On some generalisations of the Fréchet functional equations

S. Nicolay in collaboration with A. Molla

GDR AFHP

Corte, Oct. 25-28, 2022

S. Nicolay On some generalisations of the Fréchet functional equations

Cauchy functional equation

An additive function is a function $f : \mathbb{R} \to \mathbb{R}$ satisfying f(x + y) = f(x) + f(y) for any x and y.

Cauchy functional equation

An additive function is a function $f : \mathbb{R} \to \mathbb{R}$ satisfying f(x + y) = f(x) + f(y) for any x and y.

Such a function is \mathbb{Q} -linear (f(rx) = rf(x) for $r \in \mathbb{Q})$.

An additive function is a function $f : \mathbb{R} \to \mathbb{R}$ satisfying f(x + y) = f(x) + f(y) for any x and y.

Such a function is \mathbb{Q} -linear (f(rx) = rf(x) for $r \in \mathbb{Q})$.

1871 Cauchy provided the first significant result, stating that an additive function that is continuous is necessarily \mathbb{R} -linear,

An additive function is a function $f : \mathbb{R} \to \mathbb{R}$ satisfying f(x + y) = f(x) + f(y) for any x and y.

Such a function is \mathbb{Q} -linear (f(rx) = rf(x) for $r \in \mathbb{Q})$.

1871 Cauchy provided the first significant result, stating that an additive function that is continuous is necessarily \mathbb{R} -linear,

1875 Darboux showed that an additive function that is not linear is necessarily discontinuous everywhere,

An additive function is a function $f : \mathbb{R} \to \mathbb{R}$ satisfying f(x + y) = f(x) + f(y) for any x and y.

Such a function is \mathbb{Q} -linear (f(rx) = rf(x) for $r \in \mathbb{Q})$.

1871 Cauchy provided the first significant result, stating that an additive function that is continuous is necessarily ℝ-linear,

- 1875 Darboux showed that an additive function that is not linear is necessarily discontinuous everywhere,
- 1905 Hamel provided such a solution using Zorn's lemma to get a basis (of \mathbb{R} as a \mathbb{Q} -vector space) which now bears his name.

Let
$$\Delta_h f(x) = f(x+h) - f(x)$$
;

Let $\Delta_h f(x) = f(x+h) - f(x)$; The Cauchy functional equation leads to $\Delta_h^2 f(x) = 0$. Let $\Delta_h f(x) = f(x+h) - f(x)$; The Cauchy functional equation leads to $\Delta_h^2 f(x) = 0$.

In 1909, Fréchet proved that the continuous solutions of the equation $\Delta_h^m f(x) = 0$ are the polynomials of degree at most m - 1.

Let $\Delta_h f(x) = f(x+h) - f(x)$; The Cauchy functional equation leads to $\Delta_h^2 f(x) = 0$.

In 1909, Fréchet proved that the continuous solutions of the equation $\Delta_h^m f(x) = 0$ are the polynomials of degree at most m - 1.

In general, when studying such an equation, one tries to obtain the weakest hypothesis under which the solutions are polynomials.

The result associated to Fréechet functional equation reads as follows:

The solutions of Fréchet functional equation that are locally integrable are the polynomials of order at most m - 1,

The result associated to Fréechet functional equation reads as follows:

The solutions of Fréchet functional equation that are locally integrable are the polynomials of order at most m - 1,

although other conditions exist.

Let $m \in \mathbb{N}$ and $f : \mathbb{R} \to \mathbb{R}$ be a functions that is bounded almost everywhere on a neighborhood of a point $x_0 \in \mathbb{R}$. If $\Delta_h^m f = 0$ is satisfied on a neighborhood of x_0 for almost every hsufficiently small, then f can be written as a polynomial of degree at most m - 1 on a neighborhood of x_0 .

Let $m \in \mathbb{N}$ and $f : \mathbb{R} \to \mathbb{R}$ be a functions that is bounded almost everywhere on a neighborhood of a point $x_0 \in \mathbb{R}$. If $\Delta_h^m f = 0$ is satisfied on a neighborhood of x_0 for almost every hsufficiently small, then f can be written as a polynomial of degree at most m - 1 on a neighborhood of x_0 .

• The proof becomes much simpler if one assumes the measurability of *f*.

Let $m \in \mathbb{N}$ and $f : \mathbb{R} \to \mathbb{R}$ be a functions that is bounded almost everywhere on a neighborhood of a point $x_0 \in \mathbb{R}$. If $\Delta_h^m f = 0$ is satisfied on a neighborhood of x_0 for almost every hsufficiently small, then f can be written as a polynomial of degree at most m - 1 on a neighborhood of x_0 .

- The proof becomes much simpler if one assumes the measurability of *f*.
- This result is still valid in \mathbb{R}^n , using $f = g * \Phi$ with $\Phi \in D(\mathbb{R}^n)$, $\int \Phi dx = 1$ and $g = f \chi_{B(x_0,\epsilon)}$.

• *f* bounded a.e. near $x_0 \Rightarrow$ bounded everywhere near x_0 .

- *f* bounded a.e. near $x_0 \Rightarrow$ bounded everywhere near x_0 .
- Suppose that $|\Delta_h^j f(x)| \leq C$ locally for $j \in \{1, \ldots, m\}$.

- *f* bounded a.e. near $x_0 \Rightarrow$ bounded everywhere near x_0 .
- Suppose that $|\Delta_h^j f(x)| \leq C$ locally for $j \in \{1, \dots, m\}$.
- Newton's interpolation formula:

$$f(x+qrh) = \sum_{j=0}^{q} \frac{\Delta_{rh}^{j} f(x)}{j!} (q)_{j!}$$

where $(q)_j$ is the falling factorial $(\prod_{k=0}^{j-1}(q-k) \text{ for } j > 0)$.

- *f* bounded a.e. near $x_0 \Rightarrow$ bounded everywhere near x_0 .
- Suppose that $|\Delta_h^j f(x)| \leq C$ locally for $j \in \{1, \ldots, m\}$.
- Newton's interpolation formula:

$$f(x+qrh) = \sum_{j=0}^{q} \frac{\Delta_{rh}^{j} f(x)}{j!} (q)_{j}$$

where $(q)_j$ is the falling factorial $(\prod_{k=0}^{j-1}(q-k) \text{ for } j > 0)$.

Using the stirling numbers of the first kind s(j, k) and of second kind S(k, l) (l ∈ {0,..., m − 1}),

$$\frac{\Delta'_h f(x)}{l!} = \sum_{m=l-1}^{m-1} \sum_{j=k}^{q} \frac{\Delta'_{rh} f(x)}{j!} s(j,k) r^{-k} S(k,l),$$

- *f* bounded a.e. near $x_0 \Rightarrow$ bounded everywhere near x_0 .
- Suppose that $|\Delta_h^j f(x)| \leq C$ locally for $j \in \{1, \ldots, m\}$.
- Newton's interpolation formula:

$$f(x + qrh) = \sum_{j=0}^{q} \frac{\Delta_{rh}^{j} f(x)}{j!} (q)_{j!}$$

where $(q)_j$ is the falling factorial $(\prod_{k=0}^{j-1}(q-k) \text{ for } j > 0)$.

• Using the stirling numbers of the first kind s(j, k) and of second kind S(k, l) $(l \in \{0, ..., m-1\})$,

$$\frac{\Delta_h^l f(x)}{l!} = \sum_{m=l-1}^{m-1} \sum_{j=k}^q \frac{\Delta_{rh}^j f(x)}{j!} s(j,k) r^{-k} S(k,l),$$

• so that
$$|\frac{\Delta'_h f(x)|}{l!}| \le C' \sum_{k=l}^{m-1} \frac{|h|^k}{(\epsilon-h)^k}$$
 and f is continuous near x_0 (take $l = 1$).

Fréchet functional equation for distributions

For $T \in D'(\mathbb{R}^n)$, let us define $\Delta_h^m T(\phi) = T(\Delta_{-h}^m \phi)$, for $h \in \mathbb{R}^n$ and $\phi \in D(\mathbb{R}^n)$. For $T \in D'(\mathbb{R}^n)$, let us define $\Delta_h^m T(\phi) = T(\Delta_{-h}^m \phi)$, for $h \in \mathbb{R}^n$ and $\phi \in D(\mathbb{R}^n)$.

Since $\lim_{h\to 0} \frac{\Delta_h^m T}{h^m} = T^{(m)}$ for $T \in D'(\mathbb{R})$, if T satisfies $\Delta_h^m T = 0$ for h sufficiently small, T is associated to a polynomial of order at most m-1.

For $T \in D'(\mathbb{R}^n)$, let us define $\Delta_h^m T(\phi) = T(\Delta_{-h}^m \phi)$, for $h \in \mathbb{R}^n$ and $\phi \in D(\mathbb{R}^n)$.

Since $\lim_{h\to 0} \frac{\Delta_h^m T}{h^m} = T^{(m)}$ for $T \in D'(\mathbb{R})$, if T satisfies $\Delta_h^m T = 0$ for h sufficiently small, T is associated to a polynomial of order at most m-1.

Theorem

For $T \in D'(\mathbb{R}^n)$, the solutions of $\Delta_h^m T = 0$ for almost every $h \in \mathbb{R}^d$ are the distributions associated to a polynomial of degree at most m - 1.

For $T \in D'(\mathbb{R}^n)$, let us define $\Delta_h^m T(\phi) = T(\Delta_{-h}^m \phi)$, for $h \in \mathbb{R}^n$ and $\phi \in D(\mathbb{R}^n)$.

Since $\lim_{h\to 0} \frac{\Delta_h^m T}{h^m} = T^{(m)}$ for $T \in D'(\mathbb{R})$, if T satisfies $\Delta_h^m T = 0$ for h sufficiently small, T is associated to a polynomial of order at most m-1.

Theorem

For $T \in D'(\mathbb{R}^n)$, the solutions of $\Delta_h^m T = 0$ for almost every $h \in \mathbb{R}^d$ are the distributions associated to a polynomial of degree at most m - 1.

In particular, if $f \in L^1_{loc}(\mathbb{R}^n)$ satisfies $\Delta_h^m f = 0$ for almost every h, then f is a polynomial of degree at most m - 1.

If G is a connected Lie group, let L_x and R_x denote the left and right translations by x: $R_x : y \mapsto xy$ on G.

If G is a connected Lie group, let L_x and R_x denote the left and right translations by $x: R_x : y \mapsto xy$ on G.

We naturally set $\Delta_h = R_h^* - I$ where R_h is the pullback of R_h and $\Delta_{h_1,\ldots,h_m}^m = \Delta_{h_m} \circ \cdots \circ \Delta_{h_1}$.

If G is a connected Lie group, let L_x and R_x denote the left and right translations by $x: R_x : y \mapsto xy$ on G.

We naturally set $\Delta_h = R_h^* - I$ where R_h is the pullback of R_h and $\Delta_{h_1,\ldots,h_m}^m = \Delta_{h_m} \circ \cdots \circ \Delta_{h_1}$.

In the same way, ${}_{h}\Delta = L_{h}^{*} - I$.

We will consider the solutions locally satisfying

$$\Delta^m_{h_1,\ldots,h_m}f(x)=0\qquad (*)$$

at x_0 (i.e. for x in a neighborhood of x_0) for h_1, \ldots, h_m near the identity

We will consider the solutions locally satisfying

$$\Delta^m_{h_1,\ldots,h_m}f(x)=0\qquad (*)$$

at x_0 (i.e. for x in a neighborhood of x_0) for h_1, \ldots, h_m near the identity

or

$$\Delta_h^m f(x) = \Delta_{h,\dots,h}^m f(x) = 0 \qquad (*')$$

at x_0 , for *h* near the identity.

We will consider the solutions locally satisfying

$$\Delta^m_{h_1,\dots,h_m} f(x) = 0 \qquad (*)$$

at x_0 (i.e. for x in a neighborhood of x_0) for h_1, \ldots, h_m near the identity

or

$$\Delta_h^m f(x) = \Delta_{h,\dots,h}^m f(x) = 0 \qquad (*')$$

at x_0 , for *h* near the identity.

We will only consider solutions that are bounded a.e. in a neighborhood of x_0 .

A function $f: G \to \mathbb{R}$ satisfies $\Delta_{h_1,...,h_m}^m f(x) = 0$ at 1 iff it satisfies $_{h_1,...,h_m} \Delta^m f(x) = 0$ at 1.

A function $f: G \to \mathbb{R}$ satisfies $\Delta_{h_1,...,h_m}^m f(x) = 0$ at 1 iff it satisfies $_{h_1,...,h_m} \Delta^m f(x) = 0$ at 1.

Theorem

If $f : G \to \mathbb{R}$ is bounded a.e. in a neighborhood of x_0 and satisfies the local Fréchet equation (*') at x_0 then f is smooth in a neighborhood of x_0 .

Each $X \in \mathfrak{g}$ has a natural action on C^1 functions by the action of the associated left-invariant vector field as a derivation; \mathcal{L}_X will denote the left-invariant vector field associated to X.

Theorem

Let \mathfrak{g} be the Lie algebra of G and E_1, \ldots, E_n be a basis of \mathfrak{g} ; A function $f : G \to \mathbb{R}$ that is bounded a.e. in a neighborhood of x_0 is a solution of the local Fréchet equation (*') at x_0 of order m iff there exists a neighborhood U of x_0 in G and a neighborhood V of 0 in \mathfrak{g} s.t.

$$f(x \exp X) = \sum_{j=0}^{m-1} \frac{\mathcal{L}_X^j f(x)}{j!}$$

= $f(x) + \sum_{j=1}^{m-1} \sum_{1 \le i_1, \cdots, i_j \le n} \frac{\mathcal{L}_{E_{i_1}} \cdots \mathcal{L}_{E_{i_j}} f(x)}{j!} X_{i_1} \cdots X_{i_j},$

for all $X \in V$ and $x \in U$.

We will say that f is locally right-abelian at x_0 if f(xyz) = f(xzy) for x near x_0 and y, z near the identity.

We will say that f is locally right-abelian at x_0 if f(xyz) = f(xzy) for x near x_0 and y, z near the identity.

Theorem

If $f: G \to \mathbb{R}$ is locally bounded a.e. in a neighborhood of x_0 and locally right-abelian at x_0 , then it is a solution of the local Fréchet equation (*) or (*') at x_0 of order *m* iff there exist $f_1, \ldots f_k \in \operatorname{Hom}_{\operatorname{loc}}(G, \mathbb{R})$, real numbers a_α for $\alpha \in \mathbb{N}^k$ and a neighborhood *U* of the identity such that

$$f(x_0h) = \sum_{|\alpha| < m} a_{\alpha} f_1(h)^{\alpha_1} \cdots f_k(h)^{\alpha_k},$$

for all $h \in U$, where $k = \dim(\operatorname{Hom}_{\operatorname{loc}})$.

We will say that f is locally right-abelian at x_0 if f(xyz) = f(xzy) for x near x_0 and y, z near the identity.

Theorem

If $f: G \to \mathbb{R}$ is locally bounded a.e. in a neighborhood of x_0 and locally right-abelian at x_0 , then it is a solution of the local Fréchet equation (*) or (*') at x_0 of order *m* iff there exist $f_1, \ldots f_k \in \operatorname{Hom}_{\operatorname{loc}}(G, \mathbb{R})$, real numbers a_α for $\alpha \in \mathbb{N}^k$ and a neighborhood *U* of the identity such that

$$f(x_0h) = \sum_{|\alpha| < m} a_{\alpha} f_1(h)^{\alpha_1} \cdots f_k(h)^{\alpha_k},$$

for all $h \in U$, where $k = \dim(\operatorname{Hom}_{\operatorname{loc}})$.

If G is simply connected, f_j belongs to Hom (G, \mathbb{R}) and a global solution is given by the previous identity, with $x_0 = 1$ and any $h \in G$.

If G is unimodular, $T \in D'(G)$ is a solution of the local Fréchet equation (*') at x_0 of order m iff there exists a neighborhood U of x_0 such that $T|_U$ is a distribution associated to the smooth function $f : G \to \mathbb{R}$ such that

$$f(x \exp X) = \sum_{j=0}^{m-1} \frac{\mathcal{L}_X^j f(x)}{j!},$$

for $x \in U$ and X in a neighborhood of 0 in \mathfrak{g} .

If G is a connected Abelian Lie group, then $G = \mathbb{R}^n \times (S^1)^k$ for some n and some k.

If G is a connected Abelian Lie group, then $G = \mathbb{R}^n \times (S^1)^k$ for some n and some k.

Proposition

On $\mathbb{R}^n imes (S^1)^k$, the global solutions of the Fréchet equation (*) or (*') of order *m* are of the form

$$f(x,y) = \sum_{|\alpha| < m} a_{\alpha} x^{\alpha},$$

for $x \in \mathbb{R}^n$ and $y \in (S^1)^k$.

For the (ax + b)-group, the solutions of the local Fréchet equation (*) or (*') of order m at 1 are given by $f(x, y) = \sum_{j=0}^{m-1} a_j \ln^j x$.

For the (ax + b)-group, the solutions of the local Fréchet equation (*) or (*') of order m at 1 are given by $f(x, y) = \sum_{j=0}^{m-1} a_j \ln^j x$.

Proposition

For the $SL(2,\mathbb{R})$, the solutions of the local Fréchet equation (*) or (*') of order *m* at 1 are constant near the identity.

If G is a two-step nilpotent Lie group, $f : G \to \mathbb{R}$ is a solution of the local Fréchet equation (*) or (*') at x_0 of order m iff $f \circ L_{x_0} \circ \exp$ is a polynomial of degree at most m - 1.

If G is not nilpotent, we have

$$\mathfrak{g}\supset\mathfrak{g}^{(1)}\supset\mathfrak{g}^{(2)}\supset\cdots\supset\mathfrak{g}^{(N)}=\mathfrak{g}^{(N+n)},$$
 with $\mathfrak{g}^{(1)}=[\mathfrak{g},\mathfrak{g}]$ and $\mathfrak{g}^{(j)}=[\mathfrak{g},\mathfrak{g}^{j-1}].$

If G is not nilpotent, we have

$$\mathfrak{g} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(N)} = \mathfrak{g}^{(N+n)},$$

with $\mathfrak{g}^{(1)} = [\mathfrak{g}, \mathfrak{g}]$ and $\mathfrak{g}^{(j)} = [\mathfrak{g}, \mathfrak{g}^{j-1}]$.

Definition

Let *N* be the smallest integer s.t. $\mathfrak{g}^{(N)} = \mathfrak{g}^{(N+1)}$; the space of fundamental monomials of on *G* is $(\mathfrak{g}^{(N)})^{\perp}$. The set of functions $f : G \to \mathbb{R}$ s.t. $f \circ \exp$ is a polynomial in a neighborhood of 0 generated by a basis of fundamental monomials form will be denoted P(G). If G is not nilpotent, we have

$$\mathfrak{g} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(N)} = \mathfrak{g}^{(N+n)},$$

with $\mathfrak{g}^{(1)} = [\mathfrak{g}, \mathfrak{g}]$ and $\mathfrak{g}^{(j)} = [\mathfrak{g}, \mathfrak{g}^{j-1}]$.

Definition

Let *N* be the smallest integer s.t. $\mathfrak{g}^{(N)} = \mathfrak{g}^{(N+1)}$; the space of fundamental monomials of on *G* is $(\mathfrak{g}^{(N)})^{\perp}$. The set of functions $f : G \to \mathbb{R}$ s.t. $f \circ \exp$ is a polynomial in a neighborhood of 0 generated by a basis of fundamental monomials form will be denoted P(G).

Elements of P(G) are solutions of the local Fréchet equation (*').

The set of a.e. locally bounded solutions of the local Fréchet equation (*) in a neighborhood of 1 is P(G).

The set of a.e. locally bounded solutions of the local Fréchet equation (*) in a neighborhood of 1 is P(G).

In particular, the solutions for semi-simple Lie groups are constant in a neighborhood of 1.

