On some generalisations of the Fréchet functional equations

S. Nicolay in collaboration with A. Molla

GDR AFHP

Corte, Oct. 25-28, 2022

Cauchy functional equation

An additive function is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y)=f(x)+f(y)$ for any x and y.

Cauchy functional equation

An additive function is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y)=f(x)+f(y)$ for any x and y.

Such a function is \mathbb{Q}-linear $(f(r x)=r f(x)$ for $r \in \mathbb{Q})$.

An additive function is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y)=f(x)+f(y)$ for any x and y.

Such a function is \mathbb{Q}-linear $(f(r x)=r f(x)$ for $r \in \mathbb{Q})$.

1871 Cauchy provided the first significant result, stating that an additive function that is continuous is necessarily \mathbb{R}-linear,

An additive function is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y)=f(x)+f(y)$ for any x and y.

Such a function is \mathbb{Q}-linear $(f(r x)=r f(x)$ for $r \in \mathbb{Q})$.

1871 Cauchy provided the first significant result, stating that an additive function that is continuous is necessarily \mathbb{R}-linear,

1875 Darboux showed that an additive function that is not linear is necessarily discontinuous everywhere,

An additive function is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y)=f(x)+f(y)$ for any x and y.

Such a function is \mathbb{Q}-linear $(f(r x)=r f(x)$ for $r \in \mathbb{Q})$.

1871 Cauchy provided the first significant result, stating that an additive function that is continuous is necessarily \mathbb{R}-linear,

1875 Darboux showed that an additive function that is not linear is necessarily discontinuous everywhere,

1905 Hamel provided such a solution using Zorn's lemma to get a basis (of \mathbb{R} as a \mathbb{Q}-vector space) which now bears his name.

Fréchet functional equation

Let $\Delta_{h} f(x)=f(x+h)-f(x)$;

Let $\Delta_{h} f(x)=f(x+h)-f(x)$;
The Cauchy functional equation leads to $\Delta_{h}^{2} f(x)=0$.

Let $\Delta_{h} f(x)=f(x+h)-f(x)$;
The Cauchy functional equation leads to $\Delta_{h}^{2} f(x)=0$.

In 1909, Fréchet proved that the continuous solutions of the equation $\Delta_{h}^{m} f(x)=0$ are the polynomials of degree at most $m-1$.

Let $\Delta_{h} f(x)=f(x+h)-f(x)$;
The Cauchy functional equation leads to $\Delta_{h}^{2} f(x)=0$.

In 1909, Fréchet proved that the continuous solutions of the equation $\Delta_{h}^{m} f(x)=0$ are the polynomials of degree at most $m-1$.

In general, when studying such an equation, one tries to obtain the weakest hypothesis under which the solutions are polynomials.

The result associated to Fréechet functional equation reads as follows:

The solutions of Fréchet functional equation that are locally integrable are the polynomials of order at most $m-1$,

The result associated to Fréechet functional equation reads as follows:

The solutions of Fréchet functional equation that are locally integrable are the polynomials of order at most $m-1$,
although other conditions exist.

Theorem

Let $m \in \mathbb{N}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a functions that is bounded almost everywhere on a neighborhood of a point $x_{0} \in \mathbb{R}$. If $\Delta_{h}^{m} f=0$ is satisfied on a neighborhood of x_{0} for almost every h sufficiently small, then f can be written as a polynomial of degree at most $m-1$ on a neighborhood of x_{0}.

Theorem

Let $m \in \mathbb{N}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a functions that is bounded almost everywhere on a neighborhood of a point $x_{0} \in \mathbb{R}$. If $\Delta_{h}^{m} f=0$ is satisfied on a neighborhood of x_{0} for almost every h sufficiently small, then f can be written as a polynomial of degree at most $m-1$ on a neighborhood of x_{0}.

- The proof becomes much simpler if one assumes the measurability of f.

Theorem

Let $m \in \mathbb{N}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a functions that is bounded almost everywhere on a neighborhood of a point $x_{0} \in \mathbb{R}$. If $\Delta_{h}^{m} f=0$ is satisfied on a neighborhood of x_{0} for almost every h sufficiently small, then f can be written as a polynomial of degree at most $m-1$ on a neighborhood of x_{0}.

- The proof becomes much simpler if one assumes the measurability of f.
- This result is still valid in \mathbb{R}^{n}, using $f=g * \Phi$ with $\Phi \in D\left(\mathbb{R}^{n}\right), \int \Phi d x=1$ and $g=f \chi_{B\left(x_{0}, \epsilon\right)}$.
- f bounded a.e. near $x_{0} \Rightarrow$ bounded everywhere near x_{0}.
- f bounded a.e. near $x_{0} \Rightarrow$ bounded everywhere near x_{0}.
- Suppose that $\left|\Delta_{h}^{j} f(x)\right| \leq C$ locally for $j \in\{1, \ldots, m\}$.
- f bounded a.e. near $x_{0} \Rightarrow$ bounded everywhere near x_{0}.
- Suppose that $\left|\Delta_{h}^{j} f(x)\right| \leq C$ locally for $j \in\{1, \ldots, m\}$.
- Newton's interpolation formula:

$$
f(x+q r h)=\sum_{j=0}^{q} \frac{\Delta_{r h}^{j} f(x)}{j!}(q)_{j}
$$

where $(q)_{j}$ is the falling factorial $\left(\prod_{k=0}^{j-1}(q-k)\right.$ for $\left.j>0\right)$.

- f bounded a.e. near $x_{0} \Rightarrow$ bounded everywhere near x_{0}.
- Suppose that $\left|\Delta_{h}^{j} f(x)\right| \leq C$ locally for $j \in\{1, \ldots, m\}$.
- Newton's interpolation formula:

$$
f(x+q r h)=\sum_{j=0}^{q} \frac{\Delta_{r h}^{j} f(x)}{j!}(q)_{j}
$$

where $(q)_{j}$ is the falling factorial $\left(\prod_{k=0}^{j-1}(q-k)\right.$ for $\left.j>0\right)$.

- Using the stirling numbers of the first kind $s(j, k)$ and of second kind $S(k, I)(I \in\{0, \ldots, m-1\})$,

$$
\frac{\Delta_{h}^{\prime} f(x)}{l!}=\sum_{m=l-1}^{m-1} \sum_{j=k}^{q} \frac{\Delta_{r h}^{j} f(x)}{j!} s(j, k) r^{-k} S(k, l)
$$

- f bounded a.e. near $x_{0} \Rightarrow$ bounded everywhere near x_{0}.
- Suppose that $\left|\Delta_{h}^{j} f(x)\right| \leq C$ locally for $j \in\{1, \ldots, m\}$.
- Newton's interpolation formula:

$$
f(x+q r h)=\sum_{j=0}^{q} \frac{\Delta_{r h}^{j} f(x)}{j!}(q)_{j}
$$

where $(q)_{j}$ is the falling factorial $\left(\prod_{k=0}^{j-1}(q-k)\right.$ for $\left.j>0\right)$.

- Using the stirling numbers of the first kind $s(j, k)$ and of second kind $S(k, I)(I \in\{0, \ldots, m-1\})$,

$$
\frac{\Delta_{h}^{\prime} f(x)}{l!}=\sum_{m=l-1}^{m-1} \sum_{j=k}^{q} \frac{\Delta_{r h}^{j} f(x)}{j!} s(j, k) r^{-k} S(k, l)
$$

- so that $\left|\frac{\Delta_{h}^{\prime} f(x) \mid}{I!}\right| \leq C^{\prime} \sum_{k=1}^{m-1} \frac{|h|^{k}}{(\epsilon-h)^{k}}$ and f is continuous near $x_{0}($ take $I=1)$.

Fréchet functional equation for distributions

For $T \in D^{\prime}\left(\mathbb{R}^{n}\right)$, let us define $\Delta_{h}^{m} T(\phi)=T\left(\Delta_{-h}^{m} \phi\right)$, for $h \in \mathbb{R}^{n}$ and $\phi \in D\left(\mathbb{R}^{n}\right)$.

For $T \in D^{\prime}\left(\mathbb{R}^{n}\right)$, let us define $\Delta_{h}^{m} T(\phi)=T\left(\Delta_{-h}^{m} \phi\right)$, for $h \in \mathbb{R}^{n}$ and $\phi \in D\left(\mathbb{R}^{n}\right)$.

Since $\lim _{h \rightarrow 0} \frac{\Delta_{h}^{m} T}{h^{m}}=T^{(m)}$ for $T \in D^{\prime}(\mathbb{R})$, if T satisfies $\Delta_{h}^{m} T=0$ for h sufficiently small, T is associated to a polynomial of order at most $m-1$.

For $T \in D^{\prime}\left(\mathbb{R}^{n}\right)$, let us define $\Delta_{h}^{m} T(\phi)=T\left(\Delta_{-h}^{m} \phi\right)$, for $h \in \mathbb{R}^{n}$ and $\phi \in D\left(\mathbb{R}^{n}\right)$.

Since $\lim _{h \rightarrow 0} \frac{\Delta_{h}^{m} T}{h^{m}}=T^{(m)}$ for $T \in D^{\prime}(\mathbb{R})$, if T satisfies $\Delta_{h}^{m} T=0$ for h sufficiently small, T is associated to a polynomial of order at most $m-1$.

Theorem

For $T \in D^{\prime}\left(\mathbb{R}^{n}\right)$, the solutions of $\Delta_{h}^{m} T=0$ for almost every $h \in \mathbb{R}^{d}$ are the distributions associated to a polynomial of degree at most $m-1$.

For $T \in D^{\prime}\left(\mathbb{R}^{n}\right)$, let us define $\Delta_{h}^{m} T(\phi)=T\left(\Delta_{-h}^{m} \phi\right)$, for $h \in \mathbb{R}^{n}$ and $\phi \in D\left(\mathbb{R}^{n}\right)$.

Since $\lim _{h \rightarrow 0} \frac{\Delta_{h}^{m} T}{h^{m}}=T^{(m)}$ for $T \in D^{\prime}(\mathbb{R})$, if T satisfies $\Delta_{h}^{m} T=0$ for h sufficiently small, T is associated to a polynomial of order at most $m-1$.

Theorem

For $T \in D^{\prime}\left(\mathbb{R}^{n}\right)$, the solutions of $\Delta_{h}^{m} T=0$ for almost every $h \in \mathbb{R}^{d}$ are the distributions associated to a polynomial of degree at most $m-1$.

In particular, if $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ satisfies $\Delta_{h}^{m} f=0$ for almost every h, then f is a polynomial of degree at most $m-1$.

Fréchet functional equation on Lie groups

If G is a connected Lie group, let L_{x} and R_{x} denote the left and right translations by $x: R_{x}: y \mapsto x y$ on G.

If G is a connected Lie group, let L_{x} and R_{x} denote the left and right translations by $x: R_{x}: y \mapsto x y$ on G.

We naturally set $\Delta_{h}=R_{h}^{*}-I$ where R_{h} is the pullback of R_{h} and $\Delta_{h_{1}, \ldots, h_{m}}^{m}=\Delta_{h_{m}} \circ \cdots \circ \Delta_{h_{1}}$.

If G is a connected Lie group, let L_{x} and R_{x} denote the left and right translations by $x: R_{x}: y \mapsto x y$ on G.

We naturally set $\Delta_{h}=R_{h}^{*}-I$ where R_{h} is the pullback of R_{h} and $\Delta_{h_{1}, \ldots, h_{m}}^{m}=\Delta_{h_{m}} \circ \cdots \circ \Delta_{h_{1}}$.

In the same way, ${ }_{h} \Delta=L_{h}^{*}-I$.

We will consider the solutions locally satisfying

$$
\Delta_{h_{1}, \ldots, h_{m}}^{m} f(x)=0 \quad(*)
$$

at x_{0} (i.e. for x in a neighborhood of x_{0}) for h_{1}, \ldots, h_{m} near the identity

We will consider the solutions locally satisfying

$$
\Delta_{h_{1}, \ldots, h_{m}}^{m} f(x)=0 \quad(*)
$$

at x_{0} (i.e. for x in a neighborhood of x_{0}) for h_{1}, \ldots, h_{m} near the identity
or

$$
\Delta_{h}^{m} f(x)=\Delta_{h, \ldots, h}^{m} f(x)=0 \quad\left(*^{\prime}\right)
$$

at x_{0}, for h near the identity.

We will consider the solutions locally satisfying

$$
\begin{equation*}
\Delta_{h_{1}, \ldots, h_{m}}^{m} f(x)=0 \tag{*}
\end{equation*}
$$

at x_{0} (i.e. for x in a neighborhood of x_{0}) for h_{1}, \ldots, h_{m} near the identity
or

$$
\Delta_{h}^{m} f(x)=\Delta_{h, \ldots, h}^{m} f(x)=0 \quad\left(*^{\prime}\right)
$$

at x_{0}, for h near the identity.

We will only consider solutions that are bounded a.e. in a neighborhood of x_{0}.

Proposition

A function $f: G \rightarrow \mathbb{R}$ satisfies $\Delta_{h_{1}, \ldots, h_{m}}^{m} f(x)=0$ at 1 iff it satisfies $h_{1}, \ldots, h_{m} \Delta^{m} f(x)=0$ at 1 .

Proposition

A function $f: G \rightarrow \mathbb{R}$ satisfies $\Delta_{h_{1}, \ldots, h_{m}}^{m} f(x)=0$ at 1 iff it satisfies $h_{1}, \ldots, h_{m} \Delta^{m} f(x)=0$ at 1 .

Theorem

If $f: G \rightarrow \mathbb{R}$ is bounded a.e. in a neighborhood of x_{0} and satisfies the local Fréchet equation $\left(*^{\prime}\right)$ at x_{0} then f is smooth in a neighborhood of x_{0}.

Each $X \in \mathfrak{g}$ has a natural action on C^{1} functions by the action of the associated left-invariant vector field as a derivation; \mathcal{L}_{X} will denote the left-invariant vector field associated to X.

Theorem

Let \mathfrak{g} be the Lie algebra of G and E_{1}, \ldots, E_{n} be a basis of \mathfrak{g}; A function $f: G \rightarrow \mathbb{R}$ that is bounded a.e. in a neighborhood of x_{0} is a solution of the local Fréchet equation $\left(*^{\prime}\right)$ at x_{0} of order m iff there exists a neighborhood U of x_{0} in G and a neighborhood V of 0 in \mathfrak{g} s.t.

$$
\begin{aligned}
f(x \exp X) & =\sum_{j=0}^{m-1} \frac{\mathcal{L}_{X}^{j} f(x)}{j!} \\
& =f(x)+\sum_{j=1}^{m-1} \sum_{1 \leq i_{1}, \cdots, i_{j} \leq n} \frac{\mathcal{L}_{E_{i_{1}}} \cdots \mathcal{L}_{E_{i_{j}}} f(x)}{j!} X_{i_{1}} \cdots X_{i_{j}},
\end{aligned}
$$

for all $X \in V$ and $x \in U$.

We will say that f is locally right-abelian at x_{0} if $f(x y z)=f(x z y)$ for x near x_{0} and y, z near the identity.

We will say that f is locally right-abelian at x_{0} if $f(x y z)=f(x z y)$ for x near x_{0} and y, z near the identity.

Theorem

If $f: G \rightarrow \mathbb{R}$ is locally bounded a.e. in a neighborhood of x_{0} and locally right-abelian at x_{0}, then it is a solution of the local Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ at x_{0} of order m iff there exist $f_{1}, \ldots f_{k} \in \operatorname{Hom}_{\text {loc }}(G, \mathbb{R})$, real numbers a_{α} for $\alpha \in \mathbb{N}^{k}$ and a neighborhood U of the identity such that

$$
f\left(x_{0} h\right)=\sum_{|\alpha|<m} a_{\alpha} f_{1}(h)^{\alpha_{1}} \cdots f_{k}(h)^{\alpha_{k}},
$$

for all $h \in U$, where $k=\operatorname{dim}\left(\right.$ Hom $\left._{\text {loc }}\right)$.

We will say that f is locally right-abelian at x_{0} if $f(x y z)=f(x z y)$ for x near x_{0} and y, z near the identity.

Theorem

If $f: G \rightarrow \mathbb{R}$ is locally bounded a.e. in a neighborhood of x_{0} and locally right-abelian at x_{0}, then it is a solution of the local Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ at x_{0} of order m iff there exist $f_{1}, \ldots f_{k} \in \operatorname{Hom}_{\text {loc }}(G, \mathbb{R})$, real numbers a_{α} for $\alpha \in \mathbb{N}^{k}$ and a neighborhood U of the identity such that

$$
f\left(x_{0} h\right)=\sum_{|\alpha|<m} a_{\alpha} f_{1}(h)^{\alpha_{1}} \cdots f_{k}(h)^{\alpha_{k}},
$$

for all $h \in U$, where $k=\operatorname{dim}\left(\right.$ Hom $\left._{\text {loc }}\right)$.

If G is simply connected, f_{j} belongs to $\operatorname{Hom}(G, \mathbb{R})$ and a global solution is given by the previous identity, with $x_{0}=1$ and any $h \in G$.

Theorem

If G is unimodular, $T \in D^{\prime}(G)$ is a solution of the local Fréchet equation $\left(*^{\prime}\right)$ at x_{0} of order m iff there exists a neighborhood U of x_{0} such that $\left.T\right|_{U}$ is a distribution associated to the smooth function $f: G \rightarrow \mathbb{R}$ such that

$$
f(x \exp X)=\sum_{j=0}^{m-1} \frac{\mathcal{L}_{X}^{j} f(x)}{j!}
$$

for $x \in U$ and X in a neighborhood of 0 in \mathfrak{g}.

If G is a connected Abelian Lie group, then $G=\mathbb{R}^{n} \times\left(S^{1}\right)^{k}$ for some n and some k.

If G is a connected Abelian Lie group, then $G=\mathbb{R}^{n} \times\left(S^{1}\right)^{k}$ for some n and some k.

Proposition

On $\mathbb{R}^{n} \times\left(S^{1}\right)^{k}$, the global solutions of the Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ of order m are of the form

$$
f(x, y)=\sum_{|\alpha|<m} a_{\alpha} x^{\alpha},
$$

for $x \in \mathbb{R}^{n}$ and $y \in\left(S^{1}\right)^{k}$.

Proposition

For the $(a x+b)$-group, the solutions of the local Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ of order m at 1 are given by $f(x, y)=\sum_{j=0}^{m-1} a_{j} \ln ^{j} x$.

Proposition

For the $(a x+b)$-group, the solutions of the local Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ of order m at 1 are given by $f(x, y)=\sum_{j=0}^{m-1} a_{j} \ln ^{j} x$.

Proposition

For the $S L(2, \mathbb{R})$, the solutions of the local Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ of order m at 1 are constant near the identity.

Proposition

If G is a two-step nilpotent Lie group, $f: G \rightarrow \mathbb{R}$ is a solution of the local Fréchet equation $(*)$ or $\left(*^{\prime}\right)$ at x_{0} of order m iff $f \circ L_{x_{0}} \circ \exp$ is a polynomial of degree at most $m-1$.

If G is not nilpotent, we have

$$
\mathfrak{g} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(N)}=\mathfrak{g}^{(N+n)},
$$

with $\mathfrak{g}^{(1)}=[\mathfrak{g}, \mathfrak{g}]$ and $\mathfrak{g}^{(j)}=\left[\mathfrak{g}, \mathfrak{g}^{j-1}\right]$.

If G is not nilpotent, we have

$$
\mathfrak{g} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(N)}=\mathfrak{g}^{(N+n)},
$$

with $\mathfrak{g}^{(1)}=[\mathfrak{g}, \mathfrak{g}]$ and $\mathfrak{g}^{(j)}=\left[\mathfrak{g}, \mathfrak{g}^{j-1}\right]$.

Definition

Let N be the smallest integer s.t. $\mathfrak{g}^{(N)}=\mathfrak{g}^{(N+1)}$; the space of fundamental monomials of on G is $\left(\mathfrak{g}^{(N)}\right)^{\perp}$.
The set of functions $f: G \rightarrow \mathbb{R}$ s.t. $f \circ \exp$ is a polynomial in a neighborhood of 0 generated by a basis of fundamental monomials form will be denoted $P(G)$.

If G is not nilpotent, we have

$$
\mathfrak{g} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(N)}=\mathfrak{g}^{(N+n)},
$$

with $\mathfrak{g}^{(1)}=[\mathfrak{g}, \mathfrak{g}]$ and $\mathfrak{g}^{(j)}=\left[\mathfrak{g}, \mathfrak{g}^{j-1}\right]$.

Definition

Let N be the smallest integer s.t. $\mathfrak{g}^{(N)}=\mathfrak{g}^{(N+1)}$; the space of fundamental monomials of on G is $\left(\mathfrak{g}^{(N)}\right)^{\perp}$.
The set of functions $f: G \rightarrow \mathbb{R}$ s.t. $f \circ \exp$ is a polynomial in a neighborhood of 0 generated by a basis of fundamental monomials form will be denoted $P(G)$.

Elements of $P(G)$ are solutions of the local Fréchet equation $\left(*^{\prime}\right)$.

Theorem

The set of a.e. locally bounded solutions of the local Fréchet equation $(*)$ in a neighborhood of 1 is $P(G)$.

Theorem

The set of a.e. locally bounded solutions of the local Fréchet equation (*) in a neighborhood of 1 is $P(G)$.

In particular, the solutions for semi-simple Lie groups are constant in a neighborhood of 1 .

