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Cauchy functional equation

An additive function is a function f : R→ R satisfying
f (x + y) = f (x) + f (y) for any x and y .

Such a function is Q-linear (f (rx) = rf (x) for r ∈ Q).

1871 Cauchy provided the first significant result, stating that an
additive function that is continuous is necessarily R-linear,

1875 Darboux showed that an additive function that is not linear is
necessarily discontinuous everywhere,

1905 Hamel provided such a solution using Zorn’s lemma to get a
basis (of R as a Q-vector space) which now bears his name.
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Fréchet functional equation

Let ∆hf (x) = f (x + h)− f (x);

The Cauchy functional equation leads to ∆2
hf (x) = 0.

In 1909, Fréchet proved that the continuous solutions of the
equation ∆m

h f (x) = 0 are the polynomials of degree at most
m − 1.

In general, when studying such an equation, one tries to obtain the
weakest hypothesis under which the solutions are polynomials.
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In 1909, Fréchet proved that the continuous solutions of the
equation ∆m

h f (x) = 0 are the polynomials of degree at most
m − 1.

In general, when studying such an equation, one tries to obtain the
weakest hypothesis under which the solutions are polynomials.

S. Nicolay On some generalisations of the Fréchet functional equations



The result associated to Fréechet functional equation reads as
follows:

The solutions of Fréchet functional equation that are locally
integrable are the polynomials of order at most m − 1,

although other conditions exist.
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Theorem

Let m ∈ N and f : R→ R be a functions that is bounded almost
everywhere on a neighborhood of a point x0 ∈ R.
If ∆m

h f = 0 is satisfied on a neighborhood of x0 for almost every h
sufficiently small, then f can be written as a polynomial of degree
at most m − 1 on a neighborhood of x0.

The proof becomes much simpler if one assumes the
measurability of f .

This result is still valid in Rn, using f = g ∗ Φ with
Φ ∈ D(Rn),

∫
Φdx = 1 and g = f χB(x0,ε).
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f bounded a.e. near x0 ⇒ bounded everywhere near x0.

Suppose that |∆j
hf (x)| ≤ C locally for j ∈ {1, . . . ,m}.

Newton’s interpolation formula:

f (x + qrh) =

q∑
j=0

∆j
rhf (x)

j!
(q)j ,

where (q)j is the falling factorial (
∏j−1

k=0(q − k) for j > 0).

Using the stirling numbers of the first kind s(j , k) and of
second kind S(k, l) (l ∈ {0, . . . ,m − 1}),

∆l
hf (x)

l!
=

m−1∑
m=l−1

q∑
j=k

∆j
rhf (x)

j!
s(j , k)r−kS(k, l),

so that |
∆l

hf (x)|
l!

| ≤ C ′
m−1∑
k=l

|h|k

(ε− h)k
and f is continuous near

x0 (take l = 1).
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f bounded a.e. near x0 ⇒ bounded everywhere near x0.

Suppose that |∆j
hf (x)| ≤ C locally for j ∈ {1, . . . ,m}.

Newton’s interpolation formula:

f (x + qrh) =

q∑
j=0

∆j
rhf (x)

j!
(q)j ,

where (q)j is the falling factorial (
∏j−1

k=0(q − k) for j > 0).

Using the stirling numbers of the first kind s(j , k) and of
second kind S(k, l) (l ∈ {0, . . . ,m − 1}),

∆l
hf (x)

l!
=

m−1∑
m=l−1

q∑
j=k

∆j
rhf (x)

j!
s(j , k)r−kS(k, l),

so that |
∆l

hf (x)|
l!

| ≤ C ′
m−1∑
k=l

|h|k

(ε− h)k
and f is continuous near

x0 (take l = 1).

S. Nicolay On some generalisations of the Fréchet functional equations



Fréchet functional equation for distributions

For T ∈ D ′(Rn), let us define ∆m
h T (φ) = T (∆m

−hφ), for h ∈ Rn

and φ ∈ D(Rn).

Since lim
h→0

∆m
h T

hm
= T (m) for T ∈ D ′(R), if T satisfies ∆m

h T = 0

for h sufficiently small, T is associated to a polynomial of order at
most m − 1.

Theorem

For T ∈ D ′(Rn), the solutions of ∆m
h T = 0 for almost every

h ∈ Rd are the distributions associated to a polynomial of degree
at most m − 1.

In particular, if f ∈ L1
loc(Rn) satisfies ∆m

h f = 0 for almost every h,
then f is a polynomial of degree at most m − 1.
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Fréchet functional equation on Lie groups

If G is a connected Lie group, let Lx and Rx denote the left and
right translations by x : Rx : y 7→ xy on G .

We naturally set ∆h = R∗h − I where Rh is the pullback of Rh and
∆m

h1,...,hm
= ∆hm ◦ · · · ◦∆h1 .

In the same way, h∆ = L∗h − I .
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We will consider the solutions locally satisfying

∆m
h1,...,hm f (x) = 0 (∗)

at x0 (i.e. for x in a neighborhood of x0) for h1, . . . , hm near the
identity

or
∆m

h f (x) = ∆m
h,...,hf (x) = 0 (∗′)

at x0, for h near the identity.

We will only consider solutions that are bounded a.e. in a
neighborhood of x0.
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Proposition

A function f : G → R satisfies ∆m
h1,...,hm

f (x) = 0 at 1 iff it satisfies

h1,...,hm∆mf (x) = 0 at 1.

Theorem

If f : G → R is bounded a.e. in a neighborhood of x0 and satisfies
the local Fréchet equation (∗′) at x0 then f is smooth in a
neighborhood of x0.
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Each X ∈ g has a natural action on C 1 functions by the action of
the associated left-invariant vector field as a derivation; LX will
denote the left-invariant vector field associated to X .

Theorem

Let g be the Lie algebra of G and E1, . . . ,En be a basis of g;
A function f : G → R that is bounded a.e. in a neighborhood of x0

is a solution of the local Fréchet equation (∗′) at x0 of order m iff
there exists a neighborhood U of x0 in G and a neighborhood V of
0 in g s.t.

f (x expX ) =
m−1∑
j=0

LjX f (x)

j!

= f (x) +
m−1∑
j=1

∑
1≤i1,··· ,ij≤n

LEi1
· · · LEij

f (x)

j!
Xi1 · · ·Xij ,

for all X ∈ V and x ∈ U.
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We will say that f is locally right-abelian at x0 if f (xyz) = f (xzy)
for x near x0 and y , z near the identity.

Theorem

If f : G → R is locally bounded a.e. in a neighborhood of x0 and
locally right-abelian at x0, then it is a solution of the local Fréchet
equation (∗) or (∗′) at x0 of order m iff there exist
f1, . . . fk ∈ Homloc(G ,R), real numbers aα for α ∈ Nk and a
neighborhood U of the identity such that

f (x0h) =
∑
|α|<m

aαf1(h)α1 · · · fk(h)αk ,

for all h ∈ U, where k = dim(Homloc).

If G is simply connected, fj belongs to Hom(G ,R) and a global
solution is given by the previous identity, with x0 = 1 and any
h ∈ G .
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Theorem

If G is unimodular, T ∈ D ′(G ) is a solution of the local Fréchet
equation (∗′) at x0 of order m iff there exists a neighborhood U of
x0 such that T |U is a distribution associated to the smooth
function f : G → R such that

f (x expX ) =
m−1∑
j=0

LjX f (x)

j!
,

for x ∈ U and X in a neighborhood of 0 in g.
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If G is a connected Abelian Lie group, then G = Rn × (S1)k for
some n and some k.

Proposition

On Rn × (S1)k , the global solutions of the Fréchet equation (∗) or
(∗′) of order m are of the form

f (x , y) =
∑
|α|<m

aαx
α,

for x ∈ Rn and y ∈ (S1)k .
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Proposition

For the (ax + b)-group, the solutions of the local Fréchet equation
(∗) or (∗′) of order m at 1 are given by f (x , y) =

∑m−1
j=0 aj lnj x .

Proposition

For the SL(2,R), the solutions of the local Fréchet equation (∗) or
(∗′) of order m at 1 are constant near the identity.
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Proposition

If G is a two-step nilpotent Lie group, f : G → R is a solution of
the local Fréchet equation (∗) or (∗′) at x0 of order m iff
f ◦ Lx0 ◦ exp is a polynomial of degree at most m − 1.
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If G is not nilpotent, we have

g ⊃ g(1) ⊃ g(2) ⊃ · · · ⊃ g(N) = g(N+n),

with g(1) = [g, g] and g(j) = [g, gj−1].

Definition

Let N be the smallest integer s.t. g(N) = g(N+1); the space of
fundamental monomials of on G is (g(N))⊥.
The set of functions f : G → R s.t. f ◦ exp is a polynomial in a
neighborhood of 0 generated by a basis of fundamental monomials
form will be denoted P(G ).

Elements of P(G ) are solutions of the local Fréchet equation (∗′).
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If G is not nilpotent, we have

g ⊃ g(1) ⊃ g(2) ⊃ · · · ⊃ g(N) = g(N+n),

with g(1) = [g, g] and g(j) = [g, gj−1].

Definition

Let N be the smallest integer s.t. g(N) = g(N+1); the space of
fundamental monomials of on G is (g(N))⊥.
The set of functions f : G → R s.t. f ◦ exp is a polynomial in a
neighborhood of 0 generated by a basis of fundamental monomials
form will be denoted P(G ).

Elements of P(G ) are solutions of the local Fréchet equation (∗′).

S. Nicolay On some generalisations of the Fréchet functional equations



Theorem

The set of a.e. locally bounded solutions of the local Fréchet
equation (∗) in a neighborhood of 1 is P(G ).

In particular, the solutions for semi-simple Lie groups are constant
in a neighborhood of 1.
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