrain fields exist in different subdomains s, the local reaction
strain field follows as the superposition of the different interaction effects

εr =
K∑
s=1

Drs : ε∗s . (2.47)

For Eq. (2.38) to remain true for all possible eigenstrain distributions over the subdomains
under a homogenized strain ε, the condition in Eq. (2.32) in its reduced form

K∑
r=1

υrDrs = 0 (2.48)

is to be satisfied (Eq. (50.1) in Dvorak (1992)). The reduced general mechanical problem,
containing a load ε and the occurrence of transformation fields, results as the superposition
of Eqs. (2.42) and (2.47) in

εr = Ael
r : ε+

K∑
s=1

Drs : ε∗s . (2.49)

The TFA scale coupling in Eq. (2.49) in its instantaneous form is given as

δεr = Ael
r : δε+

K∑
s=1

Drs : δε∗s , (2.50)

where the instantaneous eigenstrain δε∗s follows as

δε∗s = −(Cel
s )−1 : (δσs − Cel

s : δεs) (2.51)

from the subdomains instantaneous response

δσs = Calg
s : δεs , (2.52)

where Calg
s is the algorithmic instantaneous stiffness of the subdomain s. With Eq. (2.52),

the Eq. (2.51) is expressed as

δε∗s = −(Cel
s )−1 : (Calg

s − Cel
s ) : δεs . (2.53)

Instantaneous strain localizations can be formulated in a similar fashion as the elastic
strain localizations in Eq. (2.42) by

δεr = Ain,TFA
r : δε (2.54)

with the instantaneous strain concentration tensors of the TFA, Ain,TFA
r . A comparison

of Eqs. (2.54) and (2.50) leads to the system

[Ael] = [Ain,TFA] + {Drs : (Cel
s )−1 : (Calg

s − Cel
s )} : [Ain,TFA]

= {δrsI + Drs : (Cel
s )−1 : (Calg

s − Cel
s )} : [Ain,TFA] ,

(2.55)
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where "[ ]" denotes assembled K×1 vectors and "{ }" denotes square K×K matrices.
The solution of the system results in the instantaneous strain concentration tensors

[Ain,TFA] = {δrsI + Drs : (Cel
s )−1 : (Calg

s − Cel
s )}−1 : [Ael] . (2.56)

The homogenized algorithmic stiffness in Eq. (2.41) follows as

Calg
=

K∑
r=1

υr
∂σr
∂εr

∂εr
∂ε

=
K∑
r=1

υrCalg
r : Ain,TFA

r . (2.57)

2.3.5 Numerical Resolution of the TFA

Algorithm 1: Numerical TFA procedure at a glance: Newton-Raphson scheme
at one load step for a given overall strain increment ∆ε.
initialize: ∆εr = Ael

r : ∆ε (r = 1, ..., K)
iterative procedure:
repeat

for r = 1, K do
call constitutive relations for subdomain r to compute σr, ∆ε∗r and
∂∆ε∗r/∂εr, Calg

r (details in Section 2.5)
end
for r = 1, K do

initialize residual Fr = ∆εr − Ael
r : ∆ε

for s = 1, K do
add eigenstrain interaction contribution to residual:
Fr = Fr −

∑
sDrs : ∆ε∗s

compute Jacobian matrix Jrs = δrsI− Drs : (∂∆ε∗s/∂εs)
end

end
solve δ[ε] = {J}−1 : [F ]
update [∆ε] = [∆ε]− δ[ε]

until |[F ]| < tol;
after convergence:
compute σ and Calg, following Eq. (2.65) and Eq. (2.70), respectively.

The incremental TFA resolution for the overall RVE response under a prescribed
overall strain ε̄, proposed in this work (Spilker et al., 2022), is expressed as

∆εr − Ael
r : ∆ε−

K∑
s=1

Drs : ∆ε∗s = 0 . (2.58)

The numerical solution of this system is found using a Newton-Raphson procedure with
the subdomain residuals

Fr = ∆εr − Ael
r : ∆ε−

K∑
s=1

Drs : ∆ε∗s , (2.59)
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iteratively solving the problem Fr = 0 by the linearization

Fr → Fr + δFr = 0. (2.60)

Expressed as an assembled system using the K×1 block column vectors denoted by "[ ]"
and the square K×K block matrices denoted by "{ }", the variational term δ[F ] follows
as

δ[F ] =

{
∂F

∂ε

}
: δ[ε] +

∂[F ]

∂ε
: δε = {J} : δ[ε] +

∂[F ]

∂ε
: δε . (2.61)

The full Jacobian system {J} consists of the single matrices (no sum on s intended)

Jrs =
∂Fr
∂εs

= δrsI− Drs :
∂∆ε∗s
∂εs

, (2.62)

with the derivatives of the subdomain eigenstrains by the subdomain strains ∂∆ε∗s/∂εs
following from the nonlinear constitutive relations of the subdomain (Section 2.5). As-
suming a constant homogenized strain, implying δε = 0, the result

δ[ε] = −{J}−1 : [F ] (2.63)

is used to correct the strain increments in the subdomains by

[ε] = [ε] + δ[ε] (2.64)

per iteration.
Once the computed strain increments of the subdomains have converged, the homog-

enized stress response is given by

σ =
K∑
r=1

υrσr , (2.65)

where the stresses σr follow from the constitutive relations of the subdomain r (Section
2.5). The homogenized instantaneous algorithmic tangent stiffness follows from Eq. (2.57)
and is computed as

Calg
=

K∑
r=1

υr
∂∆σr
∂εr

∂εr
∂ε

, (2.66)

where ∂∆σr/∂εr corresponds to the algorithmic operator of the subdomain Calg
r , detailed

in Section 2.5. The second term

∂εr
∂ε

= Ain,TFA
r , (2.67)

representing the subdomains instantaneous strain concentration tensors Ain,TFA
r (Eq.

(2.56)), follows after the solution in Eq. (2.60) with Eq. (2.61) as

[Ain,TFA] = −{J}−1 :
∂[F ]

∂∆ε
= {J}−1 : [Ael] , (2.68)
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such that

Ain,TFA
r =

K∑
s=1

{J}−1
rs : Ael

s . (2.69)

The resulting full expression of Eq. (2.66) amounts to

Calg
=

K∑
r=1

υrCalg
r : Ain,TFA

r =
K∑
r=1

υrCalg
r :

[ K∑
s=1

{J}−1
rs : Ael

s

]
. (2.70)

The schematic overview of the numerical TFA procedure is presented in Algorithm 1.

2.3.6 Piecewise uniform Polarization Field Analysis (PFA)

Following Eq. (2.17), and assuming a uniform polarization field, existing only in one
subdomain s, expressed as

τ (χ) =

{
τs , if χ ∈ Vs
0 , otherwise

, (2.71)

simultaneously to a vanishing homogenized strain ε, the local strain field is given as

ε(χ) =

∫
Vs

Γ(χ,χ′) : τ (χ′)dχ′ =
[ ∫

Vs

Γ(χ,χ′)dχ′
]

: τs = Γs(χ) : τs , (2.72)

with Γs(χ) =
∫
Vs

Γ(χ,χ′)dχ′, expressing the local strain reaction due to a uniform polar-
ization stress field in a certain subdomain Vs. Considering the averaged reaction over a
certain subdomain Vr, the Green’s interaction tensors, quantifying the effect of a uniform
polarization stress field in the subdomain s on the strain in subdomain r, are defined as

Γrs =
1

|Vr|

∫
Vr

Γs(χ)dχ . (2.73)

The Eq. (2.17) under the assumption of piecewise uniform fields of variables, can be
expressed as

εr = ε+
K∑
s=1

Γrs : τs = ε+
K∑
s=1

Γrs :
(
σs − C : εs

)
. (2.74)

It is noted that the Green’s interaction tensors

Γrs ∝ (C)−1 (2.75)

and the stiffness C are properties of the assumed homogeneous reference medium. As
long as the homogenized response of the medium is linear elastic, the interaction tensors
and the reference stiffness are constant. During elasticity, the reference medium will have
constant elastic stiffness: C = C0, where C0 typically corresponds to the stiffness of the
homogenized elastic medium Cel. However, if the homogenized response of the medium
changes, the properties of the homogeneous reference medium can be chosen to change
accordingly. With the adaptive stiffness C, representing the nonlinear homogeneous ref-
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erence medium, the Green’s interaction function (Eq. (2.75)) changes simultaneously
(Wulfinghoff, Cavaliere, and Reese, 2018).

Similarly as seen above for the TFA, the instantaneous strain concentration tensors of
the PFA can be expressed as

δεr = Ain,PFA
r : δε , (2.76)

with the subdomains instantaneous strain concentration tensors of the PFA, Ain,PFA
r . The

instantaneous form of Eq. (2.74) is given as

δεr = δε+
K∑
s=1

Γrs :
(
δσs − C : δεs

)
, (2.77)

which leads, after a comparison with Eq. (2.76), to the system

[I] = [Ain,PFA]− {Γrs : (Calg
s − C)} : [Ain,PFA]

= {δrsI− Γrs : (Calg
s − C)} : [Ain,PFA] ,

(2.78)

and finally to the expression for the instantaneous strain concentration tensors

[Ain,PFA] = {δrsI− Γrs : (Calg
s − C)}−1 : [I] . (2.79)

The homogenized algorithmic stiffness in Eq. (2.41) follows as

Calg
=

K∑
r=1

υr
∂σr
∂εr

∂εr
∂ε

=
K∑
r=1

υrCalg
r : Ain,PFA

r . (2.80)

It can be accounted in different ways for the nonlinear homogenized response of the
actual composite material. The nonlinear behavior of the composite is respected by
the consideration of a nonlinear homogeneous reference medium, whose stiffness can be
formulated in different ways. In a total formulation, as represented by Eq. (2.74), the
reference stiffness would be represented by the homogenized secant stiffness of the medium:
C = Csec. Alternatively, if the homogeneous reference medium is chosen to represent the
instantaneous response of the homogenized medium, the incremental formulation for the
polarization field analysis,

∆εr = ∆ε+
K∑
s=1

Γrs :
(
∆σs − C : ∆εs

)
, (2.81)

is to be considered, where C corresponds to the homogenized algorithmic tangent stiffness
Calg.

2.3.7 Piecewise uniform Hashin-Shtrikman type formulation

This section introduces simplifications for the PFA (Section 2.3.6), which can be useful
to adopt for the homogenization of certain types of composite material systems. The
reference stiffness C is replaced by an isotropic (isotropized) reference stiffness

C = Ciso = 3κ Ivol + 2G Idev , (2.82)
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with the bulk modulus κ and the shear modulus G of the reference medium, and where

Ivol =
1

3
I ⊗ I, (2.83)

Idev = I− Ivol (2.84)

and I and I are the second and fourth order unity tensors. The isotropic elastic reference
stiffness of the material Ciso in Eq. (2.82) can as well be formulated as a function of the
shear modulus G and the Poisson ratio of the reference medium

ν =
3κ− 2G

2 (3κ+G)
, (2.85)

such that

Ciso
kkkk = 2G

1− ν
1− 2 ν

Ciso
jjkk = 2G

ν

1− 2 ν

Ciso
jkjk = G

(2.86)

with no sum on k or j intended. The PFA relying on an isotropic reference stiffness
is referred to as the Hashin-Shtrikman (HS) type analysis (Wulfinghoff, Cavaliere, and
Reese, 2018).

During elasticity, the reference medium is assumed to have the stiffness C0,iso with the
entries

C0,iso
kkkk = 2G0 1− ν0

1− 2 ν0

C0,iso
jjkk = 2G0 ν0

1− 2 ν0

C0,iso
jkjk = G0 ,

(2.87)

with the shear modulus G0 and the Poisson ratio ν0 of the elastic reference medium. The
Green’s interaction tensors in the homogeneous elastic medium are then expressed as

Γ0
rs ∝ (C0,iso)−1 . (2.88)

Once inelastic effects occur, the instantaneous response of the composite is expressed by
the instantaneous isotropic stiffness Ciso. However, with the (non-physical) assumption of
a constant Poisson ratio of the reference medium during inelastic deformation ν = ν0, as
suggested by Wulfinghoff, Cavaliere, and Reese (2018), the instantaneous reference stiff-
ness can be achieved solely by an adaption of the instantaneous reference shear modulus
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G as

Ciso
kkkk = 2G

1− ν0

1− 2 ν0

Ciso
jjkk = 2G

ν0

1− 2 ν0

Ciso
jkjk = G .

(2.89)

With the scaling of the instantaneous reference stiffness by the instantaneous reference
shear modulus G as

Ciso(G) =
G

G0
C0,iso , (2.90)

the instantaneous Green’s tensors during inelastic deformation of the material can then
be scaled as

Γrs = Γ0
rs : C0,iso : (Ciso)−1 =

G0

G
Γ0
rs . (2.91)

Cavaliere, Reese, and Wulfinghoff (2020) and Wulfinghoff, Cavaliere, and Reese (2018)
proposed the total HS formulation

εr = ε+
K∑
s=1

Γrs :
(
σs − Ciso : εs

)
, (2.92)

which, with the reference stiffness and the Green’s tensors scaled according to Eqs. (2.90)
and (2.91), respectively, can be formulated as

εr = ε+
K∑
s=1

G0

G
Γ0
rs :

(
σs −

G

G0
C0,iso : εs

)

= ε+
K∑
s=1

Γ0
rs :

(
G0

G
σs − C0,iso : εs

)
.

(2.93)

The reference shear modulus is computed as

G = G
sec

=
σeq

3 εeq
, (2.94)

where Gsec is the total secant shear modulus of the composite. The equivalent homoge-
nized stress and strain are computed as

σeq =

√
3

2
dev(σ) : dev(σ) (2.95)

and

εeq =

√
2

3
dev(ε) : dev(ε) . (2.96)

The use of the total secant shear modulus Eq. (2.94) has two clear disadvantages:

• if the material is being elastically deformed after a previous inelastic loading history,
as the case during an unloading stage, the physical instantaneous homogenized stiff-
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ness of the composite material equals the elastic stiffness of the composite. How-
ever, the isotropic reference stiffness and the Green’s tensors do not equal the elastic
isotropized stiffness of the material.

• during unloading stages after previous inelastic deformation, the states of a total
equivalent strain εeq = 0 or stress σeq = 0 (in an uniaxial stress test, e.g.) can occur
in the material. These cases imply singularities of the reference stiffness or of the
Green’s operators, prohibiting reasonable predictions for the mechanical response
of the composite material in the vicinity of these points.

For this sake, an incremental HS formulation expressed as

∆εr = ∆ε+
K∑
s=1

Γrs :
(
∆σs − Ciso : ∆εs

)
(2.97)

is developed in this work. The reference shear modulus is computed as the incrementally
computed secant shear modulus of the material

G = G
alg

=
∆σeq

3 ∆εeq
, (2.98)

with the incremental equivalent homogenized stresses and strains computed as in Eqs.
(2.95) and (2.96) from ∆ε and ∆σ. Since this incremental-secant formulation represents
an approximated tangential shear modulus, this incremental shear modulus is denoted as
G

alg. With the scaling of the reference stiffness and the Green’s tensors, the incremental
HS results in the formulation

∆εr = ∆ε+
K∑
s=1

Γ0
rs :

(
G0

G
∆σs − C0,iso : ∆εs

)
, (2.99)

where the instantaneous shear modulus G is computed as presented in Eq. (2.98). In
contrast to the secant formulation in Eq. (2.93), the elastic response of the reference
material during instantaneous elastic loading is recovered by the incremental HS algorithm
in Eq. (2.99), unaffected by any previous inelastic loading history.

2.3.8 Numerical resolution of the tangent HS type analysis

In the following, a proposed numerical solution procedure of the HS type analysis, for-
mulated based on an isotropic homogenized tangent stiffness of the reference medium, is
presented. The subdomain residuals are, according to Eq. (2.99), given as

Fr = ∆εr −∆ε−
K∑
s=1

Γ0
rs :

(
G0

G
∆σs − C0,iso : ∆εs

)
. (2.100)

As for the TFA (Section 2.3.5), the solution follows the linearization of the residuals

Fr → Fr + δFr = 0, (2.101)
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Algorithm 2: Numerical incremental HS procedure using the tangent shear
modulus Galg at a glance: Newton-Raphson scheme at one load step for a given
overall strain increment ∆ε.
initialize: ∆εr = ∆ε (r = 1, ..., K)
iterative procedure:
repeat

for r = 1, K do
call constitutive relations for subdomain r to compute σr and Calg

r (details
in Section 2.5).

end
compute ∆σeq, ∆εeq from the incremental stress ∆σ and strain ∆ε as in Eqs.
(2.95) and (2.96) and G = G

alg following Eq. (2.98)
for r = 1, K do

initialize residual Fr = ∆εr −∆ε
for s = 1, K do

add polarization influence contribution to residual:
Fr = Fr − Γ0

rs :
[
(G0/G) ∆σs − C0,iso : ∆εs

]
compute Jacobian matrix Jrs (Eq. (2.103))

end
end
solve δ[ε] = {J}−1 : [F ]
update [∆ε] = [∆ε]− δ[ε]

until |[F ]| < tol;
after convergence:
compute σ and Calg, following Eq. (2.65) and Eq. (2.114), respectively.

with the variational terms of the subdomains, in the vector notation seen above, expressed
as

δ[F ] = {J} : δ[ε] +
∂[F ]

∂ε
: δε , (2.102)

with the full Jacobian system {J}. The overall strain is assumed constant, and thus
δε = 0. The matrix {J} consists of the single matrices (no sum on s intended)

Jrs =
∂Fr
∂εs

= δrsI− Γ0
rs :

(
G0

G
Calg
s − C0,iso

)
+
G0

G2

[ K∑
p=1

Γ0
rp : ∆σp

]
⊗ ∂G

∂εs
, (2.103)

with the instantaneous stiffness of the subdomains ∂∆σs/∂εs = Calg
s . The derivative

∂G/∂εs = ∂G
alg
/∂εs is, following Eq. (2.98), computed as

∂G
alg

∂εs
=

1

3 ∆εeq
∂∆σeq

∂εs
− ∆σeq

3 (∆εeq)2

∂∆εeq

∂εs
(2.104)

with
∂∆σeq

∂εs
=

3

2
υs

dev(∆σ)

∆σeq
: Calg

s (2.105)
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and
∂∆εeq

∂εs
=

2

3
υs

dev(∆ε)

∆εeq
. (2.106)

After convergence of the strain increments of the subdomains, the homogenized stress
response is given by

σ =
K∑
r=1

υrσr . (2.107)

The homogenized instantaneous algorithmic tangent stiffness, following from Eq. (2.80),
is computed as

Calg
=

K∑
r=1

υr
∂∆σr
∂εr

∂εr
∂ε

, (2.108)

with subdomains tangent operator Calg
r = ∂∆σr/∂εr and the subdomains instantaneous

strain concentration tensors of the HS algorithm

Ain,HS
r =

∂εr
∂ε

. (2.109)

The instantaneous strain concentration tensors follow after the solution in Eq. (2.101)
with Eq. (2.102) and with

∂F

∂∆ε
= −I +

G0

G2

K∑
s=1

Γ0
rs : ∆σs ⊗

∂G

∂ε
, (2.110)

as

[Ain,HS] = −{J}−1 :
∂[F ]

∂∆ε
= {J}−1 :

(
[I]− G0

G2
{Γ0} :

[
∆σs ⊗

∂G

∂∆ε

])
, (2.111)

such that

Ain,HS
r =

K∑
s=1

{J}−1
rs :

[
I− G0

G2

K∑
p=1

Γ0
rp : ∆σp ⊗

∂G

∂∆ε

]
, (2.112)

where
∂G

∂∆ε
=
∂G

alg

∂∆ε
= −2

9

dev(∆ε)

(∆εeq)3
. (2.113)

The resulting full expression of Eq. (2.108) amounts to

Calg
=

K∑
r=1

υrCalg
r : Ain,HS

r . (2.114)

An overview of the numerical HS procedure is presented in Algorithm 2.
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Figure 2.2: The (a) structure of a one-dimensional composite bar consisting of two
elements referred to as elements 1 and two 2. The BC are indicated, comprised by
one fixed end and an applied displacement u on the other end of the bar. In (b), the
mechanical representation of the composite bar, consisting of two springs with arbitrary

and independent elastic Young’s moduli Eel
1 and Eel

2 .

2.3.9 Uniaxial nonlinear analysis

In the following simple example, a one-dimensional composite bar, consisting of two sub-
domains 1 and 2 with different material properties (Fig. 2.2), is numerically investigated
by means of the TFA and PFA approaches. This application demonstrates the validity
of both micromechanical approaches for the solution of mechanical problems. The bar is
divided in two equally spaced elements, such that the volume (length) fractions of the two
subdomains are given as υ1 = υ2 = 1/2. In the one-dimensional bar, the two couplings

δε(t) = υ1 δε1(t) + υ2 δε2(t) (2.115)

δσ(t) = δσ1(t) = δσ2(t) (2.116)

between the local and global states apply, where

δσ1(t) = Ealg
1 (t) δε1(t) (2.117a)

δσ2(t) = Ealg
2 (t) δεII(t) (2.117b)

with the tangent moduli Ealg
1 and Ealg

2 . Using Eqs. (2.115), (2.116) and (2.117), the
following can be derived:

δε1(t) =
Ealg

2 (t)

υ1E
alg
2 (t) + υ2E

alg
1 (t)

δε(t) (2.118a)

δε2(t) =
Ealg

1 (t)

υ1E
alg
2 (t) + υ2E

alg
1 (t)

δε(t) . (2.118b)
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Expressing the instantaneous strain distribution by instantaneous strain localization fac-
tors of the subdomains, Ain

1 and Ain
2 , as

δε1(t) = Ain
1 (t) δε(t) (2.119a)

δε2(t) = Ain
2 (t) δε(t) , (2.119b)

results in the formulations

Ain
1 (t) =

Ealg
2 (t)

υ1E
alg
2 (t) + υ2E1(t)

(2.120a)

Ain
2 (t) =

Ealg
1 (t)

υ1E
alg
2 (t) + υ2E1(t)

. (2.120b)

Transformation Field Analysis The strain localization factors in elasticity are, fol-
lowing Eq. (2.120), as

Ael
1 =

Eel
2

υ1Eel
2 + υ2Eel

1

(2.121a)

Ael
2 =

Eel
1

υ1Eel
2 + υ2Eel

1

. (2.121b)

The expressions of the uniaxial eigenstrain-strain interaction factors in the one-
dimensional composite bar are given as

D11 =
υ2E

el
1

υ1Eel
2 + υ2Eel

1

(2.122a)

D21 = − υ1E
el
1

υ1Eel
2 + υ2Eel

1

(2.122b)

D12 = − υ2E
el
2

υ1Eel
2 + υ2Eel

1

(2.122c)

D22 =
υ1E

el
2

υ1Eel
2 + υ2Eel

1

, (2.122d)

with details presented in Appendix A. Following, the matrix BTFA(t) is considered, rep-
resenting the relation [

Ael
1

Ael
2

]
=

{
BTFA

11 BTFA
12

BTFA
21 BTFA

22

}[
Ain,TFA

1

Ain,TFA
2

]
(t) , (2.123)

and therefore [
Ain,TFA

1

Ain,TFA
2

]
(t) =

{
BTFA

11 BTFA
12

BTFA
21 BTFA

22

}−1 [
Ael

1

Ael
2

]
, (2.124)

where Ain,TFA
1 and Ain,TFA

2 are the instantaneous strain localization factors of the subdo-
mains, valid for the case of nonlinear behavior of the composite bar. The matrix BTFA is
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built with the entries

BTFA
ij (t) = δij +

Dij

Eel
j

(
Ealg
j (t)− Eel

j

)
. (2.125)

Polarization Field Analysis The instantaneous polarization stress - strain interaction
factors of the homogeneous reference bar (details in Appendix A) are expressed as

Γ11(t) = − υ2

E
alg

(t)
(2.126a)

Γ21(t) = − υ1

E
alg

(t)
(2.126b)

Γ12(t) = − υ2

E
alg

(t)
(2.126c)

Γ22(t) = − υ1

E
alg

(t)
, (2.126d)

with the homogenized instantaneous modulus of the composite bar Ealg, given by the
analytical expression

E
alg

(t) = υ1E
alg
1 (t)Ain

1 (t) + υ2E
alg
2 (t)Ain

2 (t) (2.127)

and assumed to be known at any time. The matrix BPFA represents the relation[
I
I

]
=

{
BPFA

11 BPFA
12

BPFA
21 BPFA

22

}[
Ain,PFA

1

Ain,PFA
2

]
(t) , (2.128)

and thus [
Ain,PFA

1

Ain,PFA
2

]
(t) =

{
BPFA

11 BPFA
12

BPFA
21 BPFA

22

}−1 [I
I

]
, (2.129)

where Ain,PFA
1 and Ain,PFA

2 are the instantaneous strain localization factors of the subdo-
mains following the PFA algorithm. The matrix BPFA is built with the entries

BPFA
ij (t) = δij − Γij

(
Ealg

1 (t)− Ealg
(t)
)
. (2.130)

Bilinear mechanical analysis The subdomain 2 is assumed to deform purely-elastic,
meaning that its instantaneous modulus is always

Ealg
2 (t) = Eel

2 . (2.131)

The response of subdomain 1 is elasto-plastic with a linear hardening after its yield stress
σY0

1 is exceeded, such that its instantaneous tangent modulus is given as

Ealg
1 (t) =

{
Eel

1 , ifσ1 < σY0
1

(H1E
el
1 )/(H1 + Eel

1 ), ifσ1 ≥ σY0
1 .

(2.132)
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with the hardening modulus H1 during plastic flow. Considered is the case of an ideally-
plastic behavior of the subdomain 1, meaning that

σ1(t) =

{
Eel

1 ε1(t), if ε1 < εY1
σY0

1 , if ε1 ≥ εY1
(2.133)

where εY1 = σY0
1 /Eel

1 the yield strain. With a vanishing hardening modulus H1 = 0, the
instantaneous modulus in Eq. (2.132) results in

Ealg
1 (t) =

{
Eel

1 , if ε1 < εY1
0, if ε1 ≥ εY1 .

(2.134)

For the one-dimensional composite bar with a response characterized by Eqs. (2.131) and
(2.134) with Eel

1 = 2000 MPa, σY0
1 = 100 MPa and Eel

2 = 4000 MPa under an applied
overall strain of ε = 0.1, the strain localization over the two elements is computed by Eqs.
(2.120), (2.124) and (2.129) for the analytical reference analysis and for the TFA and
PFA, respectively. Since the Young’s moduli are known from Eqs. (2.131) and (2.134),
the instantaneous strain concentration factors for this problem can be characterized a
priori for elastic and inelastic deformation. It is presented in Fig. 2.3 that the strain
localization in both subdomains computed by the analytical TFA and PFA algorithms is
in accordance with the analytical strain localization given by Eq. (2.120). This example
verifies the correctness of the TFA and PFA algorithms for the case of piecewise uniform
fields of variables.
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Figure 2.3: Strain localization in both subdomains of the one-dimensional bar following
the analytical approach and the analytical TFA and PFA algorithms.

2.4 Mean-Field Homogenization
Mean-Field Homogenization (MFH) approaches are used for the evaluation of the overall
response of two-phase media, consisting of one inclusion (subscript II) inside a host phase
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(subscript I), with the phase volume ratios υI and υII, where

υI + υII = 1 . (2.135)

The matrix (host) phase and the inclusion phase are represented by uniform fields of
variables with average quantities, meaning that the homogenized strain ε is expressed as

ε = υIεI + υIIεII (2.136)

and the homogenized stress as

σ = υIσI + υIIσII . (2.137)

The homogenized response depends on the structural configuration of the two-phase sys-
tem, including the geometry and the responses of the single phase. In the case of a host
phase with isotropic mechanical properties, the geometrical information of the two-phase
medium are expressed by gII, containing the volume fraction, aspect ratio and spatial
orientation of the inclusion.

2.4.1 Mori-Tanaka strain localization

The distribution of the strains in Eq. (2.136) using MFH approaches is governed by
particular localization rules. Here, the strain localization tensor introduced by Mori and
Tanaka (1973) is considered, linking the strain distribution in both phases. The distribu-
tion of the occurring strain increments ∆εI and ∆εII, using the Mori-Tanaka (MT) MFH
scheme, is expressed as

∆εII = BII : ∆εI (2.138)

by the MT strain localization tensor

BII = f(gII,CLCC
I ,CLCC

II ) , (2.139)

where CLCC
I and CLCC

II (gII) are the so-called linear comparison composite (LCC) operators
of the phases. The LCC are stiffness operators represent the linearized nonlinear response
of the composites phases. The strain localization tensor BII provides the link between the
occurring strains in each of the two material phases and is expressed as

BII = {I + S : [(CLCC
I )−1 : CLCC

II − I]}−1 , (2.140)

with the fourth order unity tensor I. The Eshelby tensor S(gII,CLCC
I ), depending on the

inclusion geometry gII and the stiffness operator of the host phase CLCC
I , expresses the

relation of the inclusion strain εII and a misfit strain ε∗II of the inclusion phase as

εII = S : ε∗II (2.141)

under a vanishing overall stress of the composite σ = 0. The misfit strain ε∗II is the
induced strain due to the fitting of the inclusion into the host-phase.

In linear elasticity, the LCC operators of the phases are given as the constant elastic
stiffnesses of the phases: CLCC

I = Cel
I , CLCC

II = Cel
II. The strain localizations in the two
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phases during linear elastic deformation is constant and is linked by the expression

εII = Bel
II : εI , (2.142)

with the constant elastic localization tensor

Bel
II = {I + S : [(Cel

I )−1 : Cel
II − I]}−1 . (2.143)

Considering Eq. (2.136), the strain of the host phase can, using Eq. (2.142), be expressed
as

εI = {υII + υIIBel
II}−1 : ε . (2.144)

If the phases instantaneous responses, expressed by the LCC operators, change due
to inelastic effects, the relation between the phase strains gets nonlinear, and therefore,
BII 6= Bel

II. Different formalisms for the MT strain localization exist, depending on the
formulation of the LCC operators. The tangent MFH formulation is a classical incremental
strain localization rule for the modeling of nonlinear composite responses, where the LCC
operators are given by the phases tangent stiffness operators CLCC

I = Calg
I and CLCC

II =
Calg

II (Doghri and Ouaar, 2003). Doghri and Friebel (2005) considered an isotropization
step of the tangent operators for improved homogenized responses. The relation of the
incremental strains in matrix ∆εI and inclusion ∆εII is expressed as

∆εII = Btan
II : ∆εI , (2.145)

with the tangential strain localization tensor Btan
II = f(gII,Calg

I ,Calg
II ).

Alternative MFH approaches make use of affine (Molinari, Canova, and Ahzi, 1987)
or secant (Berveiller and Zaoui, 1978) formulations for the strain distribution over the
two phases. In this work, the incremental-secant MFH formulation is chosen (Wu et al.,
2013a), where the strain distribution in the two phases is controlled by incremental-secant
stiffness operators of the phases Csec

I and Csec
II , such that CLCC

I = Csec
I and CLCC

II = Csec
II

(Fig. 2.4). The incremental-secant operators are naturally isotropic tensors, for the case
of a pressure-independent plasticity model expressed as

Csec
Ω = 3κelΩIvol + 2Gsec

Ω Idev Ω = I, II , (2.146)

with the elastic bulk modulus κelΩ and the secant shear modulus Gsec
Ω of the material phase

Ω, deforming inelastically. The implicit isotropy of the incremental-secant stiffness allows
to skip an isotropization step of the LCC operator considered by Doghri and Friebel
(2005), shown to provide better predictions of the composite. The incremental-secant
stiffness tensor Csec

Ω follows from the phases constitutive relations, and its computation
will be addressed in Section 2.5.3.

2.4.2 Incremental-secant Mori-Tanaka MFH scheme

The incremental-secant procedure is the following: First, the medium is virtually unloaded
to a homogenized zero-stress state σres = 0 (Fig. 2.4a). The elastic unloading step is
expressed as

(εn,σn)
(∆εu,∆σu)−−−−−−→ (εres, 0) , (2.147)
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Figure 2.4: MFH procedure under an applied strain increment ∆ε schematically for
a two-phase composite, consisting of an elastic inclusion in an inelastic matrix: The (a)
unloading-reloading procedure of the composite towards a zero-stress state (dotted) and
to the new homogenized state (dashed), and (b,c) the unloading-reloading step translated
to the two separate composite phases. Presented are the (b) residual incremental-secant
formalism with the reloading step from the residual state towards the new state and the
(c) zero-residual incremental-secant formalism, where the residual state in the inelastic

matrix phase is neglected.

where the superscript "n" denotes the previous configuration, ∆εu and ∆σu are the
homogenized strain and stress unloading increments, and εres is the composite strain at
the virtually unloaded state. As visible in Eq. (2.147), the composite unloading stress
increment is given by ∆σu = −σn, and since an elastic unloading is considered, the
composite unloading strain increment follows as

∆εu = (Cel
)−1 : ∆σu = −(Cel

)−1 : σn , (2.148)
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with the homogenized elastic stiffness Cel (more details given in Appendix B.1), leading
to the composite residual strain

εres = εn + ∆εu = εn − (Cel
)−1 : σn . (2.149)

Subsequently, the composite is reloaded towards the new stress state (Fig. 2.4a). The
reloading increment towards the new state of the composite at the configuration "n+ 1"
is represented by

(εres, 0)
(∆εre,∆σre)−−−−−−−→ (ε,σ) , (2.150)

where ∆εre is the reloading strain and ∆σre the reloading stress increment. The homog-
enized stress in Eq. (2.150), given by Eq. (2.137), follows from the stresses σΩ of the
material phases Ω ∈ {I, II}.

Residual incremental-secant approach As the composite is virtually unloaded, the
material phases, denoted by the subscript Ω ∈ {I, II}, experience the virtual elastic un-
loading step

(εnΩ,σ
n
Ω)

(∆εuΩ,∆σ
u
Ω)

−−−−−−→ (εresΩ ,σres
Ω ) , (2.151)

with the unloading strain and stress increments ∆εuΩ and ∆σu
Ω = Cel

Ω : ∆εuΩ towards the
residual strains and stresses εresΩ = εnΩ + ∆εuΩ and σres

Ω = σnΩ + ∆σu
Ω (Fig. 2.4b). Unlike

in the homogenized consideration of the composite, the residual stress states of the single
phases σres

Ω do not necessarily equal a zero stress state. The phases unloading strain
increments follow from the elastic mean field localization rule in Eq. (2.142) as

∆εuII = Bel
II : ∆εuI , (2.152)

under the conditions ∆εu = υI∆ε
u
I + υII∆ε

u
II and σ

res = υIσ
res
I + υIIσ

res
II = 0.

The composite constituents are, as the composite is reloaded according to Eq. (2.150),
reloaded simultaneously. Subject of the incremental-secant formulation are the strain
reloading increments ∆εreI and ∆εreII , describing the loading from a computed residual
state towards the new state (Fig. 2.4b), and linked by the incremental-secant strain
localization tensor Bsec

II = f(gII,Csec
I ,Csec

II ). The reloading of the phases following the
reloading of the composite is expressed as

(εresΩ ,σres
Ω )

(∆εreΩ ,∆σ
re
Ω )

−−−−−−−→ (εΩ,σΩ) . (2.153)

Phase strains and stresses at the new configuration "n+ 1" are given as

εΩ = εresΩ + ∆εreΩ (2.154a)
σΩ = σres

Ω + ∆σre
Ω . (2.154b)

The relation between the matrix and the inclusion strain reloading increments is ex-
pressed following

∆εreII = Bsec
II : ∆εreI , (2.155)

with
Bsec
II = {I + S : [(Csec

I )−1 : Csec
II − I]}−1 (2.156)
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and the Eshelby tensor S(gII,Csec
I ). The homogenization of the reloading strain is ex-

pressed as
∆εre = υI∆ε

re
I + υII∆ε

re
II . (2.157)

The distribution of the phases reloading strains ∆εreΩ follows from the reloading step of
the incremental-secant MFH scheme in Eqs. (2.155) and (2.156) based on the incremental-
secant phase stiffnesses Csec

Ω under the condition in Eq. (2.157). The phases secant
operators Csec

Ω and reloading stress increments

∆σre
Ω = Csec

Ω : ∆εreΩ , (2.158)

are computed from the phases constitutive relations (Section 2.5.3). The homogenized
algorithmic tangent stiffness Calg

= ∂σ/∂ε, following from Eq. (2.137), is computed as

Calg
= υI

∂σI

∂εI

∂εI
∂ε

+ υII
∂σII

∂εII

∂εII
∂ε

. (2.159)

The computation of the derivatives of the phase stresses by the phase strains, ∂σΩ/∂εΩ,
and of the derivatives of the phase strains by the composite strain, ∂εΩ/∂ε, leading to
the homogenized tangent stiffness, are outlined in Appendix B.4.

It was acknowledged by Wu et al., 2013a,b, 2017, that the presented incremental-
secant MTMFH algorithm may lead to overstiff homogenized predictions of the composite,
particularly in cases of elastic inclusions in an elasto-plastic matrix. A variation of the
residual incremental-secant approach was implemented by Wu et al. (2013a), that makes
use of neglected residual stresses in inelastically deforming material phases. This strategy,
referred to as the zero-residual incremental-secant approach, was shown to reliably provide
improved results of the incremental-secant MFH.

Zero-residual incremental-secant approach A modification of the incremental-
secant approach presented above is the so-called zero-residual incremental-secant scheme
(Wu et al., 2013a). In this approach, residual stresses of a phase I (in this work, the zero-
residual formalism is adopted for the matrix I only) are neglected, meaning that σres

I = 0
(Fig. 2.4c). Consequently, the reloading step of the matrix phase I with a waived residual
stress in Eq. (2.153) is modified to

(εresI , 0)
(∆εreI ,σI)−−−−−→ (εI,σI) , (2.160)

where the reloading stress increment ∆σre
I = σI in Eq. (2.158) is expressed by the zero-

residual incremental-secant operator C̃sec
I as

σI = C̃sec
I : ∆εreΩ . (2.161)

The determination of the zero-residual incremental-secant operator C̃sec
Ω is follows the local

constitutive relations of the matrix phase (Section 2.5.3). The strain localization relation
between the two phases Ω = I, II changes from the expression in Eq. (2.156) towards

Bsec
II = {I + S : [(C̃sec

I )−1 : Csec
II − I]}−1 , (2.162)
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resulting in modified phase strain distributions and thus in a modified homogenized re-
sponse of the composite. The homogenized algorithmic stiffness Calg (Eq. (2.159)), re-
sulting from the zero-residual incremental-secant formalism, is presented in Appendix
B.4.

Algorithm 3: Numerical residual incremental-secant MFH (thus, with con-
sidered residual stresses in the matrix phase) procedure at a glance: Newton-
Raphson scheme at one load step for a given overall strain increment ∆ε.
compute residual state following Eqs. (2.163), (2.164) and (2.165).
initialize: ∆εreII = ∆εre

iterative procedure:
repeat

compute matrix reloading strain increment: ∆εreI = (∆εre − υII∆εreII)/υI
call constitutive relations for both phases Ω = I, II to compute σΩ and the
secant stiffness tensors Csec

Ω (details in Section 2.5.3)
evaluate the Eshelby tensor S(gII,Csec

I )
compute stress residual F according Eq. (2.167).
compute Jacobian matrix J according Eq. (2.172).
solve δεII = −J−1 : F
update ∆εreII = ∆εreII − δεII

until |F | < tol;
after convergence:
compute σ and Calg, following Eq. (2.137) and Eq. (2.159) with the details given
in Appendix B.4, respectively.

2.4.3 Numerical resolution of the incremental-secant MFH
scheme

At each load increment n+1, the unloading-reloading procedure under the presribed over-
all strain ε is performed in order to compute the homogenized response. The schematic
overview of the numerical incremental-secant scheme (with residual stresses in the matrix)
is presented in Algorithm 3. First, the residual state of the composite is determined by
the elastic unloading procedure towards σres = 0 and

εres = εn −∆εu (2.163a)

∆εu = −(Cel
)−1 : σn . (2.163b)

The phase residual states are given by the elastic unloading procedure for the matrix

σres
I = σnI −∆σu

I (2.164a)
∆σu

I = Cel
I : ∆εuI (2.164b)

εresII = εnI −∆εuI (2.164c)
∆εuI = {υI + υBel

II}−1 : ∆εu (2.164d)
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and for the inclusion

σres
II = σnII −∆σu

II (2.165a)
∆σu

II = Cel
II : ∆εuII (2.165b)

εresII = εnII −∆εuII (2.165c)
∆εuII = Bel

II : ∆εuI . (2.165d)

Subsequently, the reloading procedure is performed by an iterative Newton-Raphson al-
gorithm under the composite reloading strain increment ∆εre in

εres
∆εre−−→ εn+1 (2.166)

to compute the phases reloading strain increments ∆εreΩ . The stress residual (details in
Appendix B.2) expresses as

F = Csec
I :

[
∆εreII −

1

υI
S−1 : (∆εreII −∆εre)

]
− Csec

II : ∆εreII , (2.167)

with the Eshelby tensor S(gII,Csec
I ), where the phase secant stiffnesses Csec

I and Csec
II follow

from the materials constitutive relations (Section 2.5.3). If the zero-residual incremental-
secant approach is used, the matrix residual stress in Eq. (2.164) changes to

σres
I = 0 (2.168)

and the zero-residual incremental-secant operator C̃sec
I is computed. The Eshelby tensor is

expressed as S(gII, C̃sec
I ) and the stress residual (details in Appendix B.2) for the iterative

solution is modified from Eq. (2.167) to

F = C̃sec
I :

[
∆εreII −

1

υI
S−1 : (∆εreII −∆εre)

]
− Csec

II : ∆εreII . (2.169)

Similarly as for the TFA (Section 2.3.5), the MFH solution follows the linearization of the
stress residual

F → F + δF = 0, (2.170)

with the variational term expressed as

δF = J : δεII +
∂F

∂ε
: δε , (2.171)

where J is the Jacobian matrix. The overall strain is assumed constant, and thus δε = 0.
The Jacobian is computed as

J =
dF

dεII
=
∂F

∂εII
+
∂F

∂εI

∂εI
∂εII

, (2.172)

with the detailed expression given in Appendix B.3, leading to the correction

δεII = −J : F (2.173)
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for the inclusion (reloading) strain increment

∆εreII = ∆εreII + δεII . (2.174)

2.5 Local constitutive relations

2.5.1 Anisotropic linear elasticity

Linear elastic material behavior is assumed in the following. The fourth-order elastic
stiffness tensor Cel in the stress-strain relation

σ = Cel : ε , (2.175)

representing a generic anisotropic elastic material, can, due to the symmetries of the
second-order strain and stress tensors, be expressed as a 6 × 6 matrix Cel, called the
Voigt-representation. The stress-strain relation is then given as

σV = Cel · εV , (2.176)

where σV = (σ11 ,σ22 ,σ33 ,σ23 ,σ13 ,σ12) and εV = (ε11 , ε22 , ε33 , 2ε23 , 2ε13 , 2ε12) are
the stress and strain vectors. With the stresses σ deriving from a strain energy density
function U as

σij =
∂U

∂εij
, (2.177)

and therefore
Cel
ijkl =

∂2U

∂εij∂εkl
=

∂2U

∂εkl∂εij
= Cel

klij (2.178)

the 36 material parameters reduce to 21 independent elastic parameters. The resulting
fully anisotropic elastic stiffness tensor Cel in Voigt-notation, Cel, is expressed as

Cel =



Cel
11 Cel

12 Cel
13 Cel

14 Cel
15 Cel

16

Cel
12 Cel

22 Cel
23 Cel

24 Cel
25 Cel

26

Cel
13 Cel

23 Cel
33 Cel

34 Cel
35 Cel

36

Cel
14 Cel

24 Cel
34 Cel

44 Cel
45 Cel

46

Cel
15 Cel

25 Cel
35 Cel

45 Cel
55 Cel

56

Cel
16 Cel

26 Cel
36 Cel

46 Cel
56 Cel

66


. (2.179)

In many materials however, the elastic responses in the different spatial orientations
are not fully independent.

Orthotropic materials Orthotropic materials have three underlying orthogonal planes
of symmetry, resulting in a reduction from 21 to nine independent elastic parameters. The
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elastic stiffness is represented by

Cel =



Cel
11 Cel

12 Cel
13 0 0 0

Cel
12 Cel

22 Cel
23 0 0 0

Cel
13 Cel

23 Cel
33 0 0 0

0 0 0 Cel
44 0 0

0 0 0 0 Cel
55 0

0 0 0 0 0 Cel
66


. (2.180)

Transverse-isotropic materials If additionally to the orthotropy, the material has
one preferred orientation, meaning that its response in one orientation is different from
the response in the other two orientations, it is referred to as transverse-isotropic or polar-
anisotropic (used in Section 3.5.5 and for the fibers of the yarns in Section 4). Fibrous
materials do typically possess one preferred orientation. The transverse-isotropic stiffness
tensor can be represented by five independent elastic parameters as

Cel =



Cel
11 Cel

12 Cel
13 0 0 0

Cel
12 Cel

11 Cel
13 0 0 0

Cel
13 Cel

13 Cel
33 0 0 0

0 0 0 Cel
44 0 0

0 0 0 0 Cel
44 0

0 0 0 0 0 (Cel
11 − Cel

12)/2


. (2.181)

Isotropic materials Materials that have the same elastic stress-strain response in all
spatial orientations are referred to as elastically isotropic. Their stiffness tensor is fully
characterized by two elastic material parameters, expressed as

Cel =



Cel
11 Cel

12 Cel
12 0 0 0

Cel
12 Cel

11 Cel
12 0 0 0

Cel
12 Cel

12 Cel
11 0 0 0

0 0 0 (Cel
11 − Cel

12)/2 0 0
0 0 0 0 (Cel

11 − Cel
12)/2 0

0 0 0 0 0 (Cel
11 − Cel

12)/2


. (2.182)

The isotropic elastic stiffness operator Cel (or Cel in the Voigt-notation) can be represented
by, e.g., the elastic bulk and shear moduli κel and Gel, as will be used for the nonlinear
material models considered in this work, described subsequently in Sections 2.5.2 and
2.5.3.

2.5.2 Nonlinear material behavior: J2-plasticity model

In this work, local inelastic stress responses and the local tangent stiffnesses follow from
the classical J2-plasticity model. Isotropic elasticity is assumed for the nonlinear material
phases. The isotropic elastic stiffness of the nonlinear material phase can be expressed as

Cel = 3κelIvol + 2GelIdev , (2.183)

with the materials elastic bulk modulus κel and shear modulus Gel. In this section, the
material point denoted by χ and the subscript r referring to the subdomain Vr are omitted
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Figure 2.5: Return mapping algorithm and isotropic hardening demonstration (a) in
the stress-strain plot for the uniaxial case, showing the correction from the trial stress
state towards the new stress state and (b) in the plane of the principal stresses for the
biaxial stress state, demonstrating the mapping from the trial stress state on to the

current yield surface.

in the equations. The yield function for isotropic hardening

fY(σ, p) = σeq − σY(p) ≤ 0 (2.184)

is to be fulfilled in order to satisfy the von Mises law, where p is the accumulated equivalent
plastic strain. In the yield function fY(σ, p), the current yield stress reads

σY = σY0 +R(p), (2.185)

with the initial yield stress σY0 and the hardening stress R(p) following from the expres-
sion of the governing hardening law and the equivalent accumulated plastic strain p. A
schematic demonstration of the increasing yield stress due to isotropic hardening is pre-
sented in Fig. 2.5. The equivalent accumulated plastic strain p, as the time integral of its
rate ṗ, follows from the purely deviatoric plastic strain rate tensor ε̇p as

ṗ =

√
2

3
ε̇p : ε̇p , (2.186)

such that
ε̇p = ṗN , (2.187)

where

N =
∂fY

∂σ
=

3

2

dev(σ)

σeq
(2.188)
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is the plastic flow direction and dev(σ) is the deviatoric stress. The equivalent stress is
computed as

σeq =

√
3

2
dev(σ) : dev(σ) . (2.189)

This convention for the equivalent stresses representing a stress tensor is the one used in
the following. The purely deviatoric incremental plastic strain, as the time integral of ε̇pI
over the time increment is expressed as

∆εp = ∆pN , (2.190)

The second part is the current equivalent von Mises stress, computed following Eq.
(2.189). The resolution of the incremental problem at one current load increment fol-
lows a predictor-corrector scheme, starting from the assumption of no occurring plastic
flow, and hence the incremental ("predicted") elastic trial stress state

σtr = σn + Cel : ∆ε, (2.191)

where σn is the stress solved at the former load increment, and the corresponding yield
function

fY(σ, εp) = σtr,eq − σY . (2.192)

It can be shown that N = N tr, where

N tr =
3

2

dev(σtr)

σtr,eq
. (2.193)

In case of fY > 0, the scheme yields, by solving the above equations in order to satisfy
the condition (2.184), the resulting plastic strain increment given by Eq. (2.190), with
the plastic flow direction following Eq. (2.193). The plastic flow maps the trial stress
state in Eq. (2.191) on to the corresponding yield surface (Fig. 2.5), finally providing the
("corrected") stress state as

σ = σtr − Cel : ∆εp. (2.194)

For isotropic elasticity, Eq. (2.194) can be expressed as

σ = σtr − 2Gel∆εp, (2.195)

with the elastic shear modulus of the material Gel. The derivative of the plastic strain
increment in Eq. (2.190) reads

∂∆εp

∂ε
=

2Gel

h
N ⊗N + 2Gel ∆p

σtr,eq

(
3

2
Idev −N ⊗N

)
, (2.196)

and the consistent tangent stiffness reads

Calg =
∂∆σ

∂ε
= Cel − 2Gel∂∆εp

∂ε

= Cel − (2Gel)2

h
N ⊗N − (2Gel)2 ∆p

σtr,eq

(
3

2
Idev −N ⊗N

) , (2.197)
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where
h = 3Gel + ∂R/∂p. (2.198)

Details of the computations in Eqs. (2.196) and (2.197) are given in Appendix C.1.

2.5.3 Incremental-secant formulation of the J2-plasticity model

The stress-strain response during the incremental-secant reloading procedure Eq. (2.158),
given by

ε = εres + ∆εre (2.199a)
σ = σres + ∆σre , (2.199b)

is governed by the J2-plasticity model. In the following, the common convention for the
equivalent strains is used for the strain tensors:

εeq =

√
2

3
dev(ε) : dev(ε) . (2.200)

The radial return mapping algorithm as described in Section 2.5.2 corrects the elastic
trial stress state back towards the current yield surface. During the incremental-secant
reloading increment, the stress state correction provided by the purely deviatoric plastic
strain increment

∆εp = ∆pN sec , (2.201)

points back from the elastic trial reloading stress ∆σre,tr = Cel : ∆εre towards the actual
reloading stress ∆σre. Therefore, the flow direction is given as

N sec =
3

2

dev(∆σre)

∆σre,eq
=

3

2

dev(∆σre,tr)

∆σre,tr,eq
, (2.202)

and the stress state (Eq. (2.199b)) follows as

∆σre = ∆σre,tr − 2Gel ∆εp . (2.203)

Following the elastic isotropy in Eq. (2.183), the incremental-secant stiffness can be
expressed as an isotropic tensor

Csec = 3κelIvol + 2GsecIdev , (2.204)

where the incremental shear modulus is given as

Gsec =
∆σre,eq

3 ∆εre,eq
= Gel − 3(Gel)2∆p

∆σre,tr,eq
. (2.205)

Under the reloading increment, the occuring plastic flow (Eq. (2.201)) differs from the one
in the tangent formulation Section 2.5.2, implying that the algorithmic tangent stiffness

Calg =
∂∆σ

∂ε
= Cel − 2Gel∂∆εp

∂ε
(2.206)



2.6. Summary 51

changes. The full expression for Calg following the incremental-secant formulation is pre-
sented in Appendix C.

If however, the zero-residual incremental-secant approach is adopted for the matrix
phase, the reloading step in Eq. (2.199) changes to

ε = εres + ∆εre (2.207a)
∆σre = σ . (2.207b)

Accordingly, the plastic flow direction during the reloading increment, pointing back from
the elastic trial stress state σtr towards the new stress state σ, changes to the one given
by the tangent formulation in Section 2.5.2,

N =
3

2

dev(σtr)

σtr,eq
. (2.208)

The zero-residual incremental-secant shear modulus

G̃sec =
σeq

3 ∆εre,eq
= Gel − 3(Gel)2∆p

σtr,eq
(2.209)

leads to the expression of the zero-residual incremental stiffness tensor

C̃sec = 3κelIvol + 2G̃secIdev . (2.210)

The algorithmic tangent stiffness of the nonlinear material, following the zero-residual
incremental-secant formalism, is the one in Eq. (2.197).

2.6 Summary
Different homogenization approaches were presented, starting from the computational, or
full-field, homogenization that bases on the extraction of homogenized properties from
computed microscopic fields of variables. Following, clustering based homogenization
(CAH) approaches are presented, basing on piecewise uniform fields of variables instead
of the computed fields on the microscale. In order to replace the microscopic full-field
solution, certain concentration and influence functions need to be defined between the
subdomains. The definition of these concentration and influence functions distinguish
the different homogenization approaches. For the Mori-Tanaka MFH approach, influence
tensors between both material phases are computed based on the Eshelby tensor of the
inclusion and certain linearized stiffness operators of the phases. Methods like the TFA
and PFA generalize the MFH approach in the sense that they allow the consideration of
an arbitrary number of subdomains with uniform fields of variables. The concentration
and influence functions considered for these methods create couplings between the subdo-
main variables and between the subdomains and the overall loading. The validity of both
approaches has been demonstrated by means of a simple example with piecewise uniform
stress and strain fields. The HS algorithm, based on the assumption of an isotropic refer-
ence medium, was presented as a simplified PFA. In this context, a tangent formalism was
suggested in order to account for cyclic loading cases. The numerical solution procedures
for the TFA, the HS type analysis, and the incremental-secant MFH formalism, relying
on iterative Newton-Raphson schemes, are developed.
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Chapter 3

Clustering analyses of composite RVEs

3.1 Introduction
This chapter details the TFA (Section 2.3.4) and HS (Section 2.3.7) approaches devel-
oped in this thesis, both relying on piecewise uniform fields of variables, used as CAH
techniques suitable for the purpose of multiscale modeling of random-structured inelastic
composite materials during various loading conditions. The TFA and the HS scale cou-
pling relations can be used in combination with any inelastic local constitutive relations
for the subdomains. The main difference between the two methods is that the HS ho-
mogenization approach relies on the integration of a homogeneous and isotropic reference
medium, while for the TFA, solely the responses of the single subdomains are considered
for the estimation of the homogenized response.

It is well known that homogenization approaches based on piecewise uniform fields of
internal variables lead to typically overstiff predicted homogenized responses of nonlinear
composite materials (Spilker et al., 2022). The main reason for the too stiff computed
responses is the insufficient ability to capture highly localized nonlinear effects. In this
work, elasto-plastic materials are considered with hardening properties and under loading
conditions that lead to complex and very localized accumulations of plasticity. In order
to improve the accuracy of the methods, the following ingredients are considered

• In order for the spatial division into subdomains to be well-representative of the
inelastic micromechanical deformation patterns inside the material, this subdivision
is based on plastic strain tensor distributions obtained by selected offline loading
conditions;

• In order to remain general for different microstructures, the local interaction func-
tions are evaluated numerically;

• In order to account for plastic field fluctuations inside each subdomain and to allow
for an additional acceleration of the convergence towards full-field results, a sensible
correction approach for the use of piecewise uniform field TFA is constructed from
the inelastic field fluctuations within each subdomain observed during the offline
stage.

This chapter is structured as follows: Section 3.2 presents the clustering techniques
for the spatial decompositions based on elastic and on plastic deformation fields. The
Sections 3.3 and 3.4 outline all the details on the construction of the two adopted CAH
schemes, including the determination of the averaged concentration and interaction ten-
sors and the determination of a correction for the TFA that bases on plastic field fluc-
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tuations, referred to as plastic fluctuation correction (PFC). The modified TFA solution
scheme under consideration of the PFC is given. In Section 3.5, the numerical results of
the extensive testing of the CAH schemes for various material systems are presented. The
reduced homogenized responses computed by the use of the TFA and the HS approaches
are compared to the reference results following high-fidelity full-field simulations. The re-
sults following the CAH models are investigated, and while the CAH models are generally
able to represent the full-field solutions fairly accurate, reasons for poor representations of
the elastic and/or inelastic behaviors of particular material systems are discussed. Finally,
in Section 3.6 conclusions are drawn regarding the suitability of the CAH approaches for
generic microstructures, the accuracy of the two CAH models and the effectivity of the
plasticity based in comparison to not optimized spatial subdomain decompositions.

3.2 Spatial division based on local deformation fields
In order to use the TFA as a reduced technique for the mechanical homogenization,
the microscopic points of the RVE are divided into several subdomains and over the
subdomains averaged quantities

βr =
1

|Vr|

∫
Vr

β(χ)dχ (3.1)

are considered. For the case of more than one material phase, each phase is subdivided
separately. A more refined discretization than simply using one subdomain per material
phase is achieved by selecting a local variable β(χ) and analyzing its distribution in the
corresponding phase. The microscopic points are then divided based on the local similarity
of the selected quantity. Thereby the subdivisions are not necessarily coherent in space.
In the following, RVE decompositions based on elastic and inelastic strain distributions
are presented. A k-means clustering approach as proposed by Liu, Bessa, and Liu (2016)
is used to divide all microscopic points in the full-field domain into partitions based on the
similarity of their elastic or inelastic strain tensors (MacQueen, 1967). In order to achieve
accurate mechanical local fields for the spatial partitioning, certain discrete numerical full
field simulations are performed in the offline stage. The number and type of the full field
pre-simulations depend on the chosen variable to be characterized. In the following, all
Nr local data points constituting the subdomain volume Vr are denoted by the index i,
expressed as

χi ∈ Vr, i = 1, ..., Nr . (3.2)

After the spatial decomposition, interaction tensors between the subdomains are deter-
mined. The division of all local material points into the subdomains is performed phase-
wise, and in the following, the material phases are denoted by the index Ω.

3.2.1 Elasticity based clustering

The local elastic strain concentration tensors Ael(χ) in an RVE link the strain at any
material point χ in the microscopic domain inside the RVE, considered in elasticity and
without any eigenfields, to the overall strain of the RVE following from Eq. (2.25) as

ε(χ) = Ael(χ) : ε . (3.3)
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The local strain concentration tensors in the RVE are fully characterized by the computa-
tion of local strain fields ε(χ) under certain different loading cases applied by prescribed
strain boundary conditions ε on the elastic RVE (Section 2.2). For the estimation of
all local strain concentration tensors in a 3D heterogeneous structure, the six different
orthogonal boundary modes

ε(1) = EBC~ex ⊗ ~ex , (3.4a)

ε(2) = EBC~ey ⊗ ~ey , (3.4b)

ε(3) = EBC~ez ⊗ ~ez , (3.4c)

ε(4) =
1

2
EBC(~ex ⊗ ~ey + ~ey ⊗ ~ex) , (3.4d)

ε(5) =
1

2
EBC(~ex ⊗ ~ez + ~ez ⊗ ~ex) , (3.4e)

ε(6) =
1

2
EBC(~ey ⊗ ~ez + ~ez ⊗ ~ey) (3.4f)

are applied on the RVE, with a strain magnitude EBC and the canonical unit vectors in
a 3D space ~ex, ~ey and ~ez. For 2D analyses, the boundary modes ε(1), ε(2) and ε(4) are
applied. Writing Eq. (3.3) in Voigt-notation, the local elastic strain concentration tensors
Ael(χ) are fully characterized by a comparison of the resulting local strain field ε(χ) to the
prescribed overall strain ε. After the determination of the full strain concentration tensor
field, a k-means clustering technique (MacQueen, 1967) is applied on the local elastic
strain concentration tensors. The k-means clustering approach divides the data points it is
applied on, into a number K of partitions by solving an optimization problem minimizing
the in-partition variances. Here, it is used as a multi-dimensional clustering approach,
grouping all the fourth order strain concentration tensors at the microscopic points χ
inside one material phase VΩ into a number of KΩ partitions. During the clustering
procedure, all tensor entries are taken into account, meaning that the dimensionality
amounts to the number of (independent) components of a fourth-order tensor. The goal
is the minimization of the function

H[Ael(χ)] =

KΩ∑
r=1

Nr∑
i=1

||Ael(χi)− Ael
r ||2, χ ∈ VΩ, χi ∈ Vr ⊂ VΩ, r ∈ 1, ..., KΩ , (3.5)

where
||Z|| =

√
Z :: Z , (3.6)

indicated by minimal variances of the strain concentration tensors Ael(χi) in one subdo-
main r to the corresponding subdomain average strain concentration tensor of the sub-
domain

Ael
r =

1

|Vr|

∫
Vr

Ael(χ)dχ . (3.7)

The optimization problem is solved by an iterative process finally achieving the optimal
decomposition of all data points into the KΩ sets. This optimal decomposition of one
material phase Ω is accomplished as follows:

1. First an arbitrary number of clusters KΩ is chosen and strain concentration tensors
at random data points are defined as the r = 1, ..., KΩ initial cluster mean values
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Ael
r .

2. Iterative clustering procedure starts

2.1. Variances of all local strain concentration tensors from the different cluster
means

||Ael(χ)− Ael
s ||2, χ ∈ VΩ, s ∈ 1, ..., KΩ (3.8)

are calculated. All corresponding local data points i are assigned to a set r,
so that the variance between the local strain concentration tensor Ael(χi) and
the assigned cluster mean Ael

r is minimal:

||Ael(χi)− Ael
r ||2 ≤ ||Ael(χi)− Ael

s ||2, χi ∈ Vr ⊂ VΩ,

∀s, r ∈ 1, ..., KΩ, s 6= r .
(3.9)

2.2. Following, all strain concentration tensors assigned to the cluster are used to
determine the updated cluster means Ael

r using Eq. (3.7).

3. The iterative procedure ends when convergence of the procedure is reached, indi-
cated by a stationary assignment of the local data points to the sets. The clus-
ter means after convergence of the k-means clustering procedure act as the strain
concentration tensors of the subdomains in the online stage.

The elasticity-based spatial division and the computation of the strain concentration
tensors are as well summarized in Algorithm 4.

3.2.2 Inelasticity based clustering
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Figure 3.1: Computed equivalent strain fields in a composite RVE with υII = 30
% of circular stiff elastic inclusions embedded in an elasto-plastic matrix following the
application of the boundary condition states (a,b) biaxial (as in Eq. (3.10a)) and (c,d)
pure shear deformation (as in Eq. (3.10b)) during (a,c) purely elastic deformation and

(b,d) after severe plastic deformation has occurred.

Inelastic deformation due to plastic flow, initiated when the initial yield limit of a ma-
terial is exceeded, carries the major part of the total deformation under inelastic loading
conditions. Inelastic deformation patterns in the material can deviate strongly from the
spatial elastic deformation distributions (see Fig. 3.1), implying that subdivisions based
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Algorithm 4: Overview of the spatial division based on elastic or inelastic strain
distributions and the computation of the subdomains strain concentration ten-
sors.
select elastic material properties for all phases Ω of the RVE domain
for i = 1, ..., 6 do

perform DNS:
apply ε(i) (Eq. (3.4)) on RVE domain V
compute ε(χ)
compute i-th column of Ael(χ) (Eq. (3.3)) written in Voigt notation

end
if inelasticity based decomposition then

set the actual, potentially inelastic, material properties for all phases Ω of the
RVE domain
for l = 1, 2 do

perform DNS:
apply εin(l) (Eq. (3.10))
compute εp(l)

(χ) and store temporarily
compute εp

(l)

Ω and p(l)
Ω (Eqs. (3.13) and (3.12))

normalize: εp(l)
(χ)→ φ(l)(χ) (Eq. (3.14))

transform: φ(l)(χ)→ q(l)(χ) (Eq. (3.15))
end
assemble q(χ) (Eq. (3.16))
perform spatial division based on q(χ) (Section 3.2.2)

end
else

perform spatial division based on Ael(χ) (Section 3.2.1)
end
for r=1,...,K do

compute Ael
r by averaging over Vr (Eq. (3.7))

end

on the distribution of elastic strains do not necessarily represent the actual deformation
patterns during inelastic deformation. In particular the highly localized plasticity lead-
ing to shear band formation in the RVE can not be identified during elastic deforma-
tion states of the RVE. Consequently, in order to achieve an improved spatial division
into subdomains that represents the physics of a material under inelastic deformation
states, micromechanical deformation patterns occurring during inelastic deformation are
captured by means of the conduction of simulations containing inelastic deformation in
the material. The deformation modes applied on the RVE were selected with the goal to
allow an identification of different important deformation patterns inside the RVE, with
an emphasis on the formation of the shear band patterns. For the investigated cases of
2D structures in this work, the following biaxial and pure shear deformation boundary
modes

εin
(1)

= EBC,in(~ex ⊗ ~ex − ~ey ⊗ ~ey) (3.10a)

εin
(2)

= EBC,in(~ex ⊗ ~ey + ~ey ⊗ ~ex) (3.10b)
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with the overall deformation factor EBC,in were selected, both resulting in distinct isochoric
deformation states and pure shearing in different orientations inside the material. The
resulting inelastic deformation patterns are presented in Fig. 3.1.

Note that the consideration of local equivalent plastic strains

p(χ) =

√
2

3
εp(χ) : εp(χ) , (3.11)

expressed as scalar values representing the local plastic strain tensors εp(χ), do not con-
tain sufficient information of the actual inelastic field to provide a spatial decomposition
that accounts for the physics of an inelastic RVE problem. The highly heterogeneous char-
acter of the local plastic strain field εp(χ) comprises local isochoric deformation states
represented by different signs of the plastic strain tensor entries. Equivalent plastic strains
p(χ) however, do possess of a positive sign, irrespective of the signs of the single plastic
strain tensor entries. Therefore, a clustering based on local equivalent plastic strain fields
does not allow the account for the actual heterogeneity of the inelastic deformation states,
implying that the consideration of all entries of the local plastic strain tensor field εp(χ)
is inevitable for a representation of the inelastic deformation states by the subdomains.

After the choice of np (here np = 2) different overall strain modes, the distinct sim-
ulations l = 1, ..., np with the corresponding boundary conditions εin(l) (Eq. (3.10)) are
performed and the local plastic strain fields εp(l)

(χ) computed. It is reiterated that the
goal of the inelasticity based spatial decomposition is to account for the dominant inelastic
deformation patterns emerging under different loading conditions on the RVE. However,
different deformation states of the RVE may lead to different degrees of plastification in
the material. If one applied loading case results in a higher degree of plasticity than a
second applied loading case, meaning that the magnitude of the local plastic strain tensor
field under the first loading case clearly exceeds the one occurring under the second load-
ing case, the use of the k-means clustering would account more for the inelastic patterns
under the first loading case than for the inelastic patterns under the second loading case.
Therefore, in order to achieve a spatial decomposition that accounts to the same degree
for the inelastic patterns emerging under all of the applied loading modes l = 1, ..., np,
the local plastic strain tensor fields εp(l)

(χ) are to be normalized by a sensibly chosen
quantity that represents the magnitude of plasticity. Since the material phases Ω of the
RVE are clustered separately, a reasonable choice for the normalization of the plastic
strain fields under the loading mode l inside a specific material phase Ω, expressed as
εp

(l)
(χ), ∀χ ∈ VΩ, is the per-phase equivalent average plastic strain

p
(l)
Ω =

√
2

3
εp

(l)

Ω : εp
(l)

Ω , (3.12)

following from the plastic strain averaged over the corresponding material phase VΩ

εp
(l)

Ω =
1

|VΩ|

∫
VΩ

εp
(l)

(χ)dχ . (3.13)

In summary, for a capture of the inelastic deformation patterns and localizations under
different inelastic loading conditions l = 1, ..., np, the computed plastic strain fields εp(l)

(χ)
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are normalized as
φ(l)(χ) = εp

(l)

(χ)/p
(l)
Ω , ∀χ ∈ VΩ . (3.14)

The Voigt notation is used for the transformation

φ(l)(χ)→ q(l)(χ) (3.15)

to obtain the local 6 × 1 vectors q(l)(χ)1. Following, the normalized plastic strain fields
are arranged in local 1× 6nP vectors

q(χ) =
(
q(1)T (χ) , ... , q(np)T (χ)

)T
, (3.16)

representing the entirety of the local inelastic fields. A k-means clustering procedure sim-
ilar to the one described above for the fourth-order elastic strain concentration tensors
(Section 3.2.1) is performed, dividing all discrete material points in the considered RVE
phase Ω into a number of KΩ partitions r containing Nr data points based on the similar-
ities of the local vectors q(χ). The optimal decomposition is achieved by a minimization
of the function

J [q(χ)] =

KΩ∑
r=1

Nr∑
i=1

|q(χi)− qr|2, χ ∈ VΩ, χi ∈ Vr ⊂ VΩ, r ∈ 1, ..., KΩ , (3.17)

where
|z| =

√
z · z , (3.18)

with the local vectors q(χi) inside the set r and the determined respective subdomain
means

qr =
(
q(1)
r ... q(np)

r

)T
=

1

|Vr|

∫
Vr

q(χ)dχ . (3.19)

After the division of all local points inside the microscopic RVE domain into subdomains
based on inelastic fields, the strain concentration tensors Ael

r of the subdomains r are
determined using Eq. (3.7) following the application of the elastic loading modes (detailed
in Section 3.2.1) given by Eq. (3.4).

The inelasticity-based spatial division and the computation of the strain concentration
tensors are as well summarized in Algorithm 4. The computation of the interaction tensors
for the TFA Drs and for the HS type analysis Γrs follow in the Sections 3.3.1 and 3.4.3.

3.3 Transformation Field Analysis
The implementation of the TFA based on piecewise uniform fields (Section 2.3.4) of vari-
ables is presented for the modeling of nonlinear composite materials. Elasto-plastic con-
stitutive relations are considered for the subdomains (Section 2.5.2). Therefore, the eigen-
strains ε∗(χ) introduced in Section 2.3.2 equal plastic strains εp(χ). The reduced incre-
mental TFA scale coupling relation (Eq. (2.49)) is recalled:

∆εr = Ael
r : ∆ε+

K∑
s=1

Drs : ∆ε∗s , (3.20)

1Even for 2D cases, the 6 components of the plastic strain tensor are considered.
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where
∆ε∗s = ∆εps . (3.21)

The spatial decomposition into subdomains r based on elastic and inelastic strains, and
the computation of the subdomains average elastic strain concentration tensors Ael

r were
presented in Section 3.2. The computation of the eigenstrain-strain interaction tensors
Drs between two subdomains r and s, for construction of the CAH scheme in Eq. (3.20),
follows in Section 3.3.1. The numerical solution of the TFA CAH scheme was outlined in
Section 2.3.5.

3.3.1 Eigenstrain - strain interaction tensors

Algorithm 5: Overview of the computation of the eigenstrain-strain interaction
tensors.
select elastic material properties for all phases Ω of the RVE domain
for i = 1, ..., 6 do

for s = 1, ..., K do
perform DNS:
apply ε∗(i) (Eq. (3.24)) in the whole subdomain Vs
compute ε(χ)
compute i-th column of Ds(χ) (Eq. (3.23)) written in Voigt notation
for r = 1, ..., K do

compute i-th column of Drs in Voigt notation by averaging over Vr
(Eq. (3.26))

end
end

end

The TFA homogenization method relies on so-called interaction tensors, describing the
elastic influences of eigenstrains at the "radiating" material points on the deformation field
inside the RVE. The TFA relation under a vanishing overall strain is expressed following
Eq. (2.30). Considering a uniform eigenstrain in one certain subdomain s as

ε∗(χ′) = ε∗s, χ′ ∈ Vs, (3.22)

local strains are given as
ε(χ) = Ds(χ) : ε∗s, (3.23)

with the local interaction function Ds(χ) estimating the total effect of a uniform eigen-
strain in an entire subdomain s on the strain at χ (no sum over s intended).

The eigenstrain-strain interaction tensors Ds(χ) are determined by applying a vanish-
ing overall strain, i.e. ε = 0, imposed by boundary conditions on the RVE in elasticity.
Simultaneously, six orthogonal uniform eigenstrain modes are applied in each "radiating"
subdomain s one at a time. The eigenstrain modes, with the eigenstrain factor E∗, in 3D
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analyses are

ε∗
(1)

s = E∗~ex ⊗ ~ex (3.24a)

ε∗
(2)

s = E∗~ey ⊗ ~ey (3.24b)

ε∗
(3)

s = E∗~ez ⊗ ~ez (3.24c)

ε∗
(4)

s =
1

2
E∗(~ex ⊗ ~ey + ~ey ⊗ ~ex) (3.24d)

ε∗
(5)

s =
1

2
E∗(~ex ⊗ ~ez + ~ez ⊗ ~ex) (3.24e)

ε∗
(6)

s =
1

2
E∗(~ey ⊗ ~ez + ~ez ⊗ ~ey), (3.24f)

while in 2D analyses, solely the modes ε∗(1)

s , ε∗(2)

s and ε∗(4)

s are applied. The reaction strain
field ε(χ) emerging from the vanishing overall strain and each applied eigenstrain mode
is computed. Local interaction tensors are fully characterized considering Eq. (3.23) in
Voigt-notation and a comparison to the imposed eigenstrains in Eq. (3.24). Averaging the
resulting strain field ε(χ) over a certain subdomain Vr to achieve the subdomain strain

εr =
1

|Vr|

∫
Vr

ε(χ) dχ =

[
1

|Vr|

∫
Vr

Ds(χ) dχ
]

: ε∗s (3.25)

leads to the characterization of the interaction tensors

Drs =
1

|Vr|

∫
Vr

Ds(χ) dχ (3.26)

between subdomains, such that

εr = Drs : ε∗s ∀r, s ∈ 1, ..., K . (3.27)

In summary, the local fourth-order interaction tensors Drs represent elastic influence fac-
tors of a uniform eigenstrain in the subdomain s on the average strain in the subdomain
r. The determination of the interaction tensors Drs is summarized in the Algorithm 5.

3.3.2 Account for plastic fluctuations

While the TFA used as a full-field modeling method as in Eq. (2.33) would lead to
correct predictions of the materials behavior (Dvorak, Bahei-El-Din, and Wafa, 1994), it
was recognized that, using the approximation of averages over subdomains, the tangent
behavior of the material during inelastic deformation may be strongly overestimated. This
overstiff modeled behavior is a consequence of underestimated occurring plastic strain in
plastically highly compliant material phases. Considering the numerical TFA approach,
too low plastic strains imply underestimated interaction effects between the phases and
therefore inaccurate strain distributions over the phases, in particular underestimated
strains in plastic phases and therefore overestimated strain accumulations in stiff phases.
Overestimated strain accumulations in stiff phases lead effectively to an overstiff behavior
of the overall composite material.
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Chaboche et al. (2001) proposed an approach to artificially increase plastic strains
in plastic subdomains by a consideration of a type of subdomains instantaneous strain
concentration tensors. However, this approach has the following limitations: the used
subdomains instantaneous strain concentration tensors are computed as the asymptotic
strain concentration tensors, dependent solely on the known subdomains asymptotic tan-
gent stiffness (not equivalent to the subdomain tangent stiffness in Eq. (2.197)). Firstly,
the asymptotic tangent stiffness cannot be used for a nonlinear hardening behavior, where
the subdomains tangent stiffness is not constant. Secondly, the subdomains instantaneous
strain concentration tensors can generally not be computed just from the local tangent
stiffness. For an accurate estimation of the instantaneous strain concentration tensor,
the overall tangent stiffness needs to be known as well (Aboudi, Arnold, and Bednarcyk,
2013; Dvorak, 1992).

In the following, it is accounted for a physical explanation of the overstiff material
behavior during inelastic deformation. The instantaneous spatial strain distribution in
a material domain is constant as long as the material is deforming purely linear-elastic.
This holds even if the material has experienced previous inelastic deformation. The stable
strain distribution under elastic loads implies that it can be correctly recovered by means
of the constant, once for all numerically determined, elastic strain concentration tensors.
The constant strain distribution, however, does not hold for inelastic behavior of the ma-
terial phases. Plastic strain is a direct consequence of the amount of local deformations
during inelastic material behavior (Section 2.5.2). It means that high fluctuations in the
localization of deformation are directly correlated to high plastic field fluctuations. Thus,
plastic field fluctuations can be regarded as a marker for the heterogeneity of the local de-
formation field. In subdomains with deformations considered as uniform, the microscopic
yield starting points, and therefore the heterogeneity of the local onsets of nonlinear be-
havior, are not well-represented. It implies that a certain degree of considered uniform,
although actually heterogeneous, deformation εr of the subdomain leads to effectively
underestimated plastic yielding and thus plastic strains. This underestimation worsens if
the deformation accumulates in very localized zones, unable to be covered by the subdo-
mains. Therefore, the more heterogeneous the actual deformation field in a subdomain,
the higher becomes the underestimation of the plastic strain due to the considered uniform
deformation. The use of the TFA method using a finer decomposition into subdomains
is motivated by a more accurate representation of the highly heterogeneous plastic field,
resulting in a less stiff overall behavior of the material. If the inelastic field fluctuations
are fully taken into account and the tangent behavior of the material can be estimated
correctly (see the non-uniform TFA, Michel and Suquet (2003)).

Algorithm 6: Overview of the calculation of the PFC factors.
Plastic strain fields εp(l)

(χ), l = 1, 2 are stored according to Algorithm 4.
for r=1,...,K do

for l = 1, 2 do
compute p(l)(χ) (Eq. (3.31))
compute p(l)

r and p̂(l)
r (Eqs. (3.33) and (3.34))

compute α(l)
r (Eq. (3.35))

end
end
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In order to use the uniform TFA method and account for the problem of underesti-
mated inelastic and interaction effects in the subdomains due to the not well-captured
deformation field heterogeneities, an artificial increase for the subdomains eigenstrain as
in

∆ε∗
corr

r = ∆pcorrr N corr
r = fPFCr

(
εpr (χ)

)
∆ε∗r (3.28)

is sought, with a plastic fluctuation correction (PFC) function fPFCr that depends on the
magnitude of the fluctuations of the in-subdomain plastic field εpr (χ). Since in case of a
perfectly fine subdivision, and therefore no plastic fluctuations, the TFA leads to correct
results, fPFCr must satisfy

∆ε∗
corr

r → ∆ε∗r, if εpr (χ)→ εpr , χ ∈ Vr . (3.29)

The Eq. (3.29) means that the artificial correction needs to vanish if the local plastic
strain field εpr (χ) is actually uniform, occurring if ,e.g., K → ∞. In this work, a first
approach is tested, where fPFCr is considered as a scalar function fPFCr = αr, correcting the
subdomains equivalent plastic strain, while the plastic flow direction is not manipulated:

∆pcorrr = αr∆pr , N corr
r = Nr. (3.30)

The particular proposed PFC factors in this paper are determined offline as the square
root of the ratio between the arithmetic means p(l)

r and the harmonic means p̂(l)
r of the

plastic fields inside the subdomains. Therefore, the PFC factors can be determined once
for all after the application of the BC in Eq. (3.10) for the inelasticity based spatial
decomposition (Section 3.2.2). In the following, the procedure leading to the determina-
tion of the PFC correction for the subdomain r is described: After the RVE domain was
subdivided into a certain number of subdomains based on the plastic fields εp(l)

(χ) under
the loading modes l = 1, ..., np, the computed equivalent plastic strain field

p(l)(χ) =

√
2

3
εp(l)(χ) : εp(l)(χ) (3.31)

is analyzed. Considering the equivalent plastic fields inside the subdomain r under each
mode

p(l)
r (χ) = p(l)(χ), χ ∈ Vr, (3.32)

the arithmetic mean p(l)
r and the harmonic mean p̂(l)

r are achieved using

p(l)
r =

1

|Vr|

∫
Vr

p(l)(χ)dχ (3.33)

and

p̂(l)
r =

[
1

|Vr|

∫
Vr

dχ
p(l)(χ)

]−1

. (3.34)

Consequently, one PFC factor α(l)
r for the subdomain r is determined under each of the np

inelastic offline deformation modes l as a measure of the heterogeneity of the corresponding
in-subdomain plastic fields εp(l)

r (χ).
In cases of non-uniform distributions, the harmonic mean is always lower than the

arithmetic mean. Since the harmonic mean is close to zero as soon as only a low number
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of material points exhibit no or very low plastic strains, a lower limit of plasticity inside
the subdomain must be defined in order to achieve reasonable correction factors. Here,
the PFC for a subdomain r is solely taken into account if p(l)

r ≥ p
(l)
Ω , implying a sufficiently

high harmonic mean of the plastic field. The formulation of the PFC finally reads

α(l)
r =

{√
p

(l)
r /p̂

(l)
r , p

(l)
r > p

(l)
Ω

1 , otherwise.
(3.35)

The procedure towards the calculation of the correction factors is summarized in Algo-
rithm 6.

2 4 8 16 32 64 128 256 512
number of subdomains K

1.000

1.002

1.004

1.006

1.008

1.010

(1
)

Figure 3.2: Exemplary computed total plastic fluctuation correction resulting from the
application of the deformation mode l = 1 described in Eq. (3.10a) on the composite
material with the volume fraction of inclusions υII = 30 % considered in Section 3.5.2.

The expression Eq. (3.35) results in increasing corrections for the subdomains r the
more the considered plastic field in the subdomain r varies. An increasing number of
subdomains implies decreasing plastic field heterogeneities inside the subdomains and
therefore decreasing correction effects as a function of the numbers of subdomains. The
evolution of the total corrections

ᾱ(l) =
K∑
r=1

υrα
(l)
r (3.36)

as a function of the used number of subdomains is presented in Fig. 3.2 for the exemplary
case of the corrections α(1)

r determined under the deformation mode l = 1 (Eq. (3.10a)).
An additional restriction for the use of the PFC is mentioned: for reasons of an irregular
behavior of the correction factors in the range of very low numbers of subdomains causing
unreliable TFA modeling results, the PFC was not integrated for numbers of subdomains
K < 8. For higher numbers of subdomains beyond the defined cut-off number of sub-
domains, i.e. for K ≥ 8, a clear logarithmic decrease of the total correction ᾱ(1) under
an increasing number of subdomains is recognized. The selection of the correction factor
αr out of the pool α(1)

r , ..., α
(np)
r during the online stage is based on the current loading

conditions, i.e. follows the consideration of the dominant component of the current overall
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strain increment ∆ε, with, for 2D problems:

αr =

{
α

(1)
r , if ∆ε11 > ∆ε12 or ∆ε22 > ∆ε12

α
(2)
r , if ∆ε12 > ∆ε11 and ∆ε12 > ∆ε22.

(3.37)

With a correction factor selection that depends on the current loading expressed by the
homogenized strain increment ∆ε, the correction factors can as well be applied for non-
proportional loading histories ε(t) containing different loading stages. If more different
offline deformation modes were applied, the correction factor under the current loading
could be selected based on minimal deviations between the various offline deformation
modes εin(l) and the current strain increment, i.e. αr = α

(k)
r if ||∆ε − εin(k)||2 ≤ ||∆ε −

εin
(m) ||2, ∀m, k 6= m (where, in order to allow this comparison, all strain tensors should

be normalized by their own equivalent values). The proposed PFC in Eq. (3.28) with
Eq. (3.30) modifies the original TFA constitutive equation Eq. (2.49) in incremental
formulation to

∆εr = Ael
r : ∆ε+

K∑
s=1

αsDrs : ∆ε∗s. (3.38)

Considering the property given in Eq. (2.48), which arises from the numerical evaluation
of the tensors Drs (Section 3.3.1), the modified condition for the interaction tensors

K∑
r=1

αsυrDrs = αs

( K∑
r=1

υrDrs

)
= 0, ∀s ∈ 1, ..., K (3.39)

is automatically satisfied.

3.3.3 Numerical Resolution of the TFA with PFC factor

The numerical solution of the TFA was presented in Section 2.3.5. Here, the solution
scheme for the TFA is reiterated, however with the integration of the PFC correction
factors. The iterative incremental solution of the TFA, with the integration of the PFC
factors αs (Eq. (3.37)), for the overall RVE response under a prescribed overall strain ε̄,
is expressed as

∆εr − Ael
r : ∆ε−

K∑
s=1

αsDrs : ∆ε∗s = 0 , (3.40)

where αs = 1 if no PFC is desired. The numerical solution

Fr → Fr + δFr = 0 , (3.41)

with
δ[F ] = {J} : δ[ε] +

∂[F ]

∂ε
: δε , (3.42)

where K×1 block column vectors denoted by "[ ]" and the square K×K block matrices
denoted by "{ }", is now achieved, under a constant homogenized strain per iteration
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Algorithm 7: Numerical TFA procedure with PFC at a glance: Newton-
Raphson scheme at one load step for a given overall strain increment ∆ε.
initialize: ∆εr = Ael

r : ∆ε (r = 1, ..., K)
iterative procedure:
repeat

for r = 1, K do
call constitutive relations for subdomain r to compute σr, ∆ε∗r and
∂∆ε∗r/∂εr, Calg

r (details in Section 2.5)
end
for r = 1, K do

initialize residual Fr = ∆εr − Ael
r : ∆ε

for s = 1, K do
select correction factor αs according to the criterion in Eq. (3.37)
add eigenstrain interaction contribution to residual:
Fr = Fr −

∑
s αsDrs : ∆ε∗s

compute Jacobian matrix Jrs = δrsI− αsDrs : (∂∆ε∗s/∂εs)
end

end
solve δ[ε] = {J}−1 : [F ]
update [∆ε] = [∆ε]− δ[ε]

until |[F ]| < tol;
after convergence:
compute σ and Calg, following Eq. (2.65) and Eq. (2.70), respectively.

and thus δε = 0, by the construction of the subdomain residuals

Fr = ∆εr − Ael
r : ∆ε−

K∑
s=1

αsDrs : ∆ε∗s (3.43)

and the Jacobian system {J}, consisting of the single matrices (no sum on s intended)

Jrs =
∂Fr
∂εs

= δrsI− αsDrs :
∂∆ε∗s
∂εs

, . (3.44)

3.4 Hashin-Shtrikman type analysis
As an alternative approach to the TFA (Section 3.3), the HS type analysis introduced in
Sections 2.3.6 and 2.3.7, is deployed for the CAH of the mechanics of nonlinear composites.
The reduced incremental HS scale coupling relation (Eq. (2.97)) is recalled:

∆εr = ∆ε+
K∑
s=1

Γrs :
(
∆σs − Ciso : ∆εs

)
, (3.45)
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relying on the isotropic stiffness operator Ciso of the reference medium and the Green’s
interaction tensors in the reference medium

Γrs = f
(
(Ciso)−1

)
∝ (Ciso)−1 . (3.46)

Details on the construction of the CAH model in Eq. (3.45) will be given subsequently.
The definition of the nonlinear reference medium with the stiffness Ciso, accounting for
nonlinear homogenized responses, and the determination of the Green’s tensors Γrs in the
nonlinear medium, will be presented in Section 3.4.1. As for the TFA, both elastic and
inelastic decompositions into subdomains, presented in Section 3.2, will be tested.

3.4.1 Definition of the reference medium

For reasons outlined in the Section 2.3.7, the proposed reference medium that has the
total secant stiffness of the homogenized composite (Wulfinghoff, Cavaliere, and Reese,
2018), was replaced by a reference medium with an isotropic incremental tangent stiffness,
referred to as Ciso. The reference stiffness Ciso is assumed to depends only on an updated
algorithmic shear modulus (see Section 2.3.7 for details), defined as the homogenized
incremental shear modulus:

G = G
alg

=
∆σeq

3 ∆εeq
. (3.47)

With an isotropic reference stiffness that depends only on an updated algorithmic shear
modulus (see Section 2.3.7 for details), expressed as Ciso(G

alg
), it can be scaled from the

isotropic stiffness of the elastic reference medium, C0,iso, as

Ciso(G
alg

) =
G

alg

G0
C0,iso , (3.48)

where G0 is the elastic reference shear modulus. Following Eq. (3.46), the instantaneous
Green’s tensors during inelastic deformation of the material, Γrs, can then be scaled as

Γrs = Γ0
rs : C0,iso : (Ciso)−1 =

G0

G
alg Γ0

rs , (3.49)

where
Γ0
rs = f

(
(C0,iso)−1

)
∝ (C0,iso)−1 (3.50)

are the Green’s interaction tensors in the elastic reference medium with the stiffness C0,iso.
The scaling of the reference stiffness and the Green’s tensors, according to Eqs. (3.48)
and (3.49), allows the reformulation of Eq. (3.45) towards

∆εr = ∆ε+
K∑
s=1

Γ0
rs :

(
G0

G
alg ∆σs − C0,iso : ∆εs

)
, (3.51)

with more details given in Section 2.3.7. The numerical solution of the HS type analysis
was outlined in Section 2.3.8.

Considering the Eq. (3.51), and with an homogenized algorithmic shear modulus
G

alg that is computed and updated during the solution stage, the linear elastic reference
medium with the isotropic stiffness C0,iso and shear modulus G0 needs to be determined
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offline, as well as the Green’s interaction tensors Γ0
rs between two subdomains r and s in

the elastic isotropic reference medium. The evaluation of these quantities will follow in
the Sections 3.4.2 and 3.4.3.

3.4.2 Elastic homogeneous and isotropic reference stiffness

The homogenized elastic stiffness of the material body Cel is, following Eq. (2.29), com-
puted as

Cel
=
dσ

dε
=

1

|V |

∫
V

Cel(χ) : Ael(χ)dχ . (3.52)

The approach proposed by Moakher and Norris (2006), yielding the closest isotropic
stiffness tensor to an anisotropic one based on the minimal Euclidean distance, is used to
determine the isotropic elastic reference stiffness

C0,iso = 3κ0 Ivol + 2G0 Idev , (3.53)

where
Ivol =

1

3
I ⊗ I, (3.54)

Idev = I− Ivol (3.55)

and I and I are the second and fourth order unity tensors. The equivalent homogenized
bulk modulus κ0 and shear modulus G0 are determined as

κ0 =
1

3
Tr(Cel

: Ivol) (3.56)

and
G0 =

1

10
Tr(Cel

: Idev) , (3.57)

where the trace of a fourth order tensor is computed as

Tr(Z) = Zijij (3.58)

using the Einstein convention.

3.4.3 Green’s interaction tensors

Following Section 3.4.1, the influence function Γ0(χ,χ′) is computed inside the homoge-
neous medium with the isotropic stiffness C0,iso. In a domain with the homogeneous stiff-
ness C0,iso, the polarization stress field τ (χ) in Eq. (2.18) equals the externally applied
eigenstress field σ∗(χ). With a vanishing overall strain ε = 0, and a uniform eigenstress
σ∗s inside one subdomain s, the average strain in a subdomain r is, following Eq. (2.74),
given as

εr = Γ0
rs : σ∗s . (3.59)

The influence tensors Γ0
rs = f

(
(C0,iso)−1

)
can be fully characterized by applying the

uniform eigenstress modes

σ∗(χ′) = σ∗s , χ
′ ∈ Vs , s = 1, ...K (3.60)
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Algorithm 8: Overview of the computation of the elastic Greens polarization
stress-strain interaction tensors, computed as the elastic eigenstress-strain inter-
action tensors in the elastic homogeneous medium.
select linear elastic material properties for all phases Ω of the RVE domain
for i = 1, ..., 6 do

apply ε(i) (Eq. (3.4)) on RVE domain V
compute ε(χ)
compute i-th column of Ael(χ) (Eq. (3.3)) written in Voigt notation

end
compute Cel (Eq. (3.52))
determine C0,iso from Cel (Eq. (3.53))
generate a copy of the RVE domain with a homogeneous linear elastic behavior
with Cel(χ) = C0,iso

for i = 1, ..., 6 do
for s = 1, ..., K do

perform DNS:
apply σ∗(i) (Eq. (3.61)) in the whole subdomain Vs
compute ε(χ)
compute i-th column of Γ0

s(χ) written in Voigt notation
for r = 1, ..., K do

compute i-th column of Γ0
rs in Voigt notation by averaging over Vr

end
end

end

in each subdomain Vs one at a time, simultaneously to the fixed zero overall strain ε = 0,
and computing the average strain in the subdomain Vr. The eigenstrain modes in 3D
analyses are

σ∗
(1)

s = S∗~ex ⊗ ~ex (3.61a)

σ∗
(2)

s = S∗~ey ⊗ ~ey (3.61b)

σ∗
(3)

s = S∗~ez ⊗ ~ez (3.61c)

σ∗
(4)

s =
1

2
S∗(~ex ⊗ ~ey + ~ey ⊗ ~ex) (3.61d)

σ∗
(5)

s =
1

2
S∗(~ex ⊗ ~ez + ~ez ⊗ ~ex) (3.61e)

σ∗
(6)

s =
1

2
S∗(~ey ⊗ ~ez + ~ez ⊗ ~ey), (3.61f)

with the eigenstress factor S∗. In 2D analyses, the modes σ∗(1)

s , σ∗(2)

s and σ∗(4)

s are applied.
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3.4.4 Quantification of the computational reduction

The computational effort for the solution of a numerical problem in the computational
solid mechanics at one load step has two main contributions:

1. The computation of local fields of variables. Constitutive equations need to be
evaluated at every integration point, implying a linear increase in the computational
time for this task under an increase of the number of integration points.

2. The solution of the system of equations. The size of the system of equations is
#DOF × #DOF, meaning a quadratic increase of the solution effort under an in-
creasing number of the DOF.

In a DNS using FE, the Gauss integration points build the integration domain of the
problem. The number of DOF follows from the number of nodes, depending on the
mesh size for the problem. Both the size of the integration domain and the number of
nodes depend on the required mesh size and the polynomial order for the basis functions.
In this work, the typical mesh for 2D problems consists of an approximate number of
30, 000 triangular elements with quadratic basis functions, corresponding to approximately
90.000 integration points, 60, 000 nodes and thus #DOFDNS = 120.000, corresponding to
a stiffness matrix of the size #DOFDNS×#DOFDNS. However it is noted that the stiffness
matrix of a FE solution is sparse, and the computational effort for the solution can be
significantly reduced using sparsification algorithms.

The typical number of subdomains for the TFA homogenization lies in the order of
magnitude of K ≈ 102. Using the HS approach, numbers of subdomains in the order
of magnitude K ≈ 10 may be sufficient in some cases. The detailed CAH results in
dependence of the numbers of subdomains will be presented in Section 3.5. The number
of integration points equals K, the number of subdomains with uniform fields of variables.
The number of DOF are given by K × the number of independent strain tensor entries.
In 2D, the number of DOF amounts to #DOFTFA = 3K and the numerical system to be
solved has the size #DOFTFA×#DOFTFA = 9·K×K. The entries Jrs of the matrix system
{J} to be numerically inverted are all non-zero, meaning that {J} cannot be significantly
sparsified. The comparison of the computational times was performed for one numerical
test, with the results presented in Table 3.4 in Section 3.5.2.

3.5 Numerical Applications
In this section, numerical applications of the TFA and HS schemes developed in this
work are presented. Details of the offline and online stages, and the numerical results
of applying the methods to different periodic two-phase structures with varying inclusion
phase volume fractions, elastic and inelastic material properties and degrees of anisotropy,
displayed in Fig. 3.3, are presented. The analyzed material systems are

• A linear-elastic circular inclusion phase with isotropic elasticity in an elasto-plastic
matrix phase in Section 3.5.2. Different volume fractions of the inclusion phase
υII = 20 %, 30 % and 50 % in one small and one larger RVE were considered.
The associated microstructures are presented in Figs. 3.3a, 3.3b, 3.3d and 3.3e,
respectively. Triangular meshes with second-order elements were used for the mesh.
The respective numbers of elements of the created meshes for these four RVEs are
26508, 27656, 40278, 40460.
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Figure 3.3: RVEs with different investigated microstructures: (a-e) Isotropic structures
with the volume fractions of inclusions υII = of (a) 20 %, (b,c) 30 %, (d,e) 50 %, and
(f,g) anisotropic microstructures with the inclusions aspect ratios (f) 2.5 and (g) 10.

• Circular inclusions with higher and with lower elastic stiffness than the matrix phase
and elasto-plastic behavior of both inclusion and matrix phases in Section 3.5.3. For
this material system, the volume fraction of inclusions υII = 30 % with the associated
RVE (Fig. 3.3b) and mesh were considered.

• Circular elastic inclusions with rubber-like mechanical properties, characterized by
a vanishing shear resistance in Section 3.5.4. For this material system, a larger RVE
with υII = 30 %, displayed in Fig. 3.3c, was used. The created mesh consisted of
30946 triangular second-order elements.

• A linear-elastic inclusion phase with transverse-isotropic elasticity in an elasto-
plastic matrix phase for the case of elongated inclusions in Section 3.5.5. One
volume fraction of inclusions υII = 20 % was considered, with two different degrees
of anisotropy, represented by the aspect ratios 2.5 and 10 between the radii of the
elliptic inclusions in the two spatial orientations. The two associated microstruc-
tures are displayed in Figs. 3.3f and 3.3g. The created meshes consisted of 30018
and 34326 triangular second-order elements, respectively.

The material properties of the phases are denoted by the indices Ω = I, II, where the
index I denotes the matrix and the index II the inclusion phase. The created meshes
mentioned above were used for the FE DNS of the offline stage (Sections 3.2, 3.3.1 and
3.4.3) and for the computation of the reference full-field homogenization results using FE
DNS.

Different numerical tests were performed, described by the following boundary condi-
tions:
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• prescribed overall axial loading-unloading cycle up to 6% strain in x-axis orientation
with free motion of one edge with its normal in y-orientation, corresponding to
overall plane-strain uniaxial tension boundary conditions

εxx = 0→ 0.06→ 0

σyy = 0, εzz = 0 ;
(3.62)

• prescribed overall pure shear strain loading-unloading cycle up to 4%

ε =

(
0 0
0 0

)
→
(

0 0.04
0.04 0

)
→
(

0 0
0 0

)
; (3.63)

• non-proportional prescribed loading consisting of four different stages of biaxial
isochoric and shear loading and unloading stages, represented by the overall strain
evolution ε(t), t = [0, T ], T = 1.0, with εzz = 0:

ε(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.06 0

0 −0.06

)
→ ε(T/2) =

(
0.06 0.04
0.04 −0.06

)
→ ε(3T/4) =

(
0 0.04

0.04 0

)
→ ε(T ) =

(
0 0
0 0

)
.

(3.64)

The resulting homogenized axial stress-strain responses under the uniaxial tension and
shear stress-strain responses under the pure shearing conditions computed by the TFA
and HS algorithms based on the underlying foundations for the subdomain decomposition
are presented. Displayed are computed homogenized, and for several material systems the
phases, stress-strain responses by the TFA, HS type analysis and the FE, and a conver-
gence analysis based on the peak stresses computed by the TFA and HS tending towards
the peak stresses computed by the FE method when increasing the number of subdomains.
The deviations of the homogenized axial and shear peak stresses max(σ)CAHxx , max(σ)CAHxy

by the reduced CAH schemes to the corresponding peak stresses max(σ)FExx , max(σ)FExy
computed by the FE method under uniaxial tension and pure shearing, respectively, lead
to the error estimations of the reduced schemes

exx =

[
max(σxx)

CAH −max(σxx)
FE

max(σxx)FE

]
× 100% , (3.65a)

exy =

[
max(σxy)

CAH −max(σxy)
FE

max(σxy)FE

]
× 100% , (3.65b)

where the superscript CAH represents either the TFA or HS homogenization methods.
In the following, the CAH schemes with one subdomain per material phase, equivalent
to incremental MFH approaches (without an isotropization step), are referred to as TFA
2 and HS 2. The CAH schemes with an underlying subdomain decomposition based on
elasticity are referred to by the addition -E. The new approach using a plasticity based
foundation for the spatial decomposition is referred to by the addition -P. The use of the
plastic fluctuation correction (PFC) for the TFA-P during the online stage (as described
in Sections 3.3.2 and 3.3.3) is referred to as TFA-PFC.
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Figure 3.4: Equivalent plastic strain fields in different isotropic microstructures with
an elasto-plastic matrix under the (a,c,e,g) biaxial isochoric and (b,d,f,h) pure shear
offline deformation modes: (a,b) the larger RVE with υII = 50% of elastic inclusions,
the RVE with υII = 30% of (c,d) stiff and (e,f) compliant elasto-plastic inclusions, and

(g,h) rubber-like elastic inclusions.

3.5.1 Offline stage

Cluster decompositions are consequences of the two different clustering techniques de-
scribed in Section 3.2.1 based on elastic and in Section 3.2.2 based on plastic strain distri-
butions. Practical information for the conduction of the offline stage simulations under in-
elastic conditions are presented. While the elastic phase properties used during the offline
stage must be equal to the ones considered in the online stage, the inelastic properties are
allowed to differ. The purpose of the choice of the inelastic phase properties during the
offline stage is the ability to identify the inelastic deformation patterns in order to achieve
well-represented inelastic fields by the spatial division. In the following, the superscript
"off" for the material properties denotes that these values are used in the offline stage and
are not necessarily the same as the material properties considered in the online stage. In
case of elastic inclusions in an elasto-plastic matrix phase, the low yield strength σY0,offI =
10 MPa and the inelastic behavior given by the power-law hardening relation

R = Hoff
I pm

off
I (3.66)

with the hardening modulus Hoff
I = 50 MPa and hardening exponent moff

I = 0.05 are used
in the offline stage, causing high plastic localizations, which enables the identification of
localized deformations. A convergence study was performed in order to specify the overall
deformation factor EBC,in that determines the degree of the RVE deformation (Appendix
D). It was found that, using the aforementioned inelastic material properties, the final
plastic field patterns are established under an overall deformation of 2 %. Therefore, the
overall deformation factor EBC,in = 2 % was chosen for the offline deformation modes.
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In the case of elasto-plasticity in both phases, low yield strengths values σY0,offI = σY0
II =

10 MPa are used and the inelastic behavior in each phase is expressed by the power-law
relation

R = Hoff
Ω pm

off
Ω , Ω = I,II (3.67)

with moff
Ω = 0.05. In case of an inclusion phase that is stiffer than the matrix phase, the

hardening moduli are Hoff
I = 50 MPa and Hoff

II = 100 MPa. In the reversed case of a more
compliant inclusion phase, the hardening moduli Hoff

II = 50 MPa and Hoff
I = 100 MPa are

reversed.
Examples of plastic strain fields evolved in different microstructures are presented in

Figs. 3.1b, 3.1d and 3.4. Resulting subdomain decompositions of various RVEs with
different volume fractions of the inclusion phase υII = 20 %, 30 % and 50 % are presented
in Fig. 3.5, where the inclusion phase is occupied by only one subdomain. The inclusion
represented by one subdomain is used for TFA in cases of elastic inclusions, because
no eigenstrain field is to be captured in the inclusion phase. Using the HS however,
polarization stress fields exist in inelastic and elastic phases, and thus the inclusion phase
may be decomposed into subdomains as well. An example of the spatial division of the
matrix and inclusion phase is presented in Fig. 3.6. In the case of the inelasticity based
clustering, since no inelastic strains occur in the elastic inclusion phase, the RVE was
divided based on total strain fields.

3.5.2 Isotropic microstructures with stiff elastic inclusions

Considered is an isotropic microstructure, which consists of a matrix material with circular
inclusions covering a volume fraction of successively υII = 20 %, 30 % and 50 % (see Fig.
3.5). The elastic properties of the two phases are given in terms of the following bulk and
shear moduli

• matrix: bulk modulus κI = 10 GPa and shear modulus µI = 3 GPa;

• inclusion phase: bulk modulus κII = rIIκI and shear modulus µII = rIIµI, with
successive values of rII =2, 10 and 100.

Spatial division The offline stage simulations were performed using a mesh consisting
of 26508 and 27656 quadratic triangular elements for respectively υII = 20 % and υII =30
%. For the RVE with the volume fraction of inclusions υII =50 %, the effect of a mesh
refinement is studied by considering two meshes of 40278 and 158420 triangular quadratic
elements. Considered is a material system consisting of an elasto-plastic matrix material
reinforced by stiff linear-elastic inclusions. The material properties used for the inelastic
conditions in the offline stage for this material system are given in Section 3.5.1, and
resulting strain fields after inelastic deformation for υII =30 % are presented in Figs.
3.1b and 3.1b. Under both deformation modes, the inelastic deformation is carried by
a low number of plastic shear bands, traversing the material through the inter-inclusion
spaces. While under the biaxial isochoric deformation mode, the plastic shear bands
crossing the material are diagonally oriented, the pure shear deformation mode causes
plastic shear bands in axial orientations. Solely the thickness of the band-like structures
changes in dependence of the inclusion phase volume fraction: In case of the lower volume
fraction and higher inter-inclusion spaces, the plastic bands are wider, while in case of
the high volume fraction and therefore narrow inter-inclusion spaces, the plastic bands
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Figure 3.5: Microstructure of the composite materials with (a-d) υII = 20 % , (e-h)
υII = 30 % and (i-l) υII = 50 % circular stiff elastic inclusions in an elasto-plastic matrix
(case of 40278 elements), and spatial decompositions based on elastic deformation into
(a, e, i) 8 subdomains and (c, g, k) 128 subdomains and based on inelastic deformation
into (b, f, j) 8 subdomains and (d, h, l) 128 subdomains. The depicted spatial decom-
positions, with the inclusion phase represented by only one subdomains, were used for
the TFA computations. For υII = 20 %, the same displayed spatial decomposition was
used for the HS approach. For υII = 30 % and υII = 50 %, the numbers of the subdo-
mains constituting the inclusion phase for the HS approach were increased to 2 and 4,

respectively (Fig. 3.6).

are narrower. The full-field RVE domain was successively divided in the offline stage into
K = 2, 16, 32, 64, 128, 256, 512 subdomains, of which one subdomain is sufficient to
represent the elastic inclusion phase. The spatial subdivisions of the RVE into K = 8
and K = 128 subdomains based on elastic and based on plastic deformation are displayed
in Fig. 3.5 (for the case of υII =50 %, only the decomposition for the mesh of 40278
triangular quadratic elements is shown). The consideration of plastic strain distributions
allows a spatial subdivision representing the inelastic band-like deformation patterns and
their intersections. The Fig. 3.7 shows the spatial distribution of the PFC factors (Section
3.3.2), representing the degree of the plastic heterogeneity in the subdomains, after the
inelasticity based clustering of the RVE domain with υII =30 % into 8 and 128 subdomains
(see Figs. 3.5g and 3.5h). The highest values (red color) of the PFC are located in regions
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Figure 3.6: Microstructure of the composite materials with υII = 50 % circular stiff
elastic inclusions in an elasto-plastic matrix (case of 40278 elements). The spatial de-
compositions for the case of a clustering of the elastic inclusion phase, based on (a,b)
elastic deformations and (c,d) total deformation after inelastic loading into 8 subdo-
mains, with distributions of the number of subdomains in matrix and inclusion phases

of (a,c) 6-2 and (b,d) 4-4.
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Figure 3.7: Spatial distribution of the plastic fluctuation corrections (PFC) α(1)
r (a, c)

and α(2)
r (b, d) for the microstructure with υII = 30 % elastic inclusions for the cases of

8 (a, b) and 128 (c, d) subdomains.

with high plastic strain concentrations, being not sufficiently captured by the clustering,
what leads to high local plastic field fluctuations inside the subdomains. This occurs
for example in regions where the plastic deformation patterns under the different offline
deformation cases intersect (see the dark red regions in Figs. 3.7a and 3.7b). In these
regions, the clustering needs to account for the inelastic fields under both deformation
modes, leading to a less accurate coverage of the single inelastic fields. Furthermore,
the decrease of the PFC factor values with an increasing number of subdomains (see Eq.
(3.29)) is clearly visible.

Effect of the inclusion volume fraction The matrix material behaves perfectly plas-
tic with the yield strength σY0

I = 100 MPa, while the inclusions deform linearly-elastic.
The elastic stiffness contrast between both phases is taken as rII =2. For both tested
loading cases of uniaxial tension and pure shear deformation, the stress-strain responses
of the composite material are displayed in Figs. (3.8) - (3.11) for the three tested volume
fractions, and the peak stress errors at maximum loading are reported in Table 3.1.
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Table 3.1: Peak stress errors (computed as in Eq. (3.65)) using the different CAH
approaches for the composite material with different volume fractions υII of circular
stiff elastic inclusions embedded in a perfectly plastic matrix (Fig. 3.5). Negative error

values mean overcompliant composite predictions.

υII =20% TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 9 5 4 2 0
exy (%) 8 2 2 1 0
υII =30% TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 19 8 7 3 0
exy (%) 15 5 4 2 0
υII =50% TFA-E 512 TFA-P 512

(coarse/fine)
TFA-PFC 512
(coarse/fine)

HS-E 128 HS-P 128

exx (%) 51 42/36 36/30 2 -2
exy (%) 41 27/19 17/11 0 -5

For low and moderate volume fractions, it is visible in Figs. 3.8a and 3.8c and in Figs.
3.9a and 3.9c that the TFA-P allows a better convergence towards the reference result than
the TFA-E throughout the whole range of the numbers of subdomains, and continues to
converge in the region of high numbers of subdomains K ≥ 256, where the TFA-E results
do not significantly improve anymore. Consequently, the peak stress errors can be strongly
reduced using the TFA-P in comparison with the TFA-E, while the TFA-PFC provides
an additional improvement that decreases with increasing numbers of subdomains. The
stress-strain responses computed by the TFA-P and TFA-PFC with 512 subdomains cover
the reference stress-strain responses computed by the full-field homogenization closely and
with significantly higher accuracy than the TFA-E (Figs. 3.8b and 3.8d and Figs. 3.9b
and 3.9d).

The average responses of the phases under the uniaxial tension test, resulting from the
CAH and full-field homogenization, are displayed in Fig. 3.10. It is visible that the HS
approach allows the accurate modeling of perfect plasticity of the matrix (Fig. 3.10a) and
no occurring strains in the inclusion phase (Fig. 3.10b) during inelastic behavior of the
matrix. Comparing the TFA approaches, it is recognized that the TFA-P leads to a clear
improvement of the phase strains predictions with respect to the TFA-E. Particularly the
strain, and therefore stress, of the inclusion phase (Fig. 3.10b) are clearly reduced using
the TFA-P, resulting in the more compliant predictions of the composite.

Considering the higher inclusion volume fraction in Figs. 3.11a and 3.11c, the TFA-
E achieves better results than the TFA-P in the range of low numbers of subdomains.
However, the convergence rate of the TFA-E method starts to decrease earlier then the
convergence rate of the TFA-P, leading to better TFA-P results in the range of high
numbers of subdomains. Nonetheless, clearly stiffer stress-strain responses than for the
lower volume fractions are achieved using the TFA-E and TFA-P approaches with up
to 512 subdomains (Figs. 3.11b and 3.11d). Furthermore it is visible that the TFA-
P prediction does not continue to converge towards the reference results in the range
256≤ K ≤ 512 when the spatial division is based on offline simulations using the coarse
mesh. The fading convergence implies that the k-means clustering was not able to define a
meaningful subdomain refinement for K > 256. For this reason, the previously mentioned
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Figure 3.8: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material with
υII = 20 % of circular stiff elastic inclusions embedded in a perfectly plastic matrix in
comparison to the full-field FE result. Displayed are (a, c) the convergence of the peak
stress depending on the number of subdomains (Fig. 3.5) and (b, d) stress-strain curves

computed by the different CAH approaches.

refined mesh, with half dimensions for the triangular quadratic elements, was tested in
the offline stage for comparison. It is recognized that the use of a finer mesh allows
further improvements of accuracy and a proceeding convergence towards the full-field
results (denoted as TFA-P fine in Figs. 3.11a and 3.11c). The TFA-PFC provides a slight
improvement for the uniaxial tension test and a significant error reduction for the pure
shear test (Table 3.1).

For all tested inclusion volume fractions υII = 20%, 30%, 50%, the HS approach
provides very high accuracies of the homogenized behavior in the range of low numbers
of subdomains, with the HS-P showing a faster rate of convergence than the HS-E in the
range K ≤ 8. Very good predictions are achieved with only one subdomains per material
phase. The HS-P yields nearly exact results with only four subdomains in case of the
lowest inclusion volume fraction υII = 20%, with eight subdomains for υII = 30%, and
with 16 subdomains for the highest volume fraction υII = 50%. However, the HS-P results
in too compliant predictions of the composite, that keep decreasing under increasing
numbers of subdomains (see Figs. 3.11a and 3.11c). Therefore it is concluded that the
HS approach does not show a convergence towards the full-field prediction.
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Figure 3.9: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material with
υII = 30 % of circular stiff elastic inclusions embedded in a perfectly plastic matrix in
comparison to the full-field FE result. Displayed are (a, c) the convergence of the peak
stress depending on the number of subdomains (Fig. 3.5(e-h)) and (b, d) stress-strain

curves computed by the different CAH approaches.

Table 3.2: Peak stress errors (computed as in Eq. (3.65)) using the different CAH ap-
proaches for the composite material with υII = 30 % (Fig. 3.5(e-h)) consisting of circular
stiff elastic inclusions embedded in a perfectly plastic matrix for different phases Young’s
moduli ratios rII. Negative error values mean overcompliant composite predictions.

rII = 2 TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 19 8 7 3 0
exy (%) 15 5 4 2 0
rII = 10 TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 23 11 9 4 -2
exy (%) 18 6 5 4 -2
rII = 100 TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 24 11 9 4 -2
exy (%) 19 6 4 4 -2
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Figure 3.10: Responses of the (a) matrix and (b) inclusion phases under uniaxial
tension (Eq. (3.62)) of a composite material with υII = 30 % of circular stiff elastic
inclusions embedded in a perfectly plastic matrix in comparison to the full-field FE
result. The responses of the composite phases are the average responses of all the

subdomains constituting the corresponding phase.

Effect of the elastic stiffness contrast between the phases The RVE with the
inclusion volume fraction υII = 30% is considered, now with an increased elastic stiffness of
the inclusion phase. The elastic properties of the matrix remain the same as before and it
follows a perfectly plastic behavior. While in the examples above, the ratio of the Young’s
moduli of the inclusion phase and the matrix phase was rII = 2, this ratio is increased to
rII = 10 and rII = 100. Since it was recognized that the TFA yields overstiff results due to
overestimated deformations of stiff elastic phases, the investigation of high elastic stiffness
contrasts is an important test of the capabilities of the TFA and HS CAH approaches for
general composite materials. With the same RVE and material system of elastic inclusions
in an elasto-plastic matrix as in the first example of this section and consequently the
same inelastic patterns, the subdomain decompositions are nearly identical to the ones
in Fig. 3.5(e-h), and therefore not displayed. Throughout the whole range of numbers
of subdomains, the TFA-P leads to improved results compared to the TFA-E, with the
TFA-PFC allowing for further improvements of accuracy in both the uniaxial tension and
pure shear tests in the region of low and intermediate numbers of subdomains 8 ≤ K ≤
128. (Figs. 3.12 and 3.13). A comparison of the initial case rII = 2 and the two cases
rII = 10 and rII = 100 shows a decreasing TFA-E accuracy with increasing stiffness of
the inclusion phase. In opposition to that, the TFA-P is only weakly affected by the
increasing inclusion stiffness and provides accurate results with 512 subdomains (Table
3.2). The TFA-PFC nearly recovers the reference results with hardly rising errors due to
the increasing inclusion phase stiffness.

Similarly, the accuracies of the modeled responses by the HS method appear unaffected
by the increasing contrast of the elastic properties. With the HS-P, allowing for a faster
convergence and more accurate results than the HS-E, nearly exact captures of the full-
field results are achieved using only eight subdomains for both cases of rII = 10 and rII =
100. The predictions are however too compliant and slightly decreasing under increasing
numbers of subdomains.
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Figure 3.11: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material with
υII = 50 % of circular stiff elastic inclusions embedded in a perfectly plastic matrix in
comparison to the full-field FE result. Displayed are (a, c) the convergence of the peak
stress depending on the number of subdomains (Fig. 3.5(i-l)) and (b, d) stress-strain

curves computed by the different CAH approaches.

Table 3.3: Peak stress errors (computed as in Eq. (3.65)) using the different CAH
approaches for the larger composite RVE with υII = 50 % (Fig. 3.14) consisting of
circular stiff elastic inclusions embedded in a perfectly plastic matrix. Negative error

values mean overcompliant composite predictions.

small RVE TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 51 42 36 2 -2
exy (%) 41 27 17 0 -5
large RVE TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 57 37 30 3 -2
exy (%) 37 16 10 -3 -6

Effect of the RVE size In the examples above, relatively small extracts of microstruc-
tures were considered as RVEs. In this section, the TFA is applied for the case of a real
representative portion of an isotropic microstructure with an inclusions volume fraction
υII = 50%, expected to contain higher varieties of deformation states within the RVE.
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Figure 3.12: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material with
υII = 30 % (Fig. 3.5(e-h)) consisting of circular stiff elastic inclusions embedded in a
perfectly plastic matrix with a ratio of the Young’s moduli rII = 10 in comparison to
the full-field FE result. Displayed are (a,c) the convergence of the peak stress depending
on the number of subdomains and (b,d) stress-strain curves computed by the different

CAH approaches.

By this application it is investigated if equal degrees of accuracy as for smaller RVEs are
achieved for a real RVE using the same range of numbers of subdomains. The elastic
(the phase contrast rII = 2 is considered for this application) and inelastic phase prop-
erties are the same as above. The offline stage simulations were performed with a mesh
consisting of 40460 triangular quadratic elements, which corresponds to the coarser mesh
size for the small RVE with υII = 50%. The inelastic deformation again localizes in plas-
tic shear band deformation patterns, oriented diagonally resulting from biaxial isochoric
and oriented axially resulting from the pure shear deformation mode (Fig. 3.4 (a,b)). In
comparison to the examples above, the number of band-like structures is increased, with
some of them still traversing the whole material domain in the presence of a much higher
number of obstacles. Following, the RVE domain was divided into K = 2, 16, 32, 64, 128,
256, 512 subdomains. The microstructure and the spatial divisions resulting from elastic
and inelastic deformation into 8 and 128 subdomains are displayed in Fig. 3.14.

The results of convergence analyses are presented in Fig. 3.15. The TFA-E and the
TFA-P have an equal rate of convergence towards the full-field result in the range K ≤
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Figure 3.13: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material with
υII = 30 % (Fig. 3.5(e-h)) consisting of circular stiff elastic inclusions embedded in a
perfectly plastic matrix with a ratio of the Young’s moduli rII = 100 in comparison to
the full-field FE result. Displayed are (a,c) the convergence of the peak stress depending
on the number of subdomains and (b,d) stress-strain curves computed by the different

CAH approaches.
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Figure 3.14: Microstructure and spatial decompositions of the larger composite RVE
with υII = 50 % of circular stiff elastic inclusions in an elasto-plastic matrix based on
elastic deformation into (a) 8 subdomains and (b) 128 subdomains and based on inelastic

deformation into (c) 8 subdomains and (d) 128 subdomains.
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Figure 3.15: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of the larger composite RVE
with υII = 50 % (Fig. 3.14) consisting of circular stiff elastic inclusions embedded in a
perfectly plastic matrix in comparison to the full-field FE result. Displayed are (a,c,e)
the convergence of the (a,e) peak stress and (c) transverse strains depending on the
number of subdomains and (b,d,f) the curves of the (b,f) stress-strain relation and the
(d) transverse to longitudinal strain ratio computed by the different CAH approaches.

32 in the uniaxial tension test. After this point, the TFA-P shows a faster decrease in
error than the TFA-E and therefore allows improved stress-strain predictions (Figs. 3.15a
and 3.15b). The error by the TFA-P with 512 subdomains is still considerably high but
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significantly lower than the one by the TFA-E, and the TFA-PFC provides complementary
improvements (Table 3.3). It is important to recognize that the PFC has more effect on
the TFA results for this larger RVE than for the smaller RVE with υII = 50% (compare
Tabs. 3.1 and 3.3). Both the HS-E and HS-P deliver very accurate homogenized responses
already with one subdomain per phase, with the HS-P providing a better convergence
towards the full-field result in the range of low numbers of subdomains. However, the
homogenized predictions by the HS-P keep decreasing towards too compliant responses
under increasing numbers of subdomains. Furthermore, the convergence of the transverse
strain εyy and the evolution of the homogenized ratio of the transverse strain to the
longitudinal strain during the uniaxial tension test were investigated and are presented in
Figs. 3.15c and 3.15d. Similarly to the stress response, the TFA-P and TFA-PFC allow a
better convergence of εyy than the TFA-E towards the FE result. The TFA-PFC allows
for slightly better estimations of the instantaneous Poisson ratio than the TFA-P. The HS-
E and HS-P approaches provide almost exact predictions of the transversal deformation.
Considering the pure shear test, the convergence achieved by the TFA-P is clearly better
than that achieved by the TFA-E throughout the whole range of subdomains. For a
number of subdomains K = 512, the TFA-P provides a clearly higher accuracy for the
stress-strain response predictions, with an error that is less than half compared to the
one achieved using the TFA-E (Figs. 3.15e and 3.15f). The TFA-PFC results in even less
stiff responses and achieves an acceptable modeling accuracy. Compared to the results
achieved for the small RVE using an equal offline stage mesh size (see errors for the case
υII = 50% with the coarse mesh in Table 3.1), the computation errors are lower. Therefore
it is concluded, that the TFA-PFC method is more accurate for larger RVEs. The HS-E
and HS-P methods provide, as for the uniaxial tension test, very accurate homogenized
responses already with one subdomain only per phase.

Table 3.4: CPU time speed-ups for the non-proportional loading program in Eq. (3.64)
using the different numbers of subdomains K for the TFA-P and HS-P methods.

K 2 4 8 16 32 64 128 256 512
TFA speed-up 3.2e6 1.9e6 9.2e5 2.8e5 6.8e4 1.3e4 2.5e3 460 70
HS speed-up 9.2e5 3.9e5 1.1e5 5.8e4 1.0e4 2.6e3 600 130 24

Non-proportional loading In order to further explore the abilities of the TFA and HS
methods, an isochoric non-proportional loading program (3.64) displayed in Fig. 3.16a
is applied to the υII = 30 % RVE consisting of circular stiff elastic inclusions embedded
in an elasto-plastic matrix (Fig. 3.5(e-h)). The elastic properties of the phases have a
contrast rII = 2 for this application. The inelastic behavior of the matrix with the initial
yield strength σY0

I = 100 MPa follows the power-law hardening behavior

R = HI p
mI (3.68)

with the matrix hardening modulus HI = 50 MPa and exponent mI = 0.05.
Compared are the evolutions of the different stress components predicted by the TFA-

P and TFA-PFC with 128 subdomains and the HS-P with 16 subdomains compared to
the reference full-field computations (Figs. 3.16c and 3.16d). A high accuracy of the
modeled normal stress response during the applied axial deformation by the all three
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Figure 3.16: Non-proportional loading: Evolution of the (a) prescribed overall strain
components, (b) the CPU time comparison for different subdomains numbers K and (c,
d) the computed homogenized stress components predicted by the TFA-P, TFA-PFC
and HS-P approaches compared to the FE full-field for the composite material with
υII = 30 % (Fig. 3.5(e-h)) consisting of circular stiff elastic inclusions embedded in an

elasto-plastic matrix.

CAH methods in the time interval t = [0, 0.25] is achieved. Following, inaccuracies are
found considering the too low axial stress decrease during the shear loading stage from t =
[0.25, 0.5]. Therefore, the predicted axial stresses have too high initial values at the start
of the subsequent axial strain unloading stage from t = [0.5, 0.75] but return back to the
reference prediction at the end of this stage. During the final axial unloading stage from
t = [0.75, 1], perfect accuracies of TFA-P and TFA-PFC are maintained and therefore,
correct final axial stresses are predicted. Similar observations are made for the shear stress
evolution. Sole inaccuracies are found during the axial strain unloading stage from t =
[0.5, 0.75], where the shear stress decrease is too low, particularly using the HS-P with 16
subdomains. During the remaining deformation evolution, the shear stresses are correctly
predicted and therefore, correct final shear stresses are predicted by all considered CAH
approaches.

CPU time consumptions for performing the numerical analysis in Eq. (3.64) using the
CAH algorithms with the different numbers of subdomains and the FE analysis with the
same mesh as used for the offline stage simulations (27656 quadratic triangular elements),
are displayed in Fig. 3.16b. The computational speed-ups using the different numbers
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of subdomains for this 2D analysis are summarized in Table 3.4, providing an estimation
of the possible computational savings allowed by the CAH approaches for 2D analyses.
The time efficiency of the TFA is higher than the one provided by the HS scheme. The
TFA has a faster convergence of the iterative solution than the HS approach. This can
be explained by the characteristics of the two CAH schemes. The TFA solution depends
on the responses of the single subdomains only (Section 2.3.5). The HS relies on the
computation of shear modulus of the isotropic reference medium at every iteration of
every load step (Section 2.3.8). Therefore, the response of the reference medium needs
to converge besides the responses of the subdomains, which has an effect on the required
time to reach the computational solution. In addition to the time savings provided by the
CAH schemes, large CPU load reductions are provided by the use of CAH schemes with
respect to performing full-field simulations due to the much smaller numerical solutions
(see Section 3.4.4).

3.5.3 Isotropic microstructures with elasto-plastic inclusions
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Figure 3.17: Microstructure and spatial decompositions of the elasto-plastic compos-
ite material with υII = 30 % of circular (a,b) stiff and (c,d) more compliant elasto-
plastic inclusions based on elastic and inelastic strains into 20 subdomains, 16 of them

constituting the matrix and 4 the inclusion phase.

Stiff inclusions Considered is an isotropic microstructure, which consists of a matrix
material with circular inclusions covering a volume fraction of υII = 30 %. The elastic
properties of the two phases are given in terms of the following bulk and shear moduli

• matrix: bulk modulus κI = 10 GPa and shear modulus µI = 3 GPa;

• inclusion phase: bulk modulus κII = 20 GPa and shear modulus µII = 6 GPa.

Both phases can deform elasto-plastically, with the yield strengths of both phases σY0
I =

σY0
II = 100 MPa and a hardening behavior following the power-law relation

R = HΩ p
mΩ , Ω = I,II (3.69)

with the hardening moduli HI = 50 MPa and HII = 100 MPa and the two tested combi-
nations of the exponents mI = 0.05, mII = 0.4 and mI = 0.4, mII = 0.05.

During the offline stage, the same mesh as in Section 3.5.2 was used. The material
properties used during the inelastic offline stage simulations for a material consisting of
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Figure 3.18: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material
consisting of circular stiff elasto-plastic inclusions in an elasto-plastic matrix (Fig. 3.17)
and the different hardening exponents of the phases (a,c) mI = 0.4 and mII = 0.05 and
(b,d) mI = 0.05 and mII = 0.4 resulting from the use of the different CAH approaches

in comparison to the full-field FE results.

stiff elasto-plastic inclusions in an elasto-plastic matrix are given in Section 3.5.1. As
previously, diagonal and axially-oriented inelastic bands, crossing the material on inter-
inclusion paths, are formed during the biaxial and the pure shear deformation modes,
respectively (Figs. 3.4c and 3.4d). The inelastic deformations in the inclusions are not
connected to the shear bands. The RVE was divided into K = 20 subdomains, where
the matrix phase is composed of 16 and the inclusion phase of four subdomains. The
spatial RVE decompositions based on elastic and plastic strain distributions are depicted
in Figs. 3.17a and 3.17b. The plasticity based spatial subdivision approach allows covering
deformation patterns corresponding to the same general shear band orientations and their
intersecting regions in the matrix phase as in the considerations of elastic inclusions.

The resulting strain-stress responses are displayed in Fig. 3.18. Very high accuracies
are accomplished with the TFA and HS approaches using only one subdomain per material
phase (green curves). The full-field solution is nearly perfectly recovered by both CAH
methods in the cases of a low hardening exponent in the more compliant matrix phase
and a high hardening exponent in the stiffer inclusion phase (Figs. 3.18b and 3.18d).
Less accurate results represented by a slightly overstiff behavior compared to the full-field
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Figure 3.19: Responses of the (a) matrix and (b) inclusion phases under uniaxial
tension (Eq. (3.62)) of a composite material consisting of circular stiff elasto-plastic
inclusions in an elasto-plastic matrix (Fig. 3.17) with the hardening exponents of the
phases mI = 0.05 and mII = 0.4 in comparison to the full-field FE result. The responses
of the composite phases are the average responses of all the subdomains constituting the

corresponding phase.

solution are predicted using the TFA and HS methods in the case of a high hardening
exponent in the matrix phase and a low hardening exponent in the inclusion phase (Figs.
3.18a and 3.18c).

The average responses of the phases with the hardening exponents mI = 0.05, mII =
0.4 under the uniaxial tension test, resulting from the CAH and full-field homogenization,
are displayed in Fig. 3.19. It is visible that, although the composite response for this
test are nearly perfectly accurate (Fig. 3.18b), the strain concentrations in the single
phases deviate from the ones of the full-field computation. Using the TFA, the matrix
strains are overestimated and the inclusion strains are underestimated, with a convergence
towards the full-field result with higher numbers of subdomains. The HS-P leads to
slightly improved strain localizations in the two phases with respect to the TFA methods.

Compliant inclusions Now, the role of the two materials are reversed compared to the
case considered in Section 3.5.3, meaning that the stiff material constitutes the matrix
phase and the more compliant material the inclusion phase, represented in terms of the
elastic properties

• matrix: bulk modulus κI = 20 GPa and shear modulus µI = 6 GPa;

• inclusion phase: bulk modulus κII = 10 GPa and shear modulus µII = 3 GPa.

Accordingly, the inelastic properties are reversed, implying a power-law hardening behav-
ior (Eq. (3.69)) of the corresponding phases governed by σY0

I = σY0
II = 100 MPa, the

hardening moduli HI = 100 MPa and HII = 50 MPa and the two combinations of the
exponents mI = 0.05, mII = 0.4 and mI = 0.4, mII = 0.05.

During the inelastic offline stage simulations (performed with the same mesh as in
Section 3.5.2 and the inelastic material properties for a material with compliant elasto-
plastic inclusions in an elasto-plastic matrix given in Section 3.5.1), the inelastic defor-
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Figure 3.20: Normal stress response under uniaxial tension (Eq. (3.62)) and shear
stress response under pure shear deformation (Eq. (3.63)) of a composite material
consisting of circular more compliant elasto-plastic inclusions in an elasto-plastic matrix
(Fig. 3.17) and the different hardening exponents of the phases (a,c) mI = 0.4 and
mII = 0.05 and (b,d) mI = 0.05 and mII = 0.4 resulting from the use of the different

CAH approaches in comparison to the full-field FE results.

mation localizes in band-like patterns, oriented diagonally caused by biaxial isochoric and
axially caused by pure shear overall deformation (Figs. 3.4e and 3.4f). Different from
the case of stiff elasto-plastic inclusions (Figs. 3.17a and 3.17b), the inclusions are now
integrated in the plastic shear bands. The resulting subdomain decompositions into a
total of 20 subdomains based on elasticity and plasticity are presented in Figs. 3.17c and
3.17d, where the matrix phase is constituted by 16 subdomains and the inclusion phase
by four subdomains. With inclusions considered being more compliant than the matrix
phase, the subdomain patterns using plastic strain distributions do not avoid but connect
through the inclusions.

The axial stress response under uniaxial tension and the shear stress response under
pure shear conditions are presented in Fig. 3.20. Again, the TFA and HS approaches
yield accurate predictions with only one subdomains per material phase. The full-field
results are nearly exactly reproduced in the cases of a low hardening exponent in the
more compliant phase, here the inclusion phase (Figs. 3.20a and 3.20c). Low errors in
comparison with the full-field result only in case of a high hardening exponent in the more
compliant phase (Figs. 3.20b and 3.20d).
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3.5.4 Isotropic microstructures with rubber-like inclusions
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Figure 3.21: Microstructure and spatial decompositions of the composite RVE with
υII = 30 % of circular elastic rubber-like inclusions in an elasto-plastic matrix based
on elastic deformation into (a) 8 subdomains and (b) 128 subdomains and based on

inelastic deformation into (c) 8 subdomains and (d) 128 subdomains.
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Figure 3.22: Non-proportional loading (Eq. (3.64)): the computed homogenized (a,b)
normal and (c) shear stress components predicted by the TFA-E, TFA-P, HS-E and
HS-P approaches compared to the FE full-field for the composite material with υII = 30
% (Fig. 3.21) consisting of rubber-like elastic inclusions embedded in an elasto-plastic

matrix. The plot in (b) is a close-up of the first biaxial loading stage t=[0,0.25].
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The isotropic microstructure consists of a matrix material with circular inclusions
that have a rubber-like response and cover a volume fraction of υII = 30 %. The elastic
properties of the two phases are given in terms of the following bulk and shear moduli

• matrix: bulk modulus κI = 10 GPa and shear modulus µI = 3 GPa;

• inclusion phase: bulk modulus κII = 2 GPa and vanishing shear modulus µII = 0.

The inelastic behavior of the matrix with the initial yield strength σY0
I = 100 MPa

follows the power-law hardening behavior

R = HI p
mI (3.70)

with the matrix hardening modulus HI = 50 MPa and exponent mI = 0.05.
The inelastic patterns show diagonal and axial shear bands resulting from the applied

biaxial and pure shear loading, respectively (Figs. 3.4g and 3.4h). The band-like inelastic
structures form between the highly compliant inclusions. The spatial decompositions
resulting from elastic and inelastic deformation modes are presented in Fig. 3.21.

The composite structure was tested under a non-proportional loading path, with the
results being reported in Fig. 3.22. It is visible that using both TFA and HS approaches,
the composite response during the axial and shear loading stages could be significantly
improved by using inelasticity based spatial decompositions. It is recognized during the
first axial loading stage that using the HS-P approach, the elastic response is too compli-
ant, and the yield point is not accurately captured by both HS-E and HS-P (Fig. 3.22b).
While fairly good predictions for the loading responses were provided by the TFA-P and
HS-P, the unloading responses show far too low stress reductions, and the predictions are
worse than using the elasticity based spatial decompositions.

3.5.5 Anisotropic microstructures and material behavior
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Figure 3.23: Equivalent plastic strain fields in the anisotropic microstructures with
(a,b) rx/ry = 2.5 and (c,d) rx/ry = 10 under the (a,c) biaxial isochoric and (b,d) pure

shear offline deformation modes.

The two anisotropic microstructures consist of a matrix with elliptic, purely-elastic
inclusions, covering a volume fraction υII = 20 %. The degree of anisotropy represented by
the ratio of the radii rx and ry of the elliptic inclusions differs for the two microstructures:
they are successively taken as rx/ry = 2.5 and rx/ry = 10, with the elongations along the
x-axis orientation. The material system consists of an elasto-J2-plastic matrix material
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Figure 3.24: Microstructure and spatial decompositions of the composite material with
an anisotropic structure with υII = 20% of elliptic stiff and anisotropic elastic inclusions
with (a-d) aspect ratio rx/ry = 2.5 and (e-h) aspect ratio rx/ry = 10 in an elasto-plastic
matrix based on elastic deformation into (a, e) 8 subdomains and (c, g) 128 subdomains
and based on inelastic deformation into (b, f) 8 subdomains and (d, h) 128 subdomains.

Table 3.5: Peak stress errors (computed as in Eq. (3.65)) using the different CAH
approaches for the composite material with an anisotropic microstructure and υII = 20%
(Fig. 3.24) consisting of elliptic stiff elastic inclusions embedded in a perfectly plastic

matrix. Negative error values mean overcompliant composite predictions.

rx/ry = 1 TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 9 5 4 2 0
exy (%) 8 2 2 1 0
rx/ry = 2.5 TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 11 6 5 2 -2
exy (%) 4 2 1 0 -1
rx/ry = 10 TFA-E 512 TFA-P 512 TFA-PFC 512 HS-E 128 HS-P 128
exx (%) 17 13 10 1 -5
eyy (%) 10 4 3 3 -4
exy (%) 1 1 1 0 0

with the elastic and inelastic material properties as in Section 3.5.2 and stiff linear-elastic
inclusions with the transverse-isotropic (or "polar-anisotropic") properties (Section 2.5.1)

• Ex = 40 GPa, Ey = Ez = 10 GPa

• νxy = νxz = 0.24, νyz = 0.3333,

• Gxy = Gxz = GLT = 8 GPa, Gyz = GTT = Ey
2 (1+νyz)

= 3.75 GPa
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Figure 3.25: Normal stress response under uniaxial tension in x-direction (longitudinal
loading, Eq. (3.62)) and shear stress response under pure shear deformation (Eq. (3.63))
of a composite material with an anisotropic microstructure of υII = 20% (Fig. 3.24(a-d))
elliptic stiff and anisotropic elastic inclusions with an aspect ratio rx/ry = 2.5 embedded
in a perfectly plastic matrix in comparison to the full-field FE result. Displayed are (a,
c) the convergence of the peak stress depending on the number of subdomains and (b,

d) stress-strain curves computed by the different CAH approaches.

where the inclusion phase subscript "Ω = II" is omitted for the simplicity of notation.
Additionally to the uniaxial tension test in longitudinal fiber direction and the pure shear
test, a transverse uniaxial tension test with up to εyy = 3% (exchange of xx and yy in Eq.
(3.62)) was applied on the RVE with the high inclusion aspect ratio. The computation
errors of the tension in y-direction are denoted as eyy.

Spatial division The offline stage simulations were performed using meshes consisting
of 30018 and 34326 triangular quadratic elements for the microstructure with the lower
degree of anisotropy and the one used for the strong isotropic microstructure, respectively.
The inelastic material properties of the elasto-plastic matrix during the offline stage sim-
ulations are the ones given in Section 3.5.1 for the material system of elastic inclusions in
an elasto-plastic matrix. The inclusions anisotropic elastic behavior is described by the
previously introduced elastic properties. In the case of the microstructure with the lower
anisotropy rx/ry = 2.5, the inelastic deformations under the biaxial deformation and pure
shearing are carried by a low number of wide shear bands, traversing the material in
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Figure 3.26: Normal stress responses under uniaxial tension in x-direction (longitudi-
nal loading, Eq. (3.62)) and in y-direction (transverse loading) and shear stress response
under pure shear deformation (Eq. (3.63)) of a composite material with an anisotropic
microstructure of υII = 20% (Fig. 3.24(e-h)) elliptic stiff and anisotropic elastic inclu-
sions with an aspect ratio rx/ry = 10 embedded in a perfectly plastic matrix in compar-
ison to the full-field FE result. Displayed are (a, c, e) the convergence of the peak stress
depending on the number of subdomains and (b, d, f) stress-strain curves computed by

the different CAH approaches.

diagonal and axial directions, as recognized in the spatial decomposition (Figs. 3.23a and
3.23b). In the case of a strong anisotropy expressed by rx/ry = 10, the inelastic patterns
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(a) (b)

Figure 3.27: Responses of the (a) matrix and (b) inclusion phases under uniaxial
tension (Eq. (3.62)) of a composite material with an anisotropic microstructure of
υII = 20% (Fig. 3.24(e-h)) elliptic stiff and anisotropic elastic inclusions with an aspect
ratio rx/ry = 10 embedded in a perfectly plastic matrix in comparison to the full-field
FE result. The responses of the composite phases are the average responses of all the

subdomains constituting the corresponding phase.

differ from the previously considered cases (Figs. 3.23c and 3.23d). Under the biaxial
isochoric deformation, plastic localizations form around and between the sharp peaks of
the inclusions. Under pure shearing, plastic strain localizes in longitudinal direction and
particularly along the long inclusion edges, while the regions between the inclusion peaks
are almost spared by the occurrence of plasticity. The RVE domains were divided in the
offline stage into K = 2, 16, 32, 64, 128, 256, 512 subdomains, with one subdomain rep-
resenting the elastic inclusion phase. The microstructures and the spatial decompositions
resulting from elastic and inelastic deformation into 8 and 128 subdomains are presented
in Figs. (3.24a) - (3.24d) for the lower anisotropy rx/ry = 2.5 and in Figs. (3.24e) -
(3.24h) for the higher anisotropy rx/ry = 10.

Nonlinear analyses The matrix material behaves perfectly plastic with the yield
strength σY0

I = 100 MPa, while the inclusions deform linearly-elastic with the transverse-
isotropic elastic properties given above. In case of the lower degree of anisotropy, the TFA-
P provides a better convergence towards the reference result than the TFA-E throughout
the whole range of the numbers of subdomains for the uniaxial tension test and for K ≥
32 for the pure shear test. The TFA-PFC yields additional improvements of accuracy in
the region of low numbers of subdomains. It is recognized that peak stress errors are low
using TFA-E but can still be significantly reduced using the TFA-P and TFA-PFC (Table
3.5 and Figs. 3.25a and 3.25c). Therefore, the stress-strain responses computed by the
TFA-P and TFA-PFC with 512 subdomains show negligible deviations from the reference
full-field stress-strain responses under uniaxial tension and pure shearing (Figs. 3.25b and
3.25d). The HS-P approach shows a better convergence than the HS-E, reaching nearly
exact coverages of the full-field result with only four subdomains.

In case of the strong anisotropic microstructure, the TFA-E provides more accurate
results than the TFA-P and TFA-PFC for a wide range of subdomains for both the uniaxial
tension and the pure shear tests (Figs. 3.26a, 3.26c and 3.26e). In the uniaxial tests,
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the TFA-P and TFA-PFC show a higher convergence rate towards the reference results
and allow more accurate predictions for respectively K ≥ 128 and K ≥ 32. With 512
subdomains, the peak stress error is slightly in the longitudinal tension and significantly
in the transverse tension test reduced using the TFA-P and the TFA-PFC (Table 3.5),
visible in the computed stress-strain responses (Figs. 3.26b and 3.26d).

The average responses of the phases under the longitudinal uniaxial tension test (see
Fig. 3.26b for the homogenized response), resulting from the CAH and full-field homog-
enization, are displayed in Fig. 3.27. All TFA and HS approaches allow an accurate
modeling of the matrix behavior, with a slight stress reduction during the inelastic defor-
mation (Fig. 3.27a). Unlike the HS-P, the TFA approaches lead to increasing strain, and
therefore stress, in the inclusion phase during inelastic deformation of the matrix (Fig.
3.27b), with better predictions provided by the TFA-P and TFA-PFC than the TFA-E.
The emerging stresses in the matrix lead to stiffer responses of the composite when using
the TFA than using the HS type approach.

Wulfinghoff, Cavaliere, and Reese (2018) recognized overstiff homogenized responses
of the HS approach for anisotropic microstructures using a secant scheme (Section 2.3.7).
This led to the introduction of a scalar correction factor to decrease the response of the
isotropic reference medium. With the tangent HS scheme developed in this work however,
no overstiff results are recognized for the anisotropic structure in this section. The HS-E
and HS-P provide very high rate of convergence in the range K ≤ 8 and accurate results
with eight subdomains for the uniaxial tension tests. The homogenized predictions keep
decreasing however towards too compliant results under increasing numbers of subdomains
(Fig. 3.26a). Under transverse loading, the continuous decrease of the homogenized
responses is even more significant (Fig. 3.26c). No convergence towards the full-field
results can be recognized in this loading case. In the pure shear test, the computation
errors are negligible using the HS method with only one subdomain per phase or using
the TFA with sufficiently high numbers of subdomains (Figs. 3.26e and 3.26f).

Table 3.6: Material properties of the highly anisotropic microstructure. The material
properties were adapted from Wu et al. (2015).

Matrix (M10.1 epoxy) Fibre (UD300 HS(R) carbon fibre)
Property Value Property Value
Young’s modulus EI [GPa] 3.2 Young’s modulus EL

II [GPa] 230
Poisson ratio νI [-] 0.3 Young’s modulus ET

II [GPa] 40
Initial yield stress σY0

I [MPa] 100 Poisson ratio νTTII [-] 0.2
Hardening modulus HI [MPa] (offline) 50 Poisson ratio νLTII [-] 0.256
Hardening exponent mI [-] 0.05 shear modulus GLT

II [GPa] 24

Highly anisotropic structures Additionally to the anisotropic structures above, both
TFA and HS method were applied for uniaxial tension tests of a strongly anisotropic
microstructure. The material properties of the transverse-isotropic fibers (Section 2.5.1)
and the matrix are given by Table 3.6, and the matrix follows the power law hardening in
Eq. (3.68). The matrix embeds an inclusion phase with a very high stiffness contrast and
an aspect ratio of rx/ry = 10, occupying a volume fraction of υII = 50 %. The structure
was divided into K = 16, 128 subdomains (Fig. 3.28a) and loaded in longitudinal and
transverse directions. The resulting responses following the full-field and reduced CAH
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Figure 3.28: Microstructure, cluster division and homogenized stress responses of the
highly anisotropic composite material with an inclusion aspect ratio of rx/ry = 10 and
volume fraction of υII = 50 %: in (a) the division into 128 subdomains (four subdomains
for the inclusion phase), and the homogenized normal stress responses under uniaxial

tension in (b) longitudinal and (c) transverse loading.

Table 3.7: Elastic properties computed following Eqs. (3.71), (3.72) and (3.73) using
FE DNS and the TFA and HS algorithms with 16 and 128 subdomains for the strongly

anisotropic microstructure with rx/ry = 10.

method → FE TFA-P
16

TFA-P
128

HS-P 16 HS-P 128 HS-P 256

∆σxx/∆εxx (GPa) 35.98 35.98 35.98 59.93 42.68 43.86
∆σyy/∆εyy (GPa) 7.65 7.65 7.65 7.75 7.69 7.68
−∆εyy/∆εxx (-) 0.439 0.439 0.439 0.498 0.429 0.439

methods are reported in Figs. 3.28b and 3.28c. Furthermore, the homogenized elastic
ratios (similar to Eel

x and E
el
y and the elastic Poisson ratio νelxy, but here the setting is

plane-strain with εzz = 0) were identified as the instantaneous mechanical properties in
the elastic regime (thus at low strains, denoted as "at εxx = 0" under uniaxial tension
σxx and as "at εyy = 0" under uniaxial tension σyy) as

∆σxx
∆εxx

at εxx = 0 and with εzz = 0 (3.71)

and
− ∆εyy

∆εxx
at εxx = 0 and with εzz = 0 (3.72)
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under uniaxial tension σxx, and

∆σyy
∆εyy

at εyy = 0 and with εzz = 0 (3.73)

under uniaxial tension σyy, and are reported in Table 3.7.
The elastic and inelastic responses under transverse tension can be well captured by

both TFA and HS approaches, with slightly more accurate results provided by the TFA
(Eq. (3.28c)). The achieved modeling quality by the two methods under longitudinal
load differs strongly (Eq. (3.28b)). The TFA provides exact estimations of the longitudi-
nal Young’s modulus and accurate yield point predictions. The inelastic response is stiff
compared to the reference result, and shows a convergence with an increasing number
of subdomains. In contrast, the HS method leads to a highly overstiff elastic response,
with an estimation of the elastic Young’s modulus that has an error of 67% using 16
subdomains and of 19% using 128 subdomains. Besides, the estimation of the yield onset
is inaccurate using the HS approach, while the hardening behavior can be well captured.
Considering the elastic behavior modeled by the HS method, a clearly improved result is
achieved using 128 subdomains with respect to 16 subdomains. Therefore, additionally
to the predicted responses by the HS with 16 and 128 subdomains, the result with 256
subdomains (green dashed curve in Figs. 3.28b and 3.28c) was added for an evaluation
of the convergence towards the reference result under increasing numbers of subdomains.
Recognizing clearly stiffer homogenized elastic, particularly under uniaxial tension in lon-
gitudinal fiber orientation, and inelastic responses using 256 subdomains than with 128
subdomains (Table 3.7, Fig. 3.28c), it is concluded that the HS approach does not lead
to a convergence towards the reference result under increasing numbers of subdomains
for the investigated highly anisotropic microstructure, neither of the elastic response nor
of the yield point and the inelastic behavior. The overstiff behavior modeled during elas-
tic deformation may be approached by the introduction of a scalar correction factor, as
proposed by Wulfinghoff, Cavaliere, and Reese (2018). Comparing the achieved results in
Figs. 3.25, 3.26 and 3.28 however, the inaccuracy of the HS approach depends on various
material and structural parameters, e.g. the aspect ratio of the inclusions, the volume
fraction of the inclusions, the stiffness contrast between the inclusion and the matrix
phase, as well as on the number of subdomains used.

3.5.6 Evaluation of the achieved results

For a two-phase microstructure where both phases deform inelastically, both the TFA
and the HS homogenization algorithms provide fairly accurate stress-strain predictions
with only one subdomain per phase (see Section 3.5.3). However it is to be mentioned,
that although the homogenized composite predictions are well-representative of the ho-
mogenized responses computed by full-field solutions, the strain localizations in the single
composite phases may deviate from the full-field solution.

The mechanical predictions using the TFA for composite materials consisting of purely
elastic inclusions in a perfectly plastic matrix could be significantly improved with an opti-
mized subdomain decomposition which bases on inelastic fields compared to a subdomain
decomposition based on elastic fields (see Sections 3.5.2 and 3.5.5). The enhanced repre-
sentation of the real interaction field by means of an inelasticity based subdomain decom-
position results in more accurate strain distributions over the material phases during the
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online stage and therefore allows an improved TFA modeling accuracy. The quality of the
TFA modeling and the improvement of the enhanced spatial decomposition with respect
to the spatial decomposition based on elasticity were verified with regard of the following
influences: the volume fractions of the stiff inclusion phases (Fig. 3.29a), the contrast
between the phase stiffnesses (Fig. 3.29b) and the degree of microstructural anisotropy
(Fig. 3.29c). The TFA-P provides accurate results with errors < 10% for the cases of
low or moderate inclusion volume fractions υII = 20% and 30%. High prediction errors
with up to 512 subdomains are encountered for a high inclusion phase volume fraction υII
= 50%. However it is important to note that the computation errors appear to decrease
under an increasing size of the considered RVE (Tabs. 3.1 and 3.3). It is recognized that
the TFA errors are increasing as a function of the inclusion volume fraction. Further it
is shown that the subdomain decomposition based on inelastic fields under proportional
deformation modes holds for loading-unloading cycles as well as for a non-proportional
loading path consisting of four consecutive deformation stages. The proposed fluctuation
correction (denoted as TFA-PFC) has a positive impact on the achieved TFA modeling
results of elastic inclusions in a perfectly plastic matrix due to the artificially increased
interaction effects.
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Figure 3.29: Summary of the prediction quality of the homogenized responses in
dependence of the microstructural properties: error quantification as a function of (a)
the inclusion volume volume fraction υII, (b) the elastic stiffness contrast between the
phases for the isotropic microstructure with υII = 30 %, and (c) the anisotropy of the

microstructures with υII = 20 %.
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In the following, the prediction errors of the TFA homogenization for cases of elastic
inclusions and an elasto-plastic behavior of the matrix phase are treated in more detail.
The modeled overstiff behavior is a result of overestimated instantaneous strain concen-
trations in the stiff phases and underestimated strain concentrations in the inelastically
deforming phases during inelastic deformation of the material. This behavior can be
clearly recognized in Fig. 3.10, where it is shown that the perfect-plastic behavior can not
be fully reflected using the TFA approach. The micromechanical TFA formulated in Eq.
(2.33) provides analytical strain distributions, and it was shown that equal results to FE
computations are achieved if the spatial configuration of subdomains equals the one of
the elements. In an infinitesimally fine discretized domain, the eigenstrain reaction strain
field

f(χ) = D(χ,χ′) : ε∗(χ′) (3.74)

in Eq. (2.33), averaged over a subdomain Vr, would be expressed as

fr =

∫
Vr

f(χ)dχ =

∫
Vr

D(χ,χ′) : ε∗(χ′)dχ . (3.75)

The overstiff responses encountered when larger domains are considered uniform mean,
that the coverage of the eigenstrain reaction field by the consideration of average interac-
tion tensors Drs (Eq. (3.26)) and piecewise uniform fields ε∗s = const. ∈ Vs,∀Vs, resulting
in the approximation

fr =
K∑
s=1

Drs : ε∗s (3.76)

is insufficient, corresponding to underestimated interaction effects. The consequently
overestimated strain and therefore stress accumulations in stiff phases cause, following
Eq. (2.65), overestimated composite stress responses. The issue of an overestimated
tangent behavior can as well be analysed by a consideration of the composite tangent
stiffness, computed as in Eq. (2.70). Following Eq. (2.70), the error in the overall
tangent stiffness is explained by inaccurate instantaneous strain concentration tensors
Ain
r . As visible in Eq. (2.68) with Eq. (2.62), the Ain

r are directly dependent of the term
Drs : ∂∆ε∗s/∂εs. Inaccuracies in the spatial capture of the inelastic interaction field due
to an averaging over subdomains (Section 3.3.2), and hence insufficient contributions of
the term Drs : ∂∆ε∗s/∂εs, are the cause of inaccurate instantaneous strain concentrations
during the TFA computation.

The case of a matrix with a perfectly plastic mechanical behavior is a complex one.
If the matrix phase behaves perfectly plastic, it carries all deformation in the material
and the inclusions undergo no strain. The concentration of the entire overall strain in
the matrix phase and zero strain in the inclusions can, using the TFA approach, solely be
successfully modeled if the interaction field is fully captured by the spatial decomposition,
meaning that the case of elastic inclusions in a perfectly plastic matrix is a highly-complex
material system. In composite materials with heterogeneous microstructures, a capture
of the full highly-heterogeneous plastic field is impossible using numbers of subdomains
that are reasonably low, leading naturally to incorrect strain accumulations in the phases
(Fig. 3.10), comprised by overestimated strains in the inclusions and underestimated
strains in the matrix, and therefore to an overestimated tangent behavior by the TFA
method. According to Fig. 3.10 however, the TFA-P provides clear improvements of the
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strain localization with respect to the TFA-E. Originating from the incorrect phase strain
distributions, the high errors for the case of a high volume fraction of the inclusion phase
are explained as follows: First, the heterogeneity of the plastic field increases in case of
higher volume fractions of inclusions, making the efficient representation of the plastic
field by an averaging procedure more complex. Second, the inability of the TFA method
to avoid occurring strains in stiff inclusions becomes more severe the higher the volume
fraction of inclusions. Higher numbers of subdomains may lead to more accurate results,
but at the same time, extremely fine meshes are required for the k-means clustering
to identify meaningful subdomains when such high numbers of subdomains are used,
resulting in more time-expansive offline and online stages.

The HS method provides good accuracies and a fast convergence of the homogenized
responses under low numbers of subdomains K ≤ 8 for cases where the inclusion phase
deforms purely elastic and the matrix phase deforms inelastically with low hardening
characteristics, or even perfectly-plastic as in most of the presented examples. Very ac-
curate results are achieved with typically only eight subdomains. The high prediction
accuracies were verified for low to high volume fractions of inclusions (Fig. 3.29a) and
phases stiffness contrasts (Fig. 3.29b) and structural anisotropies (Fig. 3.29c). An issue
of the HS approach is however, that after the initial apparent convergence towards the
correct results in the range of low numbers of subdomains, the homogenized results keep
decreasing under increasing numbers of subdomains, resulting in too compliant inelas-
tic responses in several cases. The overcompliant results are recognized particularly for
isotropic structures with high volume fractions of inclusions (see Fig. 3.29a at υII = 50%)
and for anisotropic structures (Fig. 3.29c).

The HS modeling of anisotropic materials is demonstrated to be critical. While ac-
curate, slightly overcompliant, predictions are achieved if the inclusion volume fraction is
low (Figs. 3.25 and 3.26, Table 3.5, Fig. 3.29c), strong anisotropies resulting from high
stiffness contrasts and high inclusion volume fractions (microstructure depicted in Fig.
3.28a, phase properties given in Table 3.6) lead to high errors of the elastic and inelas-
tic predictions by the HS approach (Fig. 3.28, Table 3.7). Furthermore, the increase of
the numbers of subdomains does not lead to a convergence of the elastic or the inelastic
response of the highly anisotropic material. Wulfinghoff, Cavaliere, and Reese (2018) in-
troduced a correction factor in order to artificially decrease the stiffness of the reference
medium during the online stage. It is demonstrated in this work however, that a specific
correction factor for the HS modeling of anisotropic microstructures is not applicable.
The error of the HS predictions was shown to be dependent on various structural and
material parameters, e.g. the aspect ratio of the inclusions, the volume fraction of the in-
clusions, the stiffness contrast between the inclusion and the matrix phase. It means that,
for the identification of a valid correction factor for the HS type analysis of a particular
anisotropic microstructural system, these various factors need to be taken into account.

3.6 Conclusions

3.6.1 TFA vs. HS clustering analyses

The TFA and HS based reduced two-scale bridging approaches for heterogeneous com-
posite materials were investigated in this chapter for a range of 2D microstructures. The
main difference are the interaction functions, leading to the coupling between the sub-
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domains: the TFA relies on eigenstrain influence functions, where the eigenstrains are
evaluated purely from local constitutive relations. Consequently, it is assumed that the
TFA provides reliable mechanical predictions for general composite materials. The HS
approach makes use of the Green’s polarization influence functions, where the polariza-
tion stresses are a measure of the local stress deviation from the virtual stress in a ho-
mogeneous reference medium, and therefore depend on the local constitutive relations
and the homogenized behavior of the composite. The quality of the achieved results were
compared with an emphasis on the critical case of stiff elastic inclusions inside a matrix
with a very compliant inelastic behavior.

The use of the TFA leads to clearly overstiff inelastic homogenized responses in the
range of low numbers of subdomains. Accurate results can be achieved with high num-
bers of subdomains, e.g. K ≥ 128 for many of the tested material systems. The va-
lidity of the HS approach, relying on the stiffness of a homogeneous and isotropic ref-
erence medium, could be verified for general composites, in particular for cases of high
stiffness contrasts between the material phases and strongly anisotropic microstructures.
For many of the tested cases of microstructures and material systems, the HS method
allows reliable homogenized responses already with only one subdomain per phase and
a very fast convergence towards the full-field homogenization result in the range K ≥ 8,
achieving high peak stress accuracies with a total of only eight subdomains. The homoge-
nized response when using the HS type analysis keeps becoming more compliant when the
numbers of subdomains further increases, meaning that no convergence of the compos-
ite response under increasing numbers of subdomains can be recognized in several cases.
No achieved convergence and overcompliant composite responses are found particularly
for microstructures with increased complexity, as in the cases of high stiffness contrasts,
structural anisotropies and high volume fractions of inclusions.

Consequently, the conclusion is drawn that the use of polarization field influences
allows much more compliant responses, and a good convergence towards full-field results in
most considered cases, than using eigenstrain field influences when piecewise uniform fields
of variables are considered. Following Eqs. (2.18) and (2.22), the microscopic polarization
field τ (χ) in elasto-plastic material phases has a similarly non-uniform character as the
inelastic eigenstrain field ε∗(χ). Therefore, the high differences in the convergence can
not be explained by a better representation of the polarization field than of the eigenstrain
field considering piecewise uniform fields. The reason for the difference in the results must
rather be a consequence of the inherent characteristics of the eigenstrain and polarization
fields. Eigenstrains occur only in phases that can deform inelastically, and with an elastic
inclusion phase, the eigenstrain field is only existent in the matrix phase. It implies that
the TFA can only converge towards the full-field solution under an increasing capture of
the non-uniformity of the inelastic field. The requirement of an accurate capture of the
inelastic fields gives the TFA a rather computational than analytical characteristic for
cases of elastic inclusions in an elasto-plastic matrix. Polarization fields however, occur
in both inelastic and elastic phases, meaning that influence contributions are provided
by both elastic and inelastic phases. The homogenized stress response that is always in
between the responses of the two material phases, and the polarization stresses from both
material phases that occur as a consequence, lead to a much faster convergence towards
the correct homogenized inelastic response. A reference stiffness that is assumed to have
an isotropic character, closely represents the actual homogenized stiffness of a composite
material with an isotropic microstructure. Consequently, the assumptions made for cases
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of isotropic microstructures, and the difference of using the HS type approach with respect
to the use of a generic PFA (Section 2.3.6) that relies on the actual homogenized stiffness
of the composite, are rather low. The accurate results with low numbers of subdomains
hint towards an intrinsically correctness of the PFA approach, with a low dependence of
the homogenized responses on the number of subdomains.

For strongly anisotropic microstructures however, the HS approach is unable to deliver
reliable homogenized responses in elastic and inelastic deformation. The assumption of an
isotropic reference stiffness, representing the homogenized behavior of the composite, is
much stronger in cases of actually anisotropic composite microstructures than for isotropic
microstructures. As presented in the last paragraph of Section 3.5.5, the use of the HS
approach for a strongly anisotropic structure with a high inclusion volume fraction leads in
particular to high errors of the elastic response and the yield onset. It was demonstrated
that the increasing number of subdomains for this kind of a highly anisotropic material
does not allow a convergence of the homogenized response towards the reference FE result,
implying that capabilities of the HS approach for general anisotropic structures is clearly
limited. One way to approach this inability of the HS type analyses is the integration
of certain correction factors. A constant scalar correction was proposed by Wulfinghoff,
Cavaliere, and Reese (2018). However, as recognized in this work, the degree of inaccuracy
of the HS approach depends on various material and structural parameters, e.g. the aspect
ratio of the inclusions, the volume fraction of the inclusions, the stiffness contrast between
the inclusion and the matrix phase, as well as on the number of subdomains used. The
inaccuracy dependence on these various factors implies that the determination of effective
correction factors needs to account for these factors.

A more general way to achieve reliable results for composite with anisotropic mi-
crostructures may be the extension of the from the definition of an isotropic reference
medium (Section 2.3.7) towards a more general anisotropic definition of the reference
medium. Since the HS type approach, considered as an PFA homogenization (Section
2.3.6) particularized for cases of isotropic composite microstructures, delivers very accu-
rate results with low numbers of subdomains, a generalized PFA, relying on a reference
stiffness that represents the homogenized response of an anisotropic composite structure
more accurately, may provide high potentials for the homogenization of general composite
microstructures.

3.6.2 Plasticity based spatial decompositions

The TFA approach using piecewise uniform fields is known to yield overstiff approxi-
mations for the inelastic mechanical behavior of composites, especially in cases of high
localized plasticity when using reasonably low numbers of subdomains. The reason for
computed overstiff composite predictions by the TFA homogenization is an insufficiently
accurate distribution of the overall strain over the subdomains, resulting in overpredicted
strain and stress accumulations in stiff or elastic phases during inelastic deformation of
the composite. Not ideally determined eigenstrain-strain interaction tensors between sub-
domains, and therefore underestimated overall eigenfield influences were identified as a
cause for incorrect strain distributions over the material phases (more detailed in Sections
3.3.2 and 3.5.6).

Formerly proposed two-scale approaches achieving a model order reduction by using
piecewise uniform fields often use elastic strain distributions as the foundation for the spa-
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tial decomposition, proven to result in improved mechanical predictions in comparison to
the use of spatially regular subdomain decompositions (Liu, Bessa, and Liu, 2016; Wulfin-
ghoff, Cavaliere, and Reese, 2018). In this work it was recognized, that the consideration
of inelastic micromechanical deformation patterns provides an improved modeling using
piecewise uniform field homogenization approaches. This new approach for the spatial
decomposition provides a more physics based modeling respecting the real micromechan-
ics due to an increased emphasis on the main features of the inelastic and therefore of
the interaction field. Inelastic deformation patterns evolving due to plastic localization,
often particularly in the form of plastic shear bands, are not detectable and therefore not
respected by purely elastic pre-analyses. It is successfully shown that

• The accuracy of the strain localizations in both the inelastic matrix and the elastic
inclusion phase are clearly improved using the TFA-P with respect to the TFA-E,
as can be recognized in Figs. 3.10 and 3.27 for isotropic and anisotropic microstruc-
tures, respectively. Therefore,

• The predictions of the homogenized behavior and the convergence towards the full-
field results are, using the TFA-P clearly more accurate with respect to the TFA-E.

The composite predictions for the strain-stress responses for the complex case of elastic
inclusions in an elasto-plastic matrix can be improved by using the enhanced subdomain
decomposition based on inelastic deformation fields.

Clear improvements of the TFA predictions and accurate modeling results using the
enhanced spatial division are achieved for the very demanding cases of elastic inclusions
in a perfectly plastic matrix phase for low to moderate volume fractions of inclusions υII.
The high TFA prediction quality is valid for heterogeneous composites materials with
isotropic and anisotropic microstructures and material properties, as well as for different
degrees of the phases elastic stiffness contrasts.

However, the error of the tangent behavior of composite materials increases with an
increasing inclusion volume fraction as discussed in Section 3.5.6. The TFA predictions for
the tangent behavior of composite materials with υII = 50% in this work are still overstiff
for 512 subdomains defined using the inelasticity based spatial decomposition, although
the error continues to decrease with an increasing number of subdomains, provided the
mesh used during the offline stage is fine enough. Errors of the TFA are recognized to
decrease as well when the size of the RVE is increasing.

The use of statistical field inhomogeneities is a first micromechanics based correction
approach for the modeling of composite materials based on piecewise uniform fields. Al-
though it is shown to provide an additional acceleration of the convergence of the achieved
strain-stress responses by the TFA towards the reference full-field results, further work
is required in order to optimize the use of in-subdomain field fluctuations for an efficient
improvement of the inelastic response of composite materials. In order to take hetero-
geneities of inelastic fields more accurately into account, a new multi-step TFA homoge-
nization scheme will be proposed in Section 5.

The offline stage in this work consists of two RVE deformation modes. More deforma-
tion modes can be included in the offline stage, allowing the enhanced inelasticity based
TFA modeling of materials under arbitrary loading conditions. A higher number of offline
deformation modes might lead to the requirement of higher numbers of subdomains in
order to properly cover the various deformation patterns inside the RVE. Consequently,
approaches for adapted subdomain decompositions achieved by either using pre-computed



106 Chapter 3. Clustering analyses of composite RVEs

load-specific sets of subdomains or performing re-clustering procedures during the online
stage may be considered in the future.
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Chapter 4

Two-step homogenization for woven
composites

𝑿

𝝌

𝜺ത(𝑿)

𝝈ഥ(𝑿)

𝜺(𝝌)

𝝈(𝝌)

x
y

z

Figure 4.1: Schematic demonstration of a mechanical problem of a woven compos-
ite considering the associated scales. The deformation state at a certain location in-
side a structural woven composite ε(X) states the boundary problem for the unit cell,
representing the mesostructure. The microscopic material points of the yarns in the
mesostructural cell are locally considered as a UD fiber composite material. Follow-
ing from the local deformation at the yarns material points ε(χ), the MFH is used for
the computation of the homogenized response σ(χ). The overall stress response of the

woven unit cell σ(X) follows from the consideration of the complete local field χ.

4.1 Introduction
This chapter focuses on the CAH of woven composite structures. A woven composite can
be classified as a three-scale material, where the evaluation of the structural behavior is
affected by mechanical processes on the mesoscopic and microscopic scales (Fig. 4.1).
The woven composite on the mesoscale, represented by the mesoscale unit cell, consists
of the yarns lying in the so-called ply-plane, surrounded by a matrix material. As pre-
sented previously in Section 3, the piecewise uniform homogenization approaches rely on
the evaluation of constitutive equations in every subdomain that describe the response of
the corresponding material. In the case of the woven composite however, the yarns are
a composite material themselves, consisting of long fibers embedded in the same matrix
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material. Consequently, the yarns can not be considered as a homogeneous material, but
the homogenized behavior of the yarns microstructure needs to be computed simultane-
ously (Fig. 4.1). Therefore, the piecewise homogeneous constitutive relations are replaced
by a homogenization procedure. The reduced three-scale bridging for the prediction of
the macroscopic response of woven composites is thus accomplished by a two-step ho-
mogenization, exploiting the strengths of two different homogenization techniques for an
efficient modeling:

𝝌ଵ
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𝝌ଷ

y

x

z

Figure 4.2: Depicted is the effect of the yarn inclinations, leading to locally different
fiber orientations. The local different fiber orientations imply, as displayed, different
orientations of the local equivalent inclusion for the MFH computation. The woven

geometry used in this work is the one from the Section 6.2.1 of Wu et al. (2021).

• Piecewise uniform CAH approaches allow for the consideration of complex and
anisotropic structures. Therefore, it is made use of the TFA (Sections 2.3.4 and
3.3) and the tangent HS formulation (Sections 2.3.7 and 3.4) in combination with
an inelasticity-based subdomain decomposition for the mesoscopic to macroscopic
homogenization of the woven RVE. With a subdomain decomposition that aims to
accurately respect different inelastic patterns in a material, the number of possibly
considered inelastic modes is limited. As the number of possible deformation modes
in woven composite structures is rather low, modeling approaches based on a spatial
decompositions into subdomains and uniform fields may be considered suitable mod-
eling approaches. Following the good predictions for composites with both phases
deforming inelastically (Section 3.5.3) and general anisotropic composite structures
(Section 3.5.5), the TFA is expected to provide good captures of the homogenized
behavior of the woven unit cell. As introduced previously, the HS approach, relying
on a homogeneous reference medium that is isotropic, is adopted for the case of the
strongly anisotropic woven structure. Considering the inadequate representation of
the homogenized elastic response and yield point of a strongly anisotropic composite
microstructure with elastic inclusions (see Table 3.6 and Fig. 3.28), the suitability
of this approach is tested and assessed.

• The non-uniform anisotropic elastic and inelastic properties of the yarn materials
due to locally varying fiber orientations (schematically depicted in Fig. 4.2) need to
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be respected by the spatial division into subdomains in order to gather only mate-
rial points with similar responses in the same subdomain and therefore, guarantee
valid effective responses of the particular subdomain. For this sake, an adapted
subdomain decomposition designed for the use of piecewise uniform fields is im-
plemented for the CAH of three-scale composite materials, built by a mesostruc-
ture containing phases with possibly fully heterogeneous microstructures. It allows
for piecewise uniform field approximations of composites with heterogeneous and
anisotropic meso- and microstructures by respecting locally varying orientations of
fibers or inclusions (Fig. 4.3). Several plastic fields were computed under typical
loading conditions for the woven composite, providing subdomain refinements.

• In previous applications, CAH approaches as the TFA or the HS type method made
use of the inelastic strains derived from the piecewise uniform materials constiti-
tutive relations. In Han et al. (2020), the mechanical response of woven compos-
ites was modeled by the SCCA approach, another CAH method based on piece-
wise uniform fields. The yarns were considered homogeneneously elastic during the
online stage, with the yarns homogenized propertie. An RVE yield criterion was
constructed a priori. In contrast to Han et al. (2020), in the present thesis, a MFH
algorithm is used for the computation of the homogenized nonlinear behavior of the
subdomains in the yarns during the online stage. While an a priori defined yield
criterion may have limit the capabilities for modeling of complex history-dependent
loading cases, the use of the MFH for the microscopic to mesoscopic scale bridging
allows the consideration of arbitrary inelastic responses of the phases of the yarns
microstructure and loading conditions. Using the aforementioned spatial decompo-
sition, the composite yarn material can be treated as a piecewise uniform UD fiber
composite per subdomain, allowing for the application of the MFH. In order to pre-
dict the homogenized behavior of the woven unit cell by the TFA, eigenstrains of
the subdomains are to be determined. A new procedure is implemented here, where
the eigenstrains of the subdomains are deduced from the homogenized response,
computed by the MFH.

This chapter is structured as follows: Section 4.2 contains details of the homogeniza-
tion from the mesoscopic to macroscopic scale of the woven unit cell. In Section 4.3,
the microscopic to mesoscopic scale transition for the yarn material by the use of the
MFH is outlined, presenting details on the microstructural setup, the adoption of the
incremental-secant approach and its resolution. Subsequently, the Section 4.4 contains
the developed clustering technique for the woven unit cell by taking into account the mi-
crostructural inhomogeneity of the yarn materials and evolved inelastic fields. Section 4.5
presents results from various numerical tests performed on the woven unit cell. Results
of the TFA and HS homogenization approaches are displayed and compared to FE DNS,
showing that complex non-proportional loading can be well represented by the two-step
homogenization. The developed spatial decomposition is shown to hold for the represen-
tation of deformation fields in the woven unit cell even after extended loading histories.
In Section 4.6, concluding remarks of this work and possible future contributions on this
subject are pointed out.



110 Chapter 4. Two-step homogenization for woven composites

yarn orientation
based clustering

Figure 4.3: Displayed is the outcome of a clustering of the weft yarn in the woven unit
cell purely based on the heterogeneous local yarn orientations. After the clustering, the

subdomains represent the regions with different orientations of the yarn.

4.2 Macroscopic response of the woven composite: unit
cell homogenization

4.2.1 Full-field homogenization

The woven composite can, as described, be considered as a three-scale material (Fig.
4.1). The homogenized response of the woven unit cell is referred to as the macroscopic
response. The material points of the unit cell domain, χ, are referred to as the mesoscopic
material points. Using a full-field homogenization technique for the solution of a BVP
applied on a macroscopic material domain V , prescribing the homogenized strain

ε =
1

|V |

∫
V

ε(χ)dχ (4.1)

of the domain V , the mesoscopic strain field ε(χ) in the domain V is computed (Section
2.2). The homogenized stress response of the domain V is then computed as the average
over the domain,

σ =
1

|V |

∫
V

σ(χ)dχ . (4.2)

In this work, the yarns of the woven composite are considered to possess a heterogeneous,
fibrous, microstructure, consisting of elastic fibers in a matrix material (Section 4.3.1),
depicted in Fig. 4.1. The mesoscopic stress field σ(χ) of the full-field solution in Eq. (4.2)
is computed from a homogenization procedure of the microstructural composite at the
mesoscopic material point χ by means of the incremental-secant MFH (Section 4.3.2) by
Wu et al. (2013a). Besides the mesoscopic stress field σ(χ), the mesoscopic algorithmic
tangent operators Calg(χ) are to be determined from the incremental-secant MFH scheme
in order to solve the BVP of the unit cell. The incremental-secant MFH, detailed in
Section 2.4.2, is particularized to the present mesoscale of the woven composite in Section
4.3.2. Although this method is not a real full-field resolution in which the fibers would be
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subdomain r
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Figure 4.4: Schematic display of the CAH of the woven unit cell. The subdomains
stress-strain responses follow from the homogenization of the underlying fibrous matrix-
inclusion composite with the associated orientation of the fiber using the incremental-
secant MFH scheme. The microstructural composite associated to the subdomain has

the homogenized orientation of the local material points in the subdomain.

represented explicitly, it provides reference homogenized predictions, to which the CAH
responses can be compared.

4.2.2 Clustering analysis based homogenization

The homogenized macroscopic mechanical response of the woven unit cell is analyzed by
the means of CAH with a spatial decomposition of the mesoscopic unit cell domain using
the TFA or the HS formulations (see Sections 3.3 and 3.4). For the construction of the
reduced models, the unit cell is subdivided into several subdomains based on mesoscopic
inelastic deformation fields computed under specific loading conditions during the offline
stage. The subdomains represent the mesoscopic domain of the unit cell. The spatial
decomposition into subdomains r based on inelastic strains, following Section 3.2.2, will
be presented in Section 4.4.

The incremental TFA scale coupling relation (Eq. (2.49)), used here for the mesoscopic
to macroscopic homogenization of the woven unit cell under a prescribed macroscopic
strain increment ∆ε, is recalled:

∆εr = Ael
r : ∆ε+

K∑
s=1

Drs : ∆ε∗s . (4.3)

The subdomains average elastic strain concentration tensors Ael
r are computed as

Ael
r =

1

|Vr|

∫
Vr

Ael(χ)dχ , (4.4)

where the estimation of the local field Ael(χ) was presented in Section 3.2.1. The deter-
mination of the interaction tensors Drs between two subdomains r and s was explained
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in Section 3.3.1. The eigenstrains ε∗s of the mesoscopic subdomains during the solution
stage of the TFA follow from the response of the underlying microstructural composite
associated to the subdomain r (Section 4.3.1), computed by means of the incremental-
secant MFH procedure (Section 4.3.2, with more details in Section 2.4.2). The scale-
coupling between the subdomains of the unit cell and the microstructure by means of the
MFH is schematically displayed in Fig. 4.4. The deduction of the eigenstrains from the
homogenized stress response of the subdomain σr, following the MFH scheme, will be
explained in Section 4.3.2. The numerical solution of the TFA CAH scheme in Eq. (4.3)
was outlined in Section 2.3.5 and remains unchanged.

The reduced incremental HS scale coupling relation (Eq. (2.97)) is written as:

∆εr = ∆ε+
K∑
s=1

Γ0
rs :

(
G0

G
alg ∆σs − C0,iso : ∆εs

)
. (4.5)

The HS formulation developed in this work relies on the definition of a reference medium
with an isotropic algorithmic tangent stiffness, characterized only by the algorithmic shear
modulus of the medium, Galg. The computation of the algorithmic shear modulus of
the reference medium, Galg, was presented in Section 2.3.7. The mesoscopic subdomains
stresses σs are, as the eigenstrains ε∗s for the TFA, computed by means of the incremental-
secant MFH procedure (Section 4.3.2, with more details in Section 2.4.2) of the underlying
microstructural composite associated to the subdomain r (Section 4.3.1). The procedures
for the determination of the stiffness operator of the elastic reference medium, C0,iso, and
the associated shear modulus G0, as well as the computation of the Green’s interaction
tensors in the elastic reference medium, Γ0

rs, between two subdomains s and r, are ex-
plained in the Sections 3.4.2 and 3.4.3, respectively. The numerical solution of the HS
type analysis was presented in Section 2.3.8 and remains unchanged.

4.3 Mesoscopic constitutive relations: homogenization
of the yarn material

The yarn material consists of 80% of longitudinal fibers in the yarn direction embedded in
the matrix material. Accordingly, each mesoscopic material point χ or each mesoscopic
subdomain Vr located inside one of the yarns, is constituted by a two-phase composite
medium (Fig. 4.4), consisting of an inclusion (fiber) phase (subscript II) embedded in a
matrix (subscript I), with the phase volume ratios υI(χ) and υII(χ), or υIr and υIIr for
respectively full-field and CAH resolutions, where

υI + υII = 1 . (4.6)

The local volume ratios, υII = 0.8 and υI = 0.2, are assumed uniform in the yarn material.
Homogenized responses at the mesoscopic material point χ, or of the subdomain r with
uniform fields of variables, can be computed using Mean Field Homogenization (MFH)
techniques (as detailed below in Section 4.3.2).
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4.3.1 Microstructural definition of the yarn material

For the incremental-secant MFH approach (see Section 2.4.2) adopted in this work, the
microscopic fibrous two-phase composite medium of the yarn material is locally treated as
an equivalent two-phase medium of the composition Eq. (4.6) (Fig. 4.4), consisting of one
equivalent inclusion (II) embedded in the matrix, or host, phase (I). The matrix (host)
phase and the inclusion phase are represented by uniform fields of variables with average
quantities. The strain localization of the incremental-secant MFH (Eqs. (2.155) and
(2.156)) and therefore the homogenized response depends on the geometry information
of the two-phase system. With an isotropic host phase, the local geometrical information
are expressed by gII(χ), containing the aspect ratio and spatial orientation of the local
equivalent inclusion at χ.

Here, the local equivalent elliptical inclusion represents unidirectional fibers, and so
the ellipse aspect ratio is very large and considered uniform in the yarn material. The local
orientation of the fibers however, varies according to the local yarn inclination (Fig. 4.2),
and is characterized by the local euler angles θ(χ) =

(
θ1(χ), θ2(χ), θ3(χ)

)
, describing the

orientation of the local rotated coordinate system with respect to the global coordinate
system (if θ(χ) = (0◦, 0◦, 0◦), rotated system equals global system). Before the rotation,
the fibers align with the global z-axis ~ez. After the rotation, they align with the locally
rotated z′′-axis. With the fibers following the weft and warp yarns oriented in the global
x- and y-axis directions, respectively, the first euler angle (rotation Q1

(
θ1(χ)

)
) around

global z-axis) is given as

θ1(χ) =

{
90◦ , χ ∈ VWeft

0◦ , χ ∈ VWarp .
(4.7)

The second euler angle (rotation Q2

(
θ2(χ)

)
around rotated x′-axis) represents the local

vertical inclination of the yarn in which χ is located, where θ2(χ) = 90◦ means a perfectly
horizontal alignment. The third euler angle θ3(χ) (rotation around rotated z′′-axis) is of
no importance for the local fiber orientation. In conclusion, the local fiber orientation
may be expressed by

~v(χ) = Q2

(
θ2(χ)

)
·Q1

(
θ1(χ)

)
· ~ez = Q(χ) · ~ez , (4.8)

where ~ez denotes the eigenvector in the z- direction of the global coordinate system and
Q(χ) = Q

(
θ1(χ), θ2(χ)

)
is the total local rotation from the global z-axis towards the

local fiber orientation at χ. Details on the rotations are given in Appendix E.
Considering the spatial decomposition into subdomains with uniform fields (Section

2.3.3) and uniform constitutive relations, the equivalent inclusion geometry gIIr in the
subdomain r is characterized by the homogenized euler angles θr =

(
θ1r , θ2r

)
. The ho-

mogenized euler angles are computed as the circular mean following

θr =
1

2
arctan(A/B) , (4.9)

where
A =

1

|Vr|

∫
Vr

sin
(
2θ(χ)

)
dχ (4.10)
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Figure 4.5: MFH procedure under an applied strain increment ∆ε schematically for
a two-phase composite, consisting of an elastic inclusion in an inelastic matrix: The (a)
unloading-reloading procedure of the composite towards a zero-stress state (dotted) and
to the new homogenized state (dashed), and (b) the unloading-reloading step translated
to the two separate composite phases. The adopted zero-residual formulation for the

matrix phase is demonstrated.

and
B =

1

|Vr|

∫
Vr

cos
(
2θ(χ)

)
dχ , (4.11)

where the factor two is required for the correct computation of the mean orientation. The
Eqs. (4.9), (4.10) and (4.11) are applied for the homogenization of each component of
θr. The homogenized fiber orientation of the subdomain r, required for the underlying
microscopic homogenization of the equivalent two-phase composite using the MFH, is
expressed as

~vr = Q2

(
θ2r

)
·Q1

(
θ1r

)
· ~ez = Q(θ1r , θ2r) · ~ez . (4.12)

4.3.2 Incremental-secant MFH

As already mentioned in Section 4.2, each mesoscopic material point χ in the full-field
simulations and each subdomain Vr of the CAH models, located in the yarns of the woven
structure, are constituted by a composite medium of the two phases Ω = {I, II}, and
their homogenized responses follow from the incremental-secant MFH scheme, detailed in
Section 2.4.2 (remark on the difference of the used notations: in Section 2.4.3, the MFH
is solved under the macroscopic strain ε). In the following equations, the material point
denoted by χ for the full-field simulations, and the subscript r referring to the subdomain
of the CAH models, are omitted. The homogenized local incremental strains ∆ε(χ) and
stresses σ(χ) or subdomain incremental strain ∆εr and stresses σr are expressed as

∆ε = υI∆εI + υII∆εII (4.13)



4.3. Mesoscopic constitutive relations: homogenization of the yarn material 115

and
σ = υIσI + υIIσII . (4.14)

It is noted for clarification, that the MFH is not applied on the homogenized unit cell
strain ∆ε. The strain ∆ε is processed by the CAH schemes on the mesoscopic unit cell
level. The MFH is used for the computation of the local responses at χ in the DNS,
following the local microstructural configuration at χ, and the subdomains responses in
the CAH, considering the subdomains homogenized microstructural configuration.

Each local material point in the yarns, or each subdomain located in the yarns, are
composed by a microstructural composite that consists of an inclusion II with a certain
orientation embedded in the matrix I. This equivalent composite represents the actual
fibrous microstructure of the yarn materials. While the response of the inclusion follows
from the residual incremental-secant method, the response of the matrix subdomains is
governed by the zero-residual incremental-secant approach. Accordingly, the homogenized
response of the two-phase composite follows from the incremental-secant reloading strain
localization given by

∆εreII = Bsec
II : ∆εreI (4.15a)

Bsec
II = {I + S : [(C̃sec

I )−1 : Csec
II − I]}−1 , (4.15b)

with the incremental-secant operator of the inclusion phase Csec
II and the zero-residual

incremental secant operator of the matrix C̃sec
I (schematically displayed in Fig. 4.5). The

Eshelby tensor S(gII, C̃sec
I ) in Eq. (4.15) is a function of the inclusion geometry gII and the

zero-residual incremental-secant operator C̃sec
I of the host phase CLCC

I . With the volume
fractions of the two phases and the inclusion aspect ratios (corresponding to a fiber)
considered uniform in the yarns, the inclusion geometry is represented by the orientation
of the fiber, locally at χ by Eq. (4.8) for the full-field solution or homogenized over the
subdomains according to Eq. (4.12) for the CAH (Fig. 4.4).

The homogenized eigenstrain, required to conduct the TFA CAH on the mesoscale
level, results, as visible in Fig. 4.5a, in

ε∗ = ε− (Cel)−1 : σ . (4.16)

A comparison of Eqs. (2.149) and (4.16) shows that the homogenized residual strain at
the following time step is equal to the homogenized eigenstrain at the current time step
(Fig. 4.5a). Furthermore, the derivative ∂ε∗/∂ε is required for the resolution of the TFA
algorithm (Section 2.3.5) on the mesoscale, while the algorithmic tangent Calg is required
for the nonlinear resolutions of both the CAH algorithms (Sections 2.3.5 and 2.3.8) and
the full-field solution (Section 4.2.1) for the computation of the homogenized unit cell
response. The derivative of the eigenstrain is expressed as

∂ε∗

∂ε
= I− (Cel)−1 : Calg , (4.17)

and the homogenized algorithmic tangent stiffness Calg = ∂σ/∂ε, following from Eq.
(4.14), as

Calg = υI
∂σI

∂εI

∂εI
∂ε

+ υII
∂σII

∂εII

∂εII
∂ε

= υICalg
I
∂εI
∂ε

+ υIICalg
II
∂εII
∂ε

. (4.18)

Its computation is outlined in Appendix B.4. The inclusion phase Ω = II is represented by
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elastic fibers, meaning that Csec
II = Calg

II = Cel
II and therefore σII = Cel

II : εII, where Cel
II is the

transverse-isotropic elastic stiffness of the fibers. The local nonlinear stress-strain response
of the inelastic matrix phase Ω = I follows from the incremental-secant J2-plasticity model
(see Section 2.5.3) with vanishing residuals, referred to as the zero-residual incremental-
secant formalism. The solution of the incremental-secant MFH algorithm is explained in
more detail in Section 2.4.3, where the formalism for the incremental-secant procedure
of the matrix with residual stresses was considered (remark on the difference of the used
notations: in Section 2.4.3, the MFH is solved under the macroscopic strain ε). The
resolution, applied for the modeling of the woven composite with the zero-residual for-
malism for the matrix phase and with the notation used in this chapter, is summarized
in Algorithm 9.

Algorithm 9: Numerical incremental-secant MFH procedure for the microstruc-
tural homogenization of the composite yarn materials, with the zero-residual for-
malism employed for the matrix response, at a glance: Newton-Raphson scheme
at one load step for a given overall strain increment ∆ε. The solution scheme is
presented in detail in Section 2.4.3 (remark on the difference of the used nota-
tions: in Section 2.4.3, the MFH is solved under the macroscopic strain ε).
compute residual state following Eqs. (2.163), (2.164) and (2.165).
Set matrix residual state to zero stress: σres

I = 0
initialize: ∆εreII = ∆εre

iterative procedure:
repeat

compute matrix reloading strain increment: ∆εreI = (∆εre − υII∆εreII)/υI
call constitutive relations for both phases Ω = I, II to compute σΩ and the
stiffness tensors C̃sec

I and Csec
II (details in Section 2.5.3).

evaluate the Eshelby tensor S(gII, C̃sec
I )

compute stress residual F according Eq. (2.169).
compute Jacobian matrix J according Eq. (2.172).
solve δεII = −J−1 : F
update ∆εreII = ∆εreII − δεII

until |F | < tol;
after convergence:
compute σ and Calg, following Eq. (4.14) and Eq. (4.18), respectively.
For the TFA algorithm on the mesoscale level, the eigenstrain ε∗ and its
derivative ∂ε∗/∂ε are to be determined in addition using Eq. (4.16) and Eq.
(4.17), respectively.

4.4 Clustering of the woven unit cell
The model order reduction step consists of a spatial division of the fully discretized RVE
domain into several subdomains. An optimized subdomain decomposition is achieved
using the k-means clustering technique. The k-means clustering partitions a number
of local data points into subpartitions based on the similarity of the local data. The
final partition is achieved by solving an optimization problem iteratively, minimizing the
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deviations between all local data points and the subpartition mean values. In the context
of mechanical fields, the k-means clustering divides the considered domain based on the
similarity of the local mechanical behavior.

As shown by Spilker et al. (2022), respecting inelastic deformation patterns within a
material allows an improved subdomain decomposition in comparison to the decomposi-
tion based on purely elastic deformation. In this work, the three inelastic deformation
boundary modes

εin
(1)

= Ein(~ex ⊗ ~ex − ~ey ⊗ ~ey) (4.19a)

εin
(2)

= Ein(~ey ⊗ ~ey + ~ex ⊗ ~ex) (4.19b)

εin
(3)

= Ein(~ex ⊗ ~ey + ~ey ⊗ ~ex) , (4.19c)

with the overall deformation factor Ein = 3% and the canonical unit vectors in a 3D space
~ex, ~ey, ~ez, were selected and applied on the woven composite RVE. The three chosen defor-
mation modes inside the ply plane (x− y-plane) represent typical deformation conditions
for the woven composite structure. The local eigenstrain fields ε*

(l)

(χ) emerging under
each of the boundary conditions l = 1, 2, 3 are computed.

In this work, each yarn domain VY (Y = Weft,Warp) is spatially divided in two steps:

1. First, the necessary division based on the local fiber orientation is performed. The
spatial decomposition that takes into account the local yarn, and thus fiber, orien-
tation, is depicted in Fig. 4.3. Material points with very deviating fiber orientations
gathered in the same subdomain would lead to not well representative subdomain
fiber orientations and unreliable mechanical responses of the yarn material computed
by the MFH algorithm. Each yarn domain VY is decomposed into Kθ

Y subdomains
VR, R ∈ 1, ..., Kθ

Y . A sufficiently high Kθ
Y ensures that only local material points

with similar fiber orientation are gathered in one subdomain and therefore reason-
able averaged fiber orientations of the subdomain. For a general orientation-based
subdivision, the function

JθY [θ(χ)] =

Kθ
Y∑

R=1

NR∑
i=1

|~v(χi)× ~vR|2, χ ∈ VY , χi ∈ VR ⊂ VY , R ∈ 1, ..., Kθ
Y ,

(4.20)
can be chosen to be minimized, where NR is the number of local material points
inside the subdomain R, ~v(χi) and ~vR are the local and subdomain fiber orientations
given by Eqs. (4.8) and (4.12). The operation ” × ” denotes the cross product
between two vectors ~a and ~b, with

|~a×~b| = |a| |b| sin(∆θ) , (4.21)

where ∆θ is the angle between the two vectors in the plane they are located in. The
cross product between the local fiber orientation ~v(χi) and the subdomain mean
orientation ~vR in above Eq. (4.20) represents the deviation of ~v(χi) from ~vR. In the
case of the woven structure, the first euler rotation is uniform per yarn, meaning
that all local fiber orientations in one yarn are distinguished only by the second
euler angle θ2(χ). Since each yarn is subdivided separately, and considering Eq.
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(4.21), the k-means clustering is applied to minimize the simplified function

JθY [θ(χ)] =

Kθ
Y∑

R=1

NR∑
i=1

(
sin(θ2(χi)−θ2R)

)2
, χ ∈ VY , χi ∈ VR ⊂ VY , R ∈ 1, ..., Kθ

Y ,

(4.22)
where the subdomain mean orientation θ2R follows Eq. (4.9).

2. As the second spatial division step, the subdomain decomposition is optimized by
taking into account eigenstrain fields occurring under the applied inelastic bound-
ary modes in Eq. (4.19) in the offline stage (the resulting inelastic fields are de-
picted in Fig. 4.6). Equivalently as described for the full-field homogenization in
Section 4.2.1, the FE DNS of the offline stage were performed with the MFH for
the homogenization of the yarns, providing the local responses σ(χ) in the yarns on
the mesoscale. Following the local stress response σ(χ), the mesoscopic eigenstrain
fields for the spatial decomposition were, according to Eq. (2.24), extracted as

ε∗(χ) = ε(χ)− Cel(χ)−1 : σ(χ) . (4.23)

Each orientation-based subdomain VR is divided into a number Kp
Y subdomains

Vr, r ∈ 1, ..., Kp
Y based on the eigenstrain distributions. For the inelasticity based

subdomain refinement, the eigenstrain fields ε*
(l)

(χ) under each of the boundary
conditions l = 1, 2, 3 are normalized by the equivalent (scalar) per-phase averaged
eigenstrain and arranged in local 6× 1 vectors q(l)(χ). The normalized eigenstrain
fields are then assembled in local 1× 18 vectors

q(χ) =
(
q(1)T (χ) , q(2)T (χ) , q(3)T (χ)

)T
, (4.24)

representing the entirety of the local eigenstrain fields. The k-means clustering tech-
nique is then applied on the eigenstrain field in each orientation-based subdomain
R, minimizing the corresponding function

Jp
R[q(χ)] =

Kp
Y∑

r=1

Nr∑
i=1

|q(χi)− qr|2, χ ∈ VR, χi ∈ Vr ⊂ VR ⊂ VY ,

r ∈ 1, ..., Kp
Y , R ∈ 1, ..., Kθ

Y ,

(4.25)

where
|z| =

√
z · z (4.26)

and the subdomain mean vectors qr containing the inelastic field information are
computed as

qr =
(
q

(1)
1 , q

(2)
1 , q

(3)
1

)T
=

1

|Vr|

∫
Vr

q(χ)dχ . (4.27)

After both subdivision steps, the total number of subdomains per yarn is KY = Kp
Y K

θ
Y .

It is noted that the isotropic pure matrix phase (subscript "I") of the woven unit cell is
divided into a number KI based on the local eigenstrain field distribution only. The total
number of subdomains therefore K = KI +KWarp +KWeft.
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4.5 Numerical applications
The presented combined scale bridging techniques of the CAH algorithms and the MFH
(Sections 4.2.2 and 4.3.2) are used for the nonlinear microscale-mesoscale-macroscale anal-
yses of a woven composite unit cell (Fig. 4.1). The microscale-mesoscale transition is de-
picted in Fig. 4.4. The unit cell consists of the yarns surrounded by the matrix material.
The total yarn volume fraction of the unit cell is 64.56 %. The yarns consist of the same
matrix material, reinforced by fibers with a volume fraction of 80 %, locally considered
unidirectional (Fig. 4.2). The woven geometry used in this work is the one from the
Section 6.2.1 of Wu et al. (2021). The mechanical properties of the isotropic elasto-plastic
matrix material (index I) and of the transverse isotropic elastic fiber material (index II)
are given in Table 4.1, where the longitudinal-transversal Poisson ratio of the elastic fibers
is denoted as νLTII . The behavior of the matrix material is governed by the J2-plasticity
law with the hardening stress R following

R = HI (1− e−mI p) , (4.28)

where p is the equivalent accumulated plastic strain (Eq. (2.186)). This section is divided
into two parts: First, spatial subdivisions following the offline procedure described in Sec-
tion 4.4 are displayed. Subsequently, elastic and inelastic responses of the woven compos-
ite unit cell during nonlinear analyses, computed by the CAH techniques based on TFA
and HS (Section 4.2.2), are investigated. The results achieved by the two CAH approaches
are compared to each other and the results following the FE DNS. To achieve the homog-
enized responses of the unit cell by full-field homogenization, the local microstructural
responses are computed using the MFH (Section 4.2.1). The nonlinear reference DNS are
performed using the same BC, outlined as follows in Section 4.5.1, as used throughout
the offline stage.

4.5.1 Boundary conditions

Periodic boundary conditions (PBC) are typically applied for the modeling of materials
RVEs or unit cells. However, fully applied PBC on all surfaces of the unit cell may provide
mechanical responses that deviate strongly from experimental results on laminates of
woven composites. It was shown that simulation results using modified PBC, where the
surfaces with the ouf-of-plane normals (normals in z-direction) are kept flat without any
distortion, deliver results that mirror the experimental results much more closely (Wu,
Adam, and Noels, 2021). The modified PBC are referred to as mixed boundary conditions
(MBC). The better results of using the MBC are explained by the fact that the use of
flat upper and lower ply surfaces corresponds more accurately to the actual deformation
modes of a woven composite laminate. The MBC are applied for all loading cases in
the offline stage and during the nonlinear full-field homogenization analyses of the woven
composite.

4.5.2 Offline stage

The goal of the inelastic simulations conducted in the offline stage is the production of
inelastic fields that exhibit detailed inelastic deformation patterns. This allows an accurate
capturing and representation of the essential features of inelastic deformation patterns by
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Table 4.1: Material properties of the epoxy matrix phase and the carbon fibers. The
material properties were adapted from Wu et al. (2015).

Matrix (M10.1 epoxy) Fibre (UD300 HS(R) carbon fibre)
Property Value Property Value
Young’s modulus EI [GPa] 3.2 Young’s modulus EL

II [GPa] 230
Poisson ratio νI [-] 0.3 Young’s modulus ET

II [GPa] 40
Initial yield stress σY0

I [MPa] 30 Poisson ratio νTTII [-] 0.2
Hardening modulus HI [MPa] (offline) 130 (50) Poisson ratio νLTII [-] 0.256
Hardening exponent mI [-] 300 shear modulus GLT

II [GPa] 24

the spatial subdivision procedure using the k-means clustering technique. Since lower
hardening characteristics lead to more localized plasticity, the matrix hardening modulus
in the offline stage DNS was reduced with respect to the real value, used during the actual
nonlinear analyses. Two different subdomain decompositions were performed:

• Division of the matrix phase into KI = 4 subdomains. A division of each yarn
into KY = 8 subdomains purely based on the local yarn orientation, i.e. the fiber
orientation. The RVE is subdivided into a total of K = 20 subdomains.

• The same division of the matrix phase. A refinement of the eight subdomains per
yarn into four subdomains each, based on inelastic deformation patterns. Therefore,
each yarn consists of KY = 32 subdomains after both spatial decomposition steps.
The total subdomain number amounts to K = 68.

As visible when analysing the inelastic fields within the weft yarn (Figs. 4.6a, 4.6c
and 4.6e) and the warp yarn (Figs. 4.6b, 4.6d and 4.6f), the major inelastic deformation
localizes where the yarns incline vertically, in patterns orthogonal to the yarns main
direction. This implies that a spatial division based on the local yarn direction alone
allows the capture of the main patterns of inelasticity, recognized in Figs. 4.6g and
4.6h. The account for inelastic strains occurring during the application of the selected
boundary modes provides slight adoptions of the spatial division, refining the subdomains
by additionally respecting particular inelastic patterns that can not be captured by the
purely orientation based division. These additionally respected inelastic patterns are
dominantly stretched out in the yarns main directions (Figs. 4.6i and 4.6j). In the
subsequent results section, the CAH methods with the yarns subdivided based on the
local orientation only are referred to as TFA-O and HS-O. The cases of a spatial division
with an additional account of the inelastic deformation fields are referred to as TFA-OP
and HS-OP.

4.5.3 Homogenized elastic behavior

The yarns of the woven composite are, due to the local variations of the yarn and fiber
orientations and therefore of the elastic properties, elastically inhomogeneous materials.
However, each yarn is considered as one material phase, and subdivided into a number
of subdomains with uniform elastic properties. The first spatial subdivision step was
performed in order to assemble regions of the yarns in the same subdomain that have
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Figure 4.6: The (a,c,e,g) weft and (b,d,f,h) warp yarns of the woven composite
mesostructure. Displayed are the inelastic deformation fields during the application
of the three inelastic boundary modes in the offline stage, (a,b) isochoric deformation
with tension in x-direction, (c,d) isochoric deformation with tension in y-direction, (e,f)
pure shearing in the ply-plane, and the resulting subdomain decompositions based on

(g,h) the local yarn orientation and (i,j) yarn orientation and inelastic strains.

equal or similar local fiber orientations. It is investigated if the homogenized elastic
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behavior is well captured by the CAH methods with an underlying decomposition into
subdomains with uniform variables. The elastic Young’s modulus Eel

x and the elastic
Poisson ratios in the ply plane νelxy and out of the ply plane νelxz can be identified as the
instantaneous mechanical properties in the elastic regime (thus at low strains, denoted as
"at εxx = 0" under uniaxial tension σxx) as

E
el
x =

∆σxx
∆εxx

at εxx = 0 (4.29)

and
νelxj = −∆εjj

∆εxx
j = y, z at εxx = 0 . (4.30)

All elastic properties are predicted almost exactly by the TFA, with deviations below 0.1
% from the elastic properties computed using DNS Table 4.2. The HS method provides
good agreements of the elastic properties as well, however the error level is higher than
the one achieved by the TFA. In particular, estimations slightly too stiff are provided for
the longitudinal Young’s modulus Eel

x .

Table 4.2: Elastic properties computed following Eqs. (4.29) and (4.30) using DNS
and the TFA and HS algorithms.

method DNS TFA-O TFA-OP HS-O HS-OP
E

el
x (GPa) 63.9 63.9 63.9 64.6 64.6

νelxy (-) 4.11e-2 4.12e-2 4.12e-2 4.10e-2 4.11e-2
νelxz (-) 4e-1 3.99e-1 3.99e-1 3.85e-1 3.85e-1

4.5.4 Nonlinear analyses

Inelastic loading conditions were applied on the woven composite unit cell, described by
the following boundary conditions:

• overall axial cyclic loading up to 6% strain in x-axis orientation, see Fig. 4.7a, with
free motion in the orthogonal orientations, corresponding to overall uniaxial tension
boundary conditions

εxx = 0→ 0.03→ −0.03→ 0.06→ 0

σyy = σzz = 0
(4.31)

• overall pure shear strain cyclic loading up to 6%, see Fig. 4.7a, represented by the
overall strain evolution ε(t), t = [0, T ], T = 1.0 with εzz = εxz = εyz = 0:(
εxx εxy
εxy εyy

)
(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.03 0

0 0.03

)
→ ε(T/2) =

(
−0.03 0

0 −0.03

)
→ ε(3T/4) =

(
0 0.06

0.06 0

)
→ ε(T ) =

(
0 0
0 0

)
.

(4.32)
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Figure 4.7: (a) Applied axial and shear deformation during the two separate uniaxial
tension (Eq. (4.31)) and pure shear (Eq. (4.32)) tests. Uniaxial tension: evolution of
the homogenized (b) axial stress and strain components perpendicular to the direction of
tension (c) in plane and (d) out of plane. Pure-shear: evolution of the (e) homogenized

shear stress.

• non-proportional loading, consisting of three different stages of uniaxial and shear
deformation and a stage of simultaneous unloading towards the zero-strain state
(Fig. 4.8a), represented by the overall strain evolution ε(t), t = [0, T ], T = 1.0,
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with εzz = εxz = εyz = 0:(
εxx εxy
εxy εyy

)
(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.04 0

0 0

)
→ ε(T/2) =

(
0.04 0

0 0.04

)
→ ε(3T/4) =

(
0.04 0.04
0.04 0.04

)
→ ε(T ) =

(
0 0
0 0

)
.

(4.33)

• non-proportional loading, consisting of different loading stages consisting of simulta-
neous bi- and uniaxial and shear deformation (Fig. 4.9a), represented by the overall
strain evolution ε(t), with εzz = εxz = εyz = 0:(
εxx εxy
εxy εyy

)
(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.01 0.02
0.02 −0.02

)
→ ε(T/2) =

(
0.02 0

0 −0.02

)
→ ε(3T/4) =

(
0.03 −0.02
−0.02 −0.04

)
→ ε(T ) =

(
0.04 0

0 −0.04

)
.

(4.34)

The predictions of the axial stress and the transverse strains in and out of the ply
plane during the uniaxial tension test (Eq. (4.31)) and the shear stress response during
the pure shear test (Eq. (4.32)) are presented in Fig. 4.7. The TFA allows a very high
accuracy of the axial stress, while the HS approach leads to a slightly stiffer prediction
(Fig. 4.7b). Considering the in-plane transverse strains, both TFA and HS methods
deliver accurate results for the in-plane behavior (Fig. 4.7c). The HS approach shows a
slightly underestimated transversal strains out-of-plane, while the TFA leads to slightly
overestimated predictions of the out-of-plane deformation (Fig. 4.7d). It is noted that
the HS type approach leads to less divergence from the DNS results under the progression
of the loading cycles. In summary, both methods deliver accurate predictions of the in-
plane deformation over both loading cycles. The out-of-plane deformation during the
first loading cycle is well captured, while the methods lead to slightly overcompliant
(TFA) and overstiff (HS) responses, with an increasing divergence from the DNS results
under a progressive loading. Both methods perform very well and allow equivalently high
accuracies of the shear stress evolution during the pure-shear test (Fig. 4.7e).

During the first non-proportional loading history given by Eq. (4.33), both the TFA
and the HS approaches deliver high accuracies for the evolution of all stress components
(Fig. 4.8). While the TFA perfectly covers both axial stresses during the complete load-
ing history, the HS approach leads to very low stress overestimations. The TFA cap-
tures the shear stress during the shear deformation loading stage very accurately, while
the HS approach overestimates the shear stress response. During the shear unloading
stage, the TFA leads to an underestimation of the stress drop, while the HS approach
allows a nearly perfectly matching final shear stress at the end of the applied loading. As
recognized before, the TFA perfectly predicts both axial stress responses during the full
non-proportional loading history given by Eq. (4.34) (Fig. 4.9). The HS approach leads
to very light inaccuracies of the axial stresses. During the shear deformation, the TFA
allwows a perfect capture of the shear stress during the shear loading and unloading down
to zero shear deformation. During the further shearing with negative sign however, the
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Figure 4.8: Applied loading history described by Eq. (4.33): evolution of the (a)
applied strain path, normal stress responses in (b) x-direction and (c) y-direction and

(d) in-ply plane shear stress response.

shear stress does not further drop as predicted by the full-field and HS approaches. Simi-
larly, the shear stress increase predicted by the TFA during the following shear unloading
towards a zero shear strain state is underestimated. Unlike the TFA, the HS approach
allows very good agreements of the shear stress evolution during the full loading history.

As recognized, the CAH approaches allow to accurately represent the homogenized
responses gathered by DNS. Nonetheless, it may be investigated to what degree the clus-
ter decomposition based on the inelastic offline deformation modes (Eq. (4.19),Section
4.4) represents the actual deformation fields in the unit cell during more complex loading
conditions. In order to evaluate the validity of the selected offline deformation modes for
the non-proportional loading conditions applied in this section (Eqs. (4.33) and (4.33)),
inelastic strain fields during and after the application of the two non-proportional de-
formation histories are inspected (Figs. 4.10 and 4.11). It can be recognized that the
inelastic patterns in the yarns, even after the application of random loading paths, still
correspond to the spatial division achieved by the subdomain decomposition based on
the local yarn orientation and the plastic fields evolved during the selected static loading
modes of the offline stage, displayed in Fig. 4.6.
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Figure 4.9: Applied loading history described by Eq. (4.34): evolution of the (a)
applied strain path, normal stress responses in (b) x-direction and (c) y-direction and

(d) in-ply plane shear stress response.

Table 4.3: CPU time speed-ups for the non-proportional loading program in Eq. (4.34)
using the TFA and HS algorithms.

method TFA-O (K=20) TFA-OP (K=68) HS-O (K=20) HS-OP (K=68)
speed-up 12000 1200 11000 1000

4.5.5 Discussion

It is shown that the selected static offline deformation modes for the woven unit cell
allow an inelasticity-based spatial division that supports inelastic fields emerging under
proportional and random loading conditions. The spatial decomposition based on the local
yarn inclination alone provides, using the TFA, exact results for the elastic properties of
the woven unit cell (Table 4.2), proving that the variation of the elastic properties are well
respected. Moreover, the yarn orientation based decomposition allows to capture many
of the inelastic localization zones in the woven structure. The subdomain refinement
based on inelastic fields leads to only small improvements of the mechanical predictions.
The yield points are captured more accurately, particularly when using the TFA, but the
stiffness response during inelastic loading is generally captured equally well without the
inelasticity-based subdomain refinement.
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Figure 4.10: Equivalent plastic strain fields in the (a,b) weft yarn, (c,d) warp yarn and
(e,f) matrix, (a,c,e) at t = T/2 and (b,d,f) at the end of the applied non-proportional
loading history described by Eq. (4.33). It is noted that the displayed plastic strains in
the yarns, consisting of elastic fibers in an elasto-plastic matrix, are result of the inelastic

deforming matrix phase only.

Following the high accuracy of the representation of inelastic fields by the spatial
division, the behaviors of the woven unit cell predicted by the two-step RH of inelastic
loading show a very good agreement with the results achieved by DNS for all proportional
and non-proportional inelastic loading histories. While the TFA provides slightly higher
accuracies for axial stress responses, the HS approach allows better predictions for the
transverse strains. Supported by well-covered inelastic localization zones during complex
loading by the spatial decomposition, both approaches are well-capable to model the stress
evolution during the applied non-proportional loading histories.

Comparing the computational efficiency of the CAH approaches with respect to the
homogenization by DNS (Table 4.3), it becomes clear that high time savings are allowed.
While the use of 20 subdomains allows a computation that is 10 thousand times faster,
the use of 68 subdomains still allows an acceleration factor of 1 thousand. The time
consumption by the TFA is lower than the one by the HS approach, as discussed at the
end of Section 3.5.2.
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Figure 4.11: Equivalent plastic strain fields in the (a,b) weft yarn, (c,d) warp yarn and
(e,f) matrix, (a,c,e) at t = T/2 and (b,d,f) at the end of the applied non-proportional
loading history described by Eq. (4.34). It is noted that the displayed plastic strains in
the yarns, consisting of elastic fibers in an elasto-plastic matrix, are result of the inelastic

deforming matrix phase only.

4.6 Conclusions
Piecewise uniform field CAH schemes are used for the modeling of the macroscopic re-
sponse of a woven composite unit cell. Each curved yarn is considered as one mesoscopic
material phase, although the elastic and inelastic responses of the yarn materials are
inhomogeneous due to the changing local yarn inclination, affecting the microstructural
configuration. Therefore,

• a spatial decomposition into subdomains that takes into account the local orientation
of the yarns (Fig. 4.3) is essential for an accurate modeling of the elastic and inelastic
responses, and

• considering the mesoscopic to macroscopic homogenization step, a second homog-
enization step for the evaluation of the effective response of the mesoscopic yarns
subdomains of the CAH is required because of the heterogeneous character of the
yarns (Fig. 4.2).

A new spatial decomposition procedure is implemented, applicable for the mesoscopic
model order reduction of three-scale materials that contain microstructures with hetero-
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geneous fiber or inclusion orientations and therefore, heterogeneous stiffness fields. It is
important to acknowledge that the clustering based on the local yarn orientations and
inelastic fields leads to decompositions into subdomains that continue to represent the
actual deformation fields in the woven unit cell even after non-proportional loading histo-
ries. It proves the suitability of the CAH approaches and the clustering procedures devel-
oped in this work for the use of complex histories of deformation. The CAH approaches
were used in combination with the incremental-secant MFH scheme (Wu et al., 2013a),
providing the homogenization of the matrix-fiber composite that constitutes the yarns
microstructure (Fig. 4.4).

Two CAH approaches were tested for the modeling of a woven composite unit cell.
The TFA, typically leading to clearly overstiff predictions of composites with high volume
fractions of stiff elastic inclusions in an elasto-plastic matrix phase, but allowing accurate
results if both phases deform inelastically, and the HS approach, relying on an homoge-
neous and isotropic reference material. The elastic and inelastic responses of the woven
composite, predicted by the CAH, are in a good agreement with the responses modeled
by DNS 1. The high accuracies imply that the local yarn orientation is well represented
by the spatial division and furthermore, that the two applied CAH approaches, TFA and
HS analyses, are well suitable for the modeling of woven composites. The TFA benefits
from the integration of the MFH for the yarn material, allowing the consideration of the
yarn material as homogenized inelastic material phases. The high volume fraction of the
stiff yarn material does not lead to inaccuracies using the TFA approach. The tangent
HS approach is subject to only minor inaccuraries of the elastic response of the strongly
anisotropic woven structure, although it relies on a virtual isotropic reference stiffness.
In Section 3.5.5 it was recognized that the longitudinal deformation under uniaxial ten-
sion of a strongly anisotropic structure in plane-strain leads, using the HS approach, to
a clearly overstiff elastic response and a poor representation of the yield point. This be-
havior could not be observed for the case of the woven unit cell under uniaxial tension in
a three-dimensional strain setting, presented in the chapter.

The presented three-scale modeling for the reduced order modeling of the woven com-
posite, using the extended spatial subdivision and a piecewise uniform CAH in combi-
nation with MFH for the homogenization on the different scales, allows very accurate
predictions for the mechanical response of the woven unit cell. This is true even for
complex non-proportional loading histories. One reason for the accurate results under
extended loading histories is the integration of the MFH for the evaluation of the effective
mesoscopic responses of of the yarns. The coupling of the CAH with the MFH allows
the nonlinear modeling under arbitrary loading conditions without the requirement of
a predefined yield criterion, as it was used by Han et al., 2020. The promising results
suggest that accurate multiscale simulations for structural woven composites are possible.
In future works, the modeling capability can be tested for cases of microscopic damage
in the matrix and the yarns (Wu et al., 2013b; Wu, Maillard, and Noels, 2021; Wu et al.,
2021). Furthermore, the two-step homogenization scheme can be tested for other types
of three-scale materials, consisting of an either arranged or random mesostructure and a
random microstructure. An example for a natural three-scale material is wood.

1This is not a full DNS of the meso and microstructures, since the fibrous microstructure is not
explicitly represented (Section 4.2.1).
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Chapter 5

Hierarchical Transformation Field
Analysis

5.1 Introduction
As presented in Section 3.2, the TFA, even when relying on a subdomain division taking
into account inelastic fields, leads to typically overstiff predictions for the composites
responses. Large numbers of subdomains are required in order to achieve reasonable
homogenized responses. As pointed out, the reason for the overstiff results are plastic field
heterogeneities that can not be captured when considering uniform fields of variables in
combination with reasonably low numbers of subdomains. In this chapter, the groundwork
is laid for a hierarchical TFA, achieved from the separation of an RVE into subdomains
on different scale levels and developed for

• The homogenization of generic two-scale composite materials, where the macro-
scopic response is affected by the underlying microstructure.

• The homogenization of microstructures that consist of only one homogeneous mate-
rial phase, whose overall response depends solely on their geometrical characteristics.
An example for this are porous materials.

This hierarchical TFA is introduced as an extension of the conventional TFA formulation
for the one-step scale-bridging (Dvorak, 1992), presented in Section 2.3.4 and implemented
in Section 3.3. The evaluation of constitutive equations for the subdomains of a classical
TFA homogenization is replaced by subsequent TFA homogenization procedures on the
lower scale levels. The proposed hierarchical TFA is here introduced for the case of a
two-scale separation, where the TFA scheme on the higher scale levels states BVPs on the
subdomains of the lower scale level, solved by the same TFA algorithm. This hierarchical
TFA can, based on the two-scale formulation, be extended towards higher numbers of
scale levels. This multi-step TFA is expected to provide reductions of the computational
effort of the homogenization compared to classical TFA homogenization while considering
the same degree of fidelity of the spatial division into uniform domains. The reduced
effort for the homogenized solution is achieved by the decomposition of a large number of
subdomains into a lower number of subdomains and several homogenization procedures
inside the subdomains, corresponding to the decomposition of one large numerical system
into smaller systems and subsystems. As a result, the resolution at each scale is faster,
since less partitions are considered.

This chapter is structured as follows: The implementation of the two-step TFA ho-
mogenization scheme is presented in Section 5.2. This contains the theoretical foundation
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Figure 5.1: Schematic presentation of the two-step TFA: The spatial subdomain de-
composition on the first scale level, with the stated BVP ε and solution εr in the sub-
domain Vr. The subdomains V r

α on the lower scale level being the result of the spatial
division of the subdomain r, and the BVP stated through εr.

of the upscaling and downscaling of variables, the determination of the concentration and
interaction tensors on more than one scale level and the quantification of the reduction
of the solution system. In Section 5.3, first results following numerical applications on a
simple unit cell structure are given. Section 5.4 summarizes the (lack of) effectivity and
the potential of the new approach.

5.2 Implementation of the TFA homogenization on two
scales

5.2.1 Two-step homogenization formulation

The classical TFA is formulated as the two-scale coupling equation

ε(χ) = Ael(χ) : ε+ D(χ,χ′) : ε∗(χ′), χ ∈ V, (5.1)

acting as a one-step micro to macroscale bridging relation, with the local microscopic
strains ε(χ) and ε∗(χ) and the homogenized macroscopic strain ε = 1/|V |

∫
V
ε(χ)dχ.

Assuming the existence of piecewise uniform fields of stress and deformation per several
subdomains Vr ∈ V , the Eq. (5.1) can be written as

εr = Ael
r : ε+

K∑
s=1

Drs : ε∗s , (5.2)
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which is the formulation of the conventional TFA approach. The homogenized strain,
stress, and algorithmic tangent stiffness of the domain V are expressed as

ε =
K∑
r=1

υrεr , (5.3)

σ =
K∑
r=1

υrσr (5.4)

and

Calg
=

K∑
r=1

υr
∂σr
∂εr

∂εr
∂ε

=
K∑
r=1

υrCalg
r : Ain,TFA

r , (5.5)

respectively, with details on the instantaneous strain concentration tensors Ain,TFA
r in

Section 2.3.4.
In the approach proposed in this chapter, the subdomains r are considered to con-

tain non-uniform fields of variables. The subdomains r act, equivalently as the domain
V , as host domains for a number of Kr sub-subdomains V r

α ∈ Vr with uniform fields.
Consequently, the strains and stresses in the subdomain Vr follow from a homogenization
procedure on the lower scale level, formulated as

εr = εr =
Kr∑
α=1

υrαε
r
α, (5.6)

and

σr = σr =
Kr∑
α=1

υrασ
r
α, (5.7)

where υrα = |V r
α |/|Vr| and εrα and σrα are the strain and stress of the sub-subdomain V r

α ,
being a subdomain of the domain Vr. The eigenstrains ε∗r in Vr (Eq. (5.2)) are then given
as

ε∗r = εr −
(
Cel
r

)−1
: σr , (5.8)

with the homogenized elastic stiffness Cel
r of the subdomain r. The three Eqs. (5.6), (5.7)

and (5.8) represent the upscaling formalism from the lower towards the higher scale level.
The strains in the sub-subdomains V r

α on the lower scale level follow from the solution
of a BVP stated by εr, solved by the TFA algorithm on the lower scale

εrα = Aelr
α : εr +

Kr∑
β=1

Dr
αβ : ε∗

r

β , (5.9)

where the eigenstrains ε∗rβ follow from the constitutive relations of the subdomain β. The
Eq. (5.9) characterizes the downscaling from a certain scale level towards the underlying
subdomains on the lower scale level. The elastic strain concentration tensors Aelr

α measure
the strain εrα under an overall strain εr during purely elastic behavior of the subdomain
r as

εrα = Aelr
α : εr . (5.10)
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The interaction tensors Dr
αβ measure the uniform reaction strain in a subdomain V r

α ∈ Vr
due to an eigenstrain in a subdomain V r

β ∈ Vr under an overall strain εr = 0 as

εrα = Dr
αβ : ε∗

r

β , εr = 0 . (5.11)

The homogenized elastic stiffness of the subdomain r on the higher scale level is expressed
as

Cel
r =

Kr∑
α=1

υrαCelr
α : Aelr

α . (5.12)

5.2.2 Breakdown of the numerical solution

Following the scale decomposition presented in Section 5.2.1, the solution of the two-step
homogenization is decomposed into one numerical system on the higher scale level and K
subsystems on the lower scale level.

On the higher level, the assembledK×1 vector [F ] for the Newton-Raphson procedure
contains the subdomain residuals

Fr = ∆εr − Ael
r : ∆ε−

K∑
s=1

Drs : ∆ε∗s . (5.13)

The K ×K Jacobian system J is constituted by the single Jacobian matrices

Jrs =
∂Fr
∂εs

= δrsI− Drs :
∂ε∗s
∂εs

, (5.14)

where, following Eq. (5.8), the derivatives of the eigenstrains by the strains are computed
as

∂ε∗r
∂εr

= I−
(
Cel
r

)−1
: Calg

r (5.15)

and the homogenized algorithmic inelastic tangent stiffness Calg
r follows from the homog-

enization process on the underlying decomposed domain.
On the lower scale level, each of the K subsystems is solved by a Newton-Raphson

procedure with the Kr × 1 residual vector [F ]r containing the residuals

F r
α = ∆εrα − Aelr

α : ∆εr −
Kr∑
β=1

Dr
αβ : ∆ε∗

r

β (5.16)

and the Kr ×Kr Jacobian system Jr consisting of the entries

Jrαβ =
∂F r

α

∂εrβ
= δαβI− Dr

αβ :
∂ε∗

r

β

∂εrβ
(5.17)

in order to iteratively correct the strains of the sub-subdomains [ε]r = εrα. The homog-
enized algorithmic stiffness of the corresponding domain r on the upper level is given as
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Algorithm 10: Numerical procedure of the hierarchical TFA with two scale
levels at a glance: Newton-Raphson schemes on both scale levels at one load step
for a prescribed macroscopic strain increment ∆ε.
initialize: ∆εr = Ael

r : ∆ε (r = 1, ..., K)
for r = 1, K do

initialize: ∆εrα = Aelr
α : ∆εr (α = 1, ..., Kr)

end
iterative procedure on upper scale level:
repeat

for r = 1, K do
initialize residual Fr = ∆εr − Ael

r : ∆ε
iterative procedure on lower scale level:
repeat

for α = 1, Kr do
call constitutive relations for subdomain α to compute σrα, ε∗

r

α and
∂ε∗

r

α /∂ε
r
α, Calgr

α (details in Section 2.5)
end
for α = 1, Kr do

initialize residual F r
α = ∆εrα − Aelr

α : ∆εr
for β = 1, Kr do

add eigenstrain interaction contribution to residual:
F r
α = F r

α −
∑

β Dr
αβ : ∆ε∗

r

β

compute Jacobian matrix Jrαβ = δαβI− Dr
αβ : (∂∆ε∗

r

β /∂ε
r
β)

end
end
solve δ[ε]r =

(
{J}r

)−1
: [F ]r

update [∆ε]r = [∆ε]r − δ[ε]r
until |[F ]r| < tol;
after convergence:
compute σr, ε∗r, ∂∆ε∗r/∂εr and Calg

r (Eqs. (5.7), (5.8), (5.15) and (5.18)).
for s = 1, K do

add eigenstrain interaction contribution to residual:
Fr = Fr −

∑
sDrs : ∆ε∗s

compute Jacobian matrix Jrs = δrsI− Drs : (∂∆ε∗s/∂εs)
end

end
solve δ[ε] = {J}−1 : [F ]
update [∆ε] = [∆ε]− δ[ε]

until |[F ]| < tol;
after convergence:
compute σ and Calg, following Eq. (5.4) and Eq. (5.5), respectively.

Calg
r = Calg

r =
Kr∑
α=1

υrαCalgr
α :

[ Kr∑
β=1

(
{J}r

)−1

αβ
: Aelr

β

]
. (5.18)
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The derivatives ∂ε∗rβ /∂εrβ and the algorithmic tangent stiffness tensors Calgr
α follow from

the constitutive relations of the subdomain α (see Section 2.5). The solution of the two-
step TFA scheme, proposed and developed in this work and presented in this section, is
summarized in Algorithm 10.

In the following, an example case is presented with a decomposition of an RVE domain
V into K = 16 subdomains. Using the classical TFA formulation, the case K = 16 leads
16 integration points where the constitutive relation needs to be evaluated and a system
(Eq. (5.14)) of the size 9 · 16× 16 = 2304 to be solved (where the factor 9 is valid for 2D
computations). Using the hierarchical two-scale TFA approach, the 16 subdomains are
distributed on two scales. Assuming the same number Kr of sub-subdomains in every of
the K subdomains r, the total of 16 subdomains can be achieved with a division of the
RVE into 4 subdomains and a subdivision of every subdomain into 4 sub-subdomains.
While the number of integration points is still 16, the size of each system in Eqs. (5.14)
and (5.17) results now in 9 · 4× 4 = 144, although several of the smallelr systems are to
be solved iteratively. This demonstrates that the proposed system decoupling approach
allows a computational reduction with respect to the conventional TFA homogenization,
since the resolution of large systems can be circumvented by the consideration of more
than one scale level.

5.2.3 Spatial decomposition on two scale-levels

In order to perform the two-scale TFA, the spatial division consists of two steps:

1. Division of the RVE domain into subdomains Vr, referred to as the subdomains on
the higher scale level.

2. Each of the subdomains Vr on the higher scale level is considered as a host domain
for the second division step into the sub-subdomains V r

α on the lower scale level.

This spatial division can be further extended towards more scale levels by reiterations of
the second step.

For the division of all microscopic points into the partitions, the k-means clustering
procedure is performed, acting on the local inelastic strain accumulation vectors q(χ)
(Eq. (3.16)), containing the inelastic field information under the applied offline loading
modes (Section 3.2.2). Equivalently, the domain can be divided into subdomains based on
the elastic strain concentration tensors Ael(χ) (Section 3.2.1). Here, the spatial division
on the first scale level (of the RVE domain) follows the minimization of the function

J [q(χ)] =

KΩ∑
r=1

Nr∑
i=1

|q(χi)− qr|2, χ ∈ VΩ, χi ∈ Vr ⊂ VΩ, r ∈ 1, ..., KΩ , (5.19)

where Ω denotes the material phases in the RVE, KΩ the number of subdomains in the
specific phase and Nr is the number of points in one partition (subdomain) r, and qr is
the mean of all the points i = 1, ..., Nr in the partition r, expressed as

qr =
1

|Vr|

∫
Vr

q(χ)dχ . (5.20)
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The spatial division of the subdomains Vr, r = 1, ..., KΩ into KΩ
r sub-subdomains V r

α on
the lower scale level expresses as the minimization of the function

Jr[q(χ)] =

KΩ
r∑

α=1

Nα∑
i=1

|q(χi)− qα|2, χ ∈ Vr, χi ∈ V r
α ⊂ Vr ⊂ VΩ,

α ∈ 1, ..., KΩ
r , r ∈ 1, ..., KΩ ,

(5.21)

where Nα denotes the number of local points in the partition (sub-subdomain) α and qα
is the mean of all the points i = 1, ..., Nα in the partition α, expressed as

qα =
1

|V r
α |

∫
V rα

q(χ)dχ . (5.22)

The optimal decomposition of one material phase Ω into subdomains and sub-
subdomains based on the entirety of the inelastic strain fields, q(χ), is accomplished
as follows:

1. First an arbitrary number of clusters KΩ is chosen and inelastic strain accumulation
vectors at random data points are defined as the r = 1, ..., KΩ initial cluster mean
values qr.

2. Iterative clustering procedure for the higher scale level starts

2.1. Variances of all local inelastic strain accumulation vectors q(χ) from the dif-
ferent cluster means

||q(χ)− qs||2, χ ∈ VΩ, s ∈ 1, ..., KΩ (5.23)

are calculated. All corresponding local data points i are assigned to a set r, so
that the variance between the local inelastic strain accumulation vector q(χi)
and the assigned cluster mean qr is minimal:

||q(χi)− qr||2 ≤ ||q(χi)− qs||2, χi ∈ Vr ⊂ VΩ,

∀s, r ∈ 1, ..., KΩ, s 6= r .
(5.24)

2.2. Following, all inelastic strain accumulation vectors assigned to the cluster are
used to determine the updated cluster means qr using Eq. (5.20).

3. The iterative procedure on the higher scale level ends when convergence of the
procedure is reached, indicated by a stationary assignment of the local data points
to the sets. Subsequently, the iterative clustering procedure for the lower scale level
can be performed.

4. For each subdomain r = 1, ..., KΩ:

4.1. First an arbitrary number of clusters KΩ
r is chosen and inelastic strain accu-

mulation vectors at random data points are defined as the α = 1, ..., KΩ
r initial

cluster mean values qα.
4.2. Iterative clustering procedure of the subdomain r for the decomposition on the

lower scale level starts
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4.2.1. Variances of all local vectors q(χ) ,χ ∈ Vr from the different cluster means

||q(χ)− qβ||2, χ ∈ Vr, β ∈ 1, ..., Kr (5.25)

are calculated. All corresponding local data points i are assigned to a
set α, so that the variance between the local inelastic strain accumulation
vector q(χi) and the assigned cluster mean qα is minimal:

||q(χi)− qα||2 ≤ ||q(χi)− qβ||2, χi ∈ V r
α ⊂ Vr ⊂ VΩ,

∀β, α ∈ 1, ..., KΩ
r , β 6= α

r ∈ 1, ..., KΩ.

(5.26)

4.2.2. Following, all inelastic strain accumulation vectors assigned to the cluster
are used to determine the updated cluster means qα using Eq. (5.22).

The iterative procedure on the lower scale level in the subdomain r ends when
convergence of the procedure is reached, indicated by a stationary assignment
of the local data points to the sets α.

5. The domain V is divided on two scale levels into subdomains Vr and sub-subdomains
V α
r .

The spatial division of the RVE domain on the two scale levels is summarized in the
Algorithm 11.

5.2.4 Determination of the elastic strain concentration tensors

The elastic strain concentration for the classical TFA homogenization are determined
upon the application of six orthogonal BC on the RVE, fixating the homogenized strain
of the RVE (Section 3.2.1). In the case of the hierarchical TFA with two scale levels,
the elastic strain concentration tensors need to be determined on both scale levels. After
the clustering of the RVE into subdomains Vr and sub-subdomains V r

α ⊂ Vr, the average
elastic strain concentration tensors of the subdomains, with respect to the homogenized
strain of the RVE ε in elasticity, in

εr = Ael
r : ε (5.27)

on the higher scale level and in
εrα = Ael

α : ε , (5.28)

on the lower scale level can be computed by

Ael
r =

1

|Vr|

∫
Vr

Ael(χ)dχ (5.29)

and
Ael
α =

1

|V r
α |

∫
V rα

Ael(χ)dχ , V r
α ∈ Vr , (5.30)

respectively. Required for the two-step TFA scheme are the elastic strain concentration
tensors on the lower scale level, however with respect to the elastic strain of the corre-
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Algorithm 11: Overview of the spatial division based inelastic strain distribu-
tions and the computation of the strain concentration tensors of the subdomains
and sub-subdomains. The superscript Ω for the numbers of subdomains on both
scale levels, denoting the material phase, is here omitted for simplification of the
notation. Details are given in the Section 3.2.
select elastic material properties for all phases Ω of the RVE domain
for i = 1, ..., 6 do

perform DNS:
apply ε(i) (Eq. (3.4)) on RVE domain V
compute ε(χ)
compute i-th column of Ael(χ) (Eq. (3.3)) written in Voigt notation

end
set the actual, potentially inelastic material properties for the phases Ω
for l = 1, 2 do

apply εin(l) (Eq. (3.10))
compute εp(l)

(χ) and store temporarily
compute εp

(l)

Ω and p(l)
Ω (Eqs. (3.13) and (3.12))

normalize: εp(l)
(χ)→ φ(l)(χ) (Eq. (3.14))

transform: φ(l)(χ)→ q(l)(χ) (Eq. (3.15))
end
assemble q(χ) (Eq. (3.16))
perform spatial division on two scales:
perform spatial division based on q(χ) on the higher scale level into r = 1, ..., K
subdomains Vr (Section 5.2.3, with more details in Section 3.2.1)
for r=1,...,K do

perform spatial division based on q(χ), χ ∈ Vr on the lower scale level into
α = 1, ..., Kr subdomains V r

α (Section 5.2.3)
end
for r=1,...,K do

compute Ael
r by averaging over Vr (Eq. (5.29))

for α = 1, ..., Kr do
compute Ael

α by averaging over V r
α (Eq. (5.30))

compute Aelr
α (Eq. (5.33))

end
end

sponding subdomain r, εr = Ael
r : ε, as in the relation

εrα = Aelr
α : εr = Aelr

α : Ael
r : ε . (5.31)

Therefore, upon the application of the different orthogonal boundary modes ε on the
RVE boundaries and computing the strain concentration tensors Ael

r and Ael
α following

Eqs. (5.29) and (5.30), respectively, and using the equivalence

εrα = Ael
α : ε = Aelr

α : Ael
r : ε (5.32)
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following the Eqs. (5.28) and (5.31), the expression

Aelr
α = Ael

α : (Ael
r )−1 (5.33)

is achieved for the concentration tensors on the lower scale level with respect to the strain
of the corresponding subdomain on the higher scale level. The determination of the strain
concentration tensors Ael

r and Aelr
α is summarized in the Algorithm 11.

Algorithm 12: Overview of the computation of the eigenstrain-strain interac-
tion tensors between subdomains Vr on the higher scale level and between sub-
subdomains V r

α on the lower scale level.
select elastic material properties for all phases Ω of the RVE domain
perform the computation of the interaction tensors on the higher scale level:
for i = 1, ..., 6 do

for s = 1, ..., K do
perform DNS with ε = 0:
apply ε∗(i) (Eq. (3.24)) in the whole subdomain Vs
compute ε(χ), ∀χ ∈ V
for r = 1, ..., K do

compute reaction strain εr (Eq. (5.39))
compute i-th column of Drs by consideration of Eq. (5.34) in Voigt
notation

end
end

end
perform the computation of the interaction tensors on the lower scale level:
for i = 1, ..., 6 do

for r = 1, ..., K do
for β = 1, ..., Kr do

perform DNS with ε = 0:
apply ε∗(i) (Eq. (3.24)) in the whole subdomain V r

β

compute ε(χ), ∀χ ∈ Vr
compute εr (Eq. (5.39))
for α = 1, ..., Kr do

compute reaction strain εrα (Eq. (5.38))
compute i-th column of Dr

αβ by consideration of Eq. (5.37) in Voigt
notation

end
end

end
end
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5.2.5 Determination of the interaction tensors

The eigenstrain-strain interaction tensors Drs express the effect of an eigenstrain ε∗s of a
subdomain s on the strain εr of a subdomain r under a vanishing overall strain ε = 0 as

εr = Drs : ε∗s , at ε = 0, ∀r, s ∈ 1, ..., KΩ . (5.34)

The computation of the interaction tensors Drs follows the successive application of six or-
thogonal eigenstrain modes ε∗s in Vs and the determination of the reaction strain averaged
over subdomain Vr,

εr = εr =
1

|Vr|

∫
Vr

ε(χ) dχ, (5.35)

and is presented in detail in Section 3.3.1.
Similarly, the interaction tensors Dr

αβ express the effect of an eigenstrain ε∗β of a
subdomain β on the strain εα of a subdomain α, however under a vanishing strain of
the corresponding subdomain on the higher scale level, εr = 0, as

εrα = Drs : ε∗
r

β , at εr = 0 ∀α, β ∈ 1, ..., Kr . (5.36)

The interaction tensors Dr
αβ follow from the successive application of the different eigen-

strain modes ε∗rβ in all subdomains V r
β ∈ Vr and the computation of the homogenized

reaction strains εrα of every subdomain V r
α ∈ Vr. However, since no boundary conditions

can be applied on the surface of a subdomain r, no overall strain εr = 0 of the corre-
sponding subdomain on the upper scale level can be fixated. Therefore, the interaction
tensors are determined with consideration of the relation

εrα − Aelr
α : εr = Dr

αβ : ε∗
r

β , ∀α, β ∈ 1, ..., Kr . (5.37)

For this reason, when the eigenstrain modes ε∗rβ are applied, the averaged reaction strain
in the other lower-level subdomains inside the same upper-level domain

εrα =
1

|V r
α |

∫
V rα

ε(χ) dχ , V r
α ∈ Vr (5.38)

as well as the homogenized reaction strain

εr =
1

|Vr|

∫
Vr

ε(χ) dχ (5.39)

are computed. Upon computation of the homogenized reaction strains in Eqs. (5.38) and
(5.39) and the known concentration tensors Aelr

α (Eq. (5.33)), the interaction tensors Dr
αβ

can be fully characterized. The determination of the interaction tensors Drs and Dr
αβ is

summarized in the Algorithm 12.

5.3 Numerical applications
In this section, computed homogenized responses following the conventional TFA ap-
proach and the hierarchical TFA with spatial divisions on two scale levels, referred to as
TFA2, are compared. The subsequent non-proportional prescribed loading was applied,
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consisting of four different stages of biaxial isochoric and shear loading and unloading
stages, represented by the overall strain evolution ε(t), t = [0, T ], T = 1.0, with εzz = 0:

ε(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.06 0

0 −0.06

)
→ ε(T/2) =

(
0.06 0.04
0.04 −0.06

)
→ ε(3T/4) =

(
0 0.04

0.04 0

)
→ ε(T ) =

(
0 0
0 0

)
.

(5.40)

5.3.1 Unit cell with one centered stiff inclusion
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Figure 5.2: Equivalent plastic strain fields under (a) biaxial isochoric (Eq. (3.10a))
and (b) pure shearing (Eq. (3.10b)) and the resulting spatial decomposition based on
plastic strain distributions. Presented are the (c) division into four subdomains and the
(d) division of the four subdomains into four sub-subdomains each for the application

of the two-scale TFA.
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Figure 5.3: Non-proportional loading: the computed homogenized (a) axial and (b)
shear stress components predicted by the conventional TFA and the TFA on two scale
levels compared to the FE full-field for the unit cell consisting of an elasto-plastic matrix

with a spherical stiff centered inclusion.

Considered is a simple structure, consisting of a matrix material (Ω = I) with a
centered stiff inclusion, occupying a fraction of 30 % of the unit cell domain (Fig. 5.2).
The stiff inclusion (Ω = II) behaves elastic with the bulk modulus κII = 20 GPa and shear



5.3. Numerical applications 143

modulus µII = 6 GPa and is represented by one subdomain. The response of the isotropic
matrix material is controlled by the elastic bulk modulus κI = 10 GPa and shear modulus
µI = 3 GPa, and the inelastic response follows the hardening law

R = HI p
mI (5.41)

with the initial yield strength σY0
I = 100 MPa, the hardening modulus HI = 50 MPa and

exponent mI = 0.05. The unit cell domain was decomposed into the subdomains in the
following ways:

• Division of the matrix into KI = 1 and KII = 1 subdomains, referred to as TFA 2.

• Division of the matrix into KI = 16 and KII = 1 subdomains. This implies a division
of the full unit cell domain into 17 subdomains and will be referred to as TFA-P 17.

• Division of the matrix phase into KI = 1 subdomain on the first scale level. Each
matrix subdomain r is then divided into KI

r = 16 sub-subdomains. The inclusion
phase is decomposed into KII = 1. This decomposition results in a division of the
full unit cell domain into 17 subdomains and will be referred to as TFA2 − P 2-16.

• Division of the matrix phase into KI = 4 subdomains on the first scale level (Fig.
5.4c). Each matrix subdomain r is then again divided into KI

r = 4 sub-subdomains
(Fig. 5.4d). The inclusion phase is decomposed into KII = 1. This decomposition
results in a division of the full unit cell domain into 17 subdomains and will be
referred to as TFA2 − P 5-4.

where the first spatial decomposition was used for the conventional TFA and the second
and third decompositions were used for the TFA2 approach. The matrix phase is decom-
posed based on the inelastic strain distributions, presented in Figs. 5.2a and 5.2b. The
Figs. 5.2c and 5.2d depict the resulting subdomain decomposition intoKI = 4 subdomains
and into 16 subdomains on two scale levels with KI = 4 and a division of every matrix
subdomain r by KI

r = 4. The elastic inclusion is always represented by one subdomain.
The homogenized response of the composite under the non-proportional loading path

in Eq. (5.40) are presented in Fig. 5.3, where the annex "-P" for the TFA expresses the
plasticity-based decomposition of the unit cell domain. While the TFA 2, with only one
subdomain per material phase, results in clearly overstiff unit cell response, very accurate
results are achieved using the conventional TFA with 16 subdomains representing the
matrix phase (TFA-P 17). Using the two-step TFA with the same decomposition of the
matrix phase (TFA2 − P 2-16) shows a slightly improved capture of the yield point,
however the inelastic stress-strain response is equally overstiff as using the conventional
TFA 2. The TFA2 5-4 however, delivers fairly accurate prediction of the unit cell response.

5.3.2 Porous unit cell with one center void

The TFA approaches are used for the computation of the response of the same structure,
but where the stiff inclusion is replaced by a void in the same matrix material, occupying
a fraction of 30 % of the unit cell domain (Fig. 5.4). The inelastic response of the matrix
follows the hardening law in Eq. (5.41).

The structure is divided into 16 subdomains based on the plastic strain distributions
(Section 3.2.2) under the two loading modes (Eq. (3.10)), applied on the boundaries of the
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Figure 5.4: Equivalent plastic strain fields under (a) biaxial isochoric (Eq. (3.10a))
and (b) pure shearing (Eq. (3.10b)) and the resulting spatial decomposition based on
plastic strain distributions. Presented are the (c) division into four subdomains and the
(d) division of the four subdomains into four sub-subdomains each for the application

of the two-scale TFA.

structure containing the void. The occurring plastic strain fields under both loading modes
are displayed in Figs. 5.4a and 5.4b. The determination of the elastic strain concentration
tensors Ael

r and Aelr
α follows the application of the six orthogonal deformation modes on

the structure (Section 3.2.1) containing the void and the computation of the occurring
strains in the matrix phase. No strain concentration tensor of the void needs to be
determined. The interaction tensors Drs and Dr

αβ are computed through the application
of the eigenstrain modes on the subdomains s on the first scale level (Section 3.3.1) and β
on the second scale level. The interaction tensors are purely computed between the matrix
subdomains, and no interactions between matrix subdomains and the void are required.
The unit cell domain was decomposed into the subdomains in the following ways:

• Division of the matrix into KI = 1 subdomains, referred to as TFA 1.

• Division of the matrix into KI = 16 subdomains, referred to as TFA 16.

• Division of the matrix phase into KI = 1 subdomain on the first scale level. Each
matrix subdomain r is then divided into KI

r = 16 sub-subdomains. This decompo-
sition will be referred to as TFA2 1-16.

• Division of the matrix phase into KI = 4 subdomains on the first scale level (Fig.
5.4c). Each matrix subdomain r is then again divided into KI

r = 4 sub-subdomains
(Fig. 5.4d). This decomposition will be referred to as TFA2 4-4.

where the first spatial decomposition was used for the conventional TFA and the second
and third decompositions were used for the TFA2 approach.

The homogenized response of the unit cell with the center void under the non-
proportional loading path in Eq. (5.40) is presented in Fig. 5.5. It is noted that the
strain ε represents the deformation applied on the unit cell including the structure. Since
besides the material, also the void accommodates deformation, the strain that accumu-
lates in the matrix material, εI, is not necessarily equal to the applied strain: εI 6= ε.
However, with a void that is stress-less, the homogenized stress of the unit cell equals the
stress homogenized over the matrix material domain: σ = σI. The results show equally
good homogenized responses during the loading stages of the non-proportional loading
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Figure 5.5: Non-proportional loading: the computed (a) axial and (b) shear stress
components in the matrix material predicted by the conventional TFA and the TFA on
two scale levels compared to the FE full-field for the unit cell consisting of an elasto-
plastic matrix with a spherical center void. It is noted that the matrix stress equals the

homogenized unit cell stress: σ = σI.
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Figure 5.6: First biaxial loading stage in the interval t = [0,0.25] of the non-
proportional loading history: the computed axial stress component in the direction of
dilation in the matrix material, predicted by the conventional TFA and the TFA on two
scale levels compared to the FE full-field for the unit cell consisting of an elasto-plastic
matrix with a spherical center void. Displayed are the (a) stress evolution in time and
the (b) stress-strain response. It is noted that the matrix stress equals the homogenized

unit cell stress: σ = σI.

path following the spatial division into K = 16 subdomains on the unit cell scale level
and into K = 1 subdomain on the first scale level into Kr = 16 subdomains on the lower
scale level (TFA2 1-16). However, the division on the second scale levels leads to a much
better prediction of the axial stress evolution in the stages t = [0.25,0.5] and t = [0.75,1.0].
Inaccuracies of the TFA2 1-16 are solely observed in the shear stress evolution in during
the stage t = [0.5,0.75]. The TFA2 4-4 leads to clearly worse captures of the homogenized
inelastic responses.

The unit cell response during the first biaxial loading stage in the interval t = [0,0.25]
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was investigated in more detail, displayed in Fig. 5.6, where the results following the same
matrix phase division into 16 subdomains, on the first scale level for the conventional TFA
(TFA-P 16, red dash-dotted curve) and on the second scale level for the two-step TFA
(TFA2-P 1-16, blue dotted), are compared to the case of only one subdomain representing
the matrix phase (TFA 1, green dashed). Displayed are the homogenized stress evolution
(Fig. 5.6a) and stress-strain response (Fig. 5.6b) of the matrix material. As was recog-
nized above, the stress evolution predictions appear equally accurate using the conven-
tional and the two-step TFA with the matrix division into 16 subdomains. Considering
the computed stress-strain response however, it becomes clear that the accommodated
strain in the matrix phase using the TFA2-P 1-16 is clearly overestimated with respect
to the conventional TFA-P 16, capturing the matrix strain accumulation of the full-field
solution very accurately. More precisely, the matrix strain accumulation using the hier-
archical TFA2-P 1-16 equals the matrix strain predicted by the conventional TFA 1 with
just one subdomain representing the matrix.

௥

ఈ
௥

௥

௥

ఈ

ఈ

. . .

Figure 5.7: Schematic presentation of the extension from the two-step TFA towards a
multi-step TFA.

5.4 Conclusions
In this section, a novel approach is proposed that aims for improved modeling results
using the TFA with reduced computational efforts at the same time. The reduction of
the computational effort is achieved by the separation of the BVP stated by the overall
strain ε into a BVP on the RVE scale level and several BVPs on all the subdomains of
the RVE.

First considered is the case of the centered stiff elastic inclusion in the elasto-plastic
matrix material. In the case of the composite unit cell with the center inclusion, the
division of the subdomains on the higher scale level into sub-subdomains on the lower
scale level does have little effect. The TFA2 2-16 does not provide any improvements of
the inelastic stress response with respect to the conventional TFA with one subdomain
per phase only and much worse results than the conventional TFA with a matrix phase
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divided into 16 subdomains. The inelastic response of the unit cell is controlled by the
TFA procedure on the upper scale level, and therefore by the sum

K∑
s=1

Drs : ∆ε∗s , (5.42)

representing the inelastic interaction effects of the subdomains. Translated to the case of a
matrix material with one elastic inclusion, and the matrix represented by one subdomain
r = 1, this can be expressed as

K∑
s=1

Dr1 : ∆ε∗1 . (5.43)

Using the conventional TFA, the eigenstrain of the matrix subdomains, ε∗1, follows directly
from the subdomains inelastic constitutive relations. Using the two-step TFA2 method,
the eigenstrain ε∗1 follows from the subdomain stress σ1 as

ε∗1 = ε1 − (Cel
1 )−1 : σ1 , (5.44)

and therefore from a homogenization procedure from the lower scale level

σ1 =
Kr∑
α=1

υ1
ασ

1
α . (5.45)

The equal responses provided by the conventional TFA with one subdomain and the two-
step TFA2 2-16, where the matrix is divided into one subdomain on the upper scale level
and this subdomain is subdivided into 16 subdomains on the lower scale level means that
the eigenstrain of the matrix on the upper scale level, ∆ε∗1, is equal in both cases following
directly from the matrix constitutive relations or following from the homogenization pro-
cedure on the lower scale level, although higher eigenstrains of the matrix were expected
due to the refined spatial division. With eigenstrains following from the homogenization
procedure on the lower scale level being equal to the ones following from the constitutive
relations of the subdomains on the upper scale level, the TFA homogenization procedure
on the lower scale level has no effect on the predicted response of the unit cell.

The predicted stress responses of the unit cell with a centered void are clearly better
than the ones of the unit cell with the inclusion. While the stress response during the
first biaxial loading stage is equally well using the TFA-P 16 or the TFA2-P 1-16, the
subsequent stress decrease is modeled even better by the TFA2-P 1-16 than by the TFA-
P 16. Furthermore, the modeled responses during the full applied loading path are clearly
improved using the TFA2-P 1-16, where the matrix is represented by one subdomain on
the upper scale level and this subdomain is subdivided into 16 subdomains, with respect
to the conventional TFA with only one matrix subdomain. This improvement was not
recognized for the case of the unit cell with the center inclusion. However, considering
the full-field result of the first biaxial loading stage (Fig. 5.6b), it is visible that the strain
accumulation in the material is predicted much more accurately using the TFA-P 16 than
using the TFA2-P 1-16. With the strain accumulation predicted by the TFA2-P 1-16,
where the matrix subdomain is refined into 16 subdomains on the lower scale level, that
equals the prediction provided by the conventional TFA with only one matrix subdomain,
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it is recognized that the strain accumulation in the material is purely governed by the TFA
on the upper scale level. The TFA procedure on the lower scale level does seem to have no
effect on the strain accumulation of the subdomains on the upper scale level, although it
was expected to provide improved strain accumulations as well as stress-strain responses.
A strain distribution that is purely controlled by the TFA on the upper scale level, without
an effect of the TFA procedure on the lower scale level, delivers an explanation of the
visible ineffectivity of the hierarchical TFA homogenization procedure with respect to the
conventional TFA.

Following the achieved results, even though improved predicted responses of the porous
unit cell were provided by the TFA2, it must be admitted that the spatial division on more
than one scale level does not yet allow for the desired improvements of the results. Once
the occurring issues can be tackled and solved, the two-scale TFA2 formulation can be
extended towards a multi-step TFAN , with N denoting the number of scale levels. This
would allow for the efficient modeling with very high numbers of subdomains, particularly
important if more deformation modes are used in the offline stage. For the extension of the
present approach (Fig. 5.7), the same downscaling as described in Sections 5.2.3, 5.2.4 and
5.2.5 can be implemented for the a priori computation of concentration and interaction
tensors on more scale levels. The scale level transitioning between two hierarchical scale
levels for the upscaling of homogenized quantities in the solution stage is described in
Section 5.2.1. Furthermore, if the choice of another formulation for the homogenization
appears convenient on a certain scale level or for all scale levels, the hierarchical approach
can be employed for different CAHN formulations.
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Chapter 6

General conclusions

This work investigates the performance of approaches for the reduced homogenization
(RH) of the mechanics of composite materials and proposes strategies for the improvement
of their accuracy and efficiency. The particular kind of RH approaches are referred to as
clustering analyses, basing on the spatial domain decomposition by means of statistical
clustering techniques and the assumption of piecewise uniform fields of variables. The
capabilities of the two clustering analysis approaches based on the TFA (Dvorak, 1992)
and HS (Liu, Bessa, and Liu, 2016; Wulfinghoff, Cavaliere, and Reese, 2018) algorithms
are evaluated extensively for various 2D structures and material systems.

While the HS analysis allows to provide accurate results for isotropic structures with
very coarse spatial subdomain divisions, the TFA leads to typically far overstiff compos-
ite responses when the inclusion phase behaves purely elastic. The high errors in cases
of high volume fractions of stiff elastic inclusions embedded in an elasto-plastic matrix
emerge as a result of inelastic fields that are not captured sufficiently enough. The TFA
can only converge towards the reference results gathered by DNS if the actual inelastic
deformation fields during the inelastic loading conditions are captured accurately. Using
an elasticity-based domain decomposition for the modeling of materials with nonlinear
responses, meaning that the deformation patterns may strongly diverge from the elastic
deformation patterns, leads to insufficient captures of the inelastic fields by the subdo-
mains, resulting in underestimated interaction effects and finally overstiff composite re-
sponses. The requirement of an accurate capture of the inelastic deformation patterns for
good predictions of the composite responses imply a rather computational character of
the TFA used as an RH approach.

Clear improvements of the TFA approach were accomplished by the enhanced inte-
gration of the actual inelastic physics of the RVE problems by accounting for inelas-
tic deformation patterns and localization effects through an inelasticity-based clustering.
The offline stage can, theoretically, be extended to arbitrary numbers of various inelastic
modes, proportional as well as non-proportional, in order to account for general loading
conditions in the online stage. However, the issue emerging simultaneously is, that the
identification of well-defined subdomains becomes more difficult when using strategies as
the k-means clustering for high-dimensional quantities. Feeding the clustering algorithm
with many inelastic deformation fields, possibly diverging strongly from each other, may
lead to reduced emphasis on the single inelastic patterns and therefore to more stiff predic-
tions by the TFA as the consequence. The TFA can be used for general microstructures,
independently of anisotropies. However, unacceptable errors still occur if the inclusions
deform purely elastic and the inclusion volume fraction is high. Besides the enhanced
spatial division, allowing for improved TFA results, a correction is proposed in this work
that bases on a quantification of the non-uniformity of inelastic fields in the subdomains.
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It was recognized that the HS approach (Section 2.3.7), implemented as an PFA al-
gorithm (Section 2.3.6) particularized and simplified for the modeling of composites with
isotropic microstructures, allows much more accurate responses for isotropic materials
with elastic inclusions in a matrix with low hardening characteristics than the TFA. The
reason for this is, that the TFA accuracy is purely controlled by the fidelity of capture
of the strongly heterogeneous inelastic fields. The consideration of a reference stiffness
operator in the HS (PFA) algorithm that represents the homogenized response of the com-
posite, leading to the resulting polarization stresses of the subdomains, allows accurate
results with very low numbers of subdomains, typically only one subdomain per material
phase. This result implies that the analytical solution of the HS approach is nearly in-
dependent of the fidelity of the spatial decomposition, and therefore of number of sub-
domains used. The fast convergence is governed by the existence of polarization stresses
in both inelastic and elastic phases, and thus, contributions from both material phases.
The justification of the HS approach could, based on the achieved results in this work,
be approved for microstructures with an homogenized behavior that is close to isotropic.
In cases of isotropic or quasi-isotropic microstructures, the actual homogenized stiffness
of the composite is close to isotropic, making the imposed isotropic reference stiffness
a rather weak assumption. Therefore it can be concluded that the use of the HS type
approach, relying on an isotropic reference stiffness, is a sensible choice for the modeling
of isotropic microstructures.

For strongly anisotropic microstructures however, the HS approach is unable to deliver
reliable homogenized responses in elastic and inelastic deformation. The use of the HS
approach for a strongly anisotropic microstructure, implying strong assumptions for the
reference medium that aims to represent the homogenized response of the composite,
with a high inclusion volume fraction leads to high errors of the elastic response, the
yield onset and the inelastic response of the composite. It was demonstrated that the
increasing number of subdomains for this kind of a highly anisotropic material does not
allow a convergence of the homogenized response towards the reference FE result, implying
that capabilities of the HS approach for general anisotropic structures is clearly limited.
Following

• the very accurate homogenized responses of the HS type approach, relying on
an isotropic reference stiffness, for the modeling of composites with isotropic mi-
crostructures, and

• the rather weak assumption of using an isotropic reference stiffness for the modeling
of composites with isotropic microstructures

imply that the avoidance of the strong assumptions of an isotropic reference stiffness for
the modeling of composites with anisotropic microstructures may allow clearly improved
predicted responses. Consequently, the implementation of a generalized PFA, relying on
a generalized anisotropic reference stiffness instead of an isotropic one, may be considered
in the future for a more accurate modeling of general composite microstructures.

Following the achieved results, both TFA and HS reduced homogenization approaches
were applied to a woven composite structure. With the three-scale character of the woven
composite, the RH methods were applied for the modeling based on piecewise uniform
fields of the woven mesostructure. Besides the woven mesostructure, the microstructure
of the yarns is to be respected as well. The microstructure based spatial division of the
yarns and the representation of the actual microstructure of the yarns by the approx-
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imation of piecewise uniform unidirectional fiber composites allow the use of the MFH
of the microstructure in combination with the RH approaches on the mesoscale level.
The resulting computation of the predictions of the woven composite material consists
therefore of a two-step homogenization procedure. While good predictions using the TFA
could be expected after the accurate results of composites with two inelastic phases and
anisotropic microstructures, the applicability of the HS, relying on the assumption of an
isotropic reference medium, was to be validated for the strongly anisotropic woven struc-
ture. Both the TFA and HS approaches could successfully be confirmed as appropriate
algorithms for the woven composite material, with high prediction accuracies achieved for
the response of the woven unit cell under complex loading conditions.

Finally, after the extensive investigation on a range of various 2D structures and the
testing for woven composite materials, it is concluded that the HS approach provides high
prediction accuracies for isotropic and anisotropic structures, if the degree of the structural
and material anisotropy does not exceed a certain level. Consequently, the generalized
PFA, not relying on an isotropic reference medium may be considered in the future to
achieve reliable predictions for strongly anisotropic materials. The TFA allows for reliable
predictions for general composite materials and material systems. The weakest point of
the TFA, with (possibly far) overstiff homogenized predictions, are structures consisting of
an elevated volume fraction of an elastic inclusion phase in an elasto-plastic matrix. The
reason for the poor results were found to be insufficient captures of the non-uniformity of
highly localized inelastic fields. For this sake, a novel multi-step homogenization approach
based on the TFA formulation was introduced in this work, tackling the issue of poor
captures of the inelastic fields by a hierarchical domain decomposition. At the same
time, the system to be solved is decoupled by means of a consideration of more than
one scale level. This strategy targets for the reduction of computational efforts when
using fine spatial decompositions, in turn allowing for the use of more accurate captures
of the heterogeneous inelastic fields by the subdomains. The new TFA strategy was
employed in this work for two scale levels and requires, as is clearly visible considering the
achieved results, further research. The case of a composite with an elastic stiff inclusion
in particular seems to show that the spatial decomposition on the second scale level is
ineffective. If the reasons for this behavior can be identified and the clustering on the
second scale level leads to positive effects on the homogenized responses, the hierarchical
TFA approach may unlock new potentials for the modeling of inelastic composites. An
extension to higher numbers of scales would further reduce the numerical solution and
the computational requirements.
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Appendix A

Uniaxial TFA and PFA in the
one-dimensional element

Details on the TFA and PFA algorithms used for the investigation of the one-dimensional
bar, consisting of two subdomains, are presented. The determination of the interaction
factors allows, following Sections 2.3.4 and 2.3.6, to characterize the instantaneous strain
concentration tensors.

TFA Considered is the case of a vanishing overall strain ε = 0 and an existing eigenstrain
in the subdomain 1, ε∗1, in elasticity. From ε = υ1 ε1 + υ2 ε2 = 0 follow

ε1 = −(υ2/υ1) ε2 (A.1a)
ε2 = −(υ1/υ2) ε1 , (A.1b)

and from σ1 = Eel
1 (ε1 − ε∗1) = Eel

2 ε2 = σ2 follow

ε1 = (Eel
2 /E

el
1 ) ε2 + ε∗1 (A.2a)

ε2 = (Eel
1 /E

el
2 ) (ε1 − ε∗1) . (A.2b)

Inserting Eq. (A.2b) into Eq. (A.1a) leads to

ε1 =
υ2E

el
1

υ1Eel
2 + υ2Eel

1

ε∗1 (A.3)

and therefore to the interaction factor

D11 =
υ2E

el
1

υ1Eel
2 + υ2Eel

1

. (A.4)

Inserting Eq. (A.2a) into Eq. (A.1b) results in

ε2 = − υ1E
el
1

υ1Eel
2 + υ2Eel

1

ε∗1 (A.5)

and

D21 = − υ1E
el
1

υ1Eel
2 + υ2Eel

1

. (A.6)
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Equivalently, an eigenstrain ε∗2 under the overall strain ε = 0 results in

D22 =
υ1E

el
2

υ1Eel
2 + υ2Eel

1

(A.7)

and

D12 = − υ2E
el
2

υ1Eel
2 + υ2Eel

1

. (A.8)

PFA In a homogeneous bar with E1 = E2 = E, with an eigenstress σ∗1 under vanishing
overall strain ε = 0, it follows from σ1 = E ε1 + σ∗1 = E ε2 = σ2 that

ε1 = ε2 − σ∗1/E (A.9a)

ε2 = ε1 + σ∗1/E . (A.9b)

Inserting Eq. (A.9b) into Eq. (A.1a) yields

ε1 = −υ2
σ∗1
E

(A.10)

and therefore
Γ11 = −υ2

E
. (A.11)

Inserting Eq. (A.9a) into Eq. (A.1b) results in

ε2 = υ1
σ∗1
E

(A.12)

and
Γ21 =

υ1

E
. (A.13)

Equivalently, the remaining Green’s influence factors result in

Γ22 = −υ1

E
(A.14)

and
Γ12 =

υ2

E
. (A.15)
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Appendix B

Mean-Field Homogenization

B.1 Homogenized LCC operators
Using the Mori-Tanaka MFH formulation, the homogenized LCC stiffness can be com-
puted from the corresponding phases LCC stiffnesses CLCC

ω , ω = I, II and the strain con-
centration tensor BII (Eq. (2.140)). The homogenized LCC operator reads

CLCC
=
[
υIICLCC

II : BII + υICLCC
I

]
:
[
υIIBII + υII

]−1
, (B.1)

so that, e.g., the homogenized elastic operator in Eqs. (2.148) and (4.16) and Fig. 2.4a
reads

Cel
=
[
υIICel

II : Bel
II + υICel

I

]
:
[
υIIBel

II + υII
]−1 (B.2)

and the homogenized secant operator

Csec
=
[
υIICsec

II : Bsec
II + υICsec

I

]
:
[
υIIBsec

II + υII
]−1

. (B.3)

B.2 Residual vector
The resolution of the incremental-secant MFH formulation (Section 2.4.3) results in

∆εre = υI∆ε
re
I + υII∆ε

re
II . (B.4)

Multiplying this relation by B−1
II and using the expression in Eq. (2.156), this leads to(

υ1 {I + S : [(C̃sec
I )−1 : Csec

II − I]}+ υ2 I
)

: ∆εreII

= ∆εreII + υ1 {S : [(C̃sec
I )−1 : Csec

II − I]} : ∆εreII = ∆εre .
(B.5)

After several reformulation steps, the following relation

Csec
II : ∆εreII = C̃sec

I :
[
∆εreII −

1

υI
S−1 : (∆εreII −∆εre)

]
(B.6)

can be obtained, leading to the expression of the stress residual F in Eq. (2.167), here
reiterated:

F = Csec
I :

[
∆εreII −

1

υI
S−1 : (∆εreII −∆εre)

]
− Csec

II : ∆εreII . (B.7)
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B.3 Computation of the Jacobian matrix
The resolution of the MFH scheme (Section 2.4.3), with the linearization of the residual
F (Eq. (2.167)), is expressed as

F → F + δF = 0 , (B.8)

where
δF =

∂F

∂∆εreI
δ∆εreI +

∂F

∂∆εreII
δ∆εreII +

∂F

∂∆εre
δ∆εre . (B.9)

With a constant overall strain increment ∆εre, and therefore the constant relation ∆εre =
υI∆ε

re
I + υII∆ε

re
II , the variational term can be expressed as

δF = Jδ∆εreII , (B.10)

with the Jacobian (Eq. (2.172))

J =
dF

d∆εreII
=

∂F

∂∆εreII
+

∂F

∂∆εreI

∂∆εreI
∂∆εreII

, (B.11)

whose full expression (with ∂�/∂∆εreΩ = ∂�/∂εΩ) amounts in

J = C̃sec
I : [I− S−1]− Csec

II −
∂Csec

II

∂εII
: ∆εreII−

υII
υI

∂C̃sec
I

∂εI
:
[
∆εreII − S−1 ∆εreII −∆εre

υI

]
−

υII
υ2
I
C̃sec

I ⊗ (∆εreII −∆εre) :: (S−1 ⊗ S−1) ::
∂S
∂εI
−

υII
υI

C̃sec
I : S−1 .

(B.12)

B.4 Homogenized tangent
The homogenized algorithmic tangent stiffness (Eq. (2.159)) is computed as

Calg
=
∂σ

∂ε
= υI

∂σI

∂εI

∂εI
∂ε

+ υII
∂σII

∂εII

∂εII
∂ε

. (B.13)

Here, the inclusion phase behaves elastic, meaning that ∂σII/∂εII = Cel
II. The derivatives

of the matrix phase stresses by the phase strains, ∂σI/∂εI, follow from the computation
of the stresses in Eqs. (2.154b) and (2.158), resulting in

∂σI

∂εI
= Csec

I +
∂Csec

I

∂εI
: ∆εreI . (B.14)

The computation of the derivative of the matrix incremental-secant operator Csec
I in Eq.

(B.14), ∂Csec
I /∂εI, is presented in Appendix C.2.
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In case of the zero-residual formalism for the matrix, the stress derivative ∂σI/∂εI
follows from Eq. (2.161) and results in

∂σI

∂εI
= C̃sec

I +
∂C̃sec

I

∂εI
: ∆εreI . (B.15)

The computation of the derivative of the matrix zero-residual incremental-secant operator
C̃sec

I in Eq. (B.14), ∂C̃sec
I /∂εI, is presented in Appendix C.2.

The derivatives ∂εI/∂ε and ∂εII/∂ε follow after the MFH solution in Eq. (B.8) with
Eq. (B.10) as

∂εII
∂ε

= −J−1 :
∂F

∂ε
(B.16)

and
∂εI
∂ε

=
1

υI

(
I− υII

∂εII
∂ε

)
. (B.17)
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Appendix C

Derivatives of the incremental
stress-strain response using the
J2-plasticity model

C.1 Algorithmic tangent operator
In the following, the derivative of the incremental stress-strain response computed by the
J2-plasticity model are given. The stress tensor is computed as

σ = σtr − 2Gel∆εp = σtr − 2Gel∆pN . (C.1)

Derivatives with respect to the strain (it is noted that ∂�/∂∆ε = ∂�/∂ε) follow from
the derivatives

∂σtr

∂ε
= Cel, (C.2)

∂∆p

∂ε
=

2Gel

h
N , (C.3)

and

∂N

∂ε
=
∂N

∂σtr :
∂σtr

∂ε
=

1

σtr,eq

(
3

2
Idev −N ⊗N

)
: Cel =

2Gel

σtr,eq

(
3

2
Idev −N ⊗N

)
, (C.4)

where
h = 3Gel + dR/dp. (C.5)

These relations result in the expression of the plastic strain derivative in Eq. (2.196),

∂∆εp

∂ε
=

2Gel

h
N ⊗N + 2Gel ∆p

σtr,eq

(
3

2
Idev −N ⊗N

)
, (C.6)

and into the expression of the algorithmic tangent in Eq. (2.197),

Calg = Cel− 2Gel∂∆εp

∂ε
= Cel− (2Gel)2

h
N ⊗N − (2Gel)2 ∆p

σtr,eq

(
3

2
Idev−N ⊗N

)
. (C.7)
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C.2 Derivative of the incremental-secant operator by
the strain

In this work, the inclusion phase behaves elastic, such that Csec
II = Cel

II = const. In the
following, the derivatives of the matrix incremental-secant operators with residual stresses,
Csec

I , and without the residual stresses, C̃sec
I , are given. The matrix subscript I will be

omitted. The derivative of the matrix incremental secant operator Csec following Eq.
(2.204) with a pressure-independent plasticity, is given as

∂Csec

∂ε
= 2 Idev ⊗ ∂Gsec

∂ε
. (C.8)

Consequently, the derivative of the incremental secant shear modulus

Gsec =
∆σre,eq

3 ∆εre,eq
(C.9)

is to be computed. With

∂∆σre,eq

∂ε
=

3

2

dev(∆σre)

∆σre,eq
: Calg =

dev(∆σre)

2Gsec∆εre,eq
: Calg (C.10)

and
∂∆εre,eq

∂ε
=

2

3

dev(∆εre)

∆εre,eq
, (C.11)

the derivative of the incremental secant shear modulus results in

∂Gsec

∂ε
=

1

6Gsec (∆εre,eq)2
dev(∆σre) : Calg − 2

3
Gsecdev(∆εre)

(∆εre,eq)2
, (C.12)

with the algorithmic tangent

Calg = Cel − 2Gel ∂∆εp

∂ε
, (C.13)

where
∂∆εp

∂ε
= N sec ⊗ ∂∆p

∂ε
+ ∆p

∂N sec

∂ε
. (C.14)

The derivative of the plastic flow direction results in

∂N sec

∂ε
=

2Gel

∆σre,tr,eq

(
3

2
Idev −N sec ⊗N sec

)
. (C.15)

The derivative of the plastic strain increment in the incremental-secant formulation follows
from the derivative of the current yield stress

∂σeq

∂ε
=
dRI

dp

∂p

∂σ

∂σ

∂εI

= N :

[
Cel − Cel :

(
N sec ⊗ ∂∆p

∂ε
+ ∆p

∂N sec

∂ε

)] (C.16)
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which can be reformulated to finally obtain

∂∆p

∂ε
=

2Gel

hsec
N − 2Gel∆p

hsec
N :

∂N sec

∂ε
, (C.17)

where
hsec = 2GelN sec

I : N +
dR

dp
. (C.18)

The derivative of the plastic strain increment ∂∆p/∂ε of the incremental-secant formula-
tion was developed by Cagegi (2022).

Similarly, the derivative of the zero-residual incremental-secant operator C̃sec follows
as

∂C̃sec

∂ε
= 2 Idev ⊗ ∂G̃sec

∂ε
, (C.19)

where
∂G̃sec

∂ε
=

1

6Gsec
I (∆εre,eq)2

dev(σ) : Calg − 2

3
Gsecdev(∆εre)

(∆εre,eq)2
(C.20)

and Calg given by Eq. (C.7) with

h = 3Gel +
dR

dp
. (C.21)
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Appendix D

Convergence study of the overall
deformation factor EBC,in for the
inelastic deformation modes
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Figure D.1: Equivalent plastic field patterns inside the RVE with υII = 30 % of circular
stiff elastic inclusions in an elasto-plastic matrix under the two deformation modes (a,
b) l = 1 and (c, d) l = 2 (Eq. (3.10)) with the deformation factors (a, c) Ein = 2% and

(b, d) Ein = 8%.

In this section, the justification of the overall deformation factor for the inelastic of-
fline deformation modes Ein = 2% is presented by means of a convergence study using the
RVE with υII = 30 % of circular stiff elastic inclusions in an elasto-plastic matrix. The
k-means clustering method is based on the differences of local quantities, and is therefore
sensitive to spatial distributions rather than the particular magnitudes of the local quan-
tity. In order to achieve a clustering into subdomains that does not change if the overall
deformation increases, it is important that the final spatial plastic field configurations are
achieved under the offline deformation modes. Thus, the overall deformation factor for the
inelastic offline simulations was selected with the goal to be just high enough to achieve
the final spatial plastic patterns in the composite RVEs with the material properties given
in Section 3.5.1.

According to Fig. D.1, the achieved plastic patterns under both deformation modes
in Eq. (3.10) with the overall deformation factors Ein = 2% and Ein = 8% are identical,
implying that final plastic field patterns are established under the selected deformation
factor Ein = 2%. We note that the clustering is achieved by considering the plastic strain
tensor components and not the equivalent plastic strain scalar, but for readability Fig.
D.1 displays a scalar value. Additionally, the achieved TFA results for the uniaxial tension
and the pure-shear tests in Eqs. (3.62) and (3.63) using the subdomain decomposition
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Figure D.2: The convergence of the (a) peak normal stress under uniaxial tension
(Eq. (3.62)) and of the (b) peak shear stress under pure shear deformation (Eq. (3.63))
depending on the number of subdomains for the RVE with υII = 30 % of circular stiff
elastic inclusions in an elasto-plastic matrix. Compared are the use of the TFA-P using
subdomains computed with the offline deformation factors Ein = 2% and Ein = 8%.

based on the two offline deformation factors are compared in Fig. D.2. It is visible that
the deviations between the two results are negligible. Based on this, it can be concluded
that the RVE deformation of 2 % in combination with the mentioned material properties
is sufficient to achieve the final plastic field patterns in the offline stage.
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Appendix E

Local yarn and fiber orientation in the
woven composite

The yarn and fiber orientation at χ is expressed as

~v(χ) = Q2

(
θ2(χ)

)
·Q1

(
θ1(χ)

)
· ~ez . (E.1)

The first euler angle θ1(χ) represents a rotation of the global coordinate system around
the z-axis, meaning

Q1

(
θ1(χ)

)
=

cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 . (E.2)

The second euler represents a rotation of the once rotated coordinate system around the
x′-axis. Inside the rotated system, the second euler angle is therefore expressed as

Q2

(
θ2(χ)

)
=

1 0 0
0 cos(θ2) − sin(θ2)
0 sin(θ2) cos(θ2)

 . (E.3)

The total local rotation matrix in Eq. (4.8) is given as

Q(χ) = Q2

(
θ2(χ)

)
·Q1

(
θ1(χ)

)
=

cos(θ1) − sin(θ1) cos(θ2) sin(θ1) sin(θ2)
0 cos(θ1) cos(θ2) − cos(θ1) sin(θ2)
0 sin(θ2) cos(θ2)

 .
(E.4)
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